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Abstract

Conformal prediction is a learning framework that produces models that associate with
each of their predictions a measure of statistically valid confidence. These models are typi-
cally constructed on top of traditional machine learning algorithms. An important result of
conformal prediction theory is that the models produced are provably valid under relatively
weak assumptions—in particular, their validity is independent of the specific underlying
learning algorithm on which they are based. Since validity is automatic, much research on
conformal predictors has been focused on improving their informational and computational
efficiency. As part of the efforts in constructing efficient conformal predictors, aggregated
conformal predictors were developed, drawing inspiration from the field of classification and
regression ensembles. Unlike early definitions of conformal prediction procedures, the va-
lidity of aggregated conformal predictors is not fully understood—while it has been shown
that they might attain empirical exact validity under certain circumstances, their theo-
retical validity is conditional on additional assumptions that require further clarification.
In this paper, we show why validity is not automatic for aggregated conformal predictors,
and provide a revised definition of aggregated conformal predictors that gains approximate
validity conditional on properties of the underlying learning algorithm.

Keywords: Confidence Predictions, Conformal Prediction, Classification, Ensembles

1. Introduction

Conformal predictors (Gammerman et al., 1998; Gammerman and Vovk, 2007; Vovk et al.,
2006) are predictive models, e.g., classifiers or regression models, that output predictions
with a measure of statistically valid confidence. Given a test object, a conformal predictor
outputs a multi-valued prediction (i.e., a set or an interval) that contains the true output
value with a user-specified predefined probability. This property of statistical validity re-
quires only that the training examples and test objects are exchangeable—a requirement
that is weaker than the common i.i.d. assumption.
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Conformal predictors are very flexible in that we can construct them on top of any tradi-
tional classification or regression algorithm. Formally, we define a so-called nonconformity
measure, that ranks possible labels of a test object according to their level of (dis-)agreement
with an observed distribution, and such nonconformity measures are typically based on tra-
ditional machine learning methods. The nonconformity measure chosen does not affect the
validity of the conformal predictor, however, our choice of underlying model may affect the
informational efficiency of the conformal predictor (in essence, the size of the predictions
it outputs). There exists a natural confidence-efficiency trade-off, such that predictions
necessarily grow larger when the user expects a greater level of confidence, however, dif-
ferent instantiations of conformal predictors (using different nonconformity measures) may
differ in terms of informational efficiency even when applied to the same learning prob-
lem, at the same confidence level. Hence, much effort has been spent in assessing the
informational efficiency of conformal predictors utilizing nonconformity measures based on
different kinds of machine learning algorithms, e.g., support vector machines (Gammerman
et al., 1998; Saunders et al., 1999; Toccaceli et al., 2016), ridge regression (Burnaev and
Vovk, 2014), neural networks (Papadopoulos, 2008; Papadopoulos and Haralambous, 2011;
Löfström et al., 2013; Johansson et al., 2015), random forests (Devetyarov and Nouretdi-
nov, 2010; Bhattacharyya, 2013; Johansson et al., 2014; Boström et al., 2017), decision trees
(Johansson et al., 2013) and k-nearest neighbors (Papadopoulos et al., 2011).

Due to the fact that conformal predictors exist on top of standard machine learning
methods, computational efficiency is also of concern. Early specifications of conformal
predictors (Gammerman et al., 1998) defines them in a transductive manner, where the un-
derlying model must be retrained each time a new test object is obtained. The intractability
of transductively computing prediction regions for a sequence of test objects motivated the
development of inductive conformal predictors, that require only that the underlying model
is trained once (Papadopoulos et al., 2002; Vovk et al., 2006; Papadopoulos, 2008; Vovk,
2013). A significant drawback of inductive conformal predictors, however, is that they re-
quire some training examples to be left out from training the underlying predictor, and
instead set aside for calibration of the conformal predictor. This is in contrast to transduc-
tive conformal predictors, where all available training data can be used for both training
and calibration, and leads to inductive conformal predictors having a lower informational
efficiency than transductive versions on finite sequences, particularly when the total amount
of available training data is relatively small.

As such, not only might a user of conformal prediction need to trade-off confidence for
informational efficiency, but also informational efficiency for computational efficiency. A
suggested solution for this dilemma are a kind of conformal predictor ensembles, proposed
by Vovk (2015) as cross-conformal predictors and generalized by Carlsson et al. (2014) as
aggregated conformal predictors. Here, several underlying models are constructed, each time
leaving out a different subset of the training data using a suitable resampling method (e.g.,
cross-validation, bootstrap sampling or random subsampling), so that training examples
may be used for both training and calibration (albeit for different members of the conformal
predictor ensemble). This procedure has been shown to be able to improve informational
efficiency compared to inductive conformal prediction, while maintaining a relatively low
computational cost (Vovk, 2015; Carlsson et al., 2014). However, in contrast to transductive
and inductive conformal predictors, aggregated conformal predictors have not been shown
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to obtain automatic validity|at least not without imposing additional requirements that
are not yet fully understood (Vovk, 2015; Carlsson et al., 2014).

This paper aims to provide a comprehensive analysis of aggregated conformal predic-
tors, in order to ascertain under what circumstances|if any|we can consider them valid
conformal predictors.

2. Conformal Prediction

Given a test object x n+1 2 X and a user-speci�edsigni�cance level � 2 (0; 1) a conformal
classi�er outputs a prediction set � �

n+1 � Y that contains the true output value yn+1 2 Y
with con�dence 1 � � (Vovk et al., 2006).

In order to output such prediction sets, conformal predictors utilize a nonconformity
function f : Z � � Z ! R, where Z : X � Y , and � i = f (�; z i ) is a measure of the
nonconformity (we can think of nonconformity as strangeness, unlikelihood or disagreement
with respect to a particular problem space) of an objectx i and label yi (together referred
to as a pattern) zi = ( x i ; yi ) 2 Z in relation to the sequence� 2 Z � . Conformal predictors
are automatically well-calibrated regardless of the choice off , but in order to produce
informationally e�cient (i.e., small) prediction sets, it is necessary that f is able to rank
patterns based on their apparent strangeness su�ciently well. As such, a standard method
of de�ning a nonconformity function is to base it on a traditional machine learning model,
according to

f (�; (x i ; yi )) = � ( h (x i ) ; yi ) ; (1)

where h is a predictive model|often referred to as the underlying model of the conformal
predictor|trained on the sequence � , and � is some function that measures the prediction
errors ofh. Intuitively, the prediction error for nonconforming (uncommon) patterns ( x i ; yi )
will be large (since, if they are uncommon,h will not have seen many similar training
examples), and thus, such patterns are assigned larger nonconformity scores than more
common patterns.

Given a sequence of training examples,Z n = f z1; : : : ; zng, a test object x n+1 , and a
tentative test label ~y 2 Y , we construct the extended sequenceZ n+1 = Z n [ f (x n+1 ; ~y)g.
We then compute the nonconformity scores of the training patternszi 2 Z n as

� ~y
i = f

�
Z n+1 n zi ; zi

�
; (2)

and the nonconformity score for the tentatively labeled test pattern as

� ~y
n+1 = f

�
Z n+1 n zn+1 = Z n ; (x n+1 ; ~y)

�
: (3)

The corresponding (smoothed) conformal predictor is then de�ned as the set predictor

� �
n+1 =

n
~y 2 Y : p~y

n+1 > �
o

; (4)

where

p~y
n+1 =

�
�
�
n

zi 2 Z n+1 : � ~y
i > � ~y

n+1

o�
�
� + � n+1

�
�
�
n

zi 2 Z n+1 : � ~y
i = � ~y

n+1

o�
�
�

n + 1
; (5)
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where � n+1 � U [0; 1]. If the sequencef z1; : : : ; zn+1 g is exchangeable, the probability of
making an erroneous prediction, i.e., excluding the true target labelyn+1 , is asymptotically
� as limn!1 .

De�nition 1 (Exchangeability) A sequencef z1; : : : ; zn+1 g is exchangeable if the joint
probability distribution P (f z1; : : : ; zn+1 g) = P

��
z� (1) ; : : : ; z� (n+1)

	�
is invariant under any

permutation � on the set of indicesi = 1 ; : : : ; n + 1 , i.e., all orderings of the observations
z1; : : : ; zn+1 are equiprobable. Exchangeable sequences can be obtained through sampling
observations (with or without replacement) from stationary processes, e.g., drawing numbers
x 2 Z according to a �xed, arbitrary, probability distribution X � P.

2.1. Inductive Conformal Prediction

In the de�nition of conformal predictors given in the previous section, we calculate the
nonconformity � ~y

i of a pattern zi = ( x i ; yi ) 2 Z n+1 , where Z n+1 = Z n [ f (x n+1 ; ~y)g,
relative to the sequenceZ n+1 n zi ; see Equations (2) and (3). This has two important
consequences. First, we note that the nonconformity of any training examplezi 2 Z n is
dependent on the speci�cs of the tentatively labeled test pattern (x n+1 ; ~y), meaning the
nonconformity scores for all training examples must be recomputed when eitherx n+1 or ~y
changes. Consequently, these nonconformity scores must be recomputedjY j times for each
test object (once for every possible value of ~y). Second, we note that each nonconformity
score� ~y

i 2 � ~y
1; : : : ; � ~y

n+1 is computed from a unique sequence� i � Z n+1 . If f is dependent
on an underlying machine learning modelh, see Equation (1), this means thath must be
retrained once for every patternz1; : : : ; (x n+1 ; ~y), for every speci�c test pattern ( x n+1 ; ~y). In
total, this process of transductive conformal prediction (TCP) requires that the underlying
model h is retrained (n + 1) jY j times for each test objectx n+1 , which incurs a very large
computational cost when the computation of h is non-trivial.

It is possible to reduce the computational complexity by simply computing the noncon-
formity scores � ~y

1; : : : ; � ~y
n+1 from a common sequenceZ n+1 as

� ~y
i = f

�
Z n+1 ; zi

�
; (6)

where zi 2 Z n+1 , however, this still requires that the model is recomputedjY j times for
each test object. Additionally, the informational e�ciency of a conformal predictors de�ned
using Equation (6) might su�er when the underlying model is unstable, i.e., the learning
algorithm is highly variant with respect to the speci�c example patterns used during training
(Linusson et al., 2014).

An alternative approach is to de�ne an inductive conformal predictor (Papadopoulos
et al., 2002; Vovk et al., 2006),ICP, where the underlying model only needs to be computed
once. Here, the training setZ n is divided into two non-empty disjoint subsets: the proper
training set Z t and the calibration set Z c. The underlying model h is inferred from the
training examples in Z t , and nonconformity scores are computed for the calibration set and
the test pattern (but not the proper training set), as

� i = f
�
Z t ; zi

�
; (7)

where zi 2 Z c, and
� ~y

n+1 = f
�
Z t ; (x n+1 ; ~y)

�
; (8)

4



On the Calibration of Aggregated Conformal Predictors

respectively.
The p-value for a test object (x n+1 ; ~y) is then de�ned as

p~y
n+1 =

�
�
�
n

zi 2 Z c : � i > � ~y
n+1

o�
�
� + � n+1

� �
�
�
n

zi 2 Z c : � i = � ~y
n+1

o�
�
� + 1

�

c + 1
; (9)

i.e., the p-value of a test pattern is calculated only from the nonconformity scores of the
calibration examples and the test pattern itself. Since the nonconformity scores of examples
in the calibration set are independent of the test pattern (regardless of the label being
tested), only � ~y

n+1 needs to be updated during prediction.
While inductive conformal predictors are much more e�cient than transductive confor-

mal predictors in a computational sense, their informational e�ciency is typically lower,
since only part of the data can be used for training and calibration respectively (this di�er-
ence is accentuated in particular when the available data is small).

2.2. Cross-Conformal Predictors

As a means to alleviate the computational ine�ciency of transductive conformal predic-
tors, and the (relative) informational ine�ciency of inductive conformal predictors, cross-
conformal predictors (CCP) were developed by Vovk (2015). Here, the training setZ n is
divided into k non-empty disjoint subsets,Z1; : : : ; Zk , and a predictive modelhl is induced
from each setZ � l = [ r =1 ;:::;k Zr n Z l (much like the well-known cross-validation method).
Nonconformity scores are computed for the calibration examples in each fold usinghl as

� i;l = f (Z � l ; zi ) ; (10)

wherezi 2 Z l . For the test pattern ( x n+1 ; ~y), k separate nonconformity scores are obtained
according to

� ~y
n+1 ;l = f (Z � l ; (x n+1 ; ~y)) ; (11)

where l = 1 ; : : : ; k, and the correspondingp-value is then calculated as

p~y
n+1 =

P k
l=1

h�
�
�
n

zi 2 Z l : � i;l > � ~y
n+1 ;l

o�
�
� + � n+1 ;l

� �
�
�
n

zi 2 Z l : � i;l = � ~y
n+1 ;l

o�
�
�
�i

+ � n+1

n + 1
:

(12)
As noted by Vovk (2015), if a separatep-value is de�ned for each fold as

p~y
n+1 ;l =

�
�
�
n

zi 2 Z l : � i;l > � ~y
n+1 ;l

o�
�
� + � n+1 ;l

� �
�
�
n

zi 2 Z l : � i;l = � ~y
n+1 ;l

o�
�
� + 1

�

jZ l j + 1
; (13)

then

p~y
n+1 = �p~y

n+1 +
k � 1
n + 1

�
�p~y

n+1 � 1
�

� �p~y
n+1 ; (14)

where �p~y
n+1 = 1

k

P k
l=1 p~y

n+1 ;l , given that k � n.
Papadopoulos (2015) provides further details on constructing cross-conformal predictors

for regression problems.
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2.3. Bootstrap Conformal Predictors

Also introduced by Vovk (2015) are bootstrap conformal predictors (BCP ), where the un-
derlying models h1; : : : ; hk are trained using a bootstrap sampling procedure. Here, a set
of samplesZ � 1; : : : ; Z � k are drawn (with replacement) from Z n , each sample of sizen.
For each bootstrap sample, an underlying model is induced, and nonconformity scores are
computed using a particular modelhl analogously to cross-conformal predictors, i.e.,

� i;l = f (Z � l ; zi ) ; (15)

where zi 2 Z l and Z l = Z n n Z � l , and

� ~y
n+1 ;l = f (Z � l ; (x n+1 ; ~y)) ; (16)

where l = 1 ; : : : ; k. The p-values are then de�ned by

p~y
n+1 =

P k
l=1

h�
�
�
n

zi 2 Z l : � i;l > � ~y
n+1 ;l

o�
�
� + � n+1 ;l

� �
�
�
n

zi 2 Z l : � i;l = � ~y
n+1 ;l

o�
�
�
�i

+ t
n � n+1

t + t
n

;

(17)
where t is the total size of the calibration sets, i.e.,

P k
l=1 jZ l j.

2.4. Aggregated Conformal Predictors

Carlsson et al. (2014) provide a generalization of conformal predictors constructed from
multiple inductive conformal predictors (e.g., cross-conformal predictors and bootstrap con-
formal predictors), dubbed aggregated conformal predictors(ACP ).

Given a collection of k proper training sets Z � 1; : : : ; Z � k and their complementary cali-
bration sets Z1; : : : ; Zk , nonconformity functions for the calibration examples and test pat-
terns are de�ned in the same manner as bootstrap conformal predictors (and cross-conformal
predictors); see Equations (15) and (16), respectively.

The p-values are de�ned as

p~y
n+1 =

1
k

X
p~y

n+1 ;l ; (18)

using the same de�nition of p~y
n+1 ;l as given in Equation (13).

The de�nition of ACP thus closely resembles that of CCP, in particular when we take
into consideration Equation (14), however, here we are not explicitly bound by some par-
ticular sampling scheme in constructing the k calibration sets (e.g., cross-validation or
bootstrap sampling). Instead, the de�nition of ACP puts a more general constraint on the
procedure of constructing calibration setsZ l (and their corresponding training sets Z � l ),
called consistent resampling (Carlsson et al., 2014, De�nition 1-2). For completeness, we
restate these de�nitions here.

De�nition 2 (Exchangeable resampling) Let Z n+1 = f z1; : : : ; zn+1 g be a sequence of
examples drawn from the problem spaceZ � P, and let Z � = f z�

1; : : : ; z�
m g � Z n+1 be a

sequence resampled fromZ n+1 . We call this resampling exchangeable if

P (f z1; : : : ; zm g) = P
��

z� (1) ; : : : ; z� (m)
	�

;

for any permutation � of the indices 1; : : : ; m.
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De�nition 3 (Consistent resampling) Let T = T (z1; : : : ; zn+1 ; P) be a statistic and
T � = ( z�

1; : : : ; z�
m ; Pn+1 ) be an exchangeably resampled version ofT. Further, let Gn+1 and

G�
n+1 be the probability distributions of T and T � , respectively. We call this resampling

consistent (with respect toT) if

sup
z

�
�Gn+1 � G�

n+1

�
� ! 0 as n ! 1 and m ! 1 :

Carlsson et al. (2014, Proposition 1) �nally conclude that an ACP is valid when the
calibration sets Z1; : : : ; Zk are consistently resampled fromZ n with respect to � t , where � t

is

argmax
� t 2 Z c

jf zi 2 Z c : � i � � t gj + 1
c + 1

> �; (19)

i.e., the threshold nonconformity score de�ning the border p-value pt+1 < � < p t < p t � 1.
(Arguably, since p � U[0; 1] is discrete for a �nite c in a non-smoothed inductive conformal
predictor, averaging a repeated sampling ofp�

t > � might provide us with a smoother
decision border, given that the sampling is performed with care. Consult Carlsson et al.
(2014, Section 2.1) for a more detailed discussion.)

We note here that while Carlsson et al. (2014) state that a consistent resampling of the
calibration set is a su�cient criterion for obtaining valid aggregate p-values, no prescriptions
are provided as to how such a consistent resampling might be obtained. We will return to
this line of thought in Section 3.2.

3. Calibration of Conformal Predictors

A key insight regarding conformal predictors regards the distribution of the p-values gen-
erated within the process. We can express two particularly interesting criteria regarding
thesep-values (Vovk et al., 2006):

I If a sequencez1; : : : ; zn+1 is exchangeable, thenpyi
i � U[0; 1], and

II Criterion I is not dependent on the choice off .

The �rst criterion is a necessary condition for conformal predictors to be well-calibrated,
i.e., make errors at a frequency of exactly� . A conformal predictor rejects any label ~y for
which p~y

n+1 � � , hence, in order to make errors at a frequency of� , it must hold that

lim
n!1

P
�
pyn +1

n+1 � �
�

= � ; (20)

for an exactly calibrated conformal predictor. As illustrated in Figure 1( a), this becomes
true exactly when the p-values are uniformly distributed (whenever we are testing the true
output label yn+1 ) since

R�
0 p=

R1
0 p = � . To provide some further intuition regarding criterion

I , we can restate it in two di�erent manners:

1. Given two exchangeable sequences of examples|a calibration setZ c, and a test set
Z r |the nonconformity scores � r : zr 2 Z r are distributed identically to the noncon-
formity scores � c : zc 2 Z c. This is illustrated in Figure 1( b).
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2. Let Z n+1 be an exchangeable sequence of examples, and� 1; : : : ; � n+1 be the non-
conformity scores computed fromz1; : : : ; zn+1 . Let z1; : : : ; zn be the calibration set
examples, and� (1); : : : ; � (n) denote a permutation of the indices such that � � ( i ) �
� � ( i +1) . If � n+1 is the nonconformity score of the test pattern, zn+1 , then all values
of � (n + 1) 2 f 1; : : : ; n + 1g are equiprobable, unconditional onzn+1 . We can view
this in terms of a ranking problem: if we rank each pattern z1; : : : ; zn+1 (using the
nonconformity measure as our ranking function), then all ranks 1; : : : ; n+1 are equally
likely for the test pattern zn+1 .

(a) P-value distribution (b) Nonconformity score distribution

Figure 1: Distributions of p-values and nonconformity scores for 1000 test patterns from the
spambase dataset for an inductive conformal predictor. The underlying model is
a support vector machine, trained to produce class probability estimates, and
the corresponding inductive conformal predictor is calibrated on 999 calibration
examples usingf (�; z i ) = 1 � P̂h(yi j x i ).

The second criterion ensures that a conformal predictor isautomatically well-calibrated
(i.e., valid). If the property of being well-calibrated is independent on the choice off , then
the validity of the predictions made by a conformal predictor is dependent only on the
assumption of the sequence being exchangeable (Vovk et al., 2006).

In the following sections, we will show that aggregated conformal predictors (including
cross-conformal predictors and bootstrap conformal predictors) can indeed ful�ll criterion
I , in that they may be well-calibrated, but do not ful�ll criterion II . We also provide a
revised de�nition of aggregated conformal predictors, that shows an approximate validity
given certain constraints.

3.1. Cross-Conformal Predictors and Bootstrap Conformal Predictors

Let H � = f h1; : : : ; hkg be the underlying models generated through the cross-conformal
prediction procedure described in Section 2.2, and letZ � = f Z1; : : : ; Zkg be the calibration
sets corresponding to each of these models. If we choose any pair (hl 2 H � ; Z l 2 Z � ), we
can de�ne a simple inductive conformal predictor, using hl as the underlying model, Z l

as the calibration set and Equation (9) to compute the p-values. We know from previous

8
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(a) Errors rate of an inductive conformal
predictor

(b) Nonconformity score rank distribution

Figure 2: Calibration plot (empirical error rate) of an inductive conformal predictor on the
spambase dataset, and distribution of ranks of the test patterns' nonconformity
scores. The same type of conformal predictor was used as in Figure 1.

work that this inductive conformal predictor is valid (i.e., automatically well-calibrated),
and ful�lls both criteria regarding p-values given in the previous section (Vovk, 2013).
Figure 2(a) shows the well-calibrated nature of such an inductive conformal predictor; for
any value of � , the observed error rate (rejection rate of true class labels) is very close to
� . Figure 2(b) shows the distribution of ranks of the test patterns' nonconformity scores,
when testing for their correct label (a rank of r denotes that r � 1 calibration examples had
a larger nonconformity score than the test pattern, i.e., the rank e�ectively corresponds to
the numerator of the p-value equation).

We now move to a (partial) cross-conformal predictor, by selecting two pairs of predictive
models and calibration sets, (hl 2 H � ; Z l 2 Z � ) and (hm 2 H � ; Zm 2 Z � ), where m 6= l, and
use Equation (12) to compute thep-values. Since any of the two pairs, (hl ; Z l ) or (hm ; Zm ),
can be used to construct an inductive conformal predictor, we know that both of them will
produce uniformly distributed ranks of the test patterns' nonconformity scores, as shown
in Figure 2(b). Let r l

n+1 2 Z and r m
n+1 2 Z denote the ranks produced by each pair (we will

denote these pairs asICP componentsof the cross-conformal predictor), respectively, for the
test pattern zn+1 . For a cross-conformal predictor to be well-calibrated, it is necessary that
all sums 2 �

�
r l

n+1 + r m
n+1

�
2 Z � l + m + 2 are equiprobable, unconditional on zn+1 |in

Equation (12), we are e�ectively summing the ranks of the individual ICP components of the
cross-conformal predictor in order to compute thep-value|only then is pyn +1

n+1 distributed
according to U[0; 1].

Since we wish forr � = r l + r m to be uniformly distributed, we are required to put
constraints on the joint distribution of

�
r l ; r m

�
. If we allow r l and r m to be distributed

uniformly on the rectangular surface de�ned by l and m, i.e., the two ranks obtained from
the ICP components are independent of each other, their sumr � is no longer distributed
uniformly, but instead distributed according to the Irwin-Hall (uniform sum) distribution
(Irwin, 1927; Hall, 1927). p-values are then distributed according to the unimodal Bates
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distribution (Bates et al., 1955) rather than U[0; 1], such that p-values closer to the mean
(i.e., 0.5) are more likely than extreme values (i.e.,p-values closer to 0 or 1). Including
more inductive conformal predictor components, by combining several pairs (h� ; Z � ), further
increases this e�ect, as the variance of the Bates distribution decreases. This leads to a
conformal predictor that is conservative for low values of� (since smallp-values are overly
rare) and invalid for large values of � (since largep-values are also rare).

(a) Cross-conformal predictor errors (ran-
dom forest of 5 trees)

(b) Nonconformity score rank sum distri-
bution (random forest of 5 trees)

(c) Miscalibration rate depending on forest
size

Figure 3: Calibration plot (empirical error rate) of a cross-conformal predictor (k = 10)
on the spambase dataset, and distribution of rank sums of the test patterns'
nonconformity scores. A random forest using 5 trees was used as the underlying
model.

Figure 3 shows a poorly calibrated cross-conformal predictor (k = 10), where the un-
derlying model in each fold is a weak random forest (containing only 5 trees). Since the
underlying models are fairly unstable (i.e., highly variant depending on their particular
training data), the sum of their ranks is far from uniformly distributed as shown in Figure
3(b). The calibration plot shown in Figure 3( a) illustrates the expected behaviour, with the
cross-conformal predictor being conservative at low values of� and invalid at large values of
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� . Figure 3(c) shows how the miscalibration rate|area between error curve and expected
error rate (diagonal line) in Figure 3(a)|reduces with an increasing forest size; adding
additional ensemble members to the random forest models reduces their variance, and the
10 random forest models (over the 10 folds) become more similar each other, resulting in
the nonconformity rank sums approaching a uniform distribution.

(a) Cross-conformal predictor errors (svm)(b) Nonconformity score rank sum distri-
bution (svm)

Figure 4: Calibration plot (empirical error rate) of a cross-conformal predictor (k = 10)
on the spambase dataset, and distribution of rank sums of the test patterns'
nonconformity scores. A support vector machine was used as the underlying
model.

In Figure 4, a well-calibrated cross-conformal predictor (k = 10) is displayed, using
support vector machines as the underlying models. With this setup, the rank sums, Figure
4(b), appear uniformly distributed. The error rates, Figure 4(a), are close or equal to� over
the entire range � 2 (0; 1), similar to the results obtained by Vovk (2013) using MART to
construct the underlying models.

Figure 5 shows the distribution of nonconformity ranks and nonconformity rank sums
from of pairs ICP components, i.e.,r l

n+1 and r m
n+1 , from cross-conformal predictors (k = 10)

created using various underlying models: random forests with 5, 100 and 500 trees, as well
as a support vector machine. It is clear that: (1) regardless of the stability of the underlying
models, a single ICP component provides uniformly distributed nonconformity ranks (top
and rightmost histogram in each plot); and (2) the stability of the underlying models has a
large impact on the joint distribution of

�
r l ; r m

�
, with the most unstable underlying model

(random forest using 5 trees) shows a near-uniform joint distribution of nonconformity ranks
(middle scatter plots), resulting in an approximate Irwin-Hall distribution of nonconformity
rank sums.

3.2. Aggregated Conformal Predictors

In Section 2.4, we provided the general de�nition of aggregated conformal predictors origi-
nally given by Carlsson et al. (2014), arguing that such aggregate models (including CCP

11
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(a) Nonconformity ranks (rf, 5 trees) (b) Nonconformity ranks (rf, 100 trees)

(c) Nonconformity ranks (rf, 500 trees) (d) Nonconformity ranks (svm)

Figure 5: Distribution of ranks from two inductive conformal predictor components of a
cross-conformal predictor (k = 10). In each plot, the top and right-side his-
tograms show the rank distributions of two individual components, r l and r m ,
while the middle scatter plot shows the joint distribution of

�
r l ; r m

�
.

12



On the Calibration of Aggregated Conformal Predictors

and BCP) might provide valid aggregate p-values given a certain condition: that the cal-
ibration sets are consistently resampled with respect to a particular nonconformity score
� t . We noted also that, while the de�nition of consistent resampling is clear, how to obtain
a consistent resampling is not. Finally, we argued|and showed|in Section 3.1 that the
sought-after well-calibrated nature of conformal predictors is not automatically guaranteed
for aggregate models; we must note also that the results in Section 3.1 are in accordance
with the empirical results provided by Carlsson et al. (2014), where the ACP models were
shown to be notably conservative for signi�cance levels� � 0:4.

To shed some light on the nature of consistent resampling, we restate the condition
under which aggregate conformal predictors are valid, using some additional de�nitions.

De�nition 4 (Approximately ranking invariant) Let Z n be a sequence of examples
drawn from the problem spaceZ � P and let Z m � Z n be an exchangeable resampling of
Z n . Let H be a learning algorithm, and letf n and f m be nonconformity measures on the
form

f s (Z s; (x i ; yi ; )) = �
�
h� s (x i ) ; yi

�
; (21)

where h� s = H (Z � s), i.e., a predictive model trained using a proper training setZ � s � Z
such that Z � s \ Z s = ; . Let r n

n+1 and r m
n+1 be the ranks produced byf n and f m for a test

pattern (x n+1 ; yn+1 ), using Z n and Z m as calibration sets respectively.f s is approximately
ranking invariant if, for any such f n and f m ,

�r m
n+1 =

r m
n+1

m + 1
�

r n
n+1

n + 1
= �r n

n+1 ;

for �nite m � n.

De�nition 5 (Consistent mapping) Let Z n be a sequence drawn from the problem space
Z � P, let Z m � Z n be an exchangeable resampling ofZ n , and let f be a nonconformity
measure. f is a consistent mapping ofZ if Z m is a consistent resampling ofZ n with respect
to �r n

n+1 .

Remark 6 Approximately ranking invariant nonconformity measures and consistent map-
pings are not interchangeable. We can think of rankings that appear similar in the �nite
case, but do not converge asymptotically. Similarly, we can think of rankings that start o�
dissimilar in the �nite case but eventually converge in the limit.

Proposition 7 Aggregated conformal predictors are approximately valid whenf is an ap-
proximately ranking invariant consistent mapping of Z .
Proof Let Z1; : : : ; Zk be calibration sets exchangeably resampled fromZ n such that 8l 2
(1; k) : Z l � Z n , and let f 1; : : : ; f k be approximately ranking invariant consistent mappings
constructed using the complementary proper training setsZ � 1; : : : ; Z � k where 8l 2 (1; k) :
Z � l = Z n nZ l . Each mappingf l consists of an underlying modelhl and a calibration setZ l .
De�ne an aggregate conformal predictor using the pairsf f 1 = ( h1; Z1); : : : ; f k = ( hk ; Zk )g
as the ICP components.
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Let Z l and Zm be two distinct ICP components. SinceZ l and Zm are, by de�nition,
exchangeably resampled fromZ n , f l and f m are valid ICPs that output py+1

n+1 -values dis-
tributed according to U[0; 1]; by extension, f l and f m output valid ranks rn+1 for the true
class yn+1 distributed according to U[0; jZ l j + 1] and U[0; jZm j + 1] respectively. f l and
f m are both approximately ranking invariant and consistent mappings with respect to�rn+1 ,
i.e., �r l

n+1 � �r m
n+1 � �rn+1 for �nite l; m � n and lim l;m;n !1 �r l

n+1 = �r m
n+1 = �rn+1 . Since

�rn+1 = py+1
n+1 , f l [ f m represents an asymptotically exact aggregate conformal predictor that

approximates a valid conformal predictor for �nite calibration sets.

Remark 8 We are unable to provide a formal de�nition of approximate validity. From
De�nition 4, we ask that the nonconformity measuresf 1; : : : ; f k produce similar rankings of
the test pattern; since the condition is stated loosely (the ranks produced are approximately
equal), we can only state the conclusion loosely in the �nite case: the error rate of the
aggregated conformal predictor is approximately equal to that of an inductive conformal
predictor, i.e., it is close to � .

We note that we could just as well state in De�nition 5 that a consistent resampling
is required with respect to pn+1

n+1 , however, we wish to make explicit the restrictions that
are put on f , and by extension, h. Given a test object x n+1 , an exchangeably resampled
calibration set Z l , and a predictive model hl trained on Z � l , the performance ofhl must
be essentially invariant on x n+1 relative to Z l , regardless of the speci�c composition of
Z � l . That is, we require that the underlying learning algorithm is stable in the sense of
Breiman (1996), i.e., that small changes in the training set must not cause large changes
in the resulting model. This is very much in-line with remarks made earlier by Vovk
(2015, Appendix A), who notes that the validity of leave-one-out conformal predictors
(n-fold cross-conformal predictors) is dependent on the underlying models, such that the
resulting aggregated conformal predictor is invalid if the n-fold nonconformity function is
not transitive. Here, we have shown that this requirement is not unique to leave-one-out
conformal predictors, but applies to aggregated conformal predictors in general. As also
noted by (Vovk, 2015, Appendix A), validity is violated in a \non-interesting way", in
that the resulting aggregated conformal predictor is invalid in a conservative manner for
low values of � , i.e., the empirical error rate is deated rather than inated. This means,
on the one hand, that we can utilize aggregated conformal predictors without needing to
worry about an exaggerated empirical error rate. On the other hand, conservatively valid
conformal predictors are less useful to us than exactly valid conformal predictors, since we
are not able to leverage the excess con�dence; if we provide our conformal predictor with a
signi�cance value � = 0 :05, we should still act as though 5% of all predictions are incorrect,
even though this might not be the case in reality. For any conservative predictor we could
arbitrarily reduce the size of output predictions until the error rate is exactly � , hence, the
predictions made by an aggregated conformal predictor are|if our nonconformity measure
does not ful�ll the criteria given in Proposition 7|by de�nition, unnecessarily large.
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4. Conclusions and Future Work

In this paper, we have provided a thorough investigation into the validity of aggregated con-
formal predictors, considering the de�nitions of cross-conformal predictors and bootstrap
conformal predictors provided by Vovk (2015) as well as the generalized de�nition provided
by Carlsson et al. (2014). We conclude that the validity of any aggregate conformal pre-
dictor is conditional on the nonconformity measure, in particular its ability to consistently
rank individual objects amongst a group of objects. If the nonconformity measure does
not possess this characteristic, the resulting aggregated conformal predictor is only conser-
vatively valid for interesting (low) values of � , i.e., the empirical error rate is lower than
the expectation. While this is bene�cial from a safety standpoint, it also means that the
predictions output by an aggregated conformal predictor may be unnecessarily large.

While the de�nitions provided in this paper provide some tools for reasoning about the
validity of aggregated conformal predictors, they do not provide su�cient practical guidance.
We have stated that the underlying model should bestable, as de�ned by Breiman (1996),
but do not quantitatively investigate the relationship between instability and invalidity, nor
have we assessed the e�ects of aggregating unstable nonconformity measures with respect
to e�ciency. In light of this, we propose that future work addresses the question of how
to choose a suitable nonconformity measure, as well as investigates the magnitude of the
negative e�ect on e�ciency if an unsuitable nonconformity measure is selected.

We also propose that the aggregated conformal prediction scheme be evaluated in com-
parison to other methods of combining multiple underlying models, e.g., the provably valid
bootstrap calibration procedure described by Bostr•om et al. (2017) or other methods of
combining p-values (some of which are addressed briey in Appendix A).
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Appendix A. Alternative Methods of combining p-values

In this work, we have shown that aggregated conformal predictors are troublesome in that
they are not valid (or, possibly, e�cient) in general, but that we must put some constraints
on the underlying model and the nonconformity measure we construct from it. The issues
we see with aggregated conformal predictors stem from the fact that we are averagingp-
values that show a varying degree of interdependence. It is thus natural to wonder whether
our aggregated models could fare better if we, instead of combining thep-values through
averaging, utilize some other aggregation procedure.

Figure 6 shows three variants of conformal predictors applied to the spambase data set.
Figures 6(a) to 6(c) shows the distribution of p-values for the test set (for correct labels
only), the empirical error rate and the e�ciency of a simple ICP. Figures 6( d) to 6( f ) show
the analogous results from ak-folded aggregated conformal predictor, and Figures 6(g)

15




	Introduction
	Conformal Prediction
	Inductive Conformal Prediction
	Cross-Conformal Predictors
	Bootstrap Conformal Predictors
	Aggregated Conformal Predictors

	Calibration of Conformal Predictors
	Cross-Conformal Predictors and Bootstrap Conformal Predictors
	Aggregated Conformal Predictors

	Conclusions and Future Work
	Alternative Methods of combining p-values

