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Abstract
Several consistency notions for lower previsions (coherence, convexity, others) require that the
suprema of certain gambles, having the meaning of gains, are non-negative. The limit situation that
a gain supremum is zero is termed Weak Dutch Book (WDB). In the literature, the special case of
WDBs with precise probabilities has mostly been analysed, and strict coherence has been proposed
as a radical alternative. In this paper the focus is on WDBs and generalised strict coherence, termed
strict consistency, with imprecise previsions. We discuss properties of lower previsions incurring
WDBs and conditions for strict consistency, showing in both cases how they are differentiated by
the degree of consistency of the given uncertainty assessment.
Keywords: Weak Dutch Books; (Williams’) coherence; convex previsions; strict consistency.

1. Introduction

In the coherence approach to the theory of Imprecise Probabilities, consistency of an uncertainty
measure is formalised requiring that the supremum of a certain gamble (a bounded random number,
called gain) is non-negative. This is a common feature to several consistency notions, like coherence
for lower previsions (Walley, 1991), Williams’ coherence (W -coherence, Williams, 1975), convex-
ity (Pelessoni and Vicig, 2005b), coherence for precise previsions or dF -coherence (de Finetti,
1974), and others. These concepts allow for a behavioural interpretation: the gain has the mean-
ing of an agent’s overall gain from a finite number of bets (rules for selecting the admissible gains
distinguish the various consistency concepts).

Within this context, the limiting situation that the supremum of some gain G is precisely zero
is termed Weak Dutch Book (WDB). In fact, under the behavioural interpretation, an agent whose
gain is G would at best gain nothing, but otherwise lose, from the corresponding overall bet.

The literature on WDBs is not extended, and mostly focused on WDBs for dF -coherent prob-
abilities. Contributions go back to the fifties of the last century (Kemeny, 1955; Shimony, 1955),
when de Finetti’s theory was getting widespread. In an attempt to avoid WDBs, the notion of strict
coherence was introduced, although it became soon clear that it is subject to important constraints.

Properties of an uncertainty assessment incurring a WDB received a lesser attention, and the
whole issue was rarely considered outside dF -coherence. The agent’s beliefs of incurring a real
loss were investigated in Crisma (2006) for dF -coherent probabilities, and in Vicig (2010) for (un-
conditional) coherent lower/upper previsions.

After introducing some preliminary material in Section 2, in this paper we focus precisely on
the properties of WDB assessments, and on how they are differentiated under different consistency
assumptions. We especially discuss W -coherence, convexity and dF -coherence. Section 3 is con-
cerned with a ‘local precision’ property. This means that if the lower prevision P satisfies in general
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a certain consistency requirement, then P complies with stronger properties, that make it closer to
a precise prevision, on the set DG of (possibly conditional) gambles appearing in the expression
of a WDB gain for P . We prove one such relationship for the case of conditional convex lower
previsions (Proposition 10). This implies that, if P is an unconditional convex prevision, P is the
translation of a dF -coherent prevision on DG, while if P is a coherent lower prevision on its do-
main, it is precisely a dF -coherent prevision on DG. A result for W -coherence is also supplied.
Section 4 discusses the agent’s beliefs about incurring a real Dutch Book with a WDB gain. Again,
these are differentiated by consistency of the assessment, ranging from near-certainty of avoiding
any losses bounded away from zero with dF -coherence to no such reassuring beliefs for convexity,
with W -coherence somewhat intermediate. We also discuss interdependencies between events of
positive probability and maxima for WDB gains. In Section 5 strict consistency, a generalisation of
strict coherence, is explored. After recalling a result in Corsato et al. (2017) for W -coherence, the
perspective is that of analysing various strict consistency conditions, which are equivalent with dF -
coherence, but not necessarily so in an imprecise framework (Proposition 21). Section 6 concludes
the paper. Results not proven here may be found in the extended paper Corsato et al. (2017).

2. Preliminaries

Denote with D an arbitrary non-empty set of possibly conditional gambles. In the sequel, D will
be the domain of a (precise or imprecise) conditional or unconditional prevision.

In the conditional case, the generic element (conditional gamble) of D is X|B, where X is a
gamble and B is a non-impossible event. In the unconditional case, we shall simply term X the
generic element (gamble) of D.

The simplest non-trivial gamble is the indicator IE of an event E. We shall not distinguish
explicitly IE and E, using the same symbol E for both. Thus we may speak of a set of events (of
conditional events) D, when for any X ∈ D (for any X|B ∈ D), X is an (indicator of) event.

We recall the definition of dF -coherence for a precise prevision. In the sequel N+ = N \ {0}.

Definition 1 Given P : D → R, P is a (conditional) dF -coherent prevision on D if, ∀n ∈ N+,
∀X1|B1, . . . , Xn|Bn ∈ D, ∀s1, . . . , sn ∈ R, defining

G =

n∑
i=1

siBi

(
Xi − P (Xi|Bi)

)
, B =

n∨
i=1

Bi, (1)

it holds that sup(G|B) ≥ 0.

If D is made of unconditional gambles only, then (1) simplifies to

G =

n∑
i=1

si
(
Xi − P (Xi)

)
(B = Ω), (2)

and consequently the coherence condition reduces to supG ≥ 0.

The condition of dF -coherence allows a betting (or behavioural) interpretation, where gi = si(Xi−
P (Xi)) in (2) is an elementary gain with stake si. It represents the agent’s gain from buying (if
si > 0) or selling (if si < 0) siXi for siP (Xi). Thus the condition supG ≥ 0 requires that no
finite combination of elementary gains produces an overall uniformly negative gain to the agent.
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The other consistency concepts we recall here have a similar betting interpretation. Actually,
they can be derived from dF -coherence simply by introducing constraints on the stakes si. Their
definitions and a few basic properties are laid down below (for more on this topic see e.g. Pelessoni
and Vicig (2005b, 2009); Troffaes and de Cooman (2014); Walley (1991); Williams (1975)). Prior
to this, let us recall some properties of dF -coherent previsions to be employed later on.

Proposition 2 If P is a dF -coherent prevision on D, then there exists a dF -coherent extension of
P on any D′ ⊇ D. Moreover, the following properties hold whenever their terms are defined:

(a) P (aX + bY |B) = aP (X|B) + bP (Y |B), ∀a, b ∈ R (linearity).

(b) P (AX|B) = P (A|B)P (X|A ∧B), A ∧B 6= ∅ (product rule).

Definition 3 Let P : D → R be given. P is a W -coherent lower prevision on D if, ∀n ∈ N,
∀X0|B0, X1|B1, . . . , Xn|Bn ∈ D, ∀si ≥ 0, with i = 0, 1, . . . , n, defining

G =
n∑

i=1

siBi

(
Xi − P (Xi|Bi)

)
− s0B0

(
X0 − P (X0|B0)

)
, B =

n∨
i=0

Bi,

it holds that sup(G|B) ≥ 0.

W -coherence was introduced in Williams (1975); the structure-free form in Definition 3 was em-
ployed in Pelessoni and Vicig (2009). In the unconditional case, it is equivalent to Walley’s coher-
ence (Walley, 1991, Section 2.5.4 (a)), while it includes (strictly) Walley’s definition of coherence
in (Walley, 1991, Section 7.1.4 (b)) in the conditional environment.

Proposition 4 Let P : D → R be a W -coherent lower prevision on D. Then P has a least-
committal W -coherent extension E on any D′ ⊇ D, termed natural extension: E = P on D, and
whatever is P ∗, W -coherent extension of P on D′, E ≤ P ∗ on D′. Moreover, for X|B, Y |B ∈ D,

(a) If X|B ≤ Y |B, then P (X|B) ≤ P (Y |B) (monotonicity).

(b) P (X|B) ∈ [inf(X|B), sup(X|B)] (internality).1

Proposition 5 (Envelope theorem) Given P : D → R, P is a W -coherent lower prevision on D if
and only if there exists a non-empty set P of dF -coherent previsions on D such that, ∀X|B ∈ D, it
holds that P (X|B) = min{P (X|B) : P ∈ P}.

Definition 6 Given P : D → R,

(a) P is a convex lower prevision onD if, ∀n ∈ N+, ∀X0|B0, X1|B1, . . . , Xn|Bn ∈ D, ∀si ≥ 0,
with i = 1, . . . , n, and

∑n
i=1 si = 1 (convexity condition), defining

Gc =

n∑
i=1

siBi

(
Xi − P (Xi|Bi)

)
−B0

(
X0 − P (X0|B0)

)
, B =

n∨
i=0

Bi,

it holds that sup(Gc|B) ≥ 0.

1. Being also W -coherent, a dF -coherent prevision satisfies properties (a), (b) too. Property (a) (monotonicity) also
holds for a convex lower prevision (Definition 6).
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(b) P is centered convex on D if it is convex on D and ∀X|A ∈ D, ∅|A ∈ D and P (∅|A) = 0.

Proposition 7 (Envelope theorems with convex previsions) Let P : D → R be given. Then

(a) (Implicit Envelope Theorem, Pelessoni and Vicig (2005a)) P is a convex lower prevision on
D if and only if there exists a non-empty set P of dF -coherent previsions such that ∀X0|B0 ∈
D,∃ PX0|B0

∈ P: ∀X|B ∈ D

PX0|B0
(B|B ∨B0)(PX0|B0

(X|B)− P (X|B)) ≥
PX0|B0

(B0|B ∨B0)(PX0|B0
(X0|B0)− P (X0|B0)).

(3)

(b) (Envelope Theorem) With unconditional lower previsions, P is convex on D if and only if
there exist a non-empty set P of dF -coherent previsions on D and α : P → R such that,
∀X ∈ D, it holds that P (X) = min{P (X) + α(P ) : P ∈ P}.
Moreover, P is centered if and only if min{α(P ) : P ∈ P} = 0.

Next to lower previsions, upper previsions could be assessed. Customarily, one refers to just one
type of previsions by the conjugacy relation: P (−X|B) = −P (X|B). Using conjugacy, the con-
sistency notions for lower previsions and their properties can be expressed for upper previsions.

The various gains we recalled (G,G,Gc) are gambles themselves, being functions of a finite
number of gambles in D (and, in the conditional case, of indicators of their conditioning events).
We mention next some other concepts regarding gains for later use.

Definition 8 Let G be the gain in Definition 3.
Then DG = {X0|B0, X1|B1, . . . , Xn|Bn} ⊆ D is the set of conditional gambles in G.
The coarsest partition G|B is defined on is termed PG|B. In other words, the atoms ω|B of

PG|B correspond to the distinct jointly possible values ofX0, X1, . . . , Xn that implyB =
∨n

i=0Bi.
We say that G is a WDB gain if sup(G|B) = 0.

Analogous definitions apply to the other gains we considered (for instance, DGc
with Gc).

Given a partition P, the powerset of P is called A(P). With a conditional gamble X|B, if X is
defined on P and B ∈ A(P) \ {∅}, then X|B is defined on P|B = {ω|B : ω ∈ P, ω ⇒ B}.

3. Local Precision Properties of Weak Dutch Books

It is not difficult to obtain WDB gains, see the following simple example.

Example 1 Let E ∈ D, with ∅ 6= E 6= Ω. Let P 1, P 2 : D → R be such that P 1(E) = 0, P 2(E) =
1. Then P 1, P 2 are coherent lower probabilities on {E}. Consider the gains G1 = −s(E −
P 1(E)) = −sE and G2 = s(E − P 2(E)) = s(E − 1), with s > 0. Then maxG1 = G1(¬E) =
0 = G2(E) = maxG2, that is G1, G2 are WDB gains associated with P 1, P 2, respectively.

In this section, we show that the existence of a WDB imposes some constraints both on convex and
on coherent imprecise previsions, as for the gambles involved in the corresponding WDB gain.

Let us start with a convex lower prevision P (·|·). Its properties on those DGc
derived from

WDB gains are investigated in Proposition 10.
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Lemma 9 Let P : D → R be a conditional convex lower prevision, Gc, B be as in Definition 6.
Then, any dF -coherent prevision PX0|B0

satisfying (3) is such that

PX0|B0
(Gc|B) =

n∑
i=1

siPX0|B0
(Bi ∨B0|B)[PX0|B0

(Bi|Bi ∨B0)(PX0|B0
(Xi|Bi)− P (Xi|Bi))

− PX0|B0
(B0|Bi ∨B0)(PX0|B0

(X0|B0)− P (X0|B0))] ≥ 0.

(4)

Proof Let PX0|B0
satisfy (3). By Proposition 2 (a), recalling also that

∑n
i=1 si = 1, any dF -

coherent extension of PX0|B0
(still termed PX0|B0

) on a large enough set is such that

PX0|B0
(Gc|B) =

n∑
i=1

si[PX0|B0

(
Bi(Xi−P (Xi|Bi))|B

)
−PX0|B0

(
B0(X0−P (X0|B0))|B

)
]. (5)

In general, we have that, for i = 0, 1, . . . , n,

PX0|B0

(
Bi(Xi − P (Xi|Bi))|B

)
= PX0|B0

(
BiXi|B − P (Xi|Bi)Bi|B

)
= PX0|B0

(BiXi|B)− P (Xi|Bi)PX0|B0
(Bi|B)

= PX0|B0
(Xi|Bi ∧B)PX0|B0

(Bi|B)− P (Xi|Bi)PX0|B0
(Bi|B)

=
(
PX0|B0

(Xi|Bi)− P (Xi|Bi)
)
PX0|B0

(Bi|B),

using Proposition 2 (a) at the second equality, Proposition 2 (b) at the third, and Bi ∧ B = Bi at
the fourth. Using Proposition 2 (b) again, we get also, for any i = 1, . . . , n,

PX0|B0
(Bi|B) = PX0|B0

(Bi ∨B0|B)PX0|B0
(Bi|Bi ∨B0),

PX0|B0
(B0|B) = PX0|B0

(Bi ∨B0|B)PX0|B0
(B0|Bi ∨B0).

(6)

From (5), these derivations and (3), we obtain (4).

Proposition 10 LetP : D → R be a conditional convex lower prevision,Gc, B be as in Definition 6
and such that Gc is a WDB gain. Then, there exist a dF -coherent prevision PX0|B0

satisfying (3)
and αX0|B0

∈ R such that, for i = 0 and for any i such that si > 0 (i = 1, . . . , n), exactly one of
the following holds

(a) PX0|B0
(Bi|B) = 0;

(b) P (Xi|Bi) = PX0|B0
(Xi|Bi) +

αX0|B0

PX0|B0
(Bi|B)

.

Proof Take X0|B0 in Gc. Let PX0|B0
be the dF -coherent prevision in Proposition 7 (a) and define

αX0|B0
= −PX0|B0

(B0|B)
(
PX0|B0

(X0|B0)− P (X0|B0)
)
.

Since now sup(Gc|B) = 0, using Proposition 4 (b) and Footnote 1 at the first inequality, Lemma 9
at the second, we get 0 = sup(Gc|B) ≥ PX0|B0

(Gc|B) ≥ 0, i.e. PX0|B0
(Gc|B) = 0.
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Let now si > 0 (i = 1, . . . , n) such that PX0|B0
(Bi|B) > 0. Since PX0|B0

(Gc|B) = 0, by
Lemma 9 (the expression in square brackets in (4) is non-negative by (3)), recalling (6) at the second
equality, we get

0 = PX0|B0
(Bi ∨B0|B)[PX0|B0

(Bi|Bi ∨B0)(PX0|B0
(Xi|Bi)− P (Xi|Bi))

− PX0|B0
(B0|Bi ∨B0)(PX0|B0

(X0|B0)− P (X0|B0))]

= PX0|B0
(Bi|B)(PX0|B0

(Xi|Bi)− P (Xi|Bi)) + αX0|B0
,

hence (b). The case i = 0 follows immediately from the definition of αX0|B0
.

Thus, for a convex P , a WDB implies the existence of a dF -coherent prevision PX0|B0
such that

P (Xi|Bi) differs from PX0|B0
(Xi|Bi) by a term

αX0|B0

PX0|B0
(Bi|B)

, for any Xi|Bi ∈ DG \ {X0|B0}

such that PX0|B0
(Bi|B) 6= 0. This latter constraint becomes irrelevant when P is unconditional,

since then Bi = Ω, for i = 0, 1, . . . , n. Therefore B = Ω as well as Bi|B = Ω (i = 0, 1, . . . , n),
hence PX0|B0

(Bi|B) = PX0|B0
(Ω) = 1. Proposition 10 specialises then to:

Proposition 11 Let P : D → R be an unconditional convex lower prevision, and Gc as in Defini-
tion 6 with Bi = Ω, for i = 0, 1, . . . , n, be a WDB gain. Then there exist a dF -coherent prevision
PX0 onD∪{Gc} and αX0 ∈ R such that P = PX0 +αX0 onD+

Gc
= {X0}∪{Xi : si > 0, for i =

1, . . . , n}.

Hence, convexity of an unconditional lower prevision P on D implies that P has a special
structure on D+

Gc
, with WDBs: for each Xi ∈ D+

Gc
, P differs from a dF -coherent prevision P by

the same constant αP . Perhaps surprisingly, if P is centered convex, the preceding result does not
imply that αP = 0 in all cases, but only if ∅ ∈ D+

Gc
.

When P is a conditional W -coherent prevision, Proposition 5 can be applied in the place of
Proposition 7 (a). We get the following proposition (Corsato et al., 2017).

Proposition 12 Let P : D → R be a W -coherent lower prevision, G,B be as in Definition 3 and
such that G is a WDB gain. Suppose B1|B, . . . , Bn|B ∈ D. Define

D+
G = {X0|B0} ∪ {Xi|Bi ∈ DG : siP (Bi|B) > 0, for i = 1, . . . , n}.

Then P is dF -coherent on D+
G.

The condition B1|B, . . . , Bn|B ∈ D in Proposition 12 is not overly restrictive. If it is not met,
we may consider a W -coherent extension P ′ of P on D′ = D ∪ {Bi|B : i = 1, . . . , n} and apply
Proposition 12 to P ′ on D′. However, the set on which P ′ is dF -coherent depends then on the
specific extension. It is minimal when the natural extension of P is selected.

The result is subject to a second, more significant restriction. In fact, assumingP (Bi|B) positive
is a sufficient but not necessary condition for dF -coherence of P , i.e. P may be dF -coherent on a
set larger than D+

G.
The important special case that P is unconditional, i.e Bi = Ω, for i = 0, 1, . . . , n, hence

B = Ω, reinforces the result in Proposition 12. If all the stakes si, for i = 1, . . . , n, are non-zero,
since necessarily P (Ω) = 1, we get DG = D+

G and Proposition 12 specialises to the following
statement.
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Proposition 13 Let P : D → R be an unconditional coherent lower prevision. Let G be given by
G =

∑n
i=1 si

(
Xi−P (Xi)

)
−s0

(
X0−P (X0)

)
,with s0 ≥ 0, si > 0, for i = 1, . . . , n, {X0, X1, . . . ,

Xn} = DG ⊆ D, and assume that G is a WDB gain. Then P is dF -coherent on DG.

Thus a WDB implies that a coherent lower prevision is a dF -coherent prevision on DG.

4. Further Features of Weak Dutch Books

Which are the agent’s beliefs, with a WDB assessment, about suffering from a real Dutch Book
(meaning a loss, if the gain has a maximum of zero, or a uniformly negative loss, if it does not
achieve its supremum of zero)? In the simplest case, i.e. of a dF -coherent probability P , it was
shown in (Crisma, 2006, Section 9.5.4) that P (G < 0) = 0. The generalisation to (unconditional)
dF -coherent previsions has been investigated in Vicig (2010):

Proposition 14 Given a dF -coherent prevision P onD, let the WDB gainG be as in (2). Then (any
dF-coherent extension of) P is uniquely determined on certain events concerning G, and precisely:

(a) P (G ≤ −ε) = 0, ∀ε > 0;

(b) if in addition X1, . . . , Xn are all simple, we also have that P (G < 0) = 0.2

Thus, the results with precise previsions are rather reassuring. Take for instance case (b): al-
though the agent cannot get any positive reward, whatever happens, she/he does not even believe
that the bet will end up with a loss. However, the judgement on the potential vulnerability to Dutch
books of a WDB assessment depends crucially on the kind of imprecise prevision being assessed.

In fact, the following result holds with W -coherent lower/upper previsions:

Proposition 15 Given a W -coherent lower prevision P on D, let G,B be as in Definition 3 such
that G is a WDB gain. Then, for any W -coherent extension of P (still termed P )

(a) P (G|B ≤ −ε) = 0, ∀ε > 0;

(b) if DG is made of simple conditional gambles, P (G|B < 0) = 0.

Proposition 15, which includes also W -coherence for unconditional lower/upper previsions as
a special instance, is formally analogous to Proposition 14. Yet, it replaces precise with lower
previsions, as for the Dutch book evaluations. The upper probability of, say, (G|B < 0) in case (b)
may well be even 1, as shown in Corsato et al. (2017). One may wonder whether it is at least always
possible to put P (G|B < 0) = 0 or more generally (for an arbitrary G|B) P (G|B ≤ −ε) = 0, if
wished. The answer is negative even in an unconditional environment:

Proposition 16 Let P : D → R be an unconditional W -coherent lower prevision, and G defined
in Proposition 13, with si > 0 (i = 1, . . . , n) be a WDB gain. Then

(a) if DG = D, it is coherent to put P (G ≤ −ε) = 0, ∀ε > 0;

(b) otherwise this choice may be incoherent.

2. The dF -coherent extension of P is mentioned explicitly because (the indicators of) the events (G ≤ −ε) and
(G < 0) need not belong to D. Similar specifications will be omitted hereafter.
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We may conclude that the (conditional) p-box of a WDB gain G|B for a W -coherent P has
a special structure, as for its lower distribution function F (x) = P (G|B ≤ x), x ∈ R. F is a
single-step function, identically equal to 0 for any x < 0, to 1 for any x ≥ 0. On the contrary, the
upper distribution function F (x) = P (G|B ≤ x), x ∈ R, is essentially unconstrained and need not
coincide with F (x) if (G|B ≤ x) is a non-trivial event.

Weaker notions than (W -)coherence may allow for even weaker implications about the non-
occurrence of Dutch Books. In particular, in the case of centered convexity, the agent may have no
strong belief that a Dutch Book associated with the gain G will be avoided. In fact, examples may
be built to show that not even P (G ≤ −ε) may be forced to be zero.

Summing up, when an uncertainty assessment incurs a WDB the agent’s evaluation about avoid-
ing a real Dutch Book depends on the degree of precision of the consistency notion the assessment
satisfies. The self-protection offered by dF -coherence is maximal, whilst convexity does not ensure
that P (G ≤ −ε) may be consistently set to zero.

Another facet of WDBs is concerned with conditions for the gain supremum of zero to be
attained. Of course it is, if the gain involves only simple gambles, and in particular events. To
explore this issue in more general situations the next result proves to be useful.

Proposition 17 Let P : D → R be an unconditional W -coherent lower prevision and G as in
Definition 3, with Bi = Ω, for i = 0, 1, . . . , n. Let also G be a WDB gain. Then, for any event
E ∈ D with P (E) > 0, it holds that sup(G|E) = 0.

Now suppose that D includes some atom ω ∈ PG, the coarsest partition G is defined on. If P (ω) >
0, Proposition 17 implies (with E = ω) that

sup(G|ω) = G(ω) = 0,

hence G achieves its supremum (at least) at ω. More generally, it holds that

Corollary 18 Let P : D → R, G be as in Proposition 17. Let P ⊆ D be either PG or a partition
finer than PG, e ∈ P, ω ∈ PG be such that e⇒ ω and P (e) > 0. Then G(e) = G(ω) = 0.

Corollary 18 implies also that if supG is not achieved, then necessarily P (ω) = 0, ∀ω ∈ PG. Yet,
there may be some E ∈ D such that P (E) > 0, hence implying sup(G|E) = 0 by Proposition 17,
but E /∈ PG. Letting P = {ω ∈ PG : P (ω) > 0} and N = {ω ∈ PG : G(ω) = 0}, it is P ⊆ N ,
by Corollary 18. Thus the cardinality of P is a lower bound to that of the set of atoms where G
achieves the value of zero. However, it is interesting to note that other causes may be influencial
too. In the next example the number of such atoms depends on the choice of the stakes.

Example 2 Let D = {E1, E0,¬E0,¬E1 ∧ E0}, with E1 ∧ ¬E0 = ∅, P : D → R be the vacuous
lower probability and DG = {E1, E0}. It may be checked that maxG = max(s1(E1 − 0) −
s0(E0 − 0)) = 0 if s0 ≥ s1 > 0. Here PG = {E1,¬E0,¬E1 ∧ E0}, P = ∅, while there are
one or two atoms of PG where G attains its maximum of zero, according to whether, respectively,
s1 < s0 or s1 = s0. In fact G(E1) = s1 − s0 ≤ 0 iff s1 ≤ s0, in particular G(E1) = 0 iff s1 = s0,
G(¬E0) = 0, G(¬E1 ∧ E0) = −s0 < 0.

Testing Weak Dutch Books. If it is not known whether, given a coherent P , supG = 0 or not, we
can try to rule out the possibility of a WDB by checking the sign of G at some ω ∈ PG such that
P (ω) > 0 (if any). In fact:
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• if G(ω) > 0, then obviously supG > 0;

• if G(ω) < 0, then supG > 0 by Corollary 18.

This method is very simple, but allows no conclusion whenG(ω) = 0.3 In fact, it is clearly possible
that G(ω) = 0 and supG = 0, but even when G(ω) = 0 for all ω ∈ PG such that P (ω) > 0, supG
may be strictly positive.

5. Strict Consistency

As soon as the behavioural interpretation of de Finetti’s theory of subjective probabilities became
more widespread, the issue of whether WDBs could possibly be avoided was investigated. Thus, as
early as the mid-fifties of the last century Kemeny (1955) and Shimony (1955) proposed the most
immediate solution: rule out WDBs by redefining coherence. They referred to (precise) probabilities
only, replacing the condition supG ≥ 0 with supG > 0, for any admissible G 6= 0, which is what
is called strict coherence today. As well-known, strict coherence has non-negligible drawbacks,
like that of being confined to a denumerable environment. Alternative ways of tackling WDBs have
also been developed. We discuss in Corsato et al. (2017) that due to Wagner (2007) and based on
the interpretation of buying/selling prices in betting schemes, going back to Walley (1991), and
the one resorting to desirability concepts (see e.g. Quaeghebeur (2014)). Alternatively, Pedersen
(2014) introduces a qualitative version of strict coherence for comparing (not necessarily bounded,
unconditional) gambles.

However, little has been said about the role and properties of (some extended version of) strict
coherence with imprecise rather than precise probabilities. It is relatively simple to extend the strict
coherence approach (Corsato et al., 2017):

Definition 19 Let µ : D → R be a measure, whose consistency requires that sup(G|B) ≥ 0 for
any conditional gain G|B admissible according to certain rules. Then µ is strictly consistent if, for
each such G|B, either G|B = 0 or sup(G|B) > 0.

As for the issue of characterising strict consistency, the case of conditional coherence was hinted in
Williams (1975) and is tackled for W -coherent previsions in the next proposition.

Proposition 20 Let P : D → R be a W -coherent lower prevision. Then,

(a) If P is strictly W -coherent on D,

P (A|B) > 0, for all events A|B ∈ D, A|B 6= ∅|B. (7)

(b) If P is not strictly W -coherent on D and, for any WDB gain G|B 6= 0 as in Definition 8,
∃ ε > 0 : (G|B ≤ −ε) ∈ D is non-impossible, then ∃A|B ∈ D, A|B 6= ∅|B : P (A|B) = 0.

Clearly, Proposition 20 concerns the special case of (unconditional) coherent lower previsions
too. For these previsions, (7) requires strict positivity (sP ) of any non-impossible event inD. It can
be seen that this again limits the effectiveness of strict coherence to denumerable settings. Turning to
another question, in today’s language the necessary and sufficient condition for strict dF -coherence

3. Alternatively, linear programming could potentially be employed in some special cases.
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of a dF -coherent probability in Kemeny (1955) asks instead for strict normalisation (sN), i.e., that
P (E) < 1, for anyE 6= Ω. In the realm of dF -coherent probabilities, this is obviously equivalent to
(sP ). However, as often happens, the equivalence in a precise framework conceals a more complex
situation in the field of imprecision. To see this, consider the following conditions for an uncertainty
measure µ on a domain D of events:

(sM) ∀E,F ∈ D, if E ⇒ F,E 6= F then µ(E) < µ(F ) (strict Monotonicity);

(sP ) ∀E ∈ D, if E 6= ∅ then µ(E) > 0 (strict Positivity);

(sN) ∀E ∈ D, if E 6= Ω then µ(E) < 1 (strict Normalisation).

Then, it holds that:

Proposition 21 Let A be an algebra of events (i.e., ∀E ∈ A, ¬E ∈ A, ∀E,F ∈ A, E ∧ F ∈ A),
and let P : A → R be a lower probability.

(a) If P is W -coherent, then (sM)⇔ (sP )⇒ (sN),
while (sN) implies neither of (sM), (sP ).

(b) If P is centered convex, then (sM)⇒ (sP )⇒ (sN),
while (sP ) does not imply (sM), nor does (sN) imply (sP ).

Proof Recall that ∅,Ω ∈ A and that for any E ∈ A, ∅ ⇒ E ⇒ Ω.
Proof of (a). (sM) ⇔ (sP ). Let (sM) hold, and let E ∈ A, E 6= ∅. We have P (E) >
P (∅) = 0. Assume now (sP ) is satisfied. Let E,F ∈ A such that E ⇒ F and E 6= F . We
have ¬E ∧ F ∈ A \ {∅}. Since then P (¬E ∧ F ) > 0 by (sP ), by superlinearity we get P (E) <
P (E) + P (¬E ∧ F ) ≤ P (F ).
(sP )⇒ (sN). By the previous step, it is equivalent to (sM)⇒ (sN), which holds: takingE 6= Ω,
by (sM) P (E) < P (Ω) = 1.
(sN) 6⇒ (sP ). Let us consider a non-trivial event E, A = {∅, E,¬E,Ω} and P : A → R given
by P (∅) = P (E) = 0, P (¬E) = ε, for some ε ∈ ]0, 1[, P (Ω) = 1. Then P is a coherent lower
probability on A satisfying (sN) but not (sP ) (nor its equivalent condition (sM)).

Proof of (b). (sM)⇒ (sP ): same as in the proof of (a).
(sP ) 6⇒ (sM). Can be shown by means of a (counter)example. For this, let ∅ 6= E ⇒ F 6= Ω,
E 6= F . Thus P = {E,¬E ∧ F,¬F} is a partition. Let A = A(P), and P = min{P1, P2 + 0.2},
where P1, P2 are defined in Table 1 (only the relevant events in A are displayed).

∅ E ¬E ∧ F ¬F F

P1 0 0.1 0.2 0.7 0.3
P2 0 0 0 1 0
P2 + 0.2 0.2 0.2 0.2 1.2 0.2

P 0 0.1 0.2 0.7 0.2

Table 1: Data for the (counter)example.

• P is centered convex onA (by Proposition 7), but not coherent: P (E)+P (¬E∧F ) > P (F ),
thus P does not comply with superadditivity.
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• P satisfies (sP ) (on the events in P and hence, by monotonicity of convex lower previsions,
on all events in A).

• P does not satisfy (sM): ¬E∧F ⇒ F (and ¬E∧F 6= F ), while P (¬E∧F ) = P (F ) = 0.2.

(sP ) ⇒ (sN). Let P (E) > 0, ∀E 6= ∅. Recall that a centered convex lower prevision avoids
sure loss (Pelessoni and Vicig, 2005b), and as such satisfies the inequality P (X) + P (µ − X) ≤
µ, ∀µ ∈ R (Walley, 1991, Section 2.4.7 (c)). Putting X = E, µ = 1, the inequality boils down to
P (E) + P (¬E) ≤ 1. This implies P (E) < 1 if E 6= Ω since then P (¬E) > 0 by assumption.
(sN) 6⇒ (sP ). Indeed the implication is not valid under the stronger assumption that P is coherent,
as proven in (a).

Comments. When µ = P , a dF -coherent probability, in (sM), (sP ), (sN) and P is defined on
an algebra A, then (sM)⇔ (sP )⇔ (sN), by normalisation and linearity of P .

We may summarise the situation in the next figure (only valid implications are displayed).

Figure 1: Comparison among the conditions (sM), (sP ), (sN) for either a dF -coherent probability in case
(a), or a lower probability which is coherent (b) or centered convex (c).

It is clear from Proposition 21 why Proposition 20 refers to strict positivity instead of strict
normalisation as in Kemeny (1955): even in an unconditional frame, strict positivity is tighter. To
put it differently, requiring (sN) does not prevent P from incurring a WDB: it suffices that there
is a possible E with P (E) = 0 to which the WDB gain G = −s0E ≤ 0 is associated. Instead,
(sM) could replace (sP ) on algebras, while on more general domains (sP ) is easier to work with.
However, (sM) remains the only relevant condition for strict convexity.

Interestingly, these relationships may change with upper probabilities. Thus, when P is a coher-
ent upper probability on an algebra A, (sN) and (sP ) exchange their roles. Using the conjugacy
relation P (E) = 1− P (¬E), we deduce that

(sM)⇔ (sN)⇒ (sP ), (sP ) 6⇒ (sM), (sP ) 6⇒ (sN).

6. Conclusions

In this paper the properties of assessments incurring WDBs have been explored by their degree
of consistency. The results point out a certain differentiation and a number of perhaps surprising
features of such assessments. By contrast, the more known special case of dF -coherent precise
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probabilities often flattens these differences. The situation is similar for strict consistency, the gen-
eralisation of strict coherence that avoids WDBs, even though its domain of application remains
restricted even with W -coherence. Thus, in general WDBs are something to coexist with.
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