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Abstract

Today, screening of large compound collections in high throughput screening campaigns
form the backbone of early drug discovery. Although widely applied, this approach is
resource and potentially labour intensive. Therefore, improved computational approaches
to streamline screening is in high demand. In this study we introduce conformal prediction
paired with a gain-cost function to make predictions in order to maximise the gain of
screening campaigns on new screening sets. Our results indicate that using 20 % of the
screening library as an initial screening set and using the data obtained together with a
gain-cost function, the significance level of the predictor that maximise the gain can be
identified. Importantly, the parameters for the predictor derived from the initial screening
set was highly predictive of the maximal gain also on the remaining data. Using this
approach, the gain of a screening campaign can be improved considerably.

Keywords: Drug discovery, Conformal Prediction, Virtual Screening, Gain-cost function.

1. Introduction

In order to maximize the chances of finding compounds with promising activities the aim of
many high-throughput screening (HTS) campaigns became to screen as large compound
collections as possible (Macarron, 2006). Although HTS represents a useful screening
tool in many cases (Macarron et al., 2011), these approaches can be both resource- and
cost-intensive and hence alternative approaches to screening have been explored (Bajorath,
2002).

c© 2017 U. Norinder, F. Svensson, A.M. Afzal & A. Bender.



Norinder Svensson Afzal Bender

Quantitative structure-activity relationship (QSAR) methods have long been used to
develop in silico models for aiding HTS and virtual screening (Tropsha, 2009). Lately,
conformal prediction (CP) has emerged as a promising alternative to traditional QSAR
approaches for developing predictive models for use in drug discovery (Eklund et al., 2013;
Norinder et al., 2014; Svensson et al., 2017a). CP has been shown to be particularly powerful
for the modelling of highly imbalanced datasets, such as those typically encountered in
screening campaigns (i.e. where the minority class is the class of interest) (Norinder and
Boyer, 2016; Svensson et al., 2017b).

A conformal predictor is a type of confidence predictor that, for binary classification
problems (such as active or inactive in a particular screen) provides prediction intervals (a
set of labels) that are guaranteed to be valid in accordance with a user set significance level
(Vovk et al., 2005). A Mondrian conformal predictor is guaranteed to be valid in respect
to each of the predicted classes. This is especially valuable when predicting the outcome of
HTS as it is important to accurately detect many active (minority class) compounds since
these represent potentially important starting points for new drug discovery projects. At the
same time, it is important to also limit the number of false positives, i.e. inactive compounds
labelled as active, since the subsequent screening of these compounds will consume resources
in terms of logistics, labour, screening consumables, and other screening related costs.

However, the efficiency, i.e. the percentage of single label (class) predictions, may vary
considerably depending upon the underlying precision of the derived model and on the set
significance level. This means that although all models should be valid, they can differ
in their efficiency. When the models are used to prioritize compounds for tasks such as
screening, they may therefore produce different outcomes if, for example, only compounds
with a single label prediction as active are advanced for testing.

Virtual screening is typically evaluated retrospectively on datasets of known outcome.
This is done using some form of performance metric based on how well the method enriches
active compounds at the top of the hit list. The downside with this approach is that,
although the average performance of a method over many datasets can be evaluated, there
is a significant dataset dependence and it is difficult to assess the performance of a method
on a particular target a priori. One way to tackle this problem is to screen part of the new
dataset and use the information obtained to evaluate how to best proceed (Svensson et al.,
2017a; Paricharak et al., 2016a,b).

Rather than evaluating screening predictions based on the enrichment of active com-
pounds, a method can be evaluated based on the cost of the screening and the gain from
the expected hits. This has the potential of providing the answer to how many compounds
should be prosecuted in subsequent screening campaigns in order to maximise gain. This
is a very different criteria from the above mentioned enrichment of actives. Although en-
richment in a certain portion of the database can help differentiate between two methods
that are being evaluated, it does not give an insight to what proportion of the collection
to screen. For example, a very small selection could have a very high enrichment of active
compounds but the gain can be much higher in a larger selection of compounds where the
enrichment is lower since more active compounds in absolute numbers can be identified.

In this study we introduce the concept of evaluating virtual screening in regards to the
cost and gain of screening. We use four different PubChem datasets of various imbalances
and sizes, and show how conformal predictors coupled with a gain-cost function can be
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used to find the most appropriate significance settings in order to maximise the gain from
screening.

2. Method

2.1. Data

Four datasets containing more than 40,000 compounds and corresponding assay outcome
data were downloaded from the PubChem BioAssay database (Table 1).

Table 1: The number of compounds and actives for the datasets (PubChem AIDs) used in
this study.

Dataset #active cmpds #total cmpds %active target

868 3,545 194,381 1.82 RAM network signaling
1460 1,189 47,025 2.53 tau fibrillization
2314 36,955 295,303 12.51 Stabilization of luciferase activity
2551 16,632 269,830 6.16 ROR gamma activity

The dataset structures were neutralized and salts removed using corina (Sadowski et al.,
1994) followed by structure standardization using the IMI eTOX project standardizer
(https://pypi.python.org/pypi/standardiser) in combination with the MolVS stan-
dardizer (https://pypi.python.org/pypi/MolVS) for tautomer standardization. Com-
pound activities were based on the PubChem outcome annotation and records with missing
or conflicting annotations were removed. Each dataset was randomly split into a training
set (20 %) and an external test set (80 %).

2.2. Feature generation

97 different physicochemical/structural feature descriptors (physicochemical) as well as Mor-
gan fingerprint descriptors (fingerprints) were calculated using RDKit (RDKit: Open-source
cheminformatics; http://www.rdkit.org). The latter were subsequently hashed onto a bi-
nary feature vector of length 4,096.

2.3. Conformal Prediction

The performance of a conformal predictor is often measured by its validity. A conformal
predictor is said to be valid if the frequency of errors does not exceed the user defined set
significance level. New instances (compounds) are assigned a set of class labels through
comparison to a calibration set with known labels and if the prediction outcome is similar
enough (higher than the set cut-off ) the new instance is assigned that class label. This
process is performed for each label (class) in the data. Thus, there are four possible outcomes
for a binary classification problem, a new instance can be labelled with either of the two
classes, be assigned both labels (both classification) or neither one (empty classification).
For a more detailed example of how conformal prediction is carried out we refer the reader
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to Norinder et al. (2014). A conformal prediction is considered correct if it includes the
correct class label. Consequently, both predictions are always correct and empty predictions
never are (i.e. always erroneous) and a trade off in conformal prediction is that between
validity and efficiency of the model.

CP models were developed using Python, Scikit-learn (Pedregosa et al., 1994) version
0.17, and the nonconformist package (https://github.com/donlnz/nonconformist) ver-
sion 1.2.5. The binary classification models were generated using the Scikit-learn Ran-
domForestClassifier using 500 trees and all other options set at default. The ProbEstClas-
sifierNC and IcpClassifier functions in the nonconformist package, with options for class
conditional conformal predictions enabled, were used for the conformal predictions.

100 CP models were built for each dataset and the aggregated conformal prediction
method described by Carlsson et al. (2014) was used for the final CP prediction outcome.
For each of these models, the training set was randomly divided in proper training set and
calibration set using 70 % and 30 % of the training data, respectively. The median predicted
probability for each test compound was then calculated from the 100 models and used for
class assignment in accordance with the set significance levels (Figure 1).

Figure 1: Aggregated conformal prediction scheme for test set prediction.

The predictive performance for each of the training sets was evaluated by a similar
procedure where the training data set was randomly divided in new training set (80 %) and
an internal test set (20 %). The new training set was then randomly divided into a proper
training set (70 %) and a calibration set (30 %) and 100 models constructed. The median
predicted probability for each internal test compound was then calculated from the 100
models and used for class assignment in accordance with the set significance level (Figure
2).

2.4. Gain-cost function

A gain-cost function needs to be established in order to investigate the outcome from the
derived aggregated CP models both for the internally validated training sets as well as for
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Figure 2: Aggregated conformal prediction scheme for internal training set validation.

the external test sets. With respect to the cost term of such a function, it is relatively easy
to identify reasonable factors and levels from previously performed screens. For the gain
term, the future value of finding active compounds during screening that may eventually
generate some form of income, it is much more difficult to set reasonable values since these
may differ considerably depending upon the structure of the identified active compound as
well as the biological target in question. In this study we use three different rations between
cost and gain by defining a gain of 400 per identified active compound and three levels of
screening costs; low 4, medium 8, and high 12. These values were chosen to reflect realistic
ratios based on the assumptions that a HTS on the investigated datasets should at least
break even, but other values may be set at the discretion of the investigator.

To evaluate the screening gain-cost we defined the following setup:
1. CP significance levels 0.05 - 0.4 were investigated with increments of 0.05.
2. All compounds in the training sets were screened.
3. Only external test set compounds with a single label prediction as active were screened.
4. The potential gain for each screened active compound (gc) was set to 400 (arbitrary
unit).
5. A fixed cost (fc) for each screened compound, covering development, personnel, storage
etc., was set to 2.
6. A screen dependent cost (sdc) for each screened compound covering assay related costs,
e. g. consumables and handling, was set to 4, 8 or 12 (low, medium and high cost screen).

The gain-cost function to be maximized can be written as:

gain =

ntra∑
i=1

(gc) −
ntr∑
i=1

(fc + sdc) +

ntesta∑
i=1

(gc) −
ntest∑
i=1

(fc + sdc) (1)
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where ntr and ntra are the number of screened training set compounds and the number
of active training set compounds, respectively. Ntest and ntesta are the corresponding
numbers for the test set compounds.

The overall workflow used in this study is presented in Figure 3.

Figure 3: Schematic of the workflow used for the screening.

3. Results & Discussion

The validities of the aggregated CPs are presented in Table 2. Allowing for small statistical
variations, that the class conditional validities are only compromised for the 1460 external
test set active minority class when using physicochemical descriptors. Thus, as mentioned
in the introduction, there seems to exist a number of models at various significance levels
that, from a CP perspective, are valid both for the minority, active, class as well as for the
majority, inactive, class for both training and external test sets.

The efficiency of the derived models differs considerably when using physicochemical or
fingerprint descriptors, respectively. The former set of descriptors exhibits a similar pattern
for all four datasets (Figure 4) while the latter type differs markedly between datasets
(Figure 5). Most notably, fingerprint-based models for the two datasets with the fewest
percentage of active compounds, 860 and 1460, show very low efficiencies at low significance
levels. Dataset 868, with only 1.8 % actives, have low efficiencies for most of the investigated
significance levels. This behaviour may be the result from relatively few active compounds
in combination with a sparse structure representation (fingerprints) where the calibration
set, especially for the actives, does not cover the dataset as a whole particularly well.

From a screening perspective it is of importance to identify which approach produce the
most productive predictions in terms of screening efficiency, i.e. gain. For this purpose a
gain-cost function was devised to describe the screening outcomes, considering the cost asso-
ciated with the screening of compounds and the gain from finding hits. Using the gain-cost
function described above we wanted to use the information from the initial compound set
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Figure 4: Efficiency of the physicochemical descriptor-based models.

Figure 5: Efficiency of the fingerprint-based models.
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to find the optimal significance level of the CP to predict the remaining 80 % of compounds
for screening in order to obtain the maximum gain. The results of such gain-cost function
CP usage with the aim of maximizing the gain for each assay are shown in Table 3.

Interesting to note is the excellent correspondence in terms of maximizing the gain,
between the optimal significance level identified by the internal validation of the training
set and the same setting for the external test set for both fingerprints and models based
on physicochemical descriptors (7 out of 12 cases, Table 3). Furthermore, for those cases
where the optimal significance level identified during the internal validation of the training
set does not correspond to the same setting for the external test set (both fingerprints and
physicochemical: 5 out of 12 cases) the decrease in gain (% trset max loss) is minimal with
an average and maximum decrease in gain for the fingerprint models of only 2.1 % and 2.7
%, respectively, and 1.0 % and 3.7 %, respectively, for the physicochemical descriptor-based
models.

Also important to note is that for some datasets, e.g. 2314 and 2551, the maximum gain
is achieved when screening the entire library. Gratifyingly, this was also indicated by the
internal validation procedure of the respective training set (indicated by asterisk in Table
3). This means that the models developed for the internal validation are predictive also of
this behaviour.

Overall, our results indicate a very robust framework where the training set can be used
to identify the settings for the subsequent screening that generates the maximum gain. This
robustness is depicted in Figures 6 - 9 where the largest deviations between gains are seen
for assays 868 and 1460 with the fewest percentage of active compounds. The same trends
with respect to gain is observed for both the training set as well as the external test set
(the remainder of the chemical library) in all four investigated datasets.

Figure 6: Fraction of maximum gain at different significance levels for PubChem Assay ID
868 (cost = 12, solid line = test set, dashed line = training set)
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Figure 7: Fraction of maximum gain at different significance levels for PubChem Assay ID
1460 (cost = 12, solid line = test set, dashed line = training set)

Figure 8: Fraction of maximum gain at different significance levels for PubChem Assay ID
2314 (cost = 12, solid line = test set, dashed line = training set)
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Figure 9: Fraction of maximum gain at different significance levels for PubChem Assay ID
2551 (cost = 12, solid line = test set, dashed line = training set)

Comparing the models based on fingerprints with those based on physicochemical de-
scriptors the former retrieve more active test set compounds but, at the same time, predict
more test compounds as active for subsequent screening (Figures 10 - 11). For the four
datasets, screening between 20 % and 35 % of the remaining compounds identified between
60 % and 80 % of the active compounds. However, differences in total gain between the
two approaches, fingerprints and physicochemical, are generally small except for the 868
dataset where the latter approach is much more effective and retrieves both more actives
as well as shows a higher gain.

The main limitation associated with the presented strategy is the determination of the
gain-cost ratios to use in the evaluation. We opted to use a ratio that roughly corresponded
to cost neutrality, i.e. no gain or loss, of the full screening data, clearly this is a ery conser-
vative measure since the produced hits from a screening campaign probably are associated
with a future gain. However, the exact size of the gain to cost ratio is dependent on many
factors and must be calibrated for each project.

To further study and substantiate the findings in this investigation, assessment of addi-
tional datasets are underway.
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Figure 10: Average percentage retrieved active compounds (black bars: fingerprints and
grey bars: physicochemical descriptors)

Figure 11: Average percentage screened compounds (black bars: fingerprints and grey bars:
physicochemical descriptors)
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4. Conclusions

This study investigated the usage of a combined strategy, with the aim of maximizing gain
for screening campaigns, employing a gain-cost function in combination with CP in order to
correctly identify a suitable significance level for the training set by internal validation that,
subsequently, also represents a good level for screening an active compound enriched subset
from the remainder of the library in question. Even though the internal validation did
not always identify the correct optimal level for the enriched subset screening the decease,
in terms of gain, was minimal with average decrease in gain of only 1.0 % and 2.1 %,
respectively, for physicochemical descriptor-based models and fingerprint-based models.
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