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Abstract
Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic
graphical models that allow for marginal inference with polynomial effort. As with other proba-
bilistic models, sum-product networks are often learned from data and used to perform classifica-
tion. Hence, their results are prone to be unreliable and overconfident. In this work, we develop
credal sum-product networks, an imprecise extension of sum-product networks. We present algo-
rithms and complexity results for common inference tasks. We apply our algorithms on realistic
classification task using images of digits and show that credal sum-product networks obtained by
a perturbation of the parameters of learned sum-product networks are able to distinguish between
reliable and unreliable classifications with high accuracy.
Keywords: Sum-product networks; tractable probabilistic models; credal classification.

1. Introduction

Probabilistic models are usually built so that they can be used to produce inferences, that is, to draw
quantitative (probabilistic) conclusions about the domain of interest. Probabilistic graphical models
such as Bayesian networks and Markov Networks (Koller and Friedman, 2009; Darwiche, 2009)
allow complex uncertain knowledge to be modeled succinctly; however, producing inferences with
them is notoriously hard (Cooper, 1990; Roth, 1996; Darwiche, 2009).

Sum-Product Networks (SPNs) are a relatively new class of (precise) probabilistic graphical
models that allow marginal inference in linear time in their size (Poon and Domingos, 2011). They
have received increasing popularity in applications of machine learning due to their ability to repre-
sent complex and highly multidimensional distributions (Poon and Domingos, 2011; Cheng et al.,
2014; Nath and Domingos, 2016; Amer and Todorovic, 2016). An SPN encodes an arithmetic cir-
cuit whose evaluation produces a marginal inference (Darwiche, 2003). The internal nodes of a SPN

perform (weighted) sums and multiplications, while the leaves represent variable assignments. The
sum nodes can be interpreted as latent variables, while the product nodes can be interpreted as en-
coding context-sensitive probabilistic independences. Thus, SPNs can be seen as a class of complex
mixture distributions with tractable inference (Zhao et al., 2015; Peharz et al., 2016).

Imprecise probability models extend precise probabilistic models to accommodate the repre-
sentation of incomplete and indeterminate knowledge (Walley, 1991; Augustin et al., 2014). For
example, (separately specified) credal networks extend Bayesian networks by allowing sets of con-
ditional probability measures to be associated with nodes in lieu of conditional probability measures
(Cozman, 2000, 2005).
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In this work, we develop the Credal Sum-Product Networks (CSPNs), a class of imprecise proba-
bility models which extend SPNs to the imprecise case. A CSPN is simply an SPN where the weights
associated with sum nodes (i.e., the numerical parameters of the model) are allowed to vary in-
side a closed and convex set. Among other things, CSPNs can be used to analyze the robustness of
conclusions supported by SPNs.

We begin by presenting somee basic facts about SPNs in Section 2. Then in Section 3 we derive
polynomial-time algorithms for computing upper and lower bounds on the marginal (unconditional)
probability of an event; we also present a polynomial-time algorithm for computing upper and lower
expectations when the structure is constrained so that every internal node has at most one parent. As
many learning algorithms produce networks of this type (Gens and Domingos, 2013; Rooshenas and
Lowd, 2014), this result is quite important and useful. We show that performing credal classification
(i.e., verifying whether a class value dominates another value under maximality) is coNP-complete
when the number of class values is unbounded. Since this task can be posed as the computation of
a lower expectation, this result also shows hardness of computing expectation bounds on arbitrary
(multivariate) functions. We show empirically in Section 4 that CSPNs are effective in assessing the
reliability to classifications made with SPNs learned from data. Finally, we conclude the paper with
a review of our contributions and some ideas for the future in Section 5.

2. Sum-Product Networks

We use capital letters to notate both random variables and random vectors, with the former usually
being indexed by a subscript: e.g., Xi. If X is a random vector, we call the set composed of the
random variables in X its scope. The scope of a function that takes a random vector X as argument
is the scope of X . In this work, we consider only finite-valued random variables, and leave the
extension to random variables with infinite domains as future work.

We associate every random variable Xi taking values in {0, . . . , ci − 1} with a set of indicator
variables {λij : j = 0, . . . , ci−1}, each taking on values 0 and 1. IfXi is binary, we write xi (resp.,
x̄i) to denote λi1 (resp., λi0). Any discrete multivariate distribution P (XV) can be written as a mul-
tilinear function of the corresponding indicator variables by S(λ) =

∑
xV

P(XV = xV)
∏

i∈V λixi .
For example, a Bernoulli distribution can be written as S(x, x̄) = Pr(X = 1)x+ Pr(X = 0)x̄.

A SPN is a concise representation of the multilinear function representing a probability distri-
bution. More formally, a SPN is a weighted rooted directed acyclic graph where internal nodes are
associated to either sum or product operations and leaves are associated with indicator variables.
Every arc from a sum node i to a child j is associated with a nonnegative weight wij , and every arc
leaving a product node has weight one. The scope of a leaf node of the network is the respective
random variable; the scope of an internal node is the union of the scopes of its children. If w are the
weights of a subnetwork Sw, we denote by wi the weights in the subnetwork Si

wi
rooted at node i,

and by wi the vector of weights wij associated with arcs from i to children j. Figure 1 shows an
example of a SPN with scope {A,B}, where A and B are binary variables.

An SPN satisfies the following properties (Poon and Domingos, 2011; Peharz et al., 2015): (i)
every indicator variable appears in at most one leaf node; (ii) the scope of any two children of a sum
node are identical (completeness); (iii) the scopes of any two children of a product node are disjoint
(decomposition); (iv) the sum of the weights associated with any sum node is one (normalization).
Every discrete distribution can be represented by a SPN, and any SPN satisfying the those properties
represents a valid distribution.
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Figure 1: A sum-product network over binary random variables A and B.

The evaluation of a SPN for a given configuration λ of the indicator variables is performed from
the leaves toward the root. The leaves (indicator variables) propagate up their corresponding value
(either 0 or 1) in the configuration λ. Sum (resp., product) nodes propagate the weighted sum (resp.,
product) of the values of their children multiplied by the corresponding arc weights. For example,
the value of the SPN Sw(a, ā, b, b̄) in Figure 1 at the point λ = (1, 0, 0, 1) is 0.15 and corresponds
to P(A = 1, B = 0), and for λ = (1, 0, 1, 1) is 0.45 and corresponds to P(A = 1).

Let E ⊆ {1, . . . , n} be an index set, and XE be a random vector of scope {Xi : i ∈ E}. The
marginal probability of some evidence {Xi = ei : i ∈ E} induced by a SPN S can be obtained by
evaluating the network at λ that is consistent with the evidence, and assigns one to all other indicator
variables (Poon and Domingos, 2011). That is, λij = 0 if i ∈ E and ei 6= j, and λij = 1 otherwise.
Thus marginal probabilities can be computed in time linear in the network size (the number of nodes,
arcs and weights). For example, the marginal probability P(B = 0) = 0.3 induced by the SPN in
Figure 1 can be obtained by evaluating S(a, ā, b, b̄) at λ = (1, 1, 0, 1). Conditional probabilities can
either be obtained by evaluating the network at query and evidence (then dividing the result) or by
applying Darwiche’s differential approach (Darwiche, 2003; Peharz et al., 2016).

A great deal of algorithms have been devised to “learn” SPNs from data (Dennis and Ventura,
2012; Gens and Domingos, 2013; Peharz et al., 2013, 2014; Lee et al., 2014; Rooshenas and Lowd,
2014; Dennis and Ventura, 2015; Adel et al., 2015; Rahman and Gogate, 2016). Most learning
algorithms employ a greedy search on the space of SPNs augmenting an SPN in either a top-down or
bottom-up fashion. For instance, Gens and Domingos (2013)’s algorithm starts with a single node
representing the entire dataset, and recursively adds product and sum nodes that divide the dataset
into smaller datasets until a stopping criterion is met. Product nodes are created using group-wise
independence tests, while sum nodes are created performing clustering on the row instances. The
weights associated with sum nodes are learned as the proportion of instances assigned to a cluster.

3. Credal Sum-Product Networks

Let Sw denote a SPN whose weights are w. We can obtain an imprecise sum-product network
by allowing the weights w to vary in some space, subject to the constraint that they still define a
SPN. More formally, a Credal Sum-Product Network (CSPN) is a set {Sw : w ∈ C}, where C is
the Cartesian product of probability simplexes, and each probability simplex constrains only the
weights associated with a single sum node. It is clear that a SPN is a CSPN where weights take
values in a singleton C, and that every choice of weights w inside C specifies a SPN. Since each SPN

induces a probability measure, the CSPN induces a credal set, that is, a (not necessarily convex) set

207
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Figure 2: A credal sum-product network over variables A and B.

of probability measures (Levi, 1980). Figure 2 shows a CSPN obtained by ε-contamination of the
SPN in Figure 1, with ε = 0.1.

A SPN can be interpreted as a bilevel bipartite Bayesian network by identifying sum nodes with
latent variables whose probability distributions are obtained from the corresponding weights (Zhao
et al., 2015). The network has a layer of latent variables Y1, . . . , Ym corresponding to sum nodes
of the network, and a layer of leaf variables X1, . . . , Xn corresponding to (scopes of) indicator
variables. There is an arc Yj → Xi if and only if Xi is in the scope of the sum node (associated
with) Yj . Each variable Yj has as many values as children, and its (unconditional) probabilities are
specified as the associated weights. The (conditional) probabilities associated with a node Xi are
specified as the weights entering the corresponding indicator variable (which depend on the value
of the respective latent variables). Note that a variable Xi can have a large number of parents, so
that obtaining this Bayesian network is often impracticable.

We can adapt a similar argument for CSPNs: sum nodes can be interpreted as latent variables in
a credal network. This network is obtained exactly as the Bayesian network, except that conditional
probability distributions are replaced by conditional credal sets.

3.1 Likelihood

The most trivial inference with CSPNs is to compute the minimum and maximum values obtained
at a SPN for a given value λ of the indicator variables. This computation corresponds to computing
the upper and lower likelihood of evidence, and can be performed in much the same way as the
computation of marginal probabilities in SPNs, with the additional extra effort of solving a linear
program at each node. To see this, consider a tree-shaped CSPN {Sw : w ∈ C} with root r. Since
the structure is a tree, the subnetworks S1, . . . , Sk rooted at the children of a node i do not share
any weights. Hence, we have that minw Sw(λ) = minwi

∑
j wij minwj S

j
wj (λ). Thus, the problem

of computing the minimum or maximum of a value λ decomposes into smaller similar problems.
A much similar argument applies to CSPNs with cycles; simply break the cycles by duplicating
nodes until the structure is a tree, and perform optimizations from the leaves toward the root. Every
duplicated network receives the same values from the (duplicated) children; thus the optimizations
are the same whether we “tie” the weights of identical parts or not. A more formal argument is
given next.
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Theorem 1 Consider a CSPN {Sw : w ∈ C}, where C is the Cartesian product of finitely-generated
polytopes Ci, one for each sum node i. Computing minw Sw(λ) and maxw Sw(λ) takes O(sL)
time, where s is the number of nodes and arcs in the shared graphical structure and L is an upper
bound on the cost of solving a linear program minwi

∑
j cijwij subject to wi ∈ Ci.

Proof Consider the computation of minw Sw(λ) (the case for max is analogous), and let 1, . . . , k
denote the sum nodes of the network. By construction, the optimization is over weight vectors
w = (w1, . . . , wk), where wi denotes the weights associated with the sum node i, and vary in a
finitely-generated polytope Ci. Now start at the leaves. There are no weights associated, so these
nodes simply propagate their values as in SPNs. Consider a sum node i, and assume that the weights
of the subnetworks at its children have been optimized (and are hence fixed). The corresponding op-
timization is then minw

∑
pwp

∑
j wijS

j
wj (λ)+Cw, where the leftmost sum is over all paths from

the root to i, the inner sum is over the children j of i, and Cw contains the subnetwork formed by
nodes which are neither an ancestor nor a descendant of i (hence can be optimized independently
of wi); this expression defines a linear program with (finitely many) linear constraints wi ∈ Ci.
Solving this linear program takes time O(L). The result follows by induction on the height of sub-
networks.

The algorithm to compute the minimum or maximum values at a configuration λ visits nodes
from leaves toward the root: at product or indicator nodes, it evaluates the corresponding expression
as in SPNs; at a sum node, it builds the corresponding linear program and calls a solver. Since linear
programs can be solved in polynomial time, the overall time is also polynomial in the size of the
input (which includes a description for the local polytopes). This leads to the following:

Corollary 2 Computing minw Sw(λ) and maxw Sw(λ) takes at most polynomial time in CSPNs
specified by finitely-generated polytopes.

3.2 Conditional Expectations

Each choice of the weights w of a CSPN {Sw : w ∈ C} defines a SPN and hence induces a proba-
bility measure Pw. We can thus use the CSPN to compute upper and lower conditional expectations:

max
w

Ew(f |XE = e) and min
w

Ew(f |XE = e) ,

where XQ are known as target variables, f : XQ → Q is a function to rational numbers and
XE = e is the evidence. We will focus on the lower expectation, since the upper expectation can be
obtained from maxw Ew(f |e) = −minw Ew(−f |e). This inference is however intractable (under
the common assumptions in complexity theory):

Theorem 3 Assuming that f is encoded succinctly (e.g., sparsely by its non-zero terms only), com-
puting lower/upper conditional expectations of f in CSPNs is NP-hard.

We defer the proof to Section 3.3, where we address the case of credal classification (that can be
posed as the computation of a conditional expectation). The requirement of a succinct representation
for f is necessary because an exponentially large input would give too much power to any algorithm
(since polynomial time in the input would allow exponential time computations).
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While the general case is NP-hard, there are useful subcases with tractable inference. We now
present an algorithm for the computation of lower and upper conditional expectations when the
network obtained by discarding leaves is a tree and f : XQ → Q is a univariate function. The
algorithm is based on the generalized Bayes rule, and uses the fact that, for any real µ:

min
w

Ew(f |XE = e) > µ ⇐⇒ min
w

∑
q∈XQ

(f(q)− µ) · Pw(XQ = q,XE = e) > 0 , (1)

provided that maxw Pw(XE = e) > 0 (this can be checked in polynomial time, see Section 3.1).
We can also check efficiently whether minw Pw(XE = e) = 0, and decide what to do in such
extreme scenarios. If we can decide Inequality (1) for any µ, then we can perform a binary search
to find the value of minw Ew(f |XE = e).

Theorem 4 Computing lower/upper conditional expectations of a variable in CSPNs takes at most
polynomial time when each internal node has at most one parent.

Proof Let λe be the assignment of indicator variables that is consistent with XE = e and as-
signs 1 to variables not in XE . As shown before, we can efficiently compute maxw Sw(λe) =
maxw Pw(XE = e) and minw Sw(λe) = minw Pw(XE = e). To compute a lower conditional
expectation we might do a binary search to find µ such that

min
w

∑
q∈XQ

(f(q)− µ) · Pw(XQ = q,XE = e) .

To simplify notation we will write Pw(q, e) to denote Pw(XQ = q,XE = e). Now suppose that the
CSPN has a product root node 0 with children 1, . . . , k and (without loss of generality) only node 1
has XQ in its scope. Then, because the scopes of children of product nodes are fully disjoint and
the internal graph of the CSPN forms a tree, we have that

min
w0

∑
q

(f(q)− µ) · Pw0(q, e0) =

(
min
w1

∑
q

(f(q)− µ) · Pw1(q, e1)

)
·

k∏
j=2

P∗wj
(ej) ,

where ej is the evidence for Ej within the scope of child j (note that E1 might be empty and e1 would
disappear), P∗wj

(ej) = maxwj Pwj (ej) in the case that minw1

∑
q(f(q)− µ) · Pw1(q, e1) < 0 and

P∗wj
(ej) = minwj Pwj (ej) otherwise. Hence, if we assume that S1

w1
(λ) = minw1

∑
q(f(q) −

µ) · Pw1(q, e1) and that Sj
wj (λ) = P∗wj

(ej), then from the computation scheme of the CSPN for a

sum node, it is clear that S0
w0

(λ) = minw0

∑
q(f(q)− µ) · Pw0(q, e0). The assumption Sj

wj (λ) =
P∗wj

(ej) is satisfied by definition for all children j that are leaf nodes and do not contain XQ.
Moreover, if the node 0 is a product node and does not have XQ in its scope, then

min
w0

Pw0(e0) =

k∏
j=1

min
wj

Pwj (ej) and max
w0

Pw0(e0) =
k∏

j=1

max
wj

Pwj (ej) ,

and so it is immediate that minw0 S
0
w0

(λ) = minw0 Pw0(e0) if each Sj
wj (λ) = minwj Pwj (ej)

(analogous for the maximization).

210



CREDAL SUM-PRODUCT NETWORKS

If node 0 is a sum node with XQ in its scope, then because the internal graph of the CSPN is a
tree and expectations are linear, we have that

min
w0

∑
q

(f(q)− µ) · Pw0(q, e0) = min
w0

k∑
j=1

w0,j ·min
wj

∑
q

(f(q)− µ) · Pwj (q, e0) ,

where w0 = (w0,1, . . . , w0,k) varies in the corresponding polytope specifying the weights of the
current node 0 (note that E0 might be empty and e0 would disappear). Hence, if we assume that
Sj
wj (λ) = minwj

∑
q(f(q) − µ) · Pwj (q, e0), it is immediate from the local computation of the

CSPN for a sum node that S0
w0

(λ) = minw0

∑
q(f(q) − µ) · Pw0(q, e0). If node 0 is a sum node

without XQ, then

min
w0

Pw0(e0) = min
w0

k∑
j=1

w0,j ·min
wj

Pwj (e0) ,

where w0 = (w0,1, . . . , w0,k) varies in the polytope specifying the weights of the current node
0. Again, minw0 S

0
w0

(λ) = minw0 Pw0(e0) if each Sj
wj (λ) = minwj Pwj (e0) (analogous for the

maximization). Finally, if node 0 is a leaf node with scope XQ, then

min
w0

∑
q

(f(q)− µ) · Pw0(q) = f(q′)− µ ,

where q′ is the value of the variable XQ associated to the λQ,q′ of the leaf node. Therefore, by
using these expressions, we can perform the computation recursively and obtain the desired upper
or lower conditional expectation in polynomial time.

3.3 Credal Classification

SPNs are most often constructed to perform probabilistic classification: to assign each object the
assignment that maximizes the probability of a distinguished set of variables XC given the realiza-
tion of (a subset of) the remaining variables. Since CSPNs define more than a single SPN, there
is more than one such possible maximizer. Many criteria have been devised for decision making
with imprecise probability models. Here we adopt a very popular one, based on the principle of
maximality, often called credal classification in the context of probabilistic classifiers.

Given distinguished variables XC , evidence e = {Xi = ei : i ∈ E} on some variables, and
a credal setM, we say that an assignment c′ for XC credally dominates another assignment c′′ if
(Zaffalon, 2002)

min
P∈M

(
P(XC = c′, XE = e)− P(XC = c′′, XE = e)

)
> 0 .

There is a special case of P(XE = e) = 0 to be treated— an advantage in CSPNs is that comput-
ing lower/upper marginals is efficient. According to the above definition, an assignment c′ credally
dominates class value c′′ if P(XC = c′|XE = e) > P(XC = c′′|XE = e) for all P ∈ M where
these conditional probabilities are defined. In the setting of CSPNs, credal dominance amounts to
establishing whether minw(Sw(λc′ , λe) − Sw(λc′′ , λe)) > 0, where λc′ (resp., λc′′) is the assign-
ment of indicator variables associated with variables XC consistent with c′ (resp., c′′), and λe is the
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Figure 3: Fragment of the sum-product network used to solve PARTITION. We duplicate leaves for
the sake of readability.

assignment of indicator variables consistent with evidence (if there are other variables, these have
their indicator variables set to one to indicate their marginalization).

Lemma 5 If we allow all weights w of an SPN an additive variation ε > 0, then the result of S(λ)
will vary (additively) at most O(s) · ε, where s is the number of nodes and arcs in the graphical
structure. If we allow all w a multiplicative variation ε > 0, then the result of S(λ) will vary
(multiplicatively) at most εO(s).

Proof Each sum node propagates an extra error of at most ε, while the product nodes propagate an
extra error of at most O(d) · ε, where d is its degree. So the result follows by induction. For the
multiplicative error, we hve that sum nodes contribute at most a factor ε to the error, while product
nodes may contribute a factor εO(d). Hence the overall result follows.

Theorem 6 Credal classification is coNP-complete.

Proof Membership in coNP is trivial: Given w, computing Sw(λc′ , λe)−Sw(λc′′ , λe) is a polyno-
mial time task. Hence, there is a polynomial certificate w that confirms that minw(Sw(λc′ , λe) −
Sw(λc′′ , λe)) ≤ 0 if that is indeed the case, and since credal classification is the complement,
membership follows.

Hardness follows by a reduction from the NP-hard problem PARTITION: Given a set of integers
z1, . . . , zn, decide if there is a set S ⊆ {1, . . . , n} such that

∑
i∈S zi = Z/2, where Z =

∑
i zi.

First note that we can scale integers to become rationals in the unit interval without affecting com-
plexity: Let vi = 2zi/Z; then set S solves the original problem if and only if

∑
i∈S vi = 1.

Now, we build an CSPN over variables X = (X1, . . . , Xn, Xn+1, . . . , X2n) as in Figure 3,
where the weights wi,1 vary in [0, 1], and let C = {1, . . . , n} and E = {n + 1, . . . , 2n}. Since
the variables Xi, i ∈ E , have their value fixed by the evidence e (say Xi = 1), we only show the
corresponding value in the figure. The product node S0 has children S1, . . . , Sn. Note that for
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XC = c′, Si′ computes 2−2vi while Si′′ computes 1; and for XC = c′′, Si′ computes 2−vi and
Si′′ computes 1. Because the weights are minimized at {0, 1}. Thus, we have that S(λc′ , λe) =

2
−

∑
i:wi,1=1 2vi−n and S(λc′′ , λe) = 2

−
∑

i:wi,1=1 vi−n. Hence,

Sw(λc′ , λe)− Sw(λc′′ , λe) = 2−n · (t2 − t) = 2−n · t · (t− 1), with t = 2
−

∑
i:wi,1=1 vi .

Now, deciding whether minw(Sw(λc′ , λe)− Sw(λc′′ , λe)) ≤ −2−n−2 solves the partition problem
since t would be 2−1. With a small change in the model, we can move the threshold −2−n−2 to
zero, as required in the classification problem. Therefore, credal classification is coNP-complete.
However, we have to deal with the specification of 2−vi in polynomial time. To do so, we find
rational numbers which approximate them, and in view of Lemma 5, we can find accurate enough
results to separate between yes and no instances of PARTITION.

Since credal classification can be casted as the computation of the lower expectation of a uni-
variate function, we have from Theorem 4 that:

Theorem 7 Credal classification with a single class variable can be done in polynomial time in
CSPNs when each internal node has at most one parent.

4. Experiments

We evaluate the ability of CSPNs in distinguishing between robust and non-robust classifications in
a handwritten digit recognition task. The dataset consists of 700 digitalized images of handwritten
Arabic numerals ranging from 0 to 9 (70 images per digit). Each image consists of 20 × 30 pixels
taking on values 0 and 1, and we associate every pixel with a binary variable. To assess the effect
of dataset size, we consider two splits in training/test data: 50%/50% and 20%/80%. For each split,
we learn a SPN from the training set using the approach discussed by Poon and Domingos (2011),
and use it to classify each instance in the test set. Then, for each test instance, we find the maximum
value of ε such that the CSPN obtained by imposing a local ε-contamination to each of the sum
nodes produces a single classification under maximality (which is equivalent to E-admissibility in
this case). Call this value the classification robustness. We repeat this procedure 10 times using
different random partitions of the data into train and test parts. The curves show the accuracy (no.
of correctly classified instances/no. of instances) of the SPN for instances with robustness at most a
given ε (x-axis). The results are compiled into Figure 4. We see that the higher the robustness the
greater the accuracy.

Examples of misclassified instances are given in Figure 5. For comparison, we also analyze a
different approach to measure robustness: we compute the difference between the probability of
the most probable class and the second most probable class. As we see in the figure, this measure
correlates poorly with the accuracy.

In order to give a more quantitative perspective of the robustness value, we present in Table 1
some descriptive statistics for correctly and wrongly classified instances, using either robustness
measure. We see a much clearer separation of the robustness values between correctly and incor-
rectly classified instances using the CSPN approach instead of the “best minus second best” proba-
bility approach.
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Figure 4: Average classification accuracy for instance below the given robustness (the x-axis shows
the values times a constant 20 to be visually compatible with the probabilities), as ex-
plained in the text.

Figure 5: Examples of misclassified instances. Usually, number 8 is misclassified as 3, number 4
as number 1, and number 3 as 5 and 8. These classifications obtained low robustness
values as given by the CSPN analysis (< 0.01), rightfully indicating the lack of statistical
support.

5. Conclusion

Sum-product networks are tractable probabilistic graphical models that have shown competitive
results in many machine learning tasks. In this work we developed the credal sum-product net-
works, a new class of imprecise probabilistic graphical models that extend sum-product networks
to accommodate imprecision in the numerical parameters. We described algorithms and complex-
ity for common inference tasks such as computing upper and lower bounds on the probability of
evidence, computing conditional expectations and performing credal classification. We performed
experiments that showed that credal sum-product networks can distinguish between reliable and un-
reliable classifications of sum-product networks, thus providing an important tool for the analysis of

Robustness CSPN Best minus second best
Measure Correct Wrong Correct Wrong
1st quartile 0.0255 0.0012 0.0909 0.0627
median 0.0363 0.0029 0.0909 0.0880
3rd quartile 0.0461 0.0049 0.0909 0.0905
maximum 0.1524 0.0199 0.3333 0.3333
mean (std.dev.) 0.0369 ±0.017 0.0043 ±0.004 0.0976 ±0.04 0.1042 ±0.09

Table 1: Robustness values for split of 50% training and 50% testing, repeated 10 times. Overall
classification accuracy of 99.31%.
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such models. There are many open questions. We showed that verifying maximality is coNP-hard
when the query involves multiple variables, but the problem admits an efficient solution if internal
nodes have at most one parent and the test is over a single variable. In fact, we have showed a
polynomial algorithm for computing conditional expectations in networks of that structure, which
subsumes maximality. There remains to establish the complexity of verifying maximality and com-
puting conditional expectations for single variables in general structures, and for multiple variables
in tree-shaped networks. Our experiments here, however promising, are preliminary. In the future,
we intend to perform a more thorough examination of the credal sum-product networks applied to
robust analysis of sum-product networks.
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