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Abstract
In the gambling foundation of probability theory, rationality requires that a subject should always
(never) find desirable all nonnegative (negative) gambles, because no matter the result of the exper-
iment the subject never (always) decreases her money. Evaluating the nonnegativity of a gamble in
infinite spaces is a difficult task. In fact, even if we restrict the gambles to be polynomials in Rn, the
problem of determining nonnegativity is NP-hard. The aim of this paper is to develop a computable
theory of desirable gambles. Instead of requiring the subject to accept all nonnegative gambles, we
only require her to accept gambles for which she can efficiently determine the nonnegativity (in
particular SOS polynomials). We call this new criterion bounded rationality.
Keywords: bounded rationality; polynomial gambles; Sum-Of-Squares.

1. Introduction

The subjective foundation of probability by de Finetti (1937) is based on the notion of rationality
(coherence or equiv. self-consistency). A subject is considered rational if she chooses her odds so
that there is no bet that leads her to a sure loss (no Dutch books are possible). In this way, since odds
are the inverse of probabilities, de Finetti provided a justification of Kolmogorov’s axiomatisation
of probability as a rationality criterion on a gambling system.1

Later Williams (1975) and Walley (1991) shown that it is possible to justify probability in a
simpler and more elegant way. This approach is nowadays known as the theory of desirable gam-
bles. To understand this gambling framework, we introduce a subject, Alice, and an experiment
whose result ω belongs to a possibility space Ω (e.g., the experiment may be tossing a coin or de-
termining the future value of a derivative instrument). When Alice is uncertain about the result ω
of the experiment, we can model her beliefs about this value by asking her whether she accepts to
engage in certain risky transactions, called gambles, whose outcome depends on the actual outcome
of the experiment ω. Mathematically, a gamble is a bounded real-valued function on Ω, g : Ω→ R,
and if Alice accepts a gamble g, this means that she commits herself to receive g(ω) utiles2 if the
experiment is performed and if the outcome of the experiment eventually happens to be the event
ω ∈ Ω. Since g(ω) can be negative, Alice can also lose utiles and hence the desirability of a gamble
depends on Alice’s beliefs about Ω. Denote by L the set of all the gambles on Ω. Alice examines
gambles in L and comes up with the subset K of the gambles that she finds desirable. How can we
characterise the rationality of the assessments represented by K?

1. De Finetti actually considered only finitely additive probabilities, while σ-additivity is assumed in Kolmogorov’s
axiomatisation.

2. A theoretical unit of measure of utility, for indicating a supposed quantity of satisfaction derived from an economic
transaction. It is expressed in some linear utility scale.

25



Benavoli et al.

Two obvious rationality criteria are: Alice should always accept (reject) gambles such that g ≥ 0
(supg < 0), because no matter the result of the experiment she never (always) decreases her utiles.
There is a world of difference between saying and doing. For instance, let us consider an infinite
space of possibilities like Ω = R2 and the gamble: g(x1, x2) = 4x4

1 + 4x3
1x2 − 3x2

1x2
2 + 5x4

2. Should
Alice accept this gamble? In practice the answer to this question does not only depend on Alice’s
beliefs about the value of x1 and x2. We can in fact verify that the above polynomial can be rewritten
as (2x2

1 − 2x2
2 + x1x2)2 + (x2

2 + 2x1x2)2 and, thus, is always nonnegative. Hence, rationality implies
that Alice should always accept it. However, in these cases, we must also take into account the in-
herent difficulty of the problem faced by Alice when she wants to determine whether a given gamble
is nonnegative or not. In other words, we need to quantify the amount of computational resources
needed to address rationality.
The aim of this paper is to develop a computable theory of desirable gambles by relaxing the two
rationality criteria discussed above. In particular, instead of requiring Alice to accept all nonnega-
tive gambles, we only require Alice to accept gambles for which she can efficiently determine the
nonnegativity. We call this new criterion bounded rationality. The term bounded rationality was
proposed by Herbert A. Simon – it is the idea that when individuals make decisions, their rationality
is limited by the tractability of the decision problem, the cognitive limitations of their minds, and
the time available to make the decision. Decision-makers in this view act as “satisficers”, seeking a
satisfactory solution rather than an optimal one. We do not propose our model as a realistic psycho-
logical model of Alice’s behaviour, but we embrace the idea that the actual rationality of an agent is
determined by its computational intelligence.

In this paper, we exploit the results on SOS polynomials and theory-of-moments relaxation
to make numerical inferences in our theory of bounded rationality and to show that the theory of
bounded rationality can be used to approximate the theory of desirable gambles. At the same time,
we provide a gambling interpretation of SOS optimization. Some preliminary applications of the
theoretical ideas presented in this paper can be found in Lasserre (2009); Benavoli and Piga (2016);
Piga and Benavoli (2018). It is worth mentioning that a relaxation of the rationality criteria for
desirability has also been investigated in Schervish et al. (2000); Pelessoni and Vicig (2016). In the
first case, the work focuses on relaxations of the “avoiding sure loss” axiom, while in the second on
two different criteria (additivity and positive scaling).

2. Theory of desirable gambles

In this section, we briefly introduce the theory of desirable gambles. Let us denote by L+ = {g ∈ L :
g ≥ 0} the subset of the nonnegative gambles and with K ⊂ L the subset of the gambles that Alice
finds desirable. How can we characterise the rationality of the assessments in K?

Definition 1 We say that K is a coherent set of (almost) desirable gambles (ADG) when it satisfies
the following rationality criteria:

A.1 If inf g > 0 then g ∈ K (Accepting Sure Gains);
A.2 If g ∈ K then supg ≥ 0 (Avoiding Sure Loss);
A.3 If g ∈ K then λg ∈ K for every λ > 0 (Positive Scaling);
A.4 If g,h ∈ K then g + h ∈ K (Additivity);
A.5 If g +δ ∈ K for every δ > 0 then g ∈ K (Closure).
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Note that A.1 and A.5 imply that L+ ⊆ K (including the zero gamble) (Walley, 1991; Miranda and
Zaffalon, 2010). The criterion A.5 does not actually follow from rationality and can be omitted
(Seidenfeld et al., 1990; Walley, 1991; Miranda and Zaffalon, 2010). However, it is useful to derive
a connection between the theory of desirable gambles and probability theory and for this reason we
consider it in this paper. This connection will be briefly discussed in Section 3.

To explain these rationality criteria, let us introduce a simple example: the toss of a fair coin
Ω = {Head,Tail}. A gamble g in this case has two components g(Head) = g1 and g(Tail) = g2. If
Alice accepts g then she commits herself to receive/pay g1 if the outcome is Heads and g2 if Tails.
Since a gamble is in this case an element of R2, g = (g1,g2), we can plot the gambles Alice accepts
in a 2D coordinate system with coordinate g1 and g2.

A.1 says that Alice is obviously willing to accept any gamble g = (g1,g2) with gi > 0 – Alice al-
ways accepts the first quadrant, Figure 1(a). Similarly. Alice does not accept any gamble g = (g1,g2)
with gi < 0. In other words, Alice always rejects the interior of the third quadrant, Figure 1(b). This
is the meaning of A.2. Then we ask Alice about g = (−0.1,1) – she loses 0.1 if Heads and wins 1
if Tails. Since Alice knows that the coin is fair, she accepts this gamble as well as all the gambles
of the form νg with ν > 0, because this is just a “change of currency” (this is A.3). Similarly, she
accepts all the gambles g + h for any h ∈ L+, since these gambles are even more favourable for her
(this is basically A.4). Now, we can ask Alice about g = (1,−0.1) and the argument is symmetric
to the above case. We therefore obtain the following set of desirable gambles (see Figure 1(c)):
K2 = {g ∈ R2 | 10g1 + g2 ≥ 0 and g1 + 10g2 ≥ 0}. Finally, we can ask Alice about g = (−1,1) – she
loses 1 if Heads and wins 1 if Tails. Since the coin is fair, Alice may accept or not accept this
gamble. A.5 implies that she must accept it (closure). A similar conclusion can be derived for the
symmetric gamble g = (1,−1). Figure 1(d) is her final set of desirable gambles about the experiment
concerned with the toss of a fair coin, which in a formula becomesK3 = {g ∈ R2 | g1 +g2 ≥ 0}. Alice
does not accept any other gamble. In fact, if Alice would also accept for instance h = (−2,0.5)
then, since she has also accepted g = (1.5,−1), i.e., g ∈ K3, she must also accept g + h (because this
gamble might also be favourable to her). However, g + h = (−0.5,−0.5) is always negative, Alice
always loses utiles in this case. In other words, by accepting h = (−2,0.5) Alice incurs a sure loss –
she is irrational (A.2 is violated).

In this example, we can see that Alice’s set of desirable gambles is a closed half-space, but
this does not have to be the case. For instance, if Alice does not know anything about the coin,
she should only accept nonnegative gambles: K = L+. This corresponds to a state of complete
ignorance, but all intermediate cases from complete belief on the probability of the coin to complete
ignorance are possible. In general, K is a pointed (whose vertex is the origin) closed convex cone
that includes L+ and exclude the interior of the negative orthant (this follows by A.1–A.5).

For the coin, the space of possibilities is finite and in this case Alice can check if a gamble g is
nonnegative by simply examining the elements of the vector g. In this paper, we are interested in
infinite spaces, in particular Ω = Rn, where applying the above rationality criteria is far from easy.
We aim to develop a theory of bounded rationality for this case. Before doing that, we briefly recall
the connection between ADG and probability theory.

3. Duality for ADG

Duality can be defined for general space of possibilitiesΩ (Walley, 1991). However, for the purpose
of the present paper, we consider gambles that are bounded real-valued function on Rn, i.e., g :
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Figure 1: Alices’ sets of coherent almost desirable gambles for the experiment of tossing a fair coin.

Rn → R. Let A be an algebra of subsets of Rn and µ :A→ [−∞,∞] denotes a charge: that is µ a
finitely additive set function ofA (Aliprantis and Border, 2007, Ch.11). LetAR denote the algebra
generated in R by the collection of all half open intervals (Aliprantis and Border, 2007, Th.11.8):

Theorem 2 Every bounded (A,AR)-measurable function is integrable w.r.t. any finite charge.

For any g ∈ L and charge µ we can define
∫

gdµ, that we can interpret as a linear functional 〈·,µ〉 on
L. We denote the set of all finite charges onA asM and the set of nonegative charges asM+. We
can then define the dual of the coherent set of desirable gambles K as:{
µ ∈M :

∫
gdµ ≥ 0, ∀g ∈ K

}
, and it can be proven that the above set is equivalent to

K• =

{
µ ∈M+ :

∫
gdµ ≥ 0, ∀g ∈ K

}
. (1)

This follow by observing that: (i) g = I{x} (with Ix being the indicator function on x ∈ Rn), is a
nonnegative gamble and, therefore, is always in K ; (ii) if µ is negative for some value of x ∈ Rn,
i.e., x = x̃, then

∫
Ix̃dµ is negative too and, thus, µ cannot be in K•. Hence, we can only focus on

µ ∈ M+. If we also impose the further requirement to 〈·,µ〉 to preserve constant gambles, in the
sense that

∫
cdµ = c, we obtain

P =

{
µ ∈M+ :

∫
gdµ ≥ 0,

∫
dµ = 1, ∀g ∈ K

}
. (2)

We have imposed that
∫

dµ = 1, i.e., µ is a probability charge. Hence, it can be observed that the
dual of an ADG K is a convex set of probability charges. The other direction of this result can be
obtained by applying Hahn-Banach Theorem.

4. Finite assessments

The goal of this and next sections is to define a practical notion of desirability. To this end, we first
assume that the set of gambles that Alice finds to be desirable is finitely generated. By this, we
mean that there is a finite set of gambles G = {g1, . . . ,g|G|} such that K = posi(G∪L+), where the
posi of a set A ⊂ L is defined as posi(A) :=

{∑|G|
j=1λ jg j : g j ∈ A,λ j ≥ 0

}
, and where by |G| we denote

the cardinality of G. By using this definition, it is clear that whenever K is finitely generated, it
includes all nonnegative gambles and satisfies A.3, A.4 and A.5. Once Alice has defined G and so
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K via posi, ADG assumes that she is able to perform the following operations: to check that K
avoids sure loss (A.2 is also satisfied); to determine the implication of desirability. It is easy to show
that all above operations in ADG imply the assessment of the nonnegativity of a gamble.

Proposition 3 Given a finite set G ⊂ L of desirable gambles, the set posi(G ∪L+) includes the
gamble f if and only if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|∑
j=1

λ jg j ≥ 0. (3)

There are two subcases of (3) that are particularly interesting. The first is when f = h−λ0 for some
λ0 ∈ R that allows us to define the concept of lower prevision Walley (1991); Miranda (2008).

Definition 4 Assume thatK = posi(G∪L+) is an ADG, then the solution of the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|∑
j=1
λ jg j ≥ 0, (4)

is called the lower prevision of h and denoted as P[h].

From a behavioural point of view, we can reinterpret this by saying that Alice is willing to buy
gamble h at price λ0, since she is giving away λ0 utiles while gaining h. The lower prevision is the
supremum buying price for h. We can equivalently define the upper prevision of h as P[h] =−P[−h].
From Section 3, it can be easily shown that P[h] is the lower expectation of h computed w.r.t. the
probability charges in P. As a matter of fact, the dual of (4) is the moment problem: inf

µ∈P

∫
hdµ. The

second subcase allows us to formulate sure loss as nonnegativity of a gamble (Walley et al., Alg.2).
Let us consider K = posi(G∪L+) and the following problem:

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j ≥ 0. (5)

K incurs a sure loss iff the above problem has solution λ∗0 = 1 and avoids sure loss iff λ∗0 = 0.

4.1 Complexity of inferences

When Ω is finite (e.g., coin toss), then a gamble g can also be seen as a vector in R|Ω|, where (|Ω| = 2
for the coin). Then (3) can be expressed as a linear programming problem, thus its complexity is
polynomial: Alice can check her coherence in polynomial time. In case Ω = Rn, f : Rn→ R, solving
(3) means to check the existence of real parameters λ j ≥ 0 ( j = 1, . . . , |G|) such that the function

F := f −
|G|∑
j=1

λ jg j (6)

is non-negative in Rn. In order to study the problem from a computational viewpoint, and avoid
undecidability results, it is clear that we must impose further restrictions on the class of functions
F. At the same time we would like to keep the problem general enough, in order not to lose
expressiveness of the model. A good compromise can be achieved by considering the case of
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multivariate polynomials. The decidability of F ≥ 0 for multivariate polynomials can be proven by
means of the Tarski–Seidenberg quantifier elimination theory Tarski (1951); Seidenberg (1954).

Let d ∈N. By R2d[x1] we denote the set of all polynomials up to degree 2d in the indeterminate
variable x1 ∈R with real-valued coefficients. With the usual definitions of addition and scalar multi-
plication, R2d[x1] becomes a vector space over the field R of real numbers. We can introduce a basis
for R2d[x1] that we denote as v2d(x1) where v j(x1) = [1, x1, x2

1, . . . , x
j
1]>. We denote the dimension of

v j(x1) as s1( j) for j = 0,1,2, . . . , e.g., s1(2d) = 2d+1. Any polynomial in R2d[x1] can then be written
as p(x1) = b> v2d(x1) being b ∈ Rs1(2d) the vector of coefficients. We may also be interested in some
subsets of R2d[x1] that are: (1) the subset of nonnegative polynomials that we will be denoted as
R+

2d[x1]; (2) the subset of polynomials

Σ2d[x1] =

{
p(x1) ∈ R2d[x1]

∣∣∣∣ p(x1) = v>d (x1)Qvd(x1) with Q ∈ Rs1(d)×s1(d)
s , Q ≥ 0

}
, (7)

where Rs1(d)×s1(d)
s is the space of s1(d)× s1(d) real-symmetric matrices. The polynomial Σ2d[x1]

are also called SOS polynomials, because any polynomial in R2d[x1] that is a sum of squares of
polynomials belongs to Σ2d[x1] and viceversa (Lasserre, 2009, Prop.2.1).

We can extend the previous framework to multivariate polynomials R2d[x1, . . . , xn], by noticing
that any polynomial in R2d[x1, . . . , xn] can be written as p(x1, . . . , xn) = b> v2d(x1, . . . , xn) with

v2d(x1, . . . , xn) = [1, x1, . . . , xn, x2
1, x1x2, . . . , xn−1xn, x2

n, . . . , x
2d
1 , . . . , x

2d
n ]>, (8)

b ∈ Rsn(2d) with sn( j) =
(
n+ j

j

)
for j = 0,1,2, . . . . Similarly to the univariate case we can define the

nonnegative polynomials R+
2d[x1, . . . , xn] and the SOS polynomials Σ2d[x1, . . . , xn]. In the multivari-

ate case, it is in general not true that every nonnegative polynomial is SOS or, in other words, in
general Σ2d[x1, . . . , xn] ⊂ R+

2d[x1, . . . , xn]. For instance g(x1, x2) = x2
1x2

2(x2
1 + x2

2 −1) + 1 is a nonnega-
tive polynomial that does not have a SOS representation (Lasserre, 2009, Sec.2.4). Hilbert (1888)
showed the following.

Proposition 5 R+
2d[x1, . . . , xn] = Σ2d[x1, . . . , xn] holds iff either n = 1 or d = 1 or (n,d) = (2,2).

The problem of testing global nonnegativity of a polynomial function is in general NP-hard. If
Alice wants to avoid the complexity associated with this problem, an alternative option is to consider
a subset of polynomials for which a nonnegativity test is not NP-hard. The problem of testing if
a given polynomial is SOS has polynomial complexity (we only need to check if the matrix of
coefficients Q in (7) is positive-semidefinite).

5. Bounded rationality

In the bounded rationality theory we are going to represent we will work with Ω = Rn and make two
important assumptions. We assume that L is the set of multivariate polynomials of n variables and
of degree less than or equal to 2d, with d ∈N. We denoteL asL2d and the nonnegative polynomials
as L+

2d. Note that L2d is a vector space and A.1–A.5 are well-defined in L2d. This restriction is
useful to define the computational complexity of our bounded rationality theory as a function of n
and d. We now define our bounded rationality criteria, and point out the two assumptions.

Definition 6 We say that C ⊂ L2d is a bounded-rationality coherent set of almost desirable gam-
bles (BADG) when it satisfies A.2–A.5 and:
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bA.1 If g ∈ Σ2d then g ∈ C (bounded accepting sure gain);

where Σ2d ⊂ L
+
2d is the set of SOS of degree less than or equal to 2d.

We have seen that A.1 and A.5 imply that a coherent set of gambles must include all nonnegative
gambles (and, therefore, L+

2d that is the set of all nonnegative polynomials). Here, we restrict A.1
imposing bounded-rationality that implies that the set must only include SOS polynomials up to
degree 2d. In BADG theory, we ask Alice only to accept SOS polynomials, i.e., gambles for which
she can efficiently determine the nonnegativity. Note that in Walley’s terminology (Walley, 1991,
Sec. 3.7.8,Appendix F) the set C is coherent relative to the vector subspace of quadratic forms
v2d(x1, . . . , xn)T Qv2d(x1, . . . , xn) defined by the symmetric real matrices Q (SOS are the nonnegative
gambles in this subspace, i.e., Q ≥ 0).

In the multivariate case, we have seen that there are nonnegative polynomials that do not have
a SOS representation. These polynomials should be in principle desirable for Alice in the ADG
framework, but in BADG we do not enforce Alice to accept them. For this reason, BADG is a
theory of bounded rationality. Note that Alice may not be able to prove that her set of desirable
gambles satisfies A.2. In fact, as it has been shown in (5) this requires to check the nonnegativity of
a gamble. Note however that, the requirement A.2 is weaker than A.1. In fact, while A.1 requires
Alice to accept all nonnegative gambles, A.2 only requires Alice to carefully choose the gambles in
G so that a sure loss is not possible. We will return on A.2 later in the section.

A BADG set C that satisfies A.2 but not A.1 can (theoretically) be turned to an ADG in L2d

by considering its extension posi(C∪L+
2d) and also to an ADG in L by considering its extension

posi(C∪L+) (note in fact that it holds Σ2d ⊆ L
+
2d ⊂ L

+). This is important because, as it will be
shown in the next sections, it will allow us to use BADG as a computable approximation of ADG.

In BADG theory, Proposition 3 is reformulated as follows.

Theorem 7 Given a finite set G ⊂ L2d of desirable gambles, the set posi(G ∪ Σ2d) includes the
gamble f if and only if there exist λ j ≥ 0 for j = 1, . . . , |G| such that

f −
|G|∑
j=1

λ jg j ∈ Σ2d. (9)

Also in this case we can consider the gamble f = h−λ0 for some λ0 ∈ R and define the concept
of lower prevision.

Definition 8 Let G ⊂ L2d be a finite set, and let C = posi(G∪Σ2d). Assume that C is BADG, then
the solution of the following problem

sup
λ0∈R,λ j≥0

λ0, s.t. h−λ0−
|G|∑
j=1
λ jg j ∈ Σ2d, (10)

is called the lower prevision of h and denoted as P∗[h].

We can similarly use (10) to prove that C = posi(G∪Σ2d) incurs a sure loss by solving the problem

sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j ∈ Σ2d. (11)
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We have that if λ∗0 = 1 then C incurs a sure loss. A similar reasoning holds for any 0 ≤ λ∗0 < 1
since, as it will be shown in Section 5.2, λ∗0 is always smaller or equal than the solution obtained in
(5). This means that we cannot use (11) to prove that C avoids a sure loss. An alternative way to
guarantee that C = posi(G∪L2d) avoids sure loss, is to relax (5) as

λ∗∗0 = sup
0≤λ0≤1, λ j≥0

λ0, s.t. −λ0−
|G|∑
j=1
λ jg j(xk) ≥ 0, k = 1, . . . ,M, (12)

thus by enforcing that the constraint −λ0 −
∑|G|

j=1λ jg j ≥ 0 only holds in M (randomly generated)
points xk ∈ R

n. Indeed, if λ∗∗0 < 1, then the solution of problem (5) cannot be 1, thus C avoids sure
loss. We will discuss this case with an example in Section 7.

5.1 Duality for BADG

We can also define the dual of a BADG. In this case, the gambles g are polynomials and the non-
negative gambles that Alice accepts are SOS. Polynomials on Rn are not bounded functions and,
therefore, we cannot use Theorem 2.3 However, the rationality criteria A.1–A.5 do not explicitly
need boundedness, but boundedness is essential to show the duality between ADG and closed con-
vex set of probability charges, as shown in Section 3. However, since we are dealing with a vector
space, we can consider its dual space L•2d, defined as the set of all linear maps L : L2d → R (linear
functionals). The dual of C ⊂ L2d is defined as

C• =
{
L ∈ L•2d : L(g) ≥ 0, ∀g ∈ C

}
. (13)

Since L2d has a basis, i.e., the monomials, if we introduce the scalars

yα1α2...αn := L(xα1
1 xα2

2 , . . . , x
αn
n ) ∈ R, (14)

and we further assume that y0 = L(1) = 1 (the linear functionals preserve constants), then we
can rewrite L(g) for any polynomial g as a function of the vector of variables y ∈ Rsn(2d), whose
components are the real variables yα1α2...αn defined above. This means that L•2d is isomorphic to
Rsn(2d). We can then rewrite the dual in a simpler form. Before doing that we define the ma-
trix Mn,d(y) := L(vd(x1, . . . , xn)vd(x1, . . . , xn)>), where the linear operator is applied component-wise.
For instance, in the case n = 1 and d = 2, we have that

M1,2(y) = L(v2(x1)v2(x1)>) = L


 1 x1 x2

1
x1 x2

1 x3
1

x2
1 x3

1 x4
1


 =

y0 y1 y2
y1 y2 y3
y2 y3 y4

 .
We have then the following result (see for instance Lasserre, 2009).

Theorem 9 Let C be a BADG. Then its dual is

C• =
{
y ∈ Rsn(2d) : L(g) ≥ 0, Mn,d(y) ≥ 0, ∀g ∈ C

}
. (15)

where L(g) is completely determined by y via the definition (14).

3. For an extension of the theory of desirable gambles to unbounded gambles see Troffaes and De Cooman (2003)
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Proof We have seen that any SOS in Σ2d can be written as vd(x1, . . . , xn)>Qvd(x1, . . . , xn) (see eq.
(7)). By exploiting matrix algebra we have vd(x1, . . . , xn)>Qvd(x1, . . . , xn) is equal to
Tr(Qvd(x1, . . . , xn)vd(x1, . . . , xn)>) with Q ≥ 0. Now observe that because of linearity of L and trace

L(Tr(Qvd(x1, . . . , xn)vd(x1, . . . , xn)>)) = Tr(QL(vd(x1, . . . , xn)vd(x1, . . . , xn)>)) = Tr(QMn,d(y))

where Mn,d(y) = L(vd(x1, . . . , xn)vd(x1, . . . , xn)>. From L(g) ≥ 0 in (13) for any g ∈ Σ2d we have
Tr(QMn,d(y)) ≥ 0. This means that Tr(QMn,d(y)) ≥ 0 ∀Q ≥ 0. This implies that Mn,d(y) ≥ 0 (it can
be proven by using the eigenvalue-eigenvector decomposition of Mn,d(y)).

The other direction follows by Hahn-Banach Theorem. Note that when C = Σ2d, its dual is

C• =
{
y ∈ Rsn(2d) : Mn,d(y) ≥ 0

}
, (16)

which corresponds to a state of ignorance: Alice only accepts nonnegative gambles.
In Section 3, by considering the space of all bounded gambles, we have showed that the dual of

an ADG is a closed convex set of probability charges. In (15) there is no reference to probability.
However, if the integral

∫
xα1

1 xα2
2 , . . . , x

αn
n dµ is well-defined, we can interpret yα1α2...αn as the expec-

tation of xα1
1 xα2

2 , . . . , x
αn
n w.r.t. the charge µ. Note that, y0 = L(1) = 1 implies that

∫
1dµ = 1 under this

interpretation (normalization). Therefore, we can interpret Mn,d(y) as a truncated moment matrix.
However, since C does not include all nonnegative gambles, we cannot conclude that the charges
are non-negative or, in other words, that µ is a probability charge. The constraint Mn,d(y) ≥ 0 is
not strong enough to guarantee non-negativity of µ (it is only a necessary condition). Negative
probabilities are a manifestation of incoherence, that is they are a manifestation of the assumption
of bounded rationality. Finally, the dual of the lower prevision problem (10) is then given by the
convex SDP problem: inf

y∈Rsn(2d)
L(h), s.t. L(g) ≥ 0, L(1) = 1, Mn,d(y) ≥ 0.

Example 1 Consider the case n = 1,d = 1. The matrix M1,2(y) is in this case

M1,2(y) = L
([

1 x1
x1 x2

1

])
=

[
1 y1
y1 y2

]
.

Assume that G = {g1,g2} = {x1 − 0.5,−x1 + 0.5} and so L(g1) = L(x1 − 0.5) = y1 − 0.5 and L(g2) =

L(−x1 + 0.5) = −y1 + 0.5. Hence, we have that

C• =
{
[y1,y2]> ∈ R2 : y1−0.5 ≥ 0, − y1 + 0.5 ≥ 0, M1,2([y1,y2]>) ≥ 0

}
. (17)

The first two constraints imply that y1 = 0.5 and so we are left with the only constraint
det(M1,2([y1,y2]>)) = y2 − 0.25 ≥ 0. Assume that we aim at computing P∗[−x1(1− x1)]. The solu-
tion of (10) is P∗[−x1(1− x1)] = −0.25 and it is attained for instance by the charge 0.352δ0.367 +

0.786δ0.521−0.138δ0.281 (that is not a probability), here δa denoted an atomic charge (Dirac’s delta)
centred on a.

5.2 BADG as an approximating theory for ADG

We are going to show that we can use BADG as a computable approximating theory for ADG. So
let us consider the BADG set C = posi(G∪Σ2d) and the corresponding ADG set K = posi(G∪L+)
(same G). We have the following result.
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Theorem 10 Assume thatK avoids sure loss and let f ∈ L2d, then BADG is a conservative approx-
imation of ADG theory in the sense that P∗( f ) ≤ P( f ).

Proof Let λ∗0 be the supremum value of λ0 such that h−λ0−
∑|G|

j λ jg j ∈ Σ2d and λ∗∗0 the value such

that h− λ0 −
∑|G|

j λ jg j ≥ 0. Since the constraint h− λ0 −
∑|G|

j λ jg j ∈ Σ2d is more demanding than

h−λ0−
∑|G|

j λ jg j ≥ 0, it follows that λ∗0 ≤ λ
∗∗
0 .

The fact that P[ f ] is equal to the minimum of f when G is empty, i.e., Alice is in a state of
full ignorance, explains why SOS polynomials are used in optimization, i.e., P∗[ f ] provides a lower
bound for the minimum of f (Lasserre, 2009).

6. Updating

We assume that Alice considers an event “indicated” by a certain finite set of polynomial constraints
A = {h1(x) ≥ 0, . . . ,h|A|(x) ≥ 0}: that means that Alice knows that x belongs to the set A = {x ∈ Rn :
h1(x) ≥ 0, . . . ,h|A|(x) ≥ 0}. In ADG we will use this information to update (conditioning) her set of
desirable gambles based on A (Walley, 1991; Couso and Moral, 2011) : K|A = {g ∈ L : gIA ∈ K},
where IA is the indicator function on A. How do we do that in the BADG framework? In BADG we
cannot completely use this information because Σ2d does not include indicator functions. However,
we can still exploit the information in A in a weaker way. In fact, if we know that hi(x) ≥ 0 in A,
then we also know that σ1(x)h1(x)+ · · ·+σ|A|(x)h|A|(x) ≥ 0 ∀x ∈ A and for every σi ∈ Σ2d with degree
equal to d−dnhi/2e, where nhi is the degree of hi(x) (so that the degree is less than 2d).

Definition 11 Let G be a finite subset of L2d, and C = posi(G∪Σ2d) be a set of BADG. Assume A
is a finite set of polynomial constraints. Then, the set C|A that includes all the gambles f ∈ L2d such
that there exist λi ≥ 0, with i = 1, . . . , |G|, and σ0,σ1, . . .σ|A|,σ|A|+1 ∈ Σ2d:

f −
|G|∑
i=1

λigi = σ0 +

|A|∑
i=1

σihi and −

|G|∑
i=1

λigi = σ|A|+1 (18)

is called the updated set of desirable gambles based on A.

In the state of full ignorance, since G is empty, there is only one constraint f = σ0 +
∑|A|

i=1σihi.

Theorem 12 Let G be a finite subset ofL2d, and A be a finite set of polynomial constraints. Assume
that K = posi(G∪L+) avoids sure loss and let f ∈ L2d. Then we have that P

C|A
( f ) ≤ P

K|A
( f ) where

C = posi(G∪Σ2d).

Proof From the definition of conditioning for ADG we aim to find the supremum λ0 such that
( f − λ0)IA −

∑|G|
j=1λ jg j(x) ≥ 0 ∀x ∈ Rn. It can be rewritten as the two constraints on the left and

relaxed to the constraints on the right:

−
∑|G|

j=1λ jg j(x) ≥ 0 ∀x < A, −
∑|G|

j=1λ jg j(x) = σ|A|+1 ∀x ∈ Rn,

f −λ0−
∑|G|

j=1λ jg j(x) ≥ 0 ∀x ∈ A, f −λ0−
∑|G|

j=1λ jg j(x) = σ0 +
∑|A|

i=1σihi ∀x ∈ Rn.
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Corollary 13 The dual of C|A is

C•
|A =

{
y ∈ Rsn(d) : L(g) ≥ 0, Mn,d(y) ≥ 0, Mn,d−dnh/2e(hy) ≥ 0 ∀g ∈ C|A

}
where Mn,d−dnh/2e(hy) = L(h(x)vd−dnh/2e(x)vd−dnh/2e(x)>) is called localizing matrix (Lasserre, 2009).

7. Numerical example

Consider the case n = 2,d = 3 and assume that Alice finds these gambles to be desirables

G = {g1, . . . ,g7} = {−x4
1x2

2− x2
1x4

2 + x2
1x2

2−1, x1,1− x1, x2,1− x2,10− x2
1,10− x2

2}

Alice first checks if her set of desirable gambles satisfies A.2 by solving (11). The solution is
λ∗0 = 0.0062 and, therefore, since λ∗0 ≈ 0 Alice may think that G does not incur in sure loss. To
numerically verify this statement, she can increase the degree d. For d = 4, Alice gets λ∗0 = 0.0774
that is greater than previous solution and for d = 5 λ∗0 = 1. Therefore, this shows that G actually
incurs a sure loss. In this case, since argmaxi>0λ

∗
i = 1, the polynomial that contributes more to the

sure loss is g1.
Alice can verify if g1 is negative by computing the BADG lower prevision of −g1 for an empty

G (this gives the minimum of −g1 in ADG). The solution of (10) is P∗[−g1] = −5.056 for d = 3.
For d = 4 we obtain P∗[−g1] = 0.596, for d ≥ 7 P∗[−g1] = 0.963. Therefore, g1 is strictly negative.
It can be verified that 0.963 is the minimum of −g1 and, therefore, P∗[−g1] = P[−g1]. So we have
generated a family of BADG approximations (relaxations of coherence) that converge to ADG. Why
can BADG obtain a lower “lower prevision” than ADG? In ADG P[−g1] is attained by an atomic
charge on the values of x1, x2 corresponding to the minimum of −g1. Conversely, in BADG, since
we allow mixtures of atomic charges with possibly negative weights, then we have more freedom in
the minimization.

Alice can then remove g1 from G and check if the following set satisfies A.2:
G\g1 = {g2, . . . ,g7} = {x1,1− x1, x2,1− x2,10− x2

1,10− x2
2}. To prove that, Alice can solve the linear

programming problem (12) that gives the solution λ∗0 ≈ 10−17 and shows that G avoids sure loss.
Let f = x4

1 + 4x3
1 + 5.375x2

1 + 2.75x1 + 0.41016 and assume Alice aims to solve (10), i.e., to
compute the BADG lower prevision of f . The result is P∗[ f ] = 0.41016 for d ≥ 3. Now let us
assume h(x1) = 0.0025− (x1 +0.425)2 and compute the conditional lower prevision. The solution is
P∗[ f |A] = −0.0625 that gives the conditional lower prevision for BADG. This is also the minimum
of f in h(x) > 0 and coincides with the conditional lower prevision for ADG P[ f |A].

8. Conclusions

In this paper we have presented a computable theory of desirable gambles by imposing bounded ra-
tionality. To achieve that we have exploited recent results from Sum-Of-Square (SOS) polynomials
optimization. As future work, we plan to further develop this theory by introducing other probabilis-
tic operations such as marginalisation and structural judgements such as epistemic independence.
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