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Abstract

Approximation of stationary strongly mixing processes by SCOT models and the Le Cam-
Hajek-Ibragimov-Khasminsky locally minimax theory of statistical inference for them is
outlined. SCOT is an m-Markov model with sparse memory structure. In our previous
papers we proved SCOT equivalence to 1-MC with state space—alphabet consisting of the
SCOT contexts. For the fixed alphabet size and growing sample size, the Local Asymp-
totic Normality is proved and applied for establishing asymptotically optimal inference.
We outline what obstacles arise for a large SCOT alphabet size and not necessarily vast
sample size. Training SCOT on a large string using clusters of computers and statistical
applications are described.

Keywords: Strong mixing, strongly stationary sequences, Local Asymptotic Normality,
Local Asymptotic Minimaxity, SCOT models, Edgeworth expansion.

Appendix. Simulation of an Asymmetric Cyclic Random Walk (RW)

The simulation program — written using the R statistical language — determines the num-
ber of visits of k for large numbers of sample size N, with an alphabet A. The algorithms
have been augmented with pseudo-code in order to make the syntax easier to read. For
the first algorithm we will determine the visits of k for a specific value of A and N, as-
suming the probability of moving left and remaining on the node in the ring is the same
(P(move_left) = P(remain) = 0.5):
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Algorithm 1: GET_K_VISITS_ FORN_JUMPS: Get visits of k after N
Jumps given A

Inputs:

A: Number of nodes, where k = A/2. (A = {10,20,...,100})

N: Number of jumps. (N = {20,40,60,80})

P(move_left) = P(remain) = 0.5

Outputs:
Returns the number visits at k& (A4/2) after N jumps.
1 begin
2 k<« AJ2
3 visits < 0
4 A1
5 // Randomize the random number generator with
6 // a seed based on the timer
7 t =t < as.numeric(Sys.time())
8 seed « 1e8 x (t — floor(t))
9 set.seed(seed)

10 while N > 0 do

11 move_or_stay < sample(c(—1,0), prob =
c(P_move_left, P_remain), size = 1, replace = TRUE)

12 A_previous < A

13 N+ N-1

14 if move_or_stay == —1 then

15 | A A-1

16 if A< 1 then

17 | A k=2

18 if A_previous # A AND A == k then

19 L visits <— visits + 1

20 return (visits)

Next we had to build the table of N x A for one round, which is used in performing
multi-round simulations for a table of N x A containing distributions of individual rounds.
Both algorithms are presented in subsequent pages.
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Algorithm 2: BUILD_N_BY_A: Build the IV x A table for one round.
Inputs:
A_vals: List of number of nodes. (A = {10,20,...,100})
N wals: List of number of jumps. (N = {20, 40, 60,80})
P(move_left) = P(remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and .

=

begin
2 N _by_A_Table < matrixz(|N vals|, |A_vals)|)

3 for A€ A_wals do
for N € N_vals* A do
N _by_A_Table[N/A, A] <
¢«(GET_K_VISITS FOR-N_JUMPS(A, N, P_move_left,

6 P_remain))

7 return (N _by_A_Table)

Finally we run multi-round simulations for table of N x A using the following algorithm,
which gives us a distribution for each element of the N x A table:
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Algorithm 3: MULTI_ROUND_N_BY_A: Populate the N x A table for
multi-round simulations .
Inputs:

A_wvals: List of number of nodes. (A = {10,20,...,100})
N _vals: List of number of jumps. (N = {20, 40, 60, 80})
Rounds = 100 is the rounds of repetition.

P(move_left) = P(remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and N.

begin

# Construct the initial table to which more values of the distributions
will be appended NA_Table +

BUILD_N_BY _A(A_vals, N _vals, P_move_left, P_remain)

for r € {1,..., Rounds — 1} do
# Get the values of one round to append to each cell’s distribution
N_by_A_Table_Sample +
BUILD_N_BY _A(A_vals, N _vals, P_move_left, P_remain)
for A€ A wals do
for N € N_vals do
value_list < N_by_A_Table_Sample|N, A]
cell_list < N _by_A_Table[N, A]
cell_list < c(cell list, value_list)
N _by_A_Table[N, A] < cell list

return (N_by_A_Table)




