JMLR Workshop and Conference Proceedings 6:191-202 NIPS 2008 workshop on causality

Discover Local Causal Network around a Target

to a Given Depth
You Zhou ZHOUYOU @PKU.EDU.CN
Changzhang Wang CHANGZHANG @PKU.EDU.CN
Jianxin Yin JIANXINYIN @ GMAIL.COM
Zhi Geng ZGENG @MATH.PKU.EDU.CN

School of Mathematical Sciences
Peking University
Beijing 100871, China

Editor: Isabelle Guyon, Dominik Janzing and Bernhard Scholkopf

Abstract

For a given target node 7 and a given depth k > 1, we propose an algorithm for discovering a
local causal network around the target 7' to depth k. In our algorithm, we find parents, children
and some descendants (PCD) of nodes stepwise away from the target 7" until all edges within
the depth & local network cannot be oriented further. Our algorithm extends the PCD-by-PCD
algorithm for prediction with intervention presented in Yin et al. (2008). Our algorithm can
construct a local network to depth k, has a more efficient stop rule and finds PCDs along some
but not all paths starting from the target.

Keywords: Causal network, Local structural learning

1. Introduction

In some applications, we may be interested in discovering a local causal network around a target
variable rather than the whole network over all variables. For example, we want to predict the
target in the cases with external interventions, or we are interested in direct and indirect causes
of a disease and further discriminate direct causes from other indirect causes. There are many
algorithms for structural learning, but most of them are for constructing a whole network over
all variables, such as Pearl (2000); Spirtes et al. (2000); Heckerman (1999); Tsamardinos et al.
(2006); Xie et al. (2006) and Xie and Geng (2008). To discover a local causal network, however,
it is inefficient to construct the whole network over a large number of variables. In Causation and
Prediction Challenge of IEEE WCCI2008, Yin et al. (2008) proposed local structural learning
approaches for prediction with external interventions, in which only edges connecting to the
target are discovered and oriented. But it cannot be used to discover a larger local structure or
more indirect causes of the target.

In this paper, for a given target node T and a given depth k > 1, we propose an algorithm
for discovering a local causal network around the target 7' to depth k. Our algorithm extends the
PCD-by-PCD algorithm for prediction with intervention presented in Yin et al. (2008). First our

(©2010 Y. Zhou, C. Wang, J. Yin, and Z. Geng

ZHOU WANG YIN GENG

algorithm can construct a depth k local network, and Yin’s PCD-by-PCD algorithm is a special
case of the depth 1. Second, our algorithm has a more efficient stop rule than Yin’s algorithm.
In Yin’s algorithm, a main stop condition is ‘until all edges connecting the target are oriented’,
but in our algorithm, we make this condition weaker so that our algorithm can stop earlier than
Yin’s algorithm without loss of validity. Third, our algorithm continues to find PCDs along only
some paths away from the target which are necessary to orient the undirected edges within the
depth k local network, while Yin’s algorithm continues to find PCDs along all paths starting
from the target.

In Section 2, we propose the local structural learning algorithm. In Section 3, we theoret-
ically show the correctness of our algorithm. Section 4 gives definitions of scores to be used
for evaluation of algorithm performance. In Section 5, we compare our algorithms with other
algorithms via simulation. We discuss the challenge task: LOCANET in Section 6. Discussion
is given in Section 7. Proof of theorem is shown in Appendix.

2. Learning a local structure around the target to a given depth

Let U denote the full set of all nodes. For a node u, let PC(u) denote the set of all parents
and all children of u, and let PCD(u) denote a set which contains PC(«) and may contain some
descendants of u. There are several algorithms which can be used to find PCD(u), such as Min
Max Parent and Children (MMPC) algorithm (Tsamardinos et al., 2006).

Let T be the target node. Suppose that we are interested in the local network around the
target T to a depth k. In our algorithm, we first find parents, children and some descendants
(PCD) of the target T to obtain a local skeleton with a radius 1, and then repeatedly find PCDs
of nodes in the previous PCDs until the radius of the local skeleton is up to the given depth k.
To orient the edges in the local skeleton, we may need to find more PCDs further away from the
target 7 along some but not all paths. We expect to orient all undirected edges within the local
network, but some of the undirected edges cannot be oriented essentially from observational
data even if we construct a correct global network, which is an equivalence class of causal
networks. Thus we propose a stopping rule so that the process of finding PCDs can stop early
even if some edges within the local network are unoriented. Our stopping rule is based on the
fact that when the unoriented edges are surrounded by directed edges, they cannot be oriented
by finding further structures. We theoretically show that our algorithm can correctly obtain the
local causal network with the given depth. Our algorithm does not need to construct the global
network and thus it can greatly reduce computational complexity of structural learning.

In the following algorithm, we separate the process into two parts. Part 1 is to find edges
within length k — 1 from the target 7. Part 2 is to find edges at the outer layer k and to orient
undirected edges within the local network with depth k. When k = 1, we only need to run Part
2 but no need to run Part 1.

192

LOCAL NETWORK AROUND A TARGET

Algorithm 1: Local structural learning around the target 7' to depth &

1

Part 1: Find edges within length k — 1 from the target 7.
Initialization: Find the PCD of T, PCD(T).
V ={T} (V is a set of variables whose PCDs have been obtained)
Layer(0) = {T}, Layer(i) = 0 for i = 1,...k (Layer(i) is the node set on layer i)
TotalLay = {T}, (The total set of nodes on all layers)
depth = 1, (the counter of depth)
canU (1) = PCD(T), canU (i) =0 fori =2,...,k;
(canU (i) is an ordinal waiting list for layer i whose PCD will be found.)
Repeat
Take X from the head of list canU (depth) out.
If X ¢ V (i.e., PCD(X) has not been gotten before) then
Find PCD(X), and set V =V U{X}.
ForeachY € V,if [X € PCD(Y) and Y € PCD(X)],
then create an undirected edge (X,Y).
Find v-structures within V including X:
{Within V, find possible v-structures only for the triple of X and other
two variables in V if an intermediate node is not in the separator set of two
nonadjacent nodes. }
Orient undirected edges within V:
{Orient other edges between nodes in V if each opposite of them
creates either a directed cycle or a new v-structure (Meek, 1995).}
End if
If X ¢ TotalLay and X ¢ Layer(depth) and X is adjacent to
anode in Layer(depth — 1) then
Layer(depth) = Layer(depth) U{X},
add PCD(X)\TotalLay to the tail of list canU (depth+ 1)
End if.
If canU (depth) = 0 then
TotalLay = TotalLay U Layer(depth) and depth = depth+ 1
End if
Until canU (depth) = 0 or depth > k.

193

ZHOU WANG YIN GENG

Algorithm 1 (continued)
Part 2: Find edges at layer k and orient undirected edges within the local structure.
1 Inmitialization. Set the list of nodes at the layer k — 1
whose PCDs will further be found:
canV = {struct('leaf’ v, length' |1, path' ,u) : u € Layer(depth =k —1),
v € PCD(u)\TotalLay}
Repeat
2 Take X from the head of the list canV out.
3 If all edges on path X.path are undirected then
If X.leaf ¢ V then
find PCD(X.leaf) and set V =V U{X.leaf};
foreachY € V,if X.leaf € PCD(Y) and Y € PCD(X .leaf),
then create an undirected edge (X.leaf,Y);
find v-structures within V including X ./leaf;
orient undirected edges within V.
End if.
If there is an undirect edge between X.leaf and the last node u of X.path then
add {struct('leaf’,v, length’,X length+ 1, path’ [X.path,X .leaf])
:v € PCD(X.leaf)\X .path\TotalLay} to the tail of canV
End if.
End if.
4 Until canV = 0.
Return

Example. Consider the revised ALARM network in Fig. 1 where the arrows 16 — 20 and
25 — 20 in the original ALARM (Beinlich et al., 1989) are reversed as 16 <— 20 and 25 + 20
respectively. The revision makes more edges unoriented in its Markov equivalence class and
thus it becomes more complicated for structural learning. Suppose that we want to discover a
local network around node 20 to depth 2, denoted as G,(20). Applying Part 1 of our algorithm,
we obtain a local network with all edges undirected as shown in Fig. 2. Applying Part 2, we
first obtain the local network with depth = 2 in Fig. 3. Since there are some edges unoriented,
we extend the network along undirected paths to orient these undirected edges. Finally Part 2
returns a local network as shown in Fig. 4, which is larger than G,(20) and has four nodes 9,
13, 19 and 21 outside G»(20). Nodes 19 and 21 are used to find two v-structures 19 — 15 < 18
and 21 — 17 <— 16 respectively, and thus they help to orient edges 17 <— 16 and 15 <— 18 within
G2(20). Nodes 9 and 13 are used to find a v-structure 13 — 9 <— 14 such that all undirected
edges within G,(20) are surrounded by directed edges, and thus the algorithm stops.

3. Theoretical result for algorithm’s correctness

We show below the correctness of the algorithm proposed in the previous section.

Theorem 1 Suppose that a causal network is faithful to a probability distribution and all con-
ditional independencies are correctly checked by using data. Then the algorithm proposed in
the previous section can correctly discover the edges within the depth k local causal network
around the target variable T. Further it can obtain the same orientations of these edges as
a partially directed graph for the Markov equivalence class of the underlying global causal
network.

The proof of this theorem is given in Appendix. Under the suppositions of the faithfulness
and correctness of conditional independence tests, the above result ensures that our algorithm

194

LOCAL NETWORK AROUND A TARGET

Figure 1: A revised ALARM

Figure 2: Network by Part 1 Figure 3: Network to depth = 2 by Part 2

Figure 4: Network returned by Part 2

195

ZHOU WANG YIN GENG

can return the correct local network. Notice that some edges in the local network may not be
oriented. It is because these edges cannot be oriented by using data from observational studies,
but it is not because our algorithm does not finish the learning process of the whole network.

4. The scores for evaluation

In this section, we introduce the two kinds of evaluation methods that are used in the causal
challenge to evaluate the performance for discovering a local causal network (Guyon et al.,
2008). The first method uses the average edit distance score. In the causal challenge, the task
is to construct a depth 3 causal network around a given target variable. Thus the relationship of
a variable to the target variable is encoded as a string of up (u) and down (d) arrows from the
target:

e Depth 1 relatives: parents (u) and children (d);
e Depth 2 relatives: spouse (du), grand-children (dd), siblings (ud), grand-parents (uu); and

e Depth 3 relatives: great-grand-parents (uuu), uncles/aunts (uud), nices/nephews (udd),
parents of siblings (udu), spouses of children (ddu), parents in law (duu), children of
spouses (dud), great-grand-children (ddd).

A confusion matrix C = {C;;} is defined to record the number of relatives confused for another
type of relative among 14 types of relatives in a depth 3 network. A cost matrix A = {A;;} is
defined to account for the distance between the true and obtained relatives, as shown in Table 1.
The edit distance score is defined as

S= ZA,-]»CU-.
LJ

Depth Desired 11121222 3 3 3 3 3 3 3 3 X
Obtained Relationship P e} Sp GC Si GP GGP uud N PS sC L cP GGC Other
w | a | aw | a0 | o | w | ww | wd | wd | wiw | diu | dw | dud | ddd

1 Parents u 011 1 2 1 1 2 2 2 2 2 2 2 3 4

1 Children d 1101 1 1 2 3 2 2 2 2 2 2 2 4

2 Spouse w | 1] 10 1 211 2 2 2 1 1 1 1 2 4

2 Gehildren a | 2] 1 1 0 1 2 3 2 1 2 1 2 1 1 4

2 Siblings ud 1 1] 2 1 0 1 2 1 1 1 2 2 1 2 4

2 Gparents w | 1|2] 1 2 110 1 1 2 1 2 1 2 3 4

3 Geparents wo | 231213121 0 1 2 1 2 1 2 3 4

3 Uncles/Aunts wd | 2122 | 2 1 1 1 0 1 2 3 2 1 2 4

3 Nieces/Nephews wa | 2] 2] 2 1 1 2 2 1 0 1 2 3 2 1 4

3 ParentsOfSiblings w | 2 | 2|1 2 1 1 1 2 1 0 1 2 2 2 4

3 SpousesOfChildren | ddu | 2 | 2 1 1 2 2 2 3 2 1 0 1 2 1 4

3 ParentsInLaw aw | 2| 2] 1 2 1211 1 2 3 2 1 0 1 2 4

3 ChildrenOfSpouses | dud | 2 | 2 | 1 1 1 2 2 1 2 2 2 1 0 1 4

3 GgChildren awd | 31212 1 2 3 3 2 1 2 1 2 1 0 4
X Other 4 144|414 4 4 4 4 4 4 4 4 4 0

Table 1: A cost matrix A = {A;;}.

196

LOCAL NETWORK AROUND A TARGET

The second method uses a score-pair (precision, recall) for each kind of variable subsets:
parents, children, Markov blanket, all depth 1 variables, all depth 2 variables, all depth 3 varia-
bles. Precision and recall (also called sensitivity) are defined respectively as:

e Precision = # of true positive found/# of found, and
e Recall = # of true positive found/ # of true positive.

In the cases with a 0 denominator, a very small number are added to both the numerator and the
denominator.

5. Simulation

In this section, we compare the algorithm proposed in this paper with other algorithms via si-
mulations. Consider again the example in Section 2 and the goal is to get the depth 3 network
around node 20. In Table 2, we show the simulation results for the revised ALARM network
depicted in Fig. 1. We compare our algorithm (PCD-path) with the PC algorithm, the MMHC
algorithm proposed by Tsamardinos et al. (2006) and the recursive algorithm proposed by Xie
and Geng (2008). The ‘distscore’ is the edit distance score defined for the task LOCANET
to measure the difference between the obtained local network and the true local network. We
consider several cases with different significance levels and different sample sizes. In the sim-
ulation, we do 1000 repetitions and obtain average values for each case of different sample size
n and significance level . For each repetition, we draw a training data set from the distribution
whose parameters for the unchanged structures are obtained from the FullBNT code package:
http://www.cs.ubc.ca/ murphyl/Software/BNT/bnt.html, and parameters for the changed struc-
ture are set by chance. All of our computations are performed on a computer with CPU 2.1
GHzx2 and 2 GB RAM. ‘CPU time’ is the total CPU time of 1000 repetitions for each algo-
rithm. It can be seen from Table 2 that our algorithm takes much less CPU times and it has also
less distscores than other three algorithms for every case.

In Table 3, we give the total (precision, recall) scores in 1000 simulations and the average
scores can be obtained by dividing it by 1000. By the (precision, recall) scores, there is no
algorithm which always is better than others. The Recursive one seems to be better averagely.
In some cases, the PCD-path algorithm seems to be better at 'pa’ and ’ch’ than the MMHC
algorithm, but worse at pc’ and 'mb’. From Tables 2 and 3, it can be seen that the PCD-
path algorithm proposed in this paper runs fastest among the four algorithms without loss of
performance. The main advantage of the PCD-path algorithm is to construct a local network
around the given target, and this is more important for the cases with a large number of variables.

6. Challenge task LOCANET

We applied the algorithm to three data sets: REGED, CINA and MARTT to find local structures
around targets to depth 3. The data set MARTI is preprocessed in the way proposed by Yin
et al. (2008), which is available at

hitp : //clopinet.com/isabelle/Projects/WCCI2008 / MART1/JY /

We summarize our results for the Potluck challenge task LOCANET in Table 4. ‘NoNode’
denotes the number of nodes for a data set, ‘NoNodeLLN’ denotes the number of nodes in the
local network around the target to depth 3, ‘NoPcds’ denotes the number of PCDs found by
our algorithm, and we give CPU times for every data set. Our algorithm takes so much longer
on the dataset CINA than other datasets. First, the sample size of CINA is much larger than

197

ZHOU WANG YIN GENG

n a Algorithm | distscore | CPU time (second)
PCD-path 1.0305 881
0.05 | Recursive 1.1635 3,293
MMHC 1.1162 3,405
PC 1.2213 11,638
PCD-path 1.0993 1,175
500 | 0.10 | Recursive 1.2057 3,404
MMHC 1.1692 3,515
PC 1.3150 11,979
PCD-path 1.1621 1,489
0.15 | Recursive 1.2498 3,509
MMHC 1.1919 3,949
PC 1.4083 12,457
PCD-path 0.8573 993
0.05 | Recursive 1.1205 3,739
MMHC 1.1133 3,864
PC 1.0804 8,823
PCD-path 0.8836 1,204
1000 | 0.10 | Recursive 1.2958 3,889
MMHC 1.1431 4,326
PC 1.1241 9,635
PCD-path 0.9082 1,415
0.15 | Recursive 1.3702 4,008
MMHC 1.1724 4,823
PC 1.1508 10,440

Table 2: Comparison of algorithms for the revised ALARM network.

REGED and MARTI. Second, the independence tests of discrete variables for CINA runs much
slower than the tests of continuous variables for REGED and MARTI under the assumption of
Gaussian distribution. For the data set SIDO, there are 4933 variables, the observed frequencies
are very unbalanced, some cells have very small frequencies, and some have very large ones. In
this case, the approach for finding parents and children sets is not so efficient as the approach
for finding Markov blankets. Thus the recursive algorithm via Markov blankets proposed by
Xie and Geng (2008) is used to find a local networks including the target and 400 nodes which
are strongly associated with the target.

The (precision, recall) scores and the edit distance scores of our performance on the four
datasets of LOCANET are shown in Figure 5. For the (precision, recall) scores, the more the
symbols are in the upper right corner, the better the performance is. We have about 7 symbols
in the upper right quadrant. Most of the symbols in the lower left corner are for the MARTI
dataset which are generated by adding noises to the dataset REGED. The performance for the
dataset REGED is quite better, and thus the noises in MARTI may not be filtered throughout in
our algorithm. Since there are no known parents in the CINA task, it is not surprising that our
result for the parents in the CINA is on the vertical axis (which means we have a recall 1 while
precision 0). Thirteen in total 24 symbols are close to the right boundary which presents a high
precision, and this means that the results we found are mostly true.

198

LOCAL NETWORK AROUND A TARGET

WANG

A A A Sscore:
CINA 247
+
09+ MARTI 0.93
REGED 0.50
0.8 sIDo 3.31
* ¢
0.7+
06+
S 05f A ® 5
o L3 v
o4 F *
[J
03+ v
02k ®| A parents
¥ children
.| & PC
01r ¢ O B
* D2
0 L9 . M 4
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
Precision

Figure 5: (Precision, Recall) scores and edit-distance scores for four datasets of LOCANET.

199

ZHOU WANG YIN GENG

n a Algorithm precision recall

pa ch pc mb D2 D3 pa ch pc mb D2 D3

PCD-path 41 883 904 873 755 669 93 364 713 640 686 402
0.05 | Recursive | 282 747 971 824 751 692 | 971 705 780 876 788 573
MMHC 50 768 944 933 833 777 21 652 928 887 909 656
PC 41 932 836 822 823 901 | 222 441 861 839 713 377

PCD-path | 145 836 894 853 812 780 | 307 472 836 751 782 502
500 | 0.10 | Recursive | 262 750 967 822 750 692 | 934 717 789 880 802 597
MMHC 56 749 943 935 829 738 28 651 945 900 918 688
PC 74 882 815 818 823 891 | 426 393 921 876 728 435

PCD-path | 174 821 879 839 816 774 | 409 519 882 796 809 542
0.15 | Recursive | 246 750 962 816 742 676 | 893 725 794 880 806 605
MMHC 64 739 941 933 818 707 35 657 955 908 925 703
PC 80 848 804 808 806 846 | 485 378 949 893 735 469

PCD-path | 263 968 990 894 847 657 68 652 643 754 814 576
0.05 | Recursive | 196 782 961 819 862 840 | 812 866 894 969 883 681
MMHC 55 740 986 958 909 804 23 574 911 873 932 769
PC 49 952 990 810 931 822 | 190 701 767 817 861 534

PCD-path | 315 911 983 900 895 780 | 160 722 776 824 905 688
1000 | 0.10 | Recursive | 169 765 935 815 845 813 | 755 872 904 965 863 689
MMHC 71 748 980 953 904 801 30 617 943 914 956 804
PC 88 906 980 802 943 882 | 359 759 847 879 911 627

PCD-path | 318 893 974 899 898 811 | 174 745 826 853 930 737
0.15 | Recursive | 158 753 917 806 822 774 | 737 877 911 962 850 693
MMHC 73 751 976 950 892 785 32 639 959 936 965 814
PC 99 884 970 796 942 907 | 422 781 890 906 925 670

Table 3: Precision and recall of algorithms for the revised ALARM network.

Data set | NoNodes | NoNodeLN | NoPcds | CPU time
REGED 1000 136 212 10 minutes
CINA 133 108 116 4 hours

MARTI 1025 224 309 10 minutes

Table 4: Results for the challenge task LOCANET.

7. Conclusion

We proposed an algorithm for local structural learning of a causal network around a given
target node to depth k. Our algorithm finds PCDs stepwise starting from the target node and
stops the process when the local structure is obtained, and thus it can reduce the computational
complexity. We theoretically show its correctness. The algorithm can be used for prediction
with external interventions and for local causal discovery.

Acknowledgments

We would like to thank the four reviewers for their valuable comments and suggestions. We
would appreciate I. Guyon and the competition committee for their encouragement and support

200

LOCAL NETWORK AROUND A TARGET

to our work. This research was supported by NSFC (10771007, 10721403), 863 Project of
China (2007AA01Z437), MSRA and MOE-Microsoft Key Laboratory of Statistics and Infor-
mation Technology of Peking University.

References

I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system: A case
study with two probabilistic inference techniques for belief networks. In Proceedings of the
2nd European Conference in Artificial Intelligence in Medicine, pages 247-256, Germany,
1989. Springer-Verlag.

I. Guyon, A. Statnikov, and C. Aliferis. Pot-luck challenge: FACT SHEET. Technical Report.

D. Heckerman. A tutorial on learning with bayesian networks. In M. Jordan, editor, Learning
in Graphical Models, Cambridge, MA, 1999. MIT Press.

C. Meek. Causal inference and causal explanation with background knowledge. In Proceedings
of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 403—
41. Morgan Kaufmann, 1995.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, Cambridge,
2000.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, Cam-
bridge, MA, 2nd edition, 2000.

I. Tsamardinos, L.E Brown, and C.F. Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Machine Learning, 65:31-78, 2006.

X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs.
Journal of Machine Learning Research, 9:459—-483, 2008.

X. Xie, Z. Geng, and Q. Zhao. Decomposition of structural learning about directed acyclic
graphs. Artificial Intelligence, 170(4):422-439, 2006.

J. Yin, Y. Zhou, C. Wang, P. He, C. Zheng, and Z. Geng. Partial orientation and local structural
learning of causal networks for prediction. In JMLR: Workshop and Conference Proceedings,
volume 3, pages 93—-104, WCCI2008 workshop on causality, Hong Kong, June 3-4 2008.

Appendix

In this appendix we prove Theorem 1 presented in Section 3.

Proof We first show the correctness of Part 1. Step 1 is initialization. We take X from list
canU (depth) to find PCD(X) at step 2. At Step 3, we obtain an undirect edge X — Z if and only if
both Z € PCD(X) and X € PCD(Z), and thus all edges can be created correctly if independence
tests for finding PCD are correctly performed. After finding a new edge connecting node X
newly taken at Step 2, we can determine whether there is a v-structures with X as one node and
other two nodes in V, such as X —Y — Z with X and Z nonadjacent and all X, Y and Z in the set
V. It is because X, Y and Z are all in the set V, and edges between them have been correctly
determined. We can correctly find a v-structure X — Y <— Z if Y is not in the separator X and Z
(thatis, X11.Z|S and Y ¢ S). Note that the separator S has been obtained during finding PCD(X)

201

ZHOU WANG YIN GENG

if Z ¢ PCD(X) or during finding PCD(Z) if X ¢ PCD(Z). After finding a new v-structure or
adding a new undirected edge, we need to orient again undirected edges within V using Meek’s
rules.

At Step 4, we add X to Layer(depth) because X is adjacent to a node in Layer(depth — 1)
and not in the previous layers. Thus Layer(depth) can correctly be formed if Layer(depth — 1)
was correctly formed. Nodes in PCD(X) \ TotalLay are added to the list canU (depth+ 1) as
candidate nodes in the next layer. Thus we can make sure all nodes which have length depth+ 1
from T in canU (depth+ 1) if Layer(depth) are correct. Inductive, we showed the correctness
of Layer(i) for all i since at the initiation step, Layer(0) = T is correctly set.

At step 5, we obtain the final Layer(depth), add it to TotalLay and add 1 to depth after we
treated all nodes in canU (depth).

Finally, we stop Part 1 if (1) all nodes having a path to T have a distance shorter than k or
(2) the first k — 1 Layers have been obtained.

Next we show the correctness of Part 2. In Part 2 of the algorithm, we sequentially search
nodes outside TotalLay along an undirected path starting from a node in Layer(k — 1) through
finding PCDs of the terminal node of the path until a directed edge is found. By Part 2, we obtain
a network G which covers the local network G (T') we want to find. The network G has mixed
types of directed and undirected edges and has directed edges as its boundary. Define A as a set
which contains all undirected edges and the first k — 1 layers in the local network finally obtained
by the algorithm, thatis, A = {u € V : u has an undirected path starting from a node in Layer(k—
1)} UTotalLay. Then any edge (u,v) which connects a node u € A and a node v ¢ A must be a
directed edge otherwise v should be contained in A. Define B as a set of nodes which surrounds
A, thatis, B= {v € PCD(u) \ A : u € A}. Define E as a set of edges each of which has at least
one node in A, that is, E = {(u,v) :u € A, v € AUB}. We can have that all undirected edges
within E cannot be oriented even if the global network is obtained. It is because any undirected
(u,v) in E must have both of its two nodes u and v contained in A and all undirected edges in
E must be surrounded by directed edges. Thus, if these undirected edges cannot be oriented by
applying Meek’s rules to E, then they cannot still be oriented by finding more edges outside E.
|

202

