
Proceedings of Machine Learning Research 60:1–3, 2017 Conformal and Probabilistic Prediction and Applications

SCOT Approximation, Training and Asymptotic Inference

Mikhail Malyutov m.malioutov@neu.edu

Mathematics Department

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

Paul Grosu pgrosu@gmail.com

College of Computer and Information Science

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, and Harris Papadopoulos

Abstract

Approximation of stationary strongly mixing processes by SCOT models and the Le Cam-
Hajek-Ibragimov-Khasminsky locally minimax theory of statistical inference for them is
outlined. SCOT is an m-Markov model with sparse memory structure. In our previous
papers we proved SCOT equivalence to 1-MC with state space—alphabet consisting of the
SCOT contexts. For the fixed alphabet size and growing sample size, the Local Asymp-
totic Normality is proved and applied for establishing asymptotically optimal inference.
We outline what obstacles arise for a large SCOT alphabet size and not necessarily vast
sample size. Training SCOT on a large string using clusters of computers and statistical
applications are described.

Keywords: Strong mixing, strongly stationary sequences, Local Asymptotic Normality,
Local Asymptotic Minimaxity, SCOT models, Edgeworth expansion.

Appendix. Simulation of an Asymmetric Cyclic Random Walk (RW)

The simulation program — written using the R statistical language — determines the num-
ber of visits of k for large numbers of sample size N , with an alphabet A. The algorithms
have been augmented with pseudo-code in order to make the syntax easier to read. For
the first algorithm we will determine the visits of k for a specific value of A and N , as-
suming the probability of moving left and remaining on the node in the ring is the same
(P (move left) = P (remain) = 0.5):

c© 2017 M. Malyutov & P. Grosu.

SCOT Approximation, Training and Asymptotic Inference

Algorithm 1: GET K VISITS FOR N JUMPS: Get visits of k after N
Jumps given A

Inputs:
A: Number of nodes, where k = A/2. (A = {10, 20, . . . , 100})
N : Number of jumps. (N = {20, 40, 60, 80})
P (move left) = P (remain) = 0.5

Outputs:
Returns the number visits at k (A/2) after N jumps.

1 begin
2 k ← A/2
3 visits← 0
4 A← 1
5 // Randomize the random number generator with
6 // a seed based on the timer
7 t = t← as.numeric(Sys.time())
8 seed← 1e8 ∗ (t− floor(t))
9 set.seed(seed)

10 while N > 0 do
11 move or stay ← sample(c(−1, 0), prob =

c(P move left, P remain), size = 1, replace = TRUE)
12 A previous← A
13 N ← N − 1
14 if move or stay == −1 then
15 A← A− 1

16 if A < 1 then
17 A← k ∗ 2

18 if A previous 6= A AND A == k then
19 visits← visits + 1

20 return (visits)

Next we had to build the table of N × A for one round, which is used in performing
multi-round simulations for a table of N ×A containing distributions of individual rounds.
Both algorithms are presented in subsequent pages.

2

SCOT Approximation, Training and Asymptotic Inference

Algorithm 2: BUILD N BY A: Build the N ×A table for one round.

Inputs:
A vals: List of number of nodes. (A = {10, 20, . . . , 100})
N vals: List of number of jumps. (N = {20, 40, 60, 80})
P (move left) = P (remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and N .

1 begin
2 N by A Table← matrix(|N vals|, |A vals)|)

3 for A ∈ A vals do
4 for N ∈ N vals ∗A do
5 N by A Table[N/A,A]←

c(GET K V ISITS FOR N JUMPS(A,N, P move left,
6 P remain))

7 return (N by A Table)

Finally we run multi-round simulations for table of N×A using the following algorithm,
which gives us a distribution for each element of the N ×A table:

3

SCOT Approximation, Training and Asymptotic Inference

Algorithm 3: MULTI ROUND N BY A: Populate the N × A table for
multi-round simulations .

Inputs:
A vals: List of number of nodes. (A = {10, 20, . . . , 100})
N vals: List of number of jumps. (N = {20, 40, 60, 80})
Rounds = 100 is the rounds of repetition.
P (move left) = P (remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and N .

1 begin
2 # Construct the initial table to which more values of the distributions

will be appended NA Table←
BUILD N BY A(A vals,N vals, P move left, P remain)

3 for r ∈ {1, . . . , Rounds− 1} do
4 # Get the values of one round to append to each cell’s distribution

N by A Table Sample←
BUILD N BY A(A vals,N vals, P move left, P remain)

5 for A ∈ A vals do
6 for N ∈ N vals do
7 value list← N by A Table Sample[N,A]
8 cell list← N by A Table[N,A]
9 cell list← c(cell list, value list)

10 N by A Table[N,A]← cell list

11 return (N by A Table)

4

