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Abstract

This paper presents an investigation of approaches to modeling lower and upper subjective prob-
abilities. A relatively unexplored approach is introduced, based on the fact that every cumulative
distribution function (CDF) with support (0,1) has a “dual” CDF that obeys the conjugacy relation
between coherent lower and upper probabilities. A new 2-parameter family of “CDF-Quantile”
distributions with support (0,1) is extended via a third parameter for the purpose of modeling lower-
upper probabilities. The extension exploits certain properties of the CDF-Quantile family, and the
fact that continuous CDFs on (0,1) random variables form an algebraic group that is closed under
composition. This extension also yields models for testing specific models of lower-upper proba-
bility assignments. Finally, the new models are applied to a real data-set, and compared with the
alternative approaches for their relative advantages and drawbacks.

Keywords: probability judgment; distribution; quantile regression; generalized linear model.

1. Introduction

This paper presents an investigation of approaches to modeling lower and upper subjective prob-
abilities. This investigation springs from two motivational sources. First, it is motivated by the
many applications in which interval-valued probability assignments play a role in human probabil-
ity judgments, whether as input into decision making and forecasting or as risk communication (e.g.,
Budescu et al., 2014). Second, it is motivated by recent developments for modeling random vari-
ables on the (0,1) interval, which have resulted in a new family of probability distributions with (0,1)
support, described by Smithson and Merkle (2014) and elaborated in Smithson and Shou (2017).

We begin with a brief description of conventional methods for modeling lower-upper probabil-
ities, followed by the introduction of a heretofore unexplored modeling approach. Then the new
family of distributions is introduced, and extended for the purpose of modeling lower-upper proba-
bilities via the methods described previously. Finally, the models are applied to real data-sets, and
compared for their relative advantages and drawbacks.

Conventional statistical approaches to modeling lower-upper probability assignments treat them
as a pair of dependent random variables. One type of method ignores the ordering and simply
models the dependency either via a “subject-effect” parameter or a covariance. A somewhat more
sophisticated regression-style approach uses a binary dummy predictor that takes a value of O for
the lower probabilities and 1 for the upper probabilities and respects the ordering by restricting the
coefficient to being non-negative by exponentiating it (e.g., Smithson et al., 2012).

This paper introduces another approach to modeling lower-upper probabilities, in which the
probability distributions modeling the lower and upper probability assignments share parameters
but take two different forms. This pair of distributions is determined by the so-called “conjugacy”
relation between coherent lower and upper probabilities. Let pr, (A) = W (p(A),0), be a lower
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probability with respect to probability p(A) so that 0 < W (p(A),8) < p(A), for real-valued 6.
The conjugate upper probability is pyy (A) = 1—pr, (~ A),sothatpy (A) =1-W (1 —p(A),¥6).

A version of this relationship may be identified in cumulative distribution functions (CDFs) for
random variables on the (0,1) interval. Consider a CDF, G(z,0), for 0 < z < 1, with a location
parameter, 6, so that G(0,0) = 0, G(1,0) = 1, and G is monotonically increasing in 2. Define
Gp(z,0) =1— G(1 — z,0), which clearly also is a CDF. Gp is the conjugate dual of G, which
follows by observing that

1-Gp(l—2,0)=1-[1-G(1—-(1-1),0)] =G (x,0) (1)

As a simple example, consider G (z,0) = 2%, for § > 0. Then Gp(z,0) = 1 — (1 — 2)?. When
f < 1 G is the upper CDF, when 6 = 1 we have the uniform distribution so that G = G p, and when
6 > 1 G is the lower CDF.

A second example is the beta distribution. It is easy to show that if X is distributed beta(w, 7)
then Gp is the CDF of a random variable, X p, say, that is distributed beta(7,w), i.e., the PDF
of X flipped around 1/2. The absolute difference between their means, |(w — 7)/(w + 7)|, gives a
convenient index of the distance between the lower and upper distributions. Reparameterizing the
beta distribution so that the parameters are the mean, u = w/(w + 7), and precision, ¢ = w + 7, it
is clear that the mean and precision of X jointly determine the magnitude of the difference between
its distribution and that of and its conjugate dual X p.

One- and two-parameter distributions of the kinds illustrated here have very limited flexibility
regarding the location of G and G p; typically the corresponding PDFs are mirror-images of one
another centred on 1/2. Nevertheless, while these pairs of distributions may not be very useful for
modeling real data, the concepts involved turn out to have such applications when applied to the
family of distributions introduced in the next section.

2. CDF-Quantile Distributions

The family of distributions presented here is elaborated in Smithson and Shou (2017) and Shou and
Smithson (2016) implement them in the R package cdfquantile for generalized linear model-
ing. This family is a special case of the T-X family presented by Aljarrah, et al. (2014), although it
was independently described in Smithson and Merkle (2014). Let G(z, i, o) denote a CDF for ran-
dom variable X with support (0, 1), a real-valued location parameter 1 and positive scale parameter
o. We define G as follows:

G(x,p,0) = FIUH ' (2), p, 0)] )

where F' is a CDF with support denoted by D1, H is an invertible CDF with support denoted by Ds,
and U : Dy — D is an appropriate transform for incorporating parameters ; and . We limit the
domains Dy and D5 to pairs taken from (—oo, o) and/or (0, 0o), and the following cases of U.

For D1 = (—00,0) and Dy = (—00, 00) we put

Uly,p,0) = (y — p)/o. 3)

For D; = (—o0, 00) and Dy = (0, 00) we put
Uy, p,0) = (log (y) — p)/o. ©)
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For D; = (0,00) and Dy = (—o0, 00) we put

U (y,pu,0) = exp(—p/o)exp(y/o). 6)

Finally, for D; = (0, 00) and Dy = (0, 00) we put

U (y, o) = exp (—p/o) y*/°. (6)

If all the functions are differentiable then the PDF g¢(z, i, o) has an explicit expression. If F' is
invertible, then for every « such that G(z, u, o) = =, the quantile functions corresponding to the
cases described in equations (3) to (6) are as follows. For D1 = (—o00, 00) and Dy = (—00, 00) we
put

G (v p,0) = H [0F ™" (7) + ] - (7)
For D; = (—o00,00) and Dy = (0, 00) we put

G (v, p,0) = H [exp (0F " (7) + )] ®)

For D; = (0, 00) and Dy = (—00, 00) we put

G (y,p,0) =H [pu+olog (F' (7))] . ©)

Finally, for D; = (0, 00) and Dy = (0, c0) we put

G ' (v.po)=H [exp (w) (F (7))0} : (10)

Smithson and Shou (2017) present 36 members of the CDF-Quantile family by employing six
standard distributions for F and H: The logistic, Cauchy, t with df = 2, arc-sinh, Burr VII, and
Burr VIII distributions. All of these have explicit PDF, CDF, and quantile functions. Smithson and
Shou observe that F' and H may exchange roles. The resulting pairs of distributions are”quantile-
duals” of one another in the sense that one’s CDF is the other’s quantile, with the appropriate
parameterization. This duality is due to the fact that (0, 1) is both the domain and range of these
functions. Smithson and Shou denote these distributions with the nomenclature F-H (e.g., Cauchit-
Logistic and Logit-Cauchy).

Smithson and Shou (2017) show that the CDF-Quantile family members share the following
properties:

1. The family can model a wide variety of distribution shapes, with different skew and kurtosis
coverage from the beta or the Kumaraswamy.

2. (Proposition 1, from Smithson and Shou (2017)) Members are self-dual in the sense that
g(x,pu,0) = g(1 —x,—p,0). Moreover, G = Gp, so the conjugate-CDF duals in this
family consists of identical distributions.

3. (Proposition 2) The median is solely a function of p, so that y is genuinely a location param-
eter.

4. (Proposition 3) The parameter o is a dispersion parameter.
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5. (Proposition 4) Members of this family fall into four subfamilies distinguished by behavior at
the boundaries of the [0, 1] interval, including a subfamily whose density is finite in the limits
at O and at 1.

Thus, the CDF-Quantile family enables a wide variety of quantile regression models for random
variables on the (0, 1) interval with predictors for both location and dispersion parameters, and sim-
ple interpretations of those parameters. Smithson and Shou demonstrate that members of the family
can out-perform the beta and other two-parameter distributions in fitting real data. Because they
have explicit CDFs and quantile functions, the CDF-Quantile family is well-suited for multivariate
models using copulas, and an example of this application will be presented later in this paper. Shou
and Smithson (2017) fit a trivariate copula model to real data as a demonstration of how this may
be done using their cdfquant reg package in conjunction with the R package copula.

3. Introducing a Third Parameter to the CDF-Quantile Family

The fact that G = Gp for the entire CDF-Quantile family implies that they may be well-suited to
testing the conjugate-CDF model of lower and upper probabilities via the introduction of a third
parameter. Unlike two-parameter distributions such as the beta distribution, for a three-parameter
distribution the third parameter can determine the difference between a CDF and its conjugate dual
CDE

There are several ways to introduce a third parameter, but we will focus on doing so through
a composition operator. Marshall and Olkin (2007, pp. 494-495) state that the class G of CDFs
G whose support is (0,1) form an algebraic group. This is true of continuous CDFs. The class of
continuous CDFs is closed under the composition operation G; @ G = (1 (G2), and this operation
also is associative. The uniform distribution is the identity. Likewise, for any G in G, the quantile
function G~! also is in G. The quantile-dual relation described in the preceding section is a special
case of this type of closure.

A straightforward way to introduce a third parameter is via an invertible monotonic function
applied either at the outermost or innermost level of the CDF or the quantile function. Applying an
invertible (0, 1) — (0, 1) transformation W to the innermost level of the CDF, for instance, we have

G(z,p,0,0)=F[U(H (W (2,0),p,0)] (1)

and
G (V0 0) =W HHU T (F (), p,0)) 0] (12)

If we additionally require that W (0,6) = 0, W (1,0) = 1 and W monotonically increasing in z,
then W behaves as a CDF. The conjugate dual CDF therefore is

Gp(z,p,0,0)=F[UH'1-W(1-2,0),p0)]. (13)

Several kinds of CDFs for W and application of the CDF-composition operator are available
from the literature on lifetime distributions. A power (resilience) parameter or a frailty parameter
can be introduced in this way, by applying the CDF-composition operator. The relevant CDF is
2%, for some # > 0. Slightly less obviously, introducing a tilt parameter also involves a CDF-
composition, because, for > 0, it is a composition of the CDF z/(z + 0 (1 — z)) with G(z, u, o).
Likewise, a hazard parameter can be introduced via composition using the CDF
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1 —exp {—(— log (1 — SC))G} , for 6 > 0; and a Laplace transform parameter with the CDF

(1—e%)/(1—e"), for real 6.

In the cases where the composition is G @ W, the introduction of the third parameter yields a
three-parameter CDF-Quantile family with distinct CDFs and conjugate dual CDFs (i.e., G # G p)
and possessing certain properties paralleling those derived by Smithson and Shou (2017) for the
two-parameter family. The following Proposition is an extension of Proposition 1 (the self-dual
property) from Smithson and Shou (2017).

Proposition 5.1: Let W (x, §) be defined as earlier, so that it behaves as a CDF. Let

G (W (2,0),p,0) =F[U(H (W (2,0)),p,0)].

Then if the CDFs F and H satisfy certain symmetry conditions (in the 4 cases detailed below),

1-GW(A—=z,0),—p,0)=G(1—-W(1—-=z,0),u,0). (14)
Now define
G_l (Zl (7? My J) 70) = W_l [H (U_l (F_l (7) ez U)) ,0] )
and
G (22 (v, p,0),0) =1 =W 1-H (U™ (F7' (7),p.0)) 0]
These are the quantile functions corresponding to the con]ugate dual CDFs G (W («x,6), u, o) and

G(1—-W(@Q1—=x,0),u,0), respectively. Then G~ (Z; (v, p,0),0) and G~ (Z (*y,u, a),0)
behave as conjugate lower-upper probabilities.
Proof: The identity in equation (14) has four cases, corresponding to the four combinations of

domains in the CDF-Quantile family.
Case 1: For D; = (—o0,00) and Dy = (—00,00) when —H ! () = H™' (1 —z) and f (z) =
f(=2),1-GW (1 —x,0),—p,0,0)=1—F[(H! W(l—x@ )/J
=1-F[(-H'1-WQ1-2,0)+pn)/o] =F[(H'Q-W(1-20)—p)/o]
=GA1-W(Q1—-=x,0),u,0,0).
Case 2: For Dy = (—00,00) and Dy = (0,00) when H ! (z) = 1/H ' (1 — ) and f (z) =
f(=2),1-GW ' (1—-2,0),—p,0,0) =1—F [(log(H (W (1 —2,0))) + ) /o]
=1-F[(-log(H*(1-WQ—1,0))+pu)/o| =F[(log(H'(1-W(1-=x0))) —p)/o]
=G1-W{1—-=z,0),u,0,0).
Case 3: For D; = (0,00) and Dy = (—00,00 )whenH =1/H'(1—2)and F (z) =

~F(1/z),1-G(1 -z, — _1—F[(H 1—$9))exp( ) /"}

—1-F (! <1—W<1—x6)))”<exp<u>>”"} FI(H (=W (1= 2,0)exp(-p) "]
=GA1-W(QA—-=x,0),p,0,0).

Case 4. For D; = (0,00) and Dy = (0,00) when —H ! (x) = H1 (1

—F(l/x),l—G(l—x,—,u,a):1—F[exp((—H (W (1—2x,0)) +
=1—Flexp((-H'Q-W({—-20)+u)/o)] =F [exp ((H* (1
=G1-WQA—-=x,0),p,0,0).

xz) and F (z) =

4)/o)

—W(Q1—0)—p)/o)]

The conjugacy relationship immediately follows immediately by observing that, in the definition of
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the quantile functions, H (U~! (F~! (v), 1, 0)) fulfills the role of z in the function W~'. End of
proof.

The conjugate dual CDFs straddle the CDF G (x, i1, o) and the resultant lower and upper quan-
tile functions straddle the quantile function G~! (v, i1, o) . That is, the location of the conjugate-dual
pair is determined by p, which makes them flexible enough to be worthy candidates for modeling
real data. Propositions 2-4 in Smithson and Shou (2017) also hold for these three-parameter CDF-
Quantile distributions because W is monotonically increasing in x and we can write the quantile
function as W1 [H (U_1 (F_1 v), u, J)) ,9]. Thus, the median is solely a function of x and
0, and o still is a dispersion parameter. Moreover, the § parameter has an interpretation as a risk-
attitude parameter, because it determines the difference between the lower and upper CDFs (and
likewise the difference between the corresponding quantile functions). This three-parameter fam-
ily therefore is suited to ascertaining whether samples of lower and upper probability assignments
behave as though they come from populations with conjugate dual distributions.

4. Examples and Applications
4.1 G ¢ IV Conjugate Duals

In this subsection we will survey two examples of three-parameter CDF-Quantile distributions of the
G o WV type, each one corresponding to a well-known kind of parameterization borrowed from the
life distributions literature. These include the power parameter (which in this case corresponds to a
frailty parameter) and the tilt parameter. The Cauchit-Cauchy distribution will be used throughout
this subsection for illustrative purposes (it also is employed in the data-fitting example in the next
subsection).

Starting with the power parameter, W(z,0) = 2% andso 1 — W(1 — z,60) = 1 — (1 — z)°.
Applied to the Cauchit-Cauchy distribution, we have the conjugate CDF duals As its name suggests,
both F' and H are Cauchy CDFs, the power parameter (exponentiated) model simply replaces x with
2%, and the conjugate-dual CDF pair is

G (2,11, 0) = % n arctan ((tan ((Qﬂ-xé) _ 7r)/2) _ M) /U)

5)

™

and

Cp (o .0 = % . arctan ((tan ((27r (1 - (17r— :B)9> — 7r)/2> - M) /g) o

When 0 < 1 then G > Gp, and when 6 > 1 then G < Gp.
The tilt parameter, as mentioned earlier, uses the CDF W (z,0) = xz/(x + 6 (1 — x)). Applying
it to the Cauchit-Cauchy distribution yields the conjugate CDF duals

G o) = L 4 Bt (om0 0= ) =)/ =) /)

A7

™

nd
: 1 arctan ((tan ((2m0z/(1 4+ 2 (0 — 1)) —7)/2) — p) /o)

GD (fCaMaU): §+ T (18)

This model behaves as a rescaled version of the constant-odds-ratio imprecise probability model
described in Walley (1991) and elsewhere. When # < 1 then G > Gp, and when # > 1 then
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Tilt.CDF Tilt.PDF

=]

Figure 1: Power- and Tilt-Parameter Conjugate Dual Distributions

G < Gp. Figure 1 displays the pairs of CDFs and PDFs for the exponentiated and tilt parameter
models when = 0.1,0 = 0.5, and 6 = 1.5.

Finally, it is worth mentioning that because any CDF whose support is (0,1) can play the role
of W, a one-parameter version of any member of the CDF-Quantile family may be used in that
capacity, with 6 as the location parameter. These alternatives would seem to present a forbiddingly
large variety of models for analysts to consider. However, it turns out that under some conditions
all of them can be very similar to one another with appropriate choices of §. For many practical
modeling purposes we may restrict attention to a subset of such models, such as the power and
tilt parameter (constant odds-ratio) models, but at this stage of research on these models the best
procedure for selecting among them remains an open topic for further investigation. The next section
presents examples of model-fitting with a real data-set, demonstrating that conjugate dual lower-
upper CDF models can fit lower-upper probability assignments quite well.

4.2 Fitting Models to Data

We now present an example of model-fitting that compares the conjugate lower-upper distributions
with appropriate alternatives for modeling lower-upper probability assignments. The fourth Inter-
governmental Panel on Climate Change (IPCC) report utilizes verbal phrases such as “likely” and
“unlikely” to describe the uncertainties in climate science. Budescu et al. (2009) conducted an ex-
perimental study of lay interpretations of these phrases, using 13 sentences from the IPCC report,
in which they asked 223 participants to provide lower, “best”, and upper numerical estimates of the
probabilities to which they believed each sentence referred. For example, participants were pre-
sented with the sentence “The Greenland ice sheet and other Arctic ice fields likely contributed no
more than 4 m of the observed sea level rise.”, and asked tp consider the probability they thought
the report authors may have had in mind for the term “likely” in this sentence. Participants were
required to provide their lowest, highest, and their best numerical estimates of this probability.
Budescu et al. found that participants’ “best” estimates were more regressive (toward the middle
of the [0, 1] interval) than the IPCC stipulations, but they did not report systematic analyses of the
lower and upper estimates.
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I present 11 models fitted to the lower and upper probability estimates in the Budescu et al. data.
The first three models are based on the two-parameter CDF-Quantile distribution. Model 1 is just
the two-parameter distribution, as defined in equation (3), with intercept-only submodels i = Sy
and & = exp (Jp). Model 2 has conditional parameter estimates, with submodels i = Sy + 12 and
& = exp (0 + 01x), where x = 0 for lower probabilities and = = 1 for upper probabilities. Model
3, in addition to the submodels from Model 2, also estimates the dependency between the lower
and upper estimates via a t-copula with CDF-Quantile margins. This model therefore also includes
estimates of the t-copula dependency parameter, p, and degrees of freedom parameter, ¢.

Models 4-7 are based on the 3-parameter power (exponentiated) CDF-Quantile distribution, as
in the CDF defined in equation (11) with W (z,6) = 2%, Model 4 has intercept-only submodels
fi = Bo. 6 = exp (), and § = exp (7). Model 5 is the conjugate-dual model, as defined in
equations (11) and (13). This has the same intercept-only submodels as Model 4 but is a two-
component distribution mixture model with a fixed mixture parameter, so that the first CDF, G, is
weighted 1 and the second, G p, is weighted O for the upper probabilities and the reverse weighting
is applied to the lower probabilities. Technically, it is a four-parameter model although the mixture
parameter is not being estimated. Model 6 has conditional parameter estimates, i = 5y + S1x
and 6 = exp (dp + d1x) with z = 0 and 1 for lower and upper probabilities, but an intercept-only
submodel § = exp (70). Model 7 has the conditional p and o submodels in Model 6 plus 6 =
exp (7o + y1z). Finally, models 8-11 are based on the tilt-parameter CDF-Quantile distribution, as
in the CDF defined in equation (11) with W (z,0) = z/(x + 6(1 — z)). These models have the
same variants as Models 4-7.

The best-fitting models from the CDF-Quantile family are from the “finite-tailed” subfamily,
whose members have defined, finite densities at 0 and 1 (Smithson and Shou, 2017). The best-
fitting distribution from this subfamily is the Cauchit-Cauchy, so the models considered here are
mainly limited to that distribution. Table 1 displays goodness-of-fit statistics for the 11 models.
The top section of the table presents these results for the three models using the two-parameter
Cauchit-Cauchy. The middle section contains the power-parameter (exponentiated) models, and the
lower section contains the tilted-parameter models. The “Params” column displays the number of
parameters in each model, the “2LL” column shows twice the log-likelihood of the fitted models,
and the “AIC” column is the Akaike Information Criterion, AIC' = —2LL + 2p, where p is the
number of parameters in the Params column.

Remarkably, the 4-parameter conjugate-dual models fit the data better than most of the 5- and
6-parameter conditional models and better than the 6-parameter copula model. The conjugate-
dual power-parameter model is superior to the conjugate-dual tilted-parameter model, and is out-
performed only by the 6-parameter conditional tilted-parameter model. Likewise, the conjugate-
dual tilted-parameter model is out-performed only by the 5- and 6-parameter conditional tilted-
parameter models and the 6-parameter conditional power-parameter model.

These results are not due to some kind of fluke in the Cauchit-Cauchy distribution. Other mem-
bers of the finite-tailed subfamily have similar fits for their conjugate-dual models. For instance, the
T2-T2 and the Cauchit-ArcSinh conjugate-dual power-parameter models have AIC’s of -2159 and
-2062, respectively, and both of these out-perform their respective 5- and 6-parameter conditional
power-parameter counterparts.

Figure 2 shows the fitted distributions from the conjugate-dual model (top half of the figure)
and the 6-parameter conditional exponentiated model. The two pairs of fitted distributions are strik-
ingly similar and the conjugate-dual AIC is the better of the two. The facts that the 4-parameter
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Table 1: Cauchit-Cauchy Models and Fits

Model Description Params. 2LL  AIC

1 2-parameter 2 595 -591

2 2-parameter condit. u, o 4 1378 -1370

3 2-parameter condit. t-copula 6 1584 -1572

4 exponentiated 3-param. 3 616 -609

5 conjugate-dual exponentiated 4 2378 -2372

6 exponentiated condit. u, o 5 1392 -1382

7 exponentiated condit. u, o, 0 6 1967 -1955

8 tilted 3-param. 3 880 -874

9 conjugate-dual tilted 4 1736 -1730

10 tilted condit. u, o 5 2152 -2142

11 tilted condit. u, o, 0 6 3118 -3106

Model 5: conjugate pair Model 5: conjugate pair
g [ T T T T 1 ° [ T I T T 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0
lower probability upper probability
Model 7: conditional pair Model 7: conditional pair
S T | | | | | < | T | | |
00 02 04 06 08 1.0 00 02 04 06 08 1.0
lower probability upper probability

Figure 2: [PCC Data and Fitted Distributions

conjugate-dual model fits the data better than a regression model with 6 parameters and that the
fitted distribution shapes are reasonably similar to the empirical distributions lend plausibility to
the seemingly unlikely hypothesis that human lower-upper probability judgments are distributed
approximately as conjugate-dual distributions.
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The exponentiated Cauchit-Cauchy 4-parameter conjugate-dual and 6-parameter conditional re-
gression models may be compared further via the S-number summaries in Table 2. When compared
with their empirical counterparts (rows 1 and 4 in the table), the conditional model is more accu-
rate than the conjugate-dual model at the 10*" quantile, but the reverse is the case for most of the
other quantiles. Both models appear to be fairly accurate in the middle 50% of the distributions.
Again, this is an intriguing outcome for the conjugate-dual model, given that only three of its four
parameters are being estimated from the data.

Table 2: Quantiles and Exponentiated Model Quantile Estimates

Model Estimate A 25 5 5 9
empirical lower 0.092 0.301 0.570 0.699 0.779

5 conjugate-dual lower 0.059 0.303 0.535 0.688 0.825

7 conditional lower 0.091 0.378 0.584 0.713 0.834
empirical upper 0.540 0.729 0.858 0.948 0.998

5 conjugate-dual upper 0.298 0.684 0.863 0.935 0.977

7 conditional upper 0.495 0.672 0.846 0.935 0.975

That said, there are practical and technical issues in estimating both conjugate-dual and re-
gression models for the 3-parameter CDF-Quantile distributions. For several of these distributions,
maximum-likelihood estimations of conjugate-dual models of the IPCC data failed to converge,
and regression models yielded high correlations between the parameter estimates for p and 6 (al-
though the latter problem did not occur for any of the successful conjugate-dual models). Moreover,
as Smithson and Shou (2017) observe, model diagnostics and related aspects of model evaluation
for the 2-parameter CDF-Quantile family have yet to be completely thought through. Thus, the
questions of effective estimation procedures and diagnostics for these models are active topics of
research. Nonetheless, the evidence from the example in this section suggests that a sufficiently
well-specified conjugate-dual model using 3-parameter CDF-Quantile distributions can be used to
test a specific type of coherent lower-upper probability relationship.

5. Conclusions and Future Directions

A new family of probability distributions, the CDF-Quantile family, shows promise in modeling
probability judgments. The two-parameter version of the family has been sufficiently well-explored
by Smithson and Shou (2017) to have been made available for generalized linear modeling via the
cdfquantreg package in R and a SAS macro, as presented by Shou and Smithson (2016, 2017),
and those authors also have demonstrated that these distributions can model probabilities better
than other two-parameter distributions such as the beta. This paper has presented an investigation
of the application of the CDF-Quantile family to modeling imprecise distributions of probabilities,
by extending it to incorporate a third parameter.

Because CDFs whose support is the (0,1) interval are closed under composition, and due to
the properties of the CDF-Quantile distributions, three-parameter extensions via the composition of
CDF functions yield conjugate dual pairs of CDFs. This result may hold some theoretical interest. A
future line of research may elaborate the connections between these conjugate duals and imprecise
probability frameworks. There is a natural link with probability boxes (p-boxes, as coined by Ferson
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et al. (2003)), given that the conjugate-dual CDFs form a p-box. Conjugate duals are noteworthy
cases of p-boxes because the “width” of the gap between them is determined in a different way from
the data-driven methods to which Ferson et al. (2003) refer. To my awareness, p-boxes have not
been systematically studied regarding methods of fitting them to lower-upper probability data.

Some conjugate-dual models, in turn, have been found to fit a data-set reasonably well, rais-
ing the possibility that human lower-upper probability assignments may approximate a conjugacy
relationship in their CDFs. Further research will determine whether these findings generalize to
other such data-sets, if elicitation methods influence the results, and what judgment mechanisms
or heuristics account for the phenomenon. However, perhaps the first priority is to ascertain the
connections between the 6 parameter, measurement error, and sampling error.

Finally, the three-parameter CDF-Quantile distributions also beg for further investigation. The
overview in this paper only skims their characteristics, and little is known about the advantages
and drawbacks of alternative parameterization methods for 6 (e.g., power versus tilt parameters).
Preliminary investigations suggest that the high correlations between parameter estimates may be a
pervasive problem for three-parameter distributions on the unit interval (including three-parameter
generalizations of the beta distribution). Likewise, as mentioned earlier, much remains to be de-
veloped and explored regarding parameter estimation methods and model diagnostics, even for the
two-parameter CDF-Quantile family. The primary goals here have been to introduce this extension
of the CDF-Quantile family and to make a case that it holds some promise for modeling distribu-
tions of lower-upper probability assignments. Accordingly, this paper may be regarded as a prelim-
inary exploration of three-parameter CDF-Quantile distributions, with the unexpected finding that
conjugate-dual distributions may be useful for modeling lower-upper probability assignments.
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