Proceedings of Machine Learning Research 60:1-3, 2017 Conformal and Probabilistic Prediction and Applications

SCOT Approximation, Training and Asymptotic Inference

Mikhail Malyutov M.MALIOUTOV@NEU.EDU
Mathematics Department

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

Paul Grosu PGROSUQGMAIL.COM
College of Computer and Information Science

Northeastern University

360 Huntington Avenue, Boston, MA 02115, USA

Editor: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, and Harris Papadopoulos

Abstract

Approximation of stationary strongly mixing processes by SCOT models and the Le Cam-
Hajek-Ibragimov-Khasminsky locally minimax theory of statistical inference for them is
outlined. SCOT is an m-Markov model with sparse memory structure. In our previous
papers we proved SCOT equivalence to 1-MC with state space—alphabet consisting of the
SCOT contexts. For the fixed alphabet size and growing sample size, the Local Asymp-
totic Normality is proved and applied for establishing asymptotically optimal inference.
We outline what obstacles arise for a large SCOT alphabet size and not necessarily vast
sample size. Training SCOT on a large string using clusters of computers and statistical
applications are described.

Keywords: Strong mixing, strongly stationary sequences, Local Asymptotic Normality,
Local Asymptotic Minimaxity, SCOT models, Edgeworth expansion.

Appendix. Simulation of an Asymmetric Cyclic Random Walk (RW)

The simulation program — written using the R statistical language — determines the num-
ber of visits of k for large numbers of sample size N, with an alphabet A. The algorithms
have been augmented with pseudo-code in order to make the syntax easier to read. For
the first algorithm we will determine the visits of k for a specific value of A and N, as-
suming the probability of moving left and remaining on the node in the ring is the same
(P(move_left) = P(remain) = 0.5):

© 2017 M. Malyutov & P. Grosu.

SCOT APPROXIMATION, TRAINING AND ASYMPTOTIC INFERENCE

Algorithm 1: GET_K_VISITS_ FORN_JUMPS: Get visits of k after N
Jumps given A

Inputs:

A: Number of nodes, where k = A/2. (A = {10,20,...,100})

N: Number of jumps. (N = {20,40,60,80})

P(move_left) = P(remain) = 0.5

Outputs:
Returns the number visits at k& (A4/2) after N jumps.
1 begin
2 k<« AJ2
3 visits < 0
4 A1
5 // Randomize the random number generator with
6 // a seed based on the timer
7 t =t < as.numeric(Sys.time())
8 seed « 1e8 x (t — floor(t))
9 set.seed(seed)

10 while N > 0 do

11 move_or_stay < sample(c(—1,0), prob =
c(P_move_left, P_remain), size = 1, replace = TRUE)

12 A_previous < A

13 N+ N-1

14 if move_or_stay == —1 then

15 | A A-1

16 if A< 1 then

17 | A k=2

18 if A_previous # A AND A == k then

19 L visits <— visits + 1

20 return (visits)

Next we had to build the table of N x A for one round, which is used in performing
multi-round simulations for a table of N x A containing distributions of individual rounds.
Both algorithms are presented in subsequent pages.

SCOT APPROXIMATION, TRAINING AND ASYMPTOTIC INFERENCE

Algorithm 2: BUILD_N_BY_A: Build the IV x A table for one round.
Inputs:
A_vals: List of number of nodes. (A = {10,20,...,100})
N wals: List of number of jumps. (N = {20, 40, 60,80})
P(move_left) = P(remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and .

=

begin
2 N _by_A_Table < matrixz(|N vals|, |A_vals)|)

3 for A€ A_wals do
for N € N_vals* A do
N _by_A_Table[N/A, A] <
¢«(GET_K_VISITS FOR-N_JUMPS(A, N, P_move_left,

6 P_remain))

7 return (N _by_A_Table)

Finally we run multi-round simulations for table of N x A using the following algorithm,
which gives us a distribution for each element of the N x A table:

=

© w N o O

10

11

SCOT APPROXIMATION, TRAINING AND ASYMPTOTIC INFERENCE

Algorithm 3: MULTI_ROUND_N_BY_A: Populate the N x A table for
multi-round simulations .
Inputs:

A_wvals: List of number of nodes. (A = {10,20,...,100})
N _vals: List of number of jumps. (N = {20, 40, 60, 80})
Rounds = 100 is the rounds of repetition.

P(move_left) = P(remain) = 0.5

Outputs:
Returns the table of the number visits at k (A/2) after N jumps for
different values of A and N.

begin

Construct the initial table to which more values of the distributions
will be appended NA_Table +

BUILD_N_BY _A(A_vals, N _vals, P_move_left, P_remain)

for r € {1,..., Rounds — 1} do
Get the values of one round to append to each cell’s distribution
N_by_A_Table_Sample +
BUILD_N_BY _A(A_vals, N _vals, P_move_left, P_remain)
for A€ A wals do
for N € N_vals do
value_list < N_by_A_Table_Sample|N, A]
cell_list < N _by_A_Table[N, A]
cell_list < c(cell list, value_list)
N _by_A_Table[N, A] < cell list

return (N_by_A_Table)

