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Abstract
This paper deals with the problem of probability estimation in the context of coarse data. Proba-
bilities are estimated using the maximum likelihood principle. Our approach presupposes that each
imprecise observation underlies a precise one, and that the uncertainty that pervades its observation
is epistemic, rather than representing noise. As a consequence, the likelihood function of the ill-
observed sample is set-valued. In this paper, we apply a robust optimization method to find a safe
plausible estimate of the probabilities of elementary events on finite state spaces. More precisely
we use a maximin criterion on the imprecise likelihood function. We show that there is a close con-
nection between the robust maximum likelihood strategy and the maximization of entropy among
empirical distributions compatible with the incomplete data. A mathematical model in terms of
maximal flow on graphs, based on duality theory, is proposed. It results in a linear objective func-
tion and convex constraints. This result is somewhat surprizing since maximum entropy problems
are known to be complex due to the maximization of a concave function on a convex set.
Keywords: maximum likelihood; incomplete information; robust optimization; entropy.

1. Introduction

Interval observations, and more generally, set-valued ones, do not always reflect the same phe-
nomenon (Couso and Dubois, 2014). Sets, e.g. intervals, may either represent exact observations of
items taking the form of sets (for instance, the daily min-max temperature ranges across one year),
or, on the contrary, imprecise observations of precise quantities. In the later case, we speak of coarse
data (Heitjan and Rubin, 1991). In the first situation, set data are a special kind of functional data
where observations lie in a space of characteristic functions equipped with a suitable metric struc-
ture, enabling precise statistical parameters to be derived, e.g., (González-Rodrı́guez et al., 2012).
In this paper we are interested in the statistical analysis of data when observations are imprecise, or
coarse, more specifically, when we only know that the precise values of observations are restricted
by sets of possible outcomes of a random variable of interest. In this kind of representation, sets
model epistemic states (or states of knowledge) in the sense that no value outside the set is possibly
the true observed value (unreachable for the observer). Under the epistemic approach, the expected
value and the variance of a collection of intervals are themselves intervals (Kruse and Meyer, 2012).

This paper addresses the problem of statistical inference in the presence of epistemic set-valued
data using the maximum likelihood principle. Under imprecise observations, the likelihood function
itself becomes imprecisely appraised too and is thus set-valued. There are several possible ways of
defining a scalar likelihood function in this situation (Couso and Dubois, 2016a). In this paper we
adopt a robust optimisation point of view and maximize the lower bound of the imprecise likelihood
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function, with a view to obtain a probability density that accounts for the potential variability of the
random variable observed via sets of possible outcomes. We give an interpretation of the robust
solution in terms of entropy maximization, and propose algorithms for computing robust maximum
likelihood distributions in the discrete (finite) case of coarse nominal data, based on a maximal flow
approach.

The paper is organized as follows. In Section 2, we recall a general framework for maximum
likelihood estimation under coarse data due to Couso and Dubois (2016a), and situate our robust op-
timization strategy in this framework. It consists in maximizing the minimal likelihood function in
agreement with the coarse data. We discuss the difference between our approach and the optimistic
maximax strategy. Section 3 proposes a methodology for solving the robust optimisation problem
in the discrete case, based on max-flow formulation and duality. Section 4 shows that the optimal
estimate corresponds to maximizing entropy among empirical distributions of all possible samples
in agreement with the coarse data. In section 5, we propose a new method for solving the maximin
likelihood estimation problem and discuss an illustrative example.

2. General framework

A likelihood function is proportional to the probability of obtaining the observed data given a hy-
pothesis, according to a probability model. Observed data are considered as outcomes, i.e., ele-
mentary events. If this point of view is accepted, what becomes of the likelihood function under
coarse observations? If coarse observations are considered as results, we can construct the likeli-
hood function for set-valued outcomes, and compute a random set. However, coarse observations
being set-valued, they do not directly inform us about the underlying random variable. In order
to properly exploit such incomplete information, we must first decide what to model (Couso and
Dubois, 2016a): (1) the random phenomenon despite the deficiencies its measurement process; or
(2) the random phenomenon as known via its measurement process.

In the first case, authors have proposed several ways of restoring a distribution for the underlying
random phenomenon. The most traditional approach constructs a virtual sample of the ill-observed
random variable in agreement with the imprecise data, by minimizing divergence from a parametric
model, and maximizing likelihood wrt this sample, so as to update this parametric model. This
is often carried out by means of EM algorithm (Dempster et al., 1977). The problem with this
approach is that there may be several optimal distributions, hence virtual samples, especially when
the connection between the hidden random variable and its observation process is loose (Couso and
Dubois, 2016b). The result of an iterative algorithm such as EM may depend on the initial parameter
value. Moreover the EM algorithm assumes that observed coarse data form a partition of the domain
of the random variable of interest (see the introduction of (Dempster et al., 1977)).

In this paper, we take the other point of view, the one of ill-observed outcomes. Then, there
are as many likelihood functions as precise datasets in agreement with the coarse observations, and
it is not clear which one to maximize. We pursue our study of a methodology based on a robust
maximin optimisation approach applied to a set-valued likelihood Guillaume and Dubois (2015).
Note that here, we do not consider the issue of modelling imprecision due to too small a number of
precise observations (see for instance (Serrurier and Prade, 2013)). Let us recall the formal setting
for statistics with coarse data proposed by Couso and Dubois (2016a), then we study the meaning
of the solution to the maximin approach, and finally propose an algorithm to solve it in the case of
nominal outcome sets.
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2.1 The random phenomenon and its measurement process

Let a random variable X : Ω → X represent the outcome of a certain random experiment. For
the sake of simplicity, let us assume that X = {a1, . . . , am} is finite. Suppose that there is a
measurement tool driven by a random variable Y that provides an incomplete report of observa-
tions. Namely, there is a set-valued random variable Y : Ω → ℘(X ) that models the reports of
a measurement device, where ℘(X ) is the set of subsets of X . Y is thus a multimapping which
represents our (imprecise) perception of X , in the sense that we assume that X is a selection of Y ,
i.e. X(ω) ∈ Y (ω), ∀ω ∈ Ω, in agreement with the setting of imprecise probabilities proposed by
Dempster (1967). X is often called the latent variable. Let Y = {A1, . . . , Ar} denote the set of
possible set-valued outcomes of Y , where Aj ∈ ℘(X ).

The information about the joint distribution of the random vector (X,Y ) modeling the random
variable X and its measurement process can be represented by a joint probability on X ×Y defined
by means of m × r coefficients pij = P (X = ai, Y = Aj). Some knowledge may be available
about this probability matrix. For instance, in the case when Y is a partition of X , we have

pij = P (Y = Aj |X = ai) · P (X = ai) =

{
P (X = ai) if ai ∈ Aj
0 otherwise.

(1)

Sometimes assumptions are made about the conditional probability P (Y = Aj |X = ai) describing
the imprecise measurement process, like the superset assumption (Hüllermeier and Cheng, 2015)
considering that Y = ℘(X ) and stating that this probability is a constant ci over all sets containing
ai, i.e. ci = 1/2m−1 that does not depend on i. Another less restrictive assumption is called “coarse
at random” (CAR) whereby P (Y = Aj |X = ai) does not depend on the value ai ∈ Aj (Heitjan
and Rubin, 1991). In this paper, we shall just ignore the measurement process.

2.2 Different likelihood functions

The respective marginals on X and Y are denoted as follows:

• p.j =
∑m

k=1 pkj denotes the mass of Y = Aj , j = 1, . . . , r, and

• pk. =
∑r

j=1 pkj denotes the mass of X = ak, k = 1, . . . ,m.

Now, let us assume that the above joint distribution is characterized by means of a (vector of)
parameter(s) θ ∈ Θ that determines a joint distribution on X × Y .

For a sequence of N iid copies of Z = (X,Y ), Z = ((X1, Y1), . . . , (XN , YN )), we de-
note by z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N a specific sample of the vector (X,Y ).
Thus, y = (y1, . . . , yN ) will denote the observed sample (an observation of the set-valued vec-
tor Y = (Y1, . . . , Yn), and x = (x1, . . . , xN ) will denote an arbitrary artificial sample from X for
the unobservable latent variable X , that we shall vary in XN . The samples x are chosen such that
the number of repetitions nkj of each pair (ak, Aj) ∈ X × Y in the sample are in agreement with
the number qj of actual observations Aj . We denote by X y (resp. Zy), the set of samples x (resp.
complete joint samples z) respecting this condition. We assume that the measurements are reliable
in the sense that, observing y = G ⊆ X , we can be sure that the actual outcome X = x ∈ G. If
we let nk be the number of appearances of ak in the virtual sample x, we have that any x ∈ X y
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satisfies: 

∑
k=1,...,r nk =

∑
j=1,...,r qj = N

nk =
∑r

j=1 nkj ,∀k = 1, ...,m

qj =
∑m

k=1 nkj∀j = 1, ..., r.

nkj = 0 if ak 6∈ Aj ,∀k, j.

(2)

For a complete sample z to be compatible with the observation y, we have that any z ∈ Zy satisfies:
∑

k=1,...,r

∑
j=1,...,r nkj = N

qj =
∑m

k=1 nkj ,∀j = 1, ..., r.

nkj = 0 if ak 6∈ Aj ,∀k, j.
(3)

As pointed out by Couso and Dubois (2016a), we may consider three different log-likelihood func-
tions depending on whether we refer to

1. the observed sample in Y : Ly(θ) = log
∏N
i=1 p(yi; θ) =

∑r
j=1 qj log pθ.j .

2. the hidden sample in X : Lx(θ) = log
∏N
i=1 p(xi; θ) =

∑m
k=1 nk. log pθk..

3. the complete sample in X × Y: Lz(θ) = log
∏N
i=1 p(zi; θ) =

∑m
k=1

∑r
j=1 nkj log pθkj

The two last ones are ill-known. The choice of one likelihood function vs. another depends
upon what problem we are interested to solve. Maximizing Ly(θ) means that we are interested in
modeling our perception of the random variable only. It is the standard maximum likelihood esti-
mation (MLE) that computes the argument of the maximum of Ly considered as a mapping defined
on Θ, i.e.: θ̂ = arg maxθ∈Θ L

y(θ) = arg maxθ∈Θ
∏r
j=1(pθ.j)

qj . The result is a mass assignment on
2X if there is no constraint relating the distributions of X and Y via the parameter θ. It computes a
belief function on X with focal sets in Y .

The EM algorithm (Dempster et al., 1977) is an iterative technique maximizing this likelihood
function via the use of the latent variable X and a virtual sample for X in order to achieve a local
maximum ofLy. This procedure makes sense if the observed sample y provides enough information
on X (via suitable assumptions on the model parameters θ) to guarantee the convergence of the
iterative procedure to a solution that minimizes the distance between the empirical distribution of
the final virtual sample in agreement with y, and the resulting parametric distribution on X (Couso
and Dubois, 2016a).

Maximizing Lz(θ) enables to take into account the knowledge we may have about the measure-
ment process, and allows for a fine-grained modeling. On the contrary, maximizing Lx(θ) means
that we completely give up modeling the measurement process and try to extract information about
X based on information about Y , assuming complete ignorance about the measurement process.
The difficulty with Lz(θ) and Lx(θ) is that they are ill-known, namely we must consider for all
values of θ, the sets Lz(θ) = {Lz(θ) : z ∈ Zy} and Lx(θ) = {Lx(θ) : x ∈ X y}, respectively.
In the paper we shall deal with Lx(θ), i.e., try to find results independently of the measurement
process.

Applying the maximum likelihood principle when the likelihood function is ill-known requires
the choice of a representative likelihood function from Lx(θ). Obvious natural choices are L(θ) =
maxx∈Xy Lx(θ) and L(θ) = minx∈Xy Lx(θ).

172



MAXIMUM LIKELIHOOD WITH COARSE DATA BASED ON ROBUST OPTIMISATION

On this basis, there are two strategies of likelihood maximization, based on a sequence of im-
precise observations y = (y1, . . . , yN ) ∈ YN :

1. The maximax strategy (Hüllermeier, 2014): it aims at finding the pair (x∗, θ∗) ∈ X y×Ω that
maximizes Lx(θ). In other words, compute (x∗, θ∗) = arg maxx∈Xy,θ∈Θ L

x(θ).

2. The maximin strategy (Guillaume and Dubois, 2015): it aims at finding θ∗ ∈ Θ that maxi-
mizes L(θ) = minx∈Xy Lx(θ). It is a robust optimization approach that takes a pessimistic
view on likelihood maximization.

The maximax strategy tries to disambiguate the coarse data by choosing a virtual sample x that
makes the parametric model maximally in agreement with the data. In the case of the maximin
strategy, it is pessimistic in the sense that it tends to select distributions with large variability as we
shall show.

3. The robust approach to discrete probability estimation with coarse date

In this section, we try to estimate the probability P (X = ak), k = 1, ...,m when the reports of N
observations of X are imperfect and take the form of an imprecise sample y containing qj copies
of subsets Aj ∈ Y of values of X , for j = 1 . . . r. To determine the parameter we adopt the usual
approach based on likelihood maximization, which in the case of precise observations takes the
form:

maximize : Lx(θ) = log p(x; θ) =
m∑
i=1

nk log p(X = ak|θ) (4)

Note that in our context the numbers nk, k = 1, ...,m are ill-known, because we did not fully
observe the outcomes. All we know is that x ∈ X y. Hence, the vector n = (nk)k=1,...,m ∈ N y,
where N y is the set of possible statistics in agreement with the imprecise observations y, that is,
respecting equation (2). We call an assignment n ∈ N y a virtual sample. To manage the uncertainty
on n we use the pessimistic maxmin strategy. Namely, we will maximize the minimal value of
likelihood function for the hidden sample x:

max
θ

min
n∈Ny

m∑
i=1

nk log p(X = ak|θ) (5)

Note that by using the likelihood based on the hidden sample x, we make no assumption on the
measurement process that from observing X ∈ X , yields a subset of X . We only know that if
Y = Aj is observed, some xk ∈ Aj has been produced. One can see that Equation (5) is then
equivalent to the more explicit mathematical formulation:

maxp minn
∑

k=1,...,m nk · log pk (6)

s.t.

(a)
∑

k=1,...,m nk =
∑

j=1,...,r qj = N

(b) nk =
∑

j:(j,k)∈Ey nj,k, ∀k = 1, ...,m

(c) qj =
∑

k:(j,k)∈Ey nj,k, ∀j = 1, ..., r

(d)
∑

k=1,...,m pk = 1

(e) nk, nj,k ∈ N+, pk > 0, ∀k = 1, ...,m,
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where

• the value qj , j = 1, ..., r is the number of actual observations of Y of the form Aj ,

• the decision variables (pk)k=1,...,m stand for the ill-known model probabilities p(X = ak|θ),
k = 1, ...,m on X ; in the loosest situation, there is no constraint relating the pk via an explicit
parameter θ.

• (nk)k=1,...,m are the ill-known numbers of occurrences of values ak, k = 1, ...,m of X ,

• Ey = {(j, k) : ak ∈ Aj ,∀k = 1, ...,m}. Indeed, since coarse observations are supposed to
be faithful, nj,k = 0 if ak 6∈ Aj .

The constraints (6(a)) guarantee that all observations are taken into account. The constraints (6(b))
and (6(c)) guarantee that the number of virtual samples n ∈ N y is in agreement with observations.
Equation (6(d)) is a normalisation constraint. Moreover we add constraints (6(e)) since the obser-
vation is integer and log(x) is not defined for x = 0. Constraint (6(d)) expresses the reliability of
imprecise observations. In particular, the set N of feasible statistics n for X is thus defined by the
set of m-tuples of integers verifying constraints (6(a, b, c)), and such that (j, k) ∈ Ey.

Remark 1 Note that the maximal size of Y is a linear function of the number of observations and
not exponential of the form 2|X |. More precisely, it is min(2|X |,

∑r
k=1 qr). In fact, in the case where

2|X | >
∑r

k=1 qr, observations could be different from one another, i.e., qk = 1, k = 1, ..., r.

4. The maxmin strategy maximizes entropy

Problems of the form (6) are well-known in the framework of game theory. The major issue is to
find conditions under which the expression maxu minv f(u, v) is equal to minu maxv f(u, v) for
(u, v) lying in a compact convex subset of R2. In the general case, the following inequality always
holds:

max
u

min
v
f(u, v) ≤ min

v
max
u

f(u, v).

When there is a saddle point, that is a pair (u∗, v∗) such that

f(u∗, v) ≤ f(u∗, v∗) ≤ f(u, v∗),∀u, v,

then the equality holds, and corresponds to the notion of Nash equilibrium in game theory. This is
the case when the function f is convex-concave and continuous, that is when f is convex in u and
concave in v (Von Neumann, 1928; Sion, 1958; Komiya, 1988).

Problem (6) can be written as maxθ minn∈Ny f(n, θ), where function f has the form: f(n, θ) =∑m
i=1 nk log p(X = ak|θ). Provisionally, let us drop the assumption that n is a vector of integers,

and assume it is a set of reals obeying (6(a, f)). It is easy to see that f(n, θ) is increasing and linear
in n, while is concave and continuous with respect to θ = (pk)k=1,...,m. The optimisation domain is
clearly a compact and convex set. So, f is convex concave, and the above known result then applies:

Proposition 1 Assuming n is not restricted to being integer-valued, the equality
maxp minn

∑
k=1,...,m nk · log pk = minn maxp

∑
k=1,...,m nk · log pk holds.
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The solution to the minmax problem is easier to find. Indeed the problem maxp
∑

k=1,...,m nk·log pk
is a standard maximum likelihood problem with a fixed vector n. The optimal solution is given by
pk = nk/N, k = 1, ...,m. Now we are led to find n that maximizes an expression of the form
−nk · log(nk/N) which, divided by N , is clearly the entropy of (n1/N, . . . , nm/N). We can thus
conclude that:

Corollary 1 The optimal solution to the maxmin likelihood problem (6) is the solution with maximal
entropy, namely the solution to: maxn−

∑
k=1,...,m

nk
N · log nk

N under conditions (6(a, b, c)), and
nk ∈ R+, i.e. n in the convex hull of N y.

In fact, it is easy to see that the observed data (qj , Aj), j = 1 . . . r defines a belief functionBel with
mass function µ(Aj) =

qj
N , j = 1 . . . r, and that the convex set of probabilities P = {P : P ≥ Bel}

is nothing but the credal set defined by the set of probability assignments p = (n1/N, . . . , nm/N)
(Zaffalon, 2002), where

∑
k=1,...,m nk =

∑
j=1,...,r qj = N plus conditions (6(b, c)) and ni ≥ 0

are reals. So the maxmin likelihood problem (6) comes down to a finding the maximum entropy
probability in the credal setP , a problem already addressed in the past by Abellán and Moral (2003).

so

v1

vj

vr

[qk]k=1,...,r

v′1

v′i

v′`

vm

(nj,k)∀(j,k)∈Ey

si

(nk)k=1,...,m,

{ck}k=1,...,m

Figure 1: Graph representation of the problem

It remains to be checked whether the optimal solution n∗ is integer or not. To this end, we focus
on the problem of minimizing

∑
k=1,...,m nk · log pk for a given probability distribution p. The

decision variables form the vector n in the convex hull of N y. The problem considered is :

minn
∑

k=1,...,m nkck (7)

s.t.

(a)
∑

k=1,...,m nk =
∑

k=1,...,r qk = N,

(b) nk −
∑

j:(j,k)∈Ey nj,k = 0, ∀k = 1, ...,m

(c)
∑

k:(j,k)∈Ey nj,k = qj , ∀j = 1, ..., r

(d) nk ∈ N+, ∀k = 1, ...,m

where ck = log pk, k = 1, ...,m are constant. The problem (7) can be modeled by a bipartite
transportation graph, as done by Zaffalon (2002). The graph is (V, E) where the vertices V include
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a source node so related to r vertices corresponding to elements of Y , themselves related tom nodes
corresponding to the elements of X , and finally a sink node si. Edges in E are of the form (so, vj),
(vj , v

′
k) if (j, k) ∈ Ey, and (v′k, si) (see Fig.1). The values in brackets provide the flow along these

edges.

Proposition 2 The problem (7) is a maximum flow minimum cost problem.

Proof: The constraint (7(a)) is the equality constraint between the source flow and the sink flow.
The constraints (7(b)) and (7(c)) are flow conservation constraints. In our case, the maximum flow
is equal to

∑
k=1,...,r qk. �

From Proposition 2, we know that this problem has a totally unimodular structure, i.e., it is a
linear problem with a totally unimodular constraint matrix. Therefore, the linear program relaxation
of the model (7), letting nk ∈ R+ yields an integral solution, which is thus the one of problem (7).
So, the maximal entropy solution we have defined above for the maximization of the lower hidden
likelihood is indeed of the form (n1/N, . . . , nm/N) for integer values of nk.

Remark 2 The solution of the maximization of the upper hidden likelihood, that is maxp maxn∑
k=1,...,m nk ·log pk under constraints (7(a-d)), is trivially equivalent to maxn maxp

∑
k=1,...,m nk ·

log pk. It corresponds to minimizing the entropy of the vector (n1/N, . . . , nm/N) ∈ N y in the
credal set induced by y, i.e. looking for the minimally uncertain frequency tuples compatible with
observations, which corresponds to the idea of disambiguation put forward by Hüllermeier (2014).

The above results shed light on the significance of the maximin and the maximax strategies and
are useful to understand when to apply one or the other.

• The maximin strategy makes sense if we know that the process generating the variable X
is genuinely non-deterministic, and that the imprecision of the observation may hide some
variability (for instance the pace of variability of X is higher than the one of the observation
process, so that X may vary during the making of one observation). Consider the case of re-
porting daily the temperature of the outside air based on a device that records the temperature
variation within each day. This information is representative of the “average daily tempera-
ture”, which may lead to their modelling as epistemic intervals containing this average value.
Then it is reasonable to interpret the coarseness of Ai in terms of underlying variability and
to go for a maximal entropy solution to the maximum likelihood problem.

• The maximax strategy makes sense if it is assumed that the underlying phenomenon is deter-
ministic but the observations are noisy and coarse. If we try to learn a best model taken from
a class of models and we have some good reason to think that the phenomenon under study
can be represented by one of these models, then it is natural to try and choose one of them.
In particular, it is clear that if A = ∩j=1Aj 6= ∅, then the maximax strategy yields any Dirac
function on X such that P (A) = 1 (it picks any element in A). For instance, consider a linear
regression problem with interval observations, an example from Hüllermeier (2014). If the
studied phenomenon is known to be affine, then one may choose the straight line that achieves
a best fit with respect to the intervals. Especially any linear model that would be consistent
with all interval observations will be preferred. The maximin strategy clearly yields a very
different result due to the link with maximal entropy laid bare above.
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5. Resolution method and an example

In this section, we propose a mathematical programming approach to solving problem (6), which
comes down to optimizing a linear objective function under convex constraints. From the duality
theorem, we know that the cost value of an optimal solution of the original (primal) model is equal
to the cost value of the optimal solution of its dual. Let α be the dual variable associated to con-
straint (7(a)), βk, k = 1, ...,m the dual variables for constraints (7(b)) and γk, k = 1, ..., r the dual
variables for constraints (7(c)). The dual form of problem (7) is:

maxα, β, γ −(α
∑r

k=1 qk +
∑r

k=1 γkqk) (8)

s.t. α+ βk ≥ − log(pk), ∀k = 1, ...,m

−βj + γk ≥ 0, ∀(k, j) ∈ Ey

α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

Let us now return to the initial problem (eq.6) where the probability distribution is a decision vari-
able. Its dual problem can be now written as a maximax problem:

maxp maxα, β, γ −(α
∑r

k=1 qk +
∑r

k=1 γkqk) (9)

s.t.

(a) α+ βk ≥ − log(pk), ∀k = 1, ...,m

(b) −βj + γk ≥ 0, ∀(j, k) ∈ Ey

(c)
∑

k=1,...,m pk = 1

(d) pk > 0, ∀k = 1, ...,m

(e) α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

One can reformulate the problem (9) as follows with ε→ 0:

minP, α, β, γ α
∑r

k=1 qk +
∑r

k=1 γkqk (10)

s.t.

(a) α+ βk ≥ − log(pk), ∀k = 1, ...,m

(b) −βj + γk ≥ 0, ∀(j, k) ∈ Ey

(c)
∑

k=1,...,m pk = 1

(d) pk + ε ≥ 0, ∀k = 1, ...,m

(e) pk, α, βj , γk ∈ R, ∀j = 1, ..., r, k = 1, ...,m

The problem (10) has a linear objective function to minimize, m convex constraints 10.(a) plus lin-
ear constraints. Hence this problem can be efficiently solved using a nonlinear solver.

Example
We want to estimate the probability that a type of car is present in some parking lot. The

custodian provides some characteristics of cars (color and the number of doors) in a data base. For
simplicity we consider three colors: red (r), blue(b),grey (g) and two situations for doors: 3 doors (3)
and 5 doors (5).There are 6 possible types of cars:{r3, r5, b3, b5, g3, g5}. The information reported
by the custodian can be both the color and the number of doors or only the color or only the number
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Y {r3} {r5} {b3} {b5} {g3} {g5}
q 9 167 120 199 164 188
Y {r3, b3, g3} {r5, b5, g5} {r3, r5} {b3, b5} {g3, g5}
q 80 80 18 107 100

Table 1: Distribution of Coarse Observations

of doors. So, we have Y = {{r3}, {r5}, {b3}, {b5}, {g3}, {g5}, {r3, b3, g3}, {r5, b5, g5},
{r3, r5}, {b3, b5},{g3, g5}}. Table 1 provides the coarse dataset.

To estimate the maximin probability distribution on X (noted pMm) we solve the mathematical
formulation given in section 5 using the solver SQP of software Octave.1 To discuss the result, we
compare it with the probability distribution obtained using a maximax approach (noted pMM ). The
results are given in table 2. Firstly, the maximin allow us to conclude that {r3} is the least probable,

X {r3} {r5} {b3} {b5} {g3} {g5}
pMm(X = ai) ≈ 0.141 0.171 0.171 0.171 0.173 0.173
pMM (X = ai) ≈ 0.007 0.150 0.098 0.313 0.279 0.153

Table 2: Estimations of probability distributions on the latent variable

{r5}, {b3}, and {b5} have the same probability to be present in this parking. Finally {g5} and {g3}
are the most expected ones in this parking. The uncertainty on data prevents us from differentiating
between {r5}, {b3} or {b5}. In the same way, it is not possible to differentiate the probabilities of
a car of types {g3} or {g5}.

Let us compare both approaches on the resulting distributions pictured on Table 2. Both the
maximin as the maximax approaches suggest that the cars of type r3 have the least probability to
appear. But its probability in the maxmin approach is around two times the probability obtained by
the maximax approach. In fact, in the maximax approach the observations {r3, b3, g3} and {r3, r5}
are respectively interpreted as {g3} and {r5}. It supposes that when the custodian just writes the
characteristic “3 doors” in data base, the car is supposed to be grey. And when the custodian only
writes the characteristic “red”, the car has 3 doors. One can see that the probability of {r5}, {b3},
and {b5} are very different, like probability {g5} and {g3}.

We focus now on the probability of {b3}, and {b5}. In the maximin approach they were equal
but in the maximax approach the probability {b3} is the second less probable while {b5} is the most
probable type of car. But one can see that around half of observations concerning {b3} or {b5} are
imprecise. It is clear that the maximin approach favors uniform distributions over outcomes while
the maximax approach tends to put more weights on some specific cars, namely those which have
been already most often observed precisely (such as {b5}).

Let us swap observations {b5} and {b3},i.e., suppose there are 120 observations for {b5} and
199 observations for {b3}. The probability distribution of maximin approach does not change since
the number of imprecise observations {b3, b5} is too high to separate the probabilities of {b3} and
{b5}. But the probability distribution of the maximax approach is very sensitive to this exchange
(see Table3). Of course, the probability of {b3} becomes higher than that of {b5}. We point out to
that the probability of {g3} and {g5} changes a lot. In fact, now the observations {r3, b3, g3} are

1. https://www.gnu.org/software/octave.
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interpreted as {b3} and not {g3} while the observations {g3, g5} are interpreted as {g3} and not
{g5}.

X {r3} {r5} {b3} {b5} {g3} {g5}
pMM (X = ai) ≈ 0.008 0.150 0.313 0.097 0.133 0.299

Table 3: Maximax probability distribution with the modified dataset

In this example we show that the maximin approach is cautious compared to the maximax ap-
proach. More precisely, a high number of very coarse observations tends to equalize the probabili-
ties of elementary outcomes while the maximax approach tends to select a best outcome consistent
to coarse observations and this result can be completely altered by slightly changing the number of
observations of each kind, which may lead to very different results.

6. Conclusion

This paper is a contribution to the study of maximum likelihood methods when data are coarse.
The most popular approaches often assume some knowledge about the measurement process (as
witnessed by the use of the superset of the CAR assumptions). These assumptions are strong and
lead to work with the likelihood function of the complete joint sample involving both the observed
and the latent variables. In our approach, we ignore the measurement process, and adopt a cautious
approach involving robust optimisation and graph-theoretic methods. This approach, introduced
previously (Guillaume and Dubois, 2015) for continuous parametric distributions and interval data,
is here studied for finite sets of outcomes. The close connections between maximax and maximin
strategies with entropy optimization shed light on the significance of each approach: the intuitive
character of the resulting distribution depends on whether the observed phenomenon is genuinely
random, or if it is deterministic, with a known class of models, and randomness comes from the
measurement tool that is both imprecise and noisy: only in the latter case does the disambiguation
strategy sound natural. On the contrary, the maximin approach interprets imprecision as the effect
of the variability of the real outcomes. Moreover, we have proposed an efficient solving technique
that can use existing non-linear optimization software. Further work is needed to test the approach
on real data, and compare obtained results with other approaches that use belief functions (De-
noeux, 2013), and also recent possibilistic maximum likelihood methods, which yield possibility
distributions with fixed levels of specificity (Haddad et al., 2016).
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