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Abstract

For the decision theoretic online (DTOL) setting, we consider methods to construct algo-
rithms that suffer loss not much more than of any sequence of experts distributed along
a time interval (shifting experts setting). We present a modified version of the method
of Mixing Past Posteriors which uses as basic algorithm AdaHedge with adaptive learning
rate. Due to this, we combine the advantages of both algorithms: regret bounds are valid
in the case of signed unbounded losses of the experts, also, we use the shifting regret which
is a more optimal characteristic of the algorithm. All results are obtained in the adversarial
setting – no assumptions are made about the nature of data source.

We present results of numerical experiments for the case where losses of the experts
cannot be bounded in advance.

Keywords: On-line learning, unbounded losses, signed losses, adaptive learning rate, al-
gorithm Hedge, mixing past posteriors, shifting experts, share updates

1. Introduction

We consider the decision-theoretic on-line learning model in which a master (aggregating)
algorithm has to combine losses (or predictions) from a set of experts (see e.g. Littlestone
and Warmuth 1994, Freund and Schapire 1997, Vovk 1990, Vovk 1998, Cesa-Bianchi and
Lugosi 2006 and so on).

Learning proceeds in trials t = 1, 2, . . . , T . In each time moment t the aggregating
algorithm presents a prediction in form of a vector of weights wt = (w1,t, . . . , wN,t) assigned

to all N experts, where
N∑
i=1

wi,t = 1 and wi,t ≥ 0 for all i. The weight wi,t of an expert

i is an estimate of the “quality” of the expert’s predictions at step t. After that, experts
i = 1, . . . , N reveal their losses lt = (l1t , . . . , l

N
t ); the aggregating algorithm suffers the loss

ht = (wt · lt) =
N∑
i=1

wi,tl
i
t. The cumulative loss suffered by any expert i for the first T steps

is defined LiT =
T∑
t=1

lit and the cumulative loss of the aggregating algorithm is HT =
T∑
t=1

ht.

The important characteristics of the algorithm is a regret RiT = HT − LiT with respect to
an expert i or minimax regret RT = max1≤i≤N R

i
T .

c© 2017 V.V. V’yugin.
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The aggregating algorithm updates the experts weights at the end of each trial using
losses of the experts and of the algorithm in hindsight. The goal of the algorithm is to
design weight updates that guarantee that the loss of the aggregating algorithm is never
much larger than the loss of the best expert or the best convex combination of the losses
of the experts. So here the best expert or a convex combination of experts serves as a
comparator.

A comparison vector is a vector q = (q1, . . . , qN ) such that q1 + · · ·+ qN = 1 and all its
components are nonnegative. We compare the cumulative loss of the aggregating logarithm

HT and cumulative convex combination of losses of the experts
T∑
t=1

(q · lt).

In classical setting (Freund and Schapire 1997, Vovk 1990 and so on), the process of
expert i weights updating is based on the method of exponential weighting with a constant
or variable learning rate η:

wi,t+1 =
wi,te

−ηlit

N∑
j=1

wj,te−ηl
j
t

.

A more challenging goal is to learn well when the comparator q changes over time, i.e the

algorithm competes with the cumulative sum
T∑
t=1

(qt · lt), where comparison vector qt changes

over time. An important partial case is when qt are unit vectors, and so, the sequence of
trials is partitioned into segments. In each segment the loss of the algorithm is compared to
the loss of a particular expert and this expert changes at the beginning of a new segment.
The goal of the the aggregation algorithm is to do almost as well as the sum of losses
of experts forming the best partition. Algorithms and bounds of for shifting comparators
were presented by Herbster and Warmuth (1998). This method called Fixed Share was
generalized by Bousquet and Warmuth (2002) to the method of Mixing Past Posteriors
(MPP) in which an arbitrary mixing schemes are used.

Most papers in DTOL setting either consider bounded losses or assume the existence
of a specific loss function (see Vovk 1990, Cesa-Bianchi and Lugosi 2006). For example,
lit ∈ [0, 1] for all i and t. But in some practical applications, this assumption is too restric-
tive. Unrestricted gains and losses are typical for financial games where we are faced with
unpredictably large values of time series. We allow losses at any step to be unbounded and
signed. The notion of a specific loss function is not used.

Algorithm AdaHedge presented by Rooij et al. (2014) is among a few algorithms that
do not have similar restrictions. This algorithm is a classical algorithm Hedge of Freund
and Schapire (1997) which is completely parameterless and tunes the learning rate η in
terms of a direct measure of past performance. It develops the Hedge strategy presented
by Cesa-Bianchi et al. (2007). In Rooij et al. (2014) an upper bound for regret of this
algorithm is presented which is free from boundness assumptions for losses of the experts.
Let l−t = min

i
lit, l

+
t = max

i
lit be smallest and greatest losses of the experts at a time step t.

Note that these losses can be of arbitrary sign. Define L+
T =

T∑
t=1

l+t , L
−
T =

T∑
t=1

l−t . Let also

st = l+t − l
−
t , ST = max{s1, . . . , sT }.
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Let L∗
T = min1≤i≤N L

i
T be the minimal expert’s loss and RT = HT −L∗

T be the minimax
regret of aggregation algorithm. By Rooij et al. (2014) the regret of the AdaHedge algorithm
is bounded

RT ≤ 2

√
ST

(L∗
T − L

−
T )(L+

T − L∗
T )

L+
T − L

−
T

lnN +

(
16

3
lnN + 2

)
ST . (1)

In case where experts’ losses are bounded the upper bound (1) is of the form O(
√
T lnN).

The goal of this paper is to combine advantages of both algorithms – MPP and Ada-
Hedge. Note that a version of MPP algorithm presented by Bousquet and Warmuth (2002)
uses a constant learning rate. At the same time, the algorithm AdaHedge uses adap-
tive learning rate which is tuned online. In this paper we present a version of algorithm
MPP with an adaptive learning parameter. Due to this, we combine algorithms Ada-
Hedge and MPP. We also obtain an upper bound for regret of combined algorithm of order
O(ln(NT )BT ), where BT denotes the right-hand side of the inequality (1).

All results are obtained in the adversarial setting – no assumptions are made about the
nature of data source.

In Section 2 we present our main result – a version of the algorithm MPP with a variable
learning rate and an upper bound for regret of this modified version. Results of numerical
experiments with unbounded and volatile data are presented in Section 3.

Some details of the proof from Rooij et al. (2014) are presented as a supplementary
material in Section 4.

2. Algorithm MPP with a variable learning rate

Recall some details of the method of Mixing Past Posteriors (MPP) by Bousquet and
Warmuth (2002). Relative entropy is the basic notion of this analysis; it can be considered
as a measure of progress.

For any n denote by Γn the simplex of all probability distributions on a set of cardinality

n. Let D(p‖q) =
n∑
i=1

pi ln pi
qi

be the relative entropy, where p = (p1, . . . , pn) and q =

(q1, . . . , qn) are elements of Γn. We define 0 ln 0 = 0.
For two vectors p and q, we write p > q, if the > relationship holds componentwise.

We use 0 to denote the all-zero vector. The proofs for MPP rely on the following simple
inequalities for the relative entropy. For all p, q, w ∈ Γn such that q, w > 0

D(p‖q) ≤ D(p‖w) + ln

(
n∑
i=1

pi
wi
qi

)
.

If q ≥ µw for some µ > 0 then D(p‖q) ≤ D(p‖w) + ln 1
µ . In particular, for p = w we have

D(w‖q) ≤ ln 1
µ for q ≥ µw. Indeed, from concavity of the logarithm D(p‖q) − D(p‖w) =

n∑
i=1

pi ln wi
qi
≤ ln

(
n∑
i=1

pi
wi
qi

)
. If q ≥ µw then

n∑
i=1

pi
wi
qi
≤

n∑
i=1

pi
wi
µwi

= 1
µ .
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Put wi,1 = wmi,0 = 1
N for i = 1, . . . , N , η1 =∞.

FOR t = 1, . . . , T
Predict with weights wt = (wi,1, . . . , wi,N ).
Receive losses of the experts lt = (l1t , . . . , l

N
t ).

Compute the aggregating algorithm loss ht =
N∑
i=1

wi,tl
i
t.

Update experts weights and learning parameter in three stages:
Loss Update

Define wmi,t =
wi,te

−ηtl
i
t

N∑
j=1

wj,te
−ηtl

j
t

for 1 ≤ i ≤ N .

Mixing Update
Choose a mixing scheme βt+1 = (βt+1

0 , . . . , βt+1
t ) and define future experts weights

wi,t+1 =
t∑

s=0
βt+1
s wmi,s for 1 ≤ i ≤ N .

Learning Parameter Update

Define mixloss mt = − 1
ηt

ln
N∑
i=1

wi,te
−ηtlit , δt = ht−mt and mixability gap ∆t = ∆t−1 +δt.

Define the learning rate ηt+1 = 1/∆t.
ENDFOR

Figure 1: Adaptive MPP

The following inequality will be used below. Let p ∈ Γn and q =
t∑
i=0

βiwi, where wi ∈ Γn,

wi > 0 for 0 ≤ i ≤ t, β = (β0, . . . , βt) ∈ Γt+1 and β > 0. Then

D(p‖q) ≤ D(p‖ws) + ln
1

βs
(2)

for any 0 ≤ s ≤ t. In particular, for p = ws, D

(
ws‖

n∑
i=0

βiwi

)
≤ ln 1

βs
for any s.

In what follows the vector wmt = (wm1,t, . . . , w
m
N,t) presents the normalized experts weights

at step t. The corresponding posteriori probability distribution wt+1 = (w1,t+1, . . . , wN,t+1)

for step t + 1 is defined as a convex combination wt+1 =
t∑

s=0
βt+1
s wms with weights βt+1

s ,

0 ≤ s ≤ t, where wms = (wm1,s, . . . , w
m
N,s).

By the method MPP a mixing scheme is defined by a vector βt+1 = (βt+1
0 , . . . , βt+1

t ),

where
t∑

s=0
βt+1
s = 1 and βt+1

s ≥ 0 for 0 ≤ s ≤ t.

We use a notion of mixloss mt = − 1
ηt

ln
N∑
i=1

wi,te
−ηtlit , the cumulative mixloss is defined

MT =
T∑
t=1

mt. Also, δt = ht−mt is the mixability gap and ∆t = ∆t−1 + δt is the cumulative

mixability gap. From the convexity of the exponent mt ≤ ht for all t; also, ∆t ≤ ∆t+1.
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Let HT =
T∑
t=1

ht be the cumulative loss of the algorithm for the first T steps. By definition

HT = MT + ∆T .
Algorithm MPP with adaptive learning rate is presented on Figure 1.
We will use the following mixing schemes by Bousquet and Warmuth (2002):
Example 1. A version of Fixed Share by Herbster and Warmuth (1998) with a variable

learning rate is defined by the following mixing scheme. Let a sequence 1 ≥ α1 ≥ α2 ≥ . . .
of parameters be given. Define βt+1

t = 1− αt+1 and βt+1
0 = αt+1 (βt+1

s = 0 for 0 < s < t).
The corresponding prediction for step t+ 1 is defined

wi,t+1 =
αt+1

N
+ (1− αt+1)wmi,t

for all 1 ≤ i ≤ N .
Example 2. Uniform Past by Bousquet and Warmuth 2002 with a variable learning

rate. Put βt+1
t = 1− αt+1 and βt+1

s = αt+1

t for 0 ≤ s < t. The corresponding prediction for
step t+ 1 is defined

wi,t+1 = αt+1

t−1∑
s=0

wmi,s
t

+ (1− αt+1)wmi,t

for all i and t;
Let lt = (l1t , . . . , l

N
t ) be a vector of losses of the experts at step t. The convex combina-

tions of these losses at step t is (qt · lt) =
N∑
i=1

qi,tl
i
t, where qt = (q1,t, . . . , qN,t) is a comparison

vector for step t, qt ∈ ΓN . In particular, for unit comparison vector qt = (0, . . . , 1, . . . , 0)
we have (qt · lt) = lit, where 1 is the ith component of qt.

Following Kivinen and Warmuth (1999) we consider a more general notion of regret,
which is the difference between cumulative loss of the algorithm and the loss of a given
sequence of cumulative convex combinations q1, . . . , qT of losses of the experts

RT =
T∑
t=1

ht −
T∑
t=1

(qt · lt).

If q1 = · · · = qT = ei, where ei = (0, . . . , 1, . . . , 0) is the unit vector, RT is the regret with
respect to an expert i.

The derivation of upper bounds for regret is based on the following lemma of Bousquet
and Warmuth (2002).

Lemma 1 For any comparison vector qt ∈ ΓN ,

mt = (qt · lt) +
1

η
(D(qt‖wt)−D(qt‖wmt )). (3)
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Proof. By (2) the inequality (3) is obtained as follows:

mt −
N∑
i=1

qi,tl
i
t =

N∑
i=1

qi,t

(
1

ηt
ln e−ηtl

i
t +mt

)
=

1

ηt

N∑
i=1

qi,t

ln e−ηtl
i
t − ln

N∑
j=1

wj,te
−ηtljt

 =

1

ηt

N∑
i=1

qi,t ln
e−ηtl

i
t

N∑
j=1

wj,te−ηtl
j
t

=

1

ηt

N∑
i=1

qi,t ln
wmi,t
wi,t

=
1

ηt
(D(qt‖wt)−D(qt‖wmt )).

Let us apply Lemma 1 for mixing schemes of Example 1 (Fixed Share): βt+1
t = 1−αt+1,

βt+1
s = 0 for 0 < s < t, and βt+1

0 = αt+1. Also, wi,t+1 = αt+1

N + (1− αt+1)wmi,t for all i and

t. In what follows, define αt = 1
t+1 for all t = 1, 2, . . . .

Let a sequence lt = (l1t , . . . , l
N
t ) of losses of the experts and a sequence of comparison

vectors qt = (q1,t, . . . , qN,t) be given online for t = 1, 2, . . . . Assume that T be an arbitrary
and the comparison vector qt changes k times for 1 ≤ t ≤ T .

We let t1 < t2 < . . . tk be the subsequence of indices in the sequence of comparators
q1, . . . , qT , where shifting occurs: qtj 6= qtj−1 and qt = qt−1 for all other steps, where t > 1.
Define also t0 = 1 and tk+1 = T + 1. We apply Lemma 1 for the distribution βt+1 from
Example 1. Recall that wi,1 = wmi,0 = 1

N for i = 1, . . . , N .
Summing (3) on time interval where qt = qt−1 for tj + 1 ≤ t ≤ tj+1 − 1, we obtain

tj+1−1∑
t=tj+1

mt =

tj+1−1∑
t=tj+1

(qt · lt) +

tj+1−1∑
t=tj+1

1

ηt
(D(qt‖wt)−D(qt‖wmt )) =

tj+1−1∑
t=tj+1

(qt · lt) +

tj+1−1∑
t=tj+1

1

ηt−1
D(qt‖wt)−

1

ηt
D(qt‖wmt ) +

tj+1−1∑
t=tj+1

(
1

ηt
− 1

ηt−1

)
D(qt‖wt) ≤ (4)

tj+1−1∑
t=tj+1

(qt · lt) +

tj+1−1∑
t=tj+1

1

ηt−1
D(qt‖wt)−

1

ηt
D(qt‖wmt )+

6
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+

tj+1−1∑
t=tj+1

δt−1

(
lnN + ln

1

αt

)
≤ (5)

tj+1−1∑
t=tj+1

(qt · lt) +

tj+1−1∑
t=tj+1

(
1

ηt−1
D(qt‖wmt−1)− 1

ηt
D(qt‖wmt )

)
+

tj+1−1∑
t=tj+1

1

ηt−1
ln

1

1− αt
+

tj+1−1∑
t=tj+1

δt−1 ln
1

αt
+ lnN

tj+1−1∑
t=tj+1

δt−1 = (6)

tj+1−1∑
t=tj+1

(qt · lt) +

(
1

ηtj
D(qtj‖wmtj )− 1

ηtj+1−1
D(qtj‖wmtj+1−1)

)
+

tj+1−1∑
t=tj+1

1

ηt
ln

1

1− αt
+

tj+1−1∑
t=1

δt−1 ln
1

αt
+ lnN

tj+1−1∑
t=tj+1

δt−1. (7)

In transition from (4) to (5) the inequality wi,t ≥ αt
N was used, then

D(qt‖wt) =
N∑
i=1

qi,t ln
qi,t
wi,t
≤

N∑
i=1

qi,t ln qi,t −
N∑
i=1

qi,t ln
αt
N
≤ lnN + ln

1

αt
. (8)

In transition from (5) to (6) we use the inequality (2), where s = t− 1,

D(qt‖wt) ≤ D(qt‖wmt−1) + ln
1

1− αt
.

In transition from (6) to (7) the entropy terms within the sections telescope and only for
the beginning and the end of each section a positive and a negative entropy term remains,
respectively.

For the beginnings of the k sections t = t1, . . . , tk define s = 0, β
tj
0 = αtj in the inequality

(2), then

mtj ≤ (qtj · ltj ) +
1

ηtj
D(qtj‖wm0 )− 1

ηtj
D(qtj‖wmtj ) +

1

ηtj
ln

1

αtj
. (9)

Summing all these inequalities, we obtain

MT −
T∑
t=1

(qt · lt) ≤
k∑
j=1

(
1

ηtj
D(qtj‖wm0 )− 1

ηtj+1−1
D(qtj‖wmtj+1−1)

)
+ (10)

T∑
t=1

1

ηt
ln

1

1− αt
+

T∑
t=1

δt−1 ln
1

αt
+ lnN

T∑
t=1

δt−1 +

k∑
j=1

∆tj−1 ln
1

αtj
≤

((k + 2) ln(T + 1) + (k + 1) lnN + 1)∆T . (11)

In transition from (10) to (11) we use inequality D(q‖wmT ) ≥ 0 for all q and equality

D(q‖wm0 ) = lnN . Then
k∑
j=1

1
ηtj
D(qtj‖wm0 ) ≤ k lnN∆T . For αt = 1

t+1 we use inequalities

T∑
t=1

1

ηt
ln

1

1− αt
≤ 1

ηT
(lnT + 1) = ∆T−1(lnT + 1) ≤ ∆T (lnT + 1).
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Therefore, we have proved the following theorem.

Theorem 2 Let αt = 1
t+1 for all t and mixing scheme from Example 1 was used. Then

for any T , for any sequence of losses of the experts, and for any sequence of comparison
vectors qt ∈ ΓN given online with no more than k changes,

MT ≤
T∑
t=1

(qt · lt) + ((k + 2) ln(T + 1) + (k + 1) lnN + 1)∆T .

Besides,

HT ≤
T∑
t=1

(qt · lt) + ((k + 2) ln(T + 1) + (k + 1) lnN + 2)∆T .

Denote γ(T ) = (k + 2) ln(T + 1) + (k + 1) lnN + 2.
The corresponding bound for Example 2 can be obtained analogously. Since wi,t ≥ αt

Nt ,
the inequality (8) can be replaced by inequality D(qt‖wt) ≤ lnN + lnT + ln 1

αt
. Also,

the the last term of the inequality (9) can be replaced by 1
ηtj

ln 1
tαtj

. As a result, we get

γ(T ) = (2k + 3) ln(T + 1) + (k + 1) lnN + 2.

We use notations l−t = min1≤i≤N l
i
t, l

+
t = max1≤i≤N l

i
t, st = l+t − l−t , L−

T =
T∑
t=1

l−t ,

L+
T =

T∑
t=1

l+t , ST = max1≤t≤T st, and L
(k)
T =

T∑
t=1

(qt · lt), where qt is a comparison vector and

k is the number of t ≤ T such that qt 6= qt−1.
The proof of Theorem 8 from Rooij et al. (2014) can be easily modified (see Section 4)

to obtain the following upper bound for ∆T : for any T and 1 ≤ k ≤ T ,

∆T ≤

√√√√ST
(L+

T − L
(k)
T )(L

(k)
T − L

−
T )

L+
T − L

−
T

+

(
γ(T ) +

5

3

)
ST . (12)

Therefore, we have the main result of this paper:

Theorem 3 For any T and for any sequence of comparison vectors qt ∈ ΓN with no more
than k changes given online,

R
(k)
T = HT − L(k)

T ≤ γ(T )

√√√√ST
(L+

T − L
(k)
T )(L

(k)
T − L

−
T )

L+
T − L

−
T

+ γ(T )

(
γ(T ) +

5

3

)
ST , (13)

where γ(T ) = (k + 2) ln(T + 1) + (k + 1) lnN + 2 for scheme of Example 1.

In particular, the same upper bound holds for compound experts i1, . . . , iT (sequence of
experts, 1 ≤ it ≤ N for 1 ≤ t ≤ T ). The complexity s(i1, . . . , iT ) of this compound expert
is equal to the number of 1 < t ≤ T such that it−1 6= it. Let also, the comparison vectors
qt be unit vectors and qt−1 6= qt for ≤ k distinct 1 < t ≤ T . In this case, since for some
sequence {qt} of unit vectors

L
(k)
T =

T∑
t=1

(qt · lt) = min
s(i1,...,iT )≤k

T∑
t=1

litt ,

8
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we can rewrite the bound (13) in the form

HT ≤ min
s(i1,...,iT )≤k

T∑
t=1

litt +

γ(T )

√√√√ST
(L+

T − L
(k)
T )(L

(k)
T − L

−
T )

L+
T − L

−
T

+ γ(T )

(
γ(T ) +

5

3

)
ST ,

where γ(T ) = (k + 2) ln(T + 1) + (k + 1) lnN + 2 for scheme of Example 1.

Figure 2: Results of the experiment which was performed on artificial data. Three blue,
green, and red lines – experts E1, E2, E3 cumulative losses, AdaHedge losses –
thick blue line, MPP losses – thick red line.

3. Numerical experiments

In this section we present results of experiments for scheme of Example 1.
The first experiment is performed on artificial data, where one-step losses of experts are

signed and unbounded. The cumulative losses of three experts and losses of aggregating
algorithms AdaHedge and MPP are presented on Figure 2. In this case MPP algorithm
significantly outperforms AdaHedge.

The next three experiments are performed on financial data which was downloaded
from website http://finam.ru. In this case losses of the experts cannot be bounded in
advance. A characteristic feature of these examples is that the strong volatility of the
experts’ losses was observed. To be closer to financial terminology, we represent results
in terms of incomes (gains) instead of losses: we interpreted loss as a negative gain. The
first of these experiments is based on ideas of Delbaen and Schachermayer (1994) and Vovk
(2003) (see also a similar example in V’yugin 2013).

9
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Figure 3: Zero-Sum game for US1.GLW stock. Two symmetric green and blue lines –
experts income, AdaHedge relative income – thick blue line, MPP relative income
– thick red line.

Figure 4: Russian stocks: AdaHedge income – thick blue line, MPP income – thick red
line. Vertical line show a relative cumulative income or loss for each expert and
hedging trading strategies, horizontal lines show time in days.

Let S0, S1, . . . , ST be a sequence stock prices. Let also, ∆St = St+1−St. Experts 1 and
2 represent two concurrent methods of buying and selling shares of this stock. The true

equality (ST − S0)2 −
T−1∑
t=0

(∆St)
2 =

T−1∑
t=0

2(St − S0)∆St leads to the two experts strategies.

10
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Figure 5: BATS Electronic Market stocks: AdaHedge income – thick blue line, MPP income
– thick red line. Vertical line show a relative cumulative income or loss for each
expert and hedging trading strategies, horizontal lines show time in days.

At the beginning of step t Experts 1 and 2 hold the number of shares C1
t = 2C(St − S0)

and C2
t = −C1

t , where C is an arbitrary positive constant; at the end of this step they
earn the incomes s1

t = 2C(St − S0)∆St and s2
t = −s1

t . The cumulative income of Expert

1 in first T steps is s1
1:T =

T∑
t=1

s1
t = 2C

(
(ST − S0)2 −

T−1∑
t=1

(∆St)
2

)
, and cumulative income

of Expert 2 is s2
1:T = −s1

1:T . The number of shares C1
t and C2

t = −C1
t can be positive or

negative, i.e, short selling is allowed. The one-step gains s1
t and s2

t = −s1
t are unbounded

and can be positive or negative. The hedging strategy AdaHedge or MPP at any step divide
his investment in proportion to the weights of expert strategies. At any step, the hedging
strategy use the same amount of money for investment. Thus, we postpone extra income in
cash or borrow money. Figure 3 show results of experiment performed with stock US1.GLW
of BATS Electronic Market (trading performing twice at each working day of 2015).

Next two experiments are performed with two sets of stocks which were downloaded
from website http://finam.ru. These sets are Russian stocks with tickers: VTBR, GAZP,
LKOH, NVTK, ROSN, SBER, TRNFP and BATS Electronic Market stocks with tickers:
US1T, US1AXP, US1BA, US1GE, US2GOOG, US1JPM, US1KO (trading performing at
each working day of 2014). Seven Expert strategies are represented by daily incomes of
Universal Algorithmic Trading strategy which operates for each of these stocks separately.
We refer readers to V’yugin (2013) for details of this strategy. As in the first experiment,
at each step the aggregating strategy AdaHedge or MPP distribute the same amount of
money among these experts and receive income or suffer loss in proportion to the weights
of expert strategies; we postpone extra income in cash or borrow money when suffer loss.
Figures 4 and 5 show cumulative incomes of all strategies by days of trading period in 2014.
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Vertical lines on plots show a proportion of cumulative income or loss for each expert and
hedging trading strategy, horizontal lines show time in days.

The version of MPP algorithm presented in this paper gives us a tool for aggregating
the losses of experts in difficult cases that arise in practice. The results of experiments show
that MPP algorithm significantly outperforms AdaHedge on artificial data and that MPP
algorithm slightly outperforms AdaHedge algorithm even in cases where losses (gains) of
experts are volatile, signed, and unbounded in advance.
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4. Supplementary material

We use a slightly different procedure for experts weights update than the one what was
used by Rooij et al. (2014). Nevertheless, the proof does not change. In this section we
reproduce the derivation of the upper bound (12) of Theorem 8 by Rooij et al. (2014) with
an exception that experts weights update and some constants are changed.

The corresponding derivation is based on Bernstein inequality. Let VT =
T∑
t=1

vt be

cumulative variance of losses of the experts, where

vt = V arj∼wt [l
j
t ] = Ej∼wt [(l

j
t − Ej∼wt [(l

j
t )])

2] =
N∑
j=1

wj,t(l
j
t − ht)2

and wt = (w1,t, . . . , wN,t) be the experts weights.

Denote st = l+t − l
−
t , where l+t = max1≤j≤N l

j
t , l

−
t = min1≤j≤N l

j
t .

Lemma 4 The difference δt = ht −mt satisfies

δt ≤
estηt − 1− stηt

ηts2
t

vt. (14)

Proof. The proof is based on Bernstein inequality (see Lemmas 3-5 of Cesa-Bianchi and
Lugosi (2006)).

Let X ∈ (−∞, 1) be a random variable, where EX = 0, EX2 = σ2. Bernstein inequality
says that for any η > 0, lnEeηX ≤ σ2(eη−η−1). In what follows, we use also the following
form of this inequality. Let X ∈ [0, 1] be a random variable and σ =

√
EX2 − (EX)2. The

for any η > 0, lnE[e−η(X−EX)] ≤ σ2(eη−η−1). Consider a random variable X taking values

ljt with probabilities wj,t, where j = 1, . . . , N , and its transformation Xj
t =

ljt−l
−
t

st
∈ [0, 1].

Then Bernstein inequality has the form: lnEj∼wt

(
e−η(X

j
t−EXt)

)
≤ σ2 (eη − 1− η) for all
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η > 0. Rewrite this inequality in more details, where η = stηt:

lnEj∼wt

(
e−η(X

j
t−EXt)

)
= ln

 N∑
j=1

wt,je
−stηt

(
l
j
t−l

−
t

st
−
N∑
i=1

wi,t
lit−l

−
t

st

) =

ln


N∑
j=1

wj,te
−ηt(ljt−l

−
t )

e
−ηt

N∑
j=1

wj,t(ljt−l
−
t )

 = ln


N∑
j=1

wj,te
−ηtljt

e
−ηt

N∑
j=1

wj,tl
j
t

 =

ln
N∑
j=1

wj,te
−ηtljt + ηt

N∑
j=1

wj,tl
j
t = ηt(ht −mt) = ηtδt ≤ σ2 (estηt − 1− stηt) =

V arj∼wt [X
j
t ] (estηt − 1− stηt) =

1

s2
t

V arj∼wt [l
j
t ] (estηt − 1− stηt) .

From this, we obtain the needed inequality δt ≤ estηt−1−stηt
ηts2t

vt. Lemma is proved.

Rewrite (14) in the form

δt ≤
g(stηt)

st
vt, where g(x) =

ex − x− 1

x
. (15)

Recall that ηt = 1
∆t−1

.

Lemma 5 It holds (∆T )2 ≤ VT + 5
3ST∆T , where ST = max1≤t≤T (l+t − l

−
t ).

Proof. It holds

(∆T )2 =
T∑
t=1

(
∆2
t −∆2

t−1

)
=

T∑
t=1

(
(∆t−1 + δt)

2 −∆2
t−1

)
=

T∑
t=1

(
2δt∆t−1 + δ2

t

)
=

T∑
t=1

(
2δt
ηt

+ δ2
t

)
≤

T∑
t=1

(
2δt
ηt

+ stδt

)
≤ 2

T∑
t=1

δt
ηt

+ ST∆T . (16)

Now obtain δt
ηt

using (15):

1

2
vt ≥

δtst
2g (stηt)

=
δt
ηt

+A,

A =
ηtstδt − 2g (stηt) δt

2g (stηt) ηt
=
st
(
η2
t δts

2
t − 2δt (estηt − stηt − 1)

)
2stηt (estηt − stηt − 1)

=

= stδt

1
2 (stηt)

2 − estηt + stηt + 1

stηt (estηt − stηt − 1)
= −ϕ (stηt) stδt,

14
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where ϕ(x) =
ex− 1

2
x2−x−1

xex−x2−x . Using Taylor expansion, we obtain ϕ(x) ≤ 1/3. Then

δt
ηt
≤ 1

3
stδt +

1

2
vt. (17)

Substituting the (17) in the inequality (16) and, summing up, we get

(∆T )2 ≤ VT +
5

3
ST∆T .

Lemma is proved.

Now we estimate VT . By definition vt ≤ (l+t − ht)(ht − l
−
t ) ≤ s2t

4 .

Lemma 6 Let k ≤ T , ST = max1≤t≤T st and L
(k)
T ≤ HT . Then VT ≤ ST

(L+
T−L

(k)
T )(L

(k)
T −L−

T )

L+
T−L

−
T

+

γ(T )ST∆T .

Proof. The following inequalities are valid:

VT =
T∑
t=1

vt ≤
T∑
t=1

(l+t − ht)(ht − l
−
t ) ≤ ST

T∑
t=1

(l+t − ht)(ht − l
−
t )

st
=

STT
T∑
t=1

1

T

(l+t − ht)(ht − l
−
t )

(l+t − ht) + (ht − l−t )
≤ ST

(L+
T −HT )(HT − L−

T )

L+
T − L

−
T

.

Here an instance of Jensen inequality was used (see for details Rooij et al. (2014)). Lemma
is proved.

By Theorem 2 HT ≤ L(k)
T + γ(T )∆T . Assume that L

(k)
T ≤ HT . Using these inequalities

and Lemma 6 we obtain

VT ≤ ST
(L+

T −HT )(HT − L−
T )

L+
T − L

−
T

≤

ST
(L+

T − LkT )(L
(k)
T + γ(T )∆T − L−

T )

L+
T − L

−
T

≤

ST
(L+

T − L
(k)
T )(L

(k)
T − L

−
T )

L+
T − L

−
T

+ γ(T )ST∆T . (18)

DenoteAT =
(L+
T−L

(k)
T )(L

(k)
T −L−

T )

L+
T−L

−
T

. By inequality (18) and Lemma 5 ∆2
T ≤ STAT+

(
γ(T ) + 5

3

)
ST∆T .

This is an inequality of the form ∆2
T ≤ a+b∆T , where a = STAT , b = (γ(T )+ 5

3)ST . Solving
this inequality with respect to ∆T , we have

∆T ≤
1

2
b+

1

2

√
b2 + 4a ≤ 1

2
b+

1

2

(√
b2 +

√
4a
)

=

√
a+ b =

√
STAT +

(
γ(T ) +

5

3

)
ST .

Then R
(k)
T = HT − L

(k)
T ≤ γ(T )∆T ≤ γ(T )

√
STAT + γ(T )

(
γ(T ) + 5

3

)
ST ,where γ(T ) =

(k + 2) ln(T + 2) + (k + 1) lnN + 2, and inequality (13) is valid.

If HT ≤ L(k)
T then R

(k)
T ≤ 0 and the inequality (13) is valid again.
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