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Abstract

Coherent lower previsions are general probabilistic models allowing incompletely specified prob-
ability distributions. However, for complete description of a coherent lower prevision – even on
finite underlying sample spaces – an infinite number of assessments is needed in general. There-
fore, they are often only described approximately by some less general models, such as coherent
lower probabilities or in terms of some other finite set of constraints. The magnitude of error in-
duced by the approximations has often been neglected in the literature, despite the fact that it can be
significant with substantial impact on consequent decisions. An apparent reason is that no widely
used general method for estimating the error seems to be available at the moment. The goal of this
paper is to provide such a method. The proposed method allows calculating an upper bound for
the error of a finite approximation of coherent lower prevision on a finite underlying sample space.
An estimate of the maximal error is especially useful in the cases where calculating assessments is
computationally demanding. Our method is based on convex analysis applied to credal sets, which
in the case of finite sample spaces correspond to convex polyhedra.

Keywords: lower prevision; partially specified lower prevision; credal set; convex polyhedron;
quadratic programming.

1. Introduction

One of the most popular and also most general models of imprecise probabilities are coherent lower
previsions (see, e.g., Miranda, 2008; Troffaes and De Cooman, 2014). A coherent lower prevision
P is an imprecise probability model based on judgements about the lower or upper expectations
on a set of bounded maps K from a sample space X to real numbers, also called gambles. The
set of all gambles on a given underlying sample space will be denoted by L. In this paper, all
sample spaces are finite, therefore, we do not address any measurability or countable additivity
conditions. The judgement or assessment P (f) = a states that every precise probability distribution
P compatible with P must satisfy EP (f) ≥ a, that is P (f) means that the expectation of f is at
least a. Coherence in this context means that the judgements on the set of gambles allow, for
every gamble f , the existence of at least one precise probability distribution P compatible with P
for which EP (f) = P (f). The expectation functionals with respect to precise (finitely additive)
probability distributions are often called linear previsions.

A coherent lower prevision P specified on a set of gambles K can have multiple possible exten-
sions to a larger set, say H ⊃ K. In other words, there can be multiple coherent lower previsions
that coincide on a set of gambles. In particular, a coherent lower prevision may be approximated
by a more specific model, such as coherent lower probability (see, e.g., Antonucci and Cuzzolin,
2010), in which case its restriction to indicator gambles is only known, i.e. an indicator gamble 1A
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ŠKULJ

is a map X → R such that 1A(x) equals 1 if x ∈ A and 0 otherwise. We will write 1x instead of
1{x} for elements x ∈ X .

In this paper we investigate the following problem. Let P be a coherent lower prevision on the
set L of all gambles on a finite sample spaceX . Its full description would in general require detailed
information on the set of compatible precise models, called credal set, which often is unavailable.
Suppose that instead we know the values of P on a set of gambles K. The restriction PK approxi-
mates P and the natural question arises, how accurate is this approximation. Given the restriction,
P is an extension of PK, which in general is not unique. Therefore, we would like to know by how
much can another extension deviate from P . That is, we want to find the maximal distance between
two arbitrary extensions of a coherent lower prevision on a finite set K to the set of all gambles.

In our analysis we first show that the maximal possible distance is always reached when one of
the extensions is the natural extension. Consequently, much of the analysis is done on the credal set
of the natural extension with the special emphasis on its extreme points. Our main result gives an
upper bound for the maximal distance in terms of distances between the extreme points.

The paper is structured as follows. In Section 2 we review basic concepts of imprecise proba-
bilities with the emphasis on coherent lower previsions. In Section 3 we analyze basic properties of
credal sets as convex polyhedra and apply some general concepts of convex analysis to the case of
credal sets. Our main results are stated in Section 4.

2. Notation and basic results

In this section we introduce the notation and review the concepts used in the paper. When possible
we will stick with the standard terminology used in the theory of imprecise probabilities, which
will sometimes be supplemented by the standard terminology of convex analysis, linear algebra and
optimization.

GAMBLES.

Throughout this paper let X represent a finite set, a sample space, and L the set of all real-valued
maps on X , also called gambles. Equivalently, L may be viewed as the set of vectors in R|X |. The
set of gambles will be endowed by the standard inner product f · g =

∑
x∈X f(x)g(x), which

generates the l2 norm: ‖f‖ =
√
f · f =

√∑
x∈X f(x)2, and the Euclidean distance between

vectors: d(f, g) = ‖f − g‖, which will be used by default throughout the paper.

LINEAR PREVISIONS.

A linear prevision P is an expectation functional with respect to some probability mass vector p on
X . It maps a gamble f into a real number P (f). Usually, we will write P (f) =

∑
x∈X p(x)f(x) =:

P · f . The set of linear previsions is therefore a subset of the dual space of L. The inner product
notation is introduced because we will often use linear functionals of the form f 7→ p · f where
the vector p will not necessarily be a probability mass vector. We will then use the inner product
notation to avoid misinterpretations. Without danger of confusion we will therefore interpret a linear
prevision P as a vector with the same length as gambles in L.
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Figure 1: Probability simplex: the distance from a side denotes the probability of the element at the
opposite vertex.

PROBABILITY SIMPLEX.

If the sample space X contains exactly three elements, say X = {x, y, z}, the probability mass vec-
tors can be represented as points of the form (p(x), p(y), p(z)) in R3. However, since the restriction
p(x)+p(y)+p(z) = 1 applies, they in fact form a two dimensional space, which can be depicted as
an equilateral triangle with vertices x, y and z. Given any point in this triangle, the sum of distances
to its sides is constantly equal to its altitude, which equals

√
3
2 a, where a is the common length of

the sides. Taking a = 2√
3

makes the altitude equal to 1. The distance of a point from each side
now denotes the probability of the point in the opposite vertex. (See Figure 1.) Probability simplex
diagrams are very useful to illustrate concepts of imprecise probabilities; however, one needs to be
cautious not to be mislead by specifics of low dimensional probability spaces.

COHERENT LOWER PREVISIONS.

A coherent lower prevision on an arbitrary set of gambles K is a mapping P : K → R that allows
the representation

P (f) = min
M

P (f) (1)

for every f ∈ K, whereM is a closed and convex set of linear previsions. Note that unless K is
the set of all gambles, there may be multiple sets M that fit into equation (1) (this is also one of
the motivations for this paper); however, there is a unique maximal such set. We will denote the
maximal such set withM(P ) and call it the credal set of P .

THE NATURAL EXTENSION.

Given a coherent lower prevision P on K, it is possible to extend it to the set of all gambles L in
possibly several different ways, and again, there is unique minimal extension, called the natural
extension:

E(f) = min
P∈M(P )

P (f). (2)
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Note that replacingM(P ) with another setM of linear previsions satisfying the equation (1) would
result in some other extension of P .

A mapping P : K → R, where K is a linear (vector) space, is a coherent lower prevision if and
only if it satisfies the following axioms (Miranda, 2008) for all f, g ∈ K and λ ≥ 0:

(P1) P (f) ≥ infx∈X f(x) [accepting sure gains];

(P2) P (λf) = λP (f) [non-negative homogeneity];

(P3) P (f + g) ≥ P (f) + P (g) [superlinearity].

An easy consequence of the definitions is :

(P4) P (f + λ1X ) = P (f) + λ for any λ ∈ R and f ∈ L [constant additivity].

3. Credal set as a convex polyhedron

A credal set is a closed and convex set of linear previsions. Since every linear prevision can be
uniquely represented as a probability mass vector, a credal set can be represented as a convex set
of probability mass vectors. The setM is therefore the maximal set of |X |-dimensional vectors p
satisfying:

p · f ≥ P (f) for every f ∈ K, (3)

p · 1x ≥ 0 for every x ∈ X and (4)

p · 1X = 1. (5)

In the sequel we will assume that the set K is finite. When needed, we will index its elements as fi
for i ∈ {1, . . . , n}.

According to the above, it would be suitable to extend the domain of P with the gambles of
the form 1x for every x ∈ X . Doing so, though, may result in a non-coherent lower prevision,
because other constraints my already imply that P (1x) ≥ 0, where the inequality may even be
strict. Therefore we adopt the following convention:

Convention 1 The domain K of all lower previsions used will contain all gambles of the form 1x
together with the value P (1x) = 0, unless P (1x) ≥ 0 is already implied by other values of P on K.

Assuming the above convention, the credal set of coherent lower prevision P is the set of vectors p
satisfying constraints (3) and (5).

In the case where K is finite, the corresponding credal set is a convex polyhedron. Strictly
speaking, it is an H-polyhedron, which means that it is bounded and an intersection of a finite
number of half spaces. According to Theorem 14.3 in Gruber (2007) everyH-polyhedron in an Rm
is also a V-polyhedron, which means that it is a convex combination of a finite number of extreme
points.

Example 1 Let P be a lower prevision on K = {f1, . . . , f5} where

f1 = (0, 1, 0.5) f2 = (0, 0.5, 1) f3 = (0.15, 0, 1)

f4 = (1, 0, 0.6) f5 = (0.2, 1, 0)
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Figure 2: Credal set from Example 1 as an
intersection of half planes: their
support lines are dashed, gambles
fi ∈ K+ are depicted as normal
vectors to faces.
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Figure 3: Normal cones at extreme points
are the non-negative hulls of the
normal vectors of adjacent faces.

and

P (f1) = 0.46 P (f2) = 0.4 P (f3) = 0.25

P (f4) = 0.44 P (f5) = 0.4

The credal set corresponding to P is depicted in Figure 2 as an intersection of half-planes.

FACES AND EXTREME POINTS OF A FINITELY GENERATED CREDAL SET.

The faces of a credal setM are the sets of the formMf = {P ∈ M : P (f) = E(f)}, where f is
an arbitrary gamble. The smallest faces are exactly the extreme points and the faces of codimension
1 are called facets1. The set of all extreme points ofM will be denoted by E(M) or simply E . The
set of extreme points of a faceMf will be denoted by Ef , and Ef ⊆ E holds.

Example 2 The extreme points of the credal set from Example 1 are

E1 = (0.4, 0.32, 0.28) E2 = (0.43, 0.35, 0.23) E3 = (0.39, 0.42, 0.19)

E4 = (0.32, 0.48, 0.20) E5 = (0.15, 0.37, 0.48)

(See Figure 3.)

Let f ∈ K be a gamble and P (f) its lower prevision. Then the lower prevision of the gamble
f − P (f)1X equals 0. Moreover, setting P (f − P (f)1X ) = 0 is equivalent to setting the lower
prevision of f to P (f), by constant additivity. Following this idea, we extend a credal setM to the
set of vectors

M̂ = {p : p · (f − P (f)1X ) ≥ 0, for every f ∈ K}, (6)

1. The codimension 1 is meant relative to the dimension ofM. That is dimMf = dimM− 1. Note also that a credal
set is at most of dimension |X | − 1 because of the constraint P (1X ) = 1.
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which is a convex cone, with the basisM. This means that every p ∈ M̂ is of the form p = λP
for some λ ≥ 0 and P ∈ M. This is easily seen by noticing that every p ∈ M̂ has non-negative
components, which is guaranteed by Convention 1. Dividing 0 6= p ∈ M̂ by the sum of its
components then results in a vector P whose components are non-negative, sum to one and clearly
satisfy the same linear constraints as p, except (5).

Given a credal setM, the cone of (almost) desirable gambles contains exactly those gambles in
L whose lower prevision is non-negative:

D = {f ∈ L : P (f) ≥ 0 for every P ∈M} = {f ∈ L : P (f) ≥ 0}. (7)

The gambles f with P (f) = 0 are sometimes called marginally desirable.

3.1 Normal cones of credal sets

THE NORMAL CONE.

Let
C = {x ∈ Rn : Ax ≤ b}, (8)

where A is an m × n matrix and b ∈ Rm a vector, be a convex polyhedron and x a point on its
boundary. According to Gruber (2007), the normal cone at x is the set

NC(x) = {u : u · y ≤ u · x for all y ∈ C} = {u : u · (y − x) ≤ 0 for all y ∈ C}. (9)

In our case, let M be a credal set defined by constraints of the form (3) and (5) and E its
boundary point. The normal cone ofM at E is the set

NM(E) = {f : E(f) ≤ P (f) for every P ∈M}. (10)

The normal cone is thus the set of gambles f that satisfy E(f) = P (f).

Proposition 2 (Gruber (2007) Proposition 14.1.) Let C be a convex polyhedron defined as in (8)
and x its boundary point. Let ai ·x = bi hold for exactly i ∈ I ⊆ {1, . . . ,m}, where ai denotes i-th
row of the matrix A. Then NC(x) = pos {ai : i ∈ I}, where pos denotes the non-negative hull.

Corollary 3 Let M be a credal set defined by constraints (3) and (5). Then the set of (almost)
desirable gambles D corresponding to M is the normal cone of M̂ at 0 and we have that D =
pos {f − P (f)1X : f ∈ K}.

Proof The set M̂ is a convex cone whose support hyperplanes are exactly the sets of the form
Hf = {p : p · (f −P (f)1X ) = 0} for f ∈ K, and the origin is exactly the intersection of all support
hyperplanes: 0 · (f − P (f)1X ) = 0 for every f ∈ K. We can therefore apply Proposition 2.

Remark 4 In Augustin et al. (2014) Chapter 1, the set constructed as D in Corollary 3 is called
the natural extension of the assessment K. The fact that the set of desirable gambles is the non-
negative hull of marginally desirable assessments in K with included strictly positive gambles can
also be found in Chapter 2 of the mentioned book. In our case, strictly positive gambles are included
because of Convention 1.
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Corollary 5 LetM be a credal set defined by constraints of the form (3) and (5), E ∈ M a linear
prevision and h a gamble such that E(h) = P (h). For every gamble f ∈ K let f̃ = f − P (f), and
thus P (f̃) = 0 for all f ∈ K.

Suppose that E(f̃i) = 0 for exactly i ∈ I ⊆ {1, . . . , n}. Then there exist αi ≥ 0 for every i ∈ I
and β ∈ R so that

h =
∑
i∈I

αif̃i + β1X . (11)

Proof Let h ∈ L be a gamble such that E(h) = P (h). Set g = h − P (h). Then, for every
p ∈ M̂ (see (6)), p = αP for some P ∈ M and α ≥ 0. Therefore p · g = αP · g ≥ 0 = E · g,
whence g ∈ NM̂(E). By Proposition 2, g =

∑
i∈I αif̃i for some non-negative constants αi. Hence

h =
∑

i∈I αif̃i + P (h)1X , which proves the proposition.

Note that Equation (11) still holds if f̃i are replaced by fi.

4. The distance between coherent lower previsions

4.1 The definition of the distance

Let P and P ′ be two coherent lower previsions on the set of all gambles L on a finite set X . We
define the distance2 between P and P ′ as

d(P , P ′) = max
f∈L

|P (f)− P ′(f)|
‖f‖

, (12)

where the norm ‖f‖ =
√
f · f is the Euclidean norm in R|X |. Clearly, the following alternative

definition is equivalent: d(P , P ′) = max f∈L
‖f‖=1

|P (f)− P ′(f)|.

It is readily verified that the above distance function induces a metric in the set of all lower
previsions onL. In this section we will analyze the maximal possible distance between two coherent
lower previsions that coincide on a finite set of gambles.

Suppose that P is a lower prevision on L, and the only information about it are the values on a
finite set of gambles K ⊂ L. That is, P (f) are given for every f ∈ K. We denote the restriction of
P to K by PK. We also adopt Convention 1. The natural extension E is the minimal (or the least
committal) extension of PK. This implies that P (f) ≥ E(f) for every f ∈ L. Therefore, given
another extension P ′ of PK, we have that

|P (f)− P ′(f)| ≤ max{P (f)− E(f), P ′(f)− E(f)}, (13)

which implies that d(P , P ′) ≤ max{d(P ,E), d(P ′, E)}. As we are interested in the maximal
possible distance between coherent lower previsions coinciding on K, it will therefore be enough to
focus to the case where one of them is the natural extension of PK.

4.2 Maximal distance to the natural extension

Let E and P be respectively the natural extension of PK and another extension, and M and C
respectively their credal sets. As described in previous sections, both are convex sets and the natural
extension is a convex polyhedron with extreme points E(M).

2. For another distance function between coherent lower previsions, see, e.g., Škulj and Hable (2013).
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Assuming the above notations, we start with the following proposition.

Proposition 6 Take some f ∈ K and letMf be the corresponding face ofM. Then C ∩Mf 6= ∅.

Proof Clearly, Mf contains exactly all linear previsions P inM such that P (f) = P (f). If no
P ∈ C belongs toMf , this then implies that P (f) > P (f) for every P ∈ C, and since C is compact,
this would imply that minP∈C P (f) > P (f), which contradicts the assumptions.

Corollary 7 Let h ∈ L be an arbitrary gamble. Then:

(i) P (h) ≤ maxP∈Mf
P (h) for every f ∈ K;

(ii) P (h) ≤ minf∈K maxP∈Mf
P (h); the inequality is tight in the sense that for every h ∈ L an

extension of PK exists that gives equality in the equation.

(iii) P (h) ≤ minf∈K maxE∈Ef E(h) where Ef is the set of extreme points of the face Mf ; and
the inequality is again tight.

Proof (i) is an immediate consequence of Proposition 6.
The inequality in (ii) is a direct consequence of (i). It remains to prove that there is an extension

of PK where the equality is reached.
Let Mf be a face of M and let Pf ∈ arg maxP∈Mf

P (h). Let M′ be the convex hull of
{Pf : f ∈ K} and P ′ the corresponding coherent lower prevision, which coincides with P on K by
construction, and thus must satisfy the inequality (ii). For every P ∈M′, on the other hand, we have
that P =

∑
i∈K αfPf , for some collection of values αf ≥ 0 for every f ∈ K and

∑
f∈K αf = 1.

Thus,
P (h) =

∑
f∈K

αfPf (h) ≥ min
f∈K

Pf (h) = min
f∈K

max
P∈Mf

P (h) (14)

Hence, P ′(h) = minP∈M′ P (h) ≥ minf∈K maxP∈Mf
P (h), which combined with the above

reverse inequality gives the required equality.
The fact that extremal values are reached in extreme points easily implies (iii).

Now we can express the maximal possible distance between two arbitrary extensions of PK in
terms of its natural extension alone.

Corollary 8 Let E be the natural extension and P and P ′ two other extensions of PK, and h ∈ L
a gamble. Then |P (h)− P ′(h)| ≤ minf∈K maxP∈Ef P (h)− E(h) and

d(P , P ′) ≤ max
‖h‖=1

min
f∈K

max
P∈Ef

P (h)− E(h). (15)

Proof The first inequality is a direct consequence of Corollary 7(iii) and Eq. (13). The second
inequality is an immediate consequence of the first one, definition of the distance between two
coherent lower previsions and the fact that E(h) is less than P (h) for every feasible P .

Equation (15) gives the maximal possible distance between two unknown extensions of PK entirely
in terms of its natural extension. However, as an optimization problem it is not solvable in any
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apparently applicable way. We will therefore apply it to derive a practically computable upper
bounds.

By the definition of E we have:

d(P , P ′) ≤ max
‖h‖=1

max
E∈E

min
f∈K

max
P∈Ef

P (h)− E(h) (16)

= max
E∈E

max
‖h‖=1

min
f∈K

max
P∈Ef

P (h)− E(h) (17)

by interchanging max‖h‖=1 and minf∈K:

≤ max
E∈E

min
f∈K

max
P∈Ef

max
‖h‖=1

P (h)− E(h) (18)

= max
E∈E

min
f∈K

max
P∈Ef

d(P,E), (19)

where d(P,E) is the Euclidean distance between extreme points P and E.
Now denote

d̄(E, f) = max
P∈Ef

d(P,E), (20)

which is the maximal Euclidean distance between an extreme point E and a face Mf . Thus we
obtain the following formula:

d(P , P ′) ≤ max
E∈E

min
f∈K

d̄(E, f). (21)

Since E and P in the above expressions are (extreme) points in R|X |, their Euclidean distances
can be found easily by calculating the Euclidean norms ‖P − E‖. Particularly, calculating d̄(E, f)
requires calculating the Euclidean distances between E and all extreme points of the face Mf .
Finally, the RHS expression in (21) is calculated by finding d̄(E, f) for all pairs of extreme points
and gambles in K.

4.3 Improved bounds

Equation (21) gives an upper bound for the difference between coherent lower previsions coinciding
on a set of gambles, however, the estimate is systematically too conservative. This is caused by the
fact that extreme points E can only maximize expression (16) for some h if E(h) = E(h). This
means that the domain for h in (18) should be restricted to those gambles h that reach the lowest
value E(h) in E. In other words, h should belong to the normal cone NM(E).

Therefore, instead of taking the Euclidean distance between E and P in (20), we should take
the following distance:

dE(E,P ) = max
h∈NM(E)

|P (h)− E(h)|
‖h‖

, (22)

which we call the normed distance between E and P .
The geometrical intuition behind replacing Euclidean distance with the above distance function

is the following. Given a gamble h, the difference P (h)−E(h) can be viewed as the inner product
(P − E) · h, which depends on the angle between (P − E) and h. As the normal cone contains
elements that are orthogonal to P −E for adjacent extreme points P , we may expect that the other
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elements are nearly orthogonal too, especially in the case of narrow normal cones. In Figure 3 such
situation can be observed in the case of the normal cone of E1, in contrast to the case of E5, where
the normal cone is wide. Therefore, we would, for instance, expect that the normed distances be-
tweenE1 and its adjacent extreme points would be significantly smaller than the Euclidean distance,
in contrast the case of E5. Analytically we demonstrate this in Example 3.

In the sequel we represent the calculation of the normed distance in the form of a quadratic
programming problem.

MINIMUM NORM ELEMENTS OF THE NORMAL CONE.

Consider an element h of the form (11). Given a pair of expectation functionals E and P , the
distance P (h) − E(h) does not depend on β. In order to maximize the normed distance (22), we
must consider the representative with the minimum norm, as the norm appears in the denominator
of the expression. The characterization of the minimal norm element of the form (11) follows.

Proposition 9 Let h be a gamble. Then ‖h+β1X ‖ ≥ ‖h‖ for every β ∈ R if and only if h ·1X = 0.

Proof We have that ‖h + β1X ‖2 = ‖h‖ + β2 + 2βh · 1X , which has minimum in β = −h · 1X .
Hence the minimizing β equals 0 exactly if h · 1X does.

Corollary 10 LetE, h and I be as in Corollary 5 and let f ′i be the unique vectors such that fi−f ′i =
c1X and f ′i · 1X = 0 for every i ∈ I . Then, as follows from Corollary 5, there exist some α′

i ≥ 0 for
every i ∈ I and β′ ∈ R so that

h =
∑
i∈I

α′
if

′
i + β′1X . (23)

Moreover, ∥∥∥∥∥∑
i∈I

α′
if

′
i

∥∥∥∥∥ ≤
∥∥∥∥∥∑
i∈I

α′
if

′
i + β1X

∥∥∥∥∥ for every β ∈ R. (24)

Proof Since f ′i · 1X = 0, we have that
(∑

i∈I α
′
if

′
i

)
· 1X = 0, whence by Proposition 9 it follows

that this is the minimal-norm gamble of the form (23).

Let I and f ′i , for i ∈ I , be as in Corollary 10 and let α : I → [0,∞) be a map and β ∈ R a
constant (we will write αi instead of α(i)). Then we define h(α, β) =

∑
i∈I αif

′
i + β1X . Clearly,

h(α, β) ∈ NM(E) and every element of NM(E) is of the form h(α, β), by Corollary 5.

Corollary 11 The following equality holds:

max
(α,β)

|E(h(α, β))− P (h(α, β))|
‖h(α, β)‖

= max
α

|E(h(α, 0))− P (h(α, 0))|
‖h(α, 0)‖

(25)

Proof Since |E(h + β1X ) − P (h + β1X )| = |E(h) − P (h)|, the maximum of the expression is
achieved at h with the minimum norm, which is the one with β = 0.
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THE CALCULATION OF THE NORMED DISTANCE BETWEEN EXPECTATION FUNCTIONALS.

Take two linear expectation functionals P and E ∈ M and let I and f ′i for i ∈ I be as in Corol-
lary 10. Our goal is to find the normed distance (22). The absolute value in the numerator of (22)
can be omitted because E(h) = minP∈M P (h) for every h ∈ NM(E). By Corollary 11, every
h ∈ NM(E) that can minimize the above expression is of the form h(α, 0). Since E and P are
themselves vectors too, we can denote D = P −E, and write P (h)−E(h) = (P −E) ·h = D ·h.

Now we can decompose every f ′i for i ∈ I as f ′i = λiD + ui, so that D · ui = 0. Given that
h =

∑
i∈I αif

′
i , we obtain h = (α · λ)D + α · U, where U is the matrix whose rows are ui, λ is

the column vector with components λi and the vectors f ′i are also written as row vectors. We also
assume α to be a column vector.

Further we have that ‖h‖2 = h · h = ‖D‖2αλλtαt + αUU tαt. Now denote Π = ‖D‖2λλt +
UU t and write ‖h‖2 = αΠαt. Clearly, Π is a symmetric and positive semi-definite matrix.

Moreover, we have that P (h)−E(h) = D·(α·λ)D = (α·λ)‖D‖2.Our goal is the maximization
of expression (22). Thus we need to maximize

ϕ(α) =
(α · λ)‖D‖2√

αΠαt
(26)

over the set of all I-vectors α with non-negative components. Clearly, for every non negative
constant k we have that ϕ(kα) = ϕ(α). Moreover, only those α for which the numerator in ϕ(α)
is positive are of interest, and then multiplying α by a suitable positive constant can ensure that the
numerator is 1. Maximizing ϕ(α) is then equivalent to minimizing the nominator, which yields the
following quadratic programming problem:

Minimize:

αΠαt (27)

subject to

(α · λ)‖D‖2 = 1 (28)

α ≥ 0 (29)

Example 3 Consider the lower previsionP from Example 1. We will calculate the distance dE1(E1, E5),
where E1 = (0.4, 0.32, 0.28) and E5 = (0.15, 0.37, 0.48). First we have:

D = E5 − E1 = (−0.2462, 0.0492, 0.1969),

and its norm, which is the Euclidean distance between the two extreme points is ‖D‖ = 0.3191.
The positive basis of NM(E1) consists of the transformed gambles

f ′1 = f1 − f1 · 1X /3 = (−0.5, 0.5, 0)

f ′5 = f5 − f5 · 1X /3 = (−0.2, 0.6,−0.4).

(see Corollary 10).
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We have f ′1 = 1.451D + (−0.1429, 0.4286,−0.2857), and since f ′5 is orthogonal to D, it

follows that u5 = f ′5 and λ2 = 0. Thus λ =

[
1.451

0

]
and U =

[
−0.14 0.43 −0.29
−0.20 0.60 −0.40

]
which gives Π = ‖D‖2λλt + UU t =

[
0.5 0.4
0.4 0.56

]
. Taking α = (α1, α2)

t, we obtain the objective

function to be minimized: αΠαt = 0.5α2
1+0.8α1α2+0.56α2

2 subject to ‖D‖2α ·λ = ‖D‖2λ1α1 =
1 whence α1 = 6.7708. Substituting α1 in the objective function we obtain αΠαt = 22.9219 +
5.41664α2 + 0.56α2

2, which has to be minimized subject to α2 ≥ 0. The minimum is obtained for
α2 = 0, with the minimal value of objective function αΠαt equal to 22.9219. Now dE1(E1, E5) =
ϕ(α) = 1/

√
22.9219 = 0.2089. Note that this is significantly less than the Euclidean distance

between the points, which is equal to ‖D‖ = 0.3191.

5. Conclusions and further work

This paper provides as its main contribution a practically computable upper bound for the difference
between any two extensions of a coherent lower prevision given on an arbitrary finite set of gam-
bles. The problem is relevant for many applications of the theory of imprecise probabilities, where
complete description of lower previsions or their credal sets is often infeasible.

A drawback of the proposed method is that it requires finding all extreme points of credal sets
in question. The number of the extreme points in general grows exponentially with the number of
constraints, which makes the method computationally demanding.

In future, faster and perhaps less accurate methods could be developed to quickly asses maxi-
mal possible error of finite approximation of coherent lower previsions could be developed based
on the results proposed in this paper. The method might also be simplified for special cases of
approximations, such as coherent lower probabilities.
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