
JMLR: Workshop and Conference Proceedings 63:206–221, 2016 ACML 2016

Fast Collaborative Filtering from Implicit Feedback with
Provable Guarantees

Sayantan Dasgupta sayantan.iitkgp@gmail.com

Independent Researcher

Editors: Robert J. Durrant and Kee-Eung Kim

Abstract

Building recommendation algorithm is one of the most challenging tasks in Machine Learn-
ing. Although most of the recommendation systems are built on explicit feedback available
from the users in terms of rating or text, a majority of the applications do not receive such
feedback. Here we consider the recommendation task where the only available data is the
records of user-item interaction over web applications over time, in terms of subscription
or purchase of items; this is known as implicit feedback recommendation. There is usually
a massive amount of such user-item interaction available for any web applications. Algo-
rithms like PLSI or Matrix Factorization runs several iterations through the dataset and
may prove very expensive for large datasets. Here we propose a recommendation algo-
rithm based on Method of Moment, which involves factorization of second and third order
moments of the dataset. Our algorithm can be proven to be globally convergent using
PAC learning theory. Further, we show how to extract the parameters using only three
passes through the entire dataset. This results in a highly scalable algorithm that scales
up to million of users even on a machine with a single-core processor and 8 GB RAM and
produces competitive performance in comparison with existing algorithms.

Keywords: Computational Learning; Probably Approximately Correct (PAC); Collabo-
rative Filtering; Implicit Feedback; Moment Factorization; Personalization

1. Introduction

Recommendation Systems came into the spotlight through the Netflix One-Million chal-
lenge. Most of the early recommendation systems were built using features extracted from
the content of the items. These are known as content-based recommendation systems, and
they typically fail to capture the user opinion. Collaborative filtering was introduced to
mine user feedbacks to overcome the limitation of content-based filtering. Collaborative
filtering mostly relies on the availability of user feedback, either in the form of numeric
rating, or text, or even through binary ’like’ or ’unlike’ tags. However, not all applications
receive such explicit feedback from users.

Most of the web-based applications receive a significant amount of user traffics. The
users interact with different items in the web applications, although they may not always
rate the items. The web usage data containing user-item interactions can effectively be
mined to build recommendation systems. Also, in applications where a user provides rating
or feedback, such as Netflix, he/she rates only a small subset of movies watched. A user
may simply avoid rating some of his favourite movies due to the lack of time, and there
is no way to know about his interest in those movies except web-usage data of implicit

© 2016 S. Dasgupta.

sayantan.iitkgp@gmail.com

Fast Collaborative Filtering

Item%1% Item%2% Item%3% Item%4% Item%5%

User%1% ✔% ✔% ?" ✔% ?"
User%2% ?" ✔" ?" ?" ✔"
User%3% ?" ?" ✔" ✔" ✔"
User%4% ✔" ?" ✔" ?" ?"

Figure 1: Implicit User-Item Interaction

user-item interaction. Also, the amount of web usage data for such applications is far larger
than the amount of rating data available from users, and mining these data can provide an
improvement on recommendations drawn only from user ratings. Please note that binary
’like’ or ’dislike’ tags provided by users are a form of explicit feedback, such as the case of
(Wang and Blei, 2011). We do not attempt to build a recommendation algorithm based on
user tags here. An appropriate visualization of our recommendation problem in the line of
(Wang and Blei, 2011) is shown in Figure 1.

The most common algorithm used by practitioners to build recommendation systems
based on implicit feedback is Probabilistic Latent Semantic Indexing (PLSI), such as in
personalized ranking of search results (Lin et al., 2005) or personalized news recommenda-
tion (Das et al., 2007), However, PLSI trains using EM algorithm that suffers from local
maxima problem. Therefore, these recommendation systems more often or so do not give
optimal performance. Recent literature on recommendation systems includes different al-
gorithms for implicit feedback dataset, although most of them are tested on datasets of
limited size. (Hu et al., 2008) adapts the well-known matrix factorization algorithm for im-
plicit feedback datasets through a weighted matrix factorization (WRMF). The algorithm
scans through the entire dataset during every iteration until convergence, and it may prove
computationally very expensive for a large volume of user logs stored across multiple nodes
in a distributed ecosystem. Bayesian Personalized Ranking (BPR) (Rendle et al., 2009)
uses a stochastic approach to sample negative items for each user, and reduces the compu-
tation time significantly. There are other algorithms in the literature, which are extensions
of these matrix factorization methods. GBPR (Pan and Chen, 2013) builds on BPR and
incorporates group preference into it. LorSLIM (Cheng et al., 2014) uses a low rank sparse
linear method for implicit feedback datasets. AdaBPR (Liu et al., 2015) introduces a boost-
ing technique to improve on BPR loss. These algorithms are found to outperform other
methods such as similarity or neighbourhood based methods.

There have been recent developments in non-iterative learning algorithm based on
Method of Moments (MoM) (Anandkumar et al., 2014), also referred to as Spectral Methods
in the literature. Unlike traditional clustering algorithms that try to maximize likelihood
or minimize cost through iterative steps, MoM attempts to learn the parameters through
factorization of higher order moments of the data. It is a non-iterative algorithm and offers
much better scalability than iterative counterparts, especially for large datasets. Here we
use Method of Moments on the same generative latent variable used by PLSI (Hofmann,
2004), and show how to extract the parameters through factorization of moments of the
data. We demonstrate the derivation of our algorithm in next section, prove its conver-

207

Dasgupta

gence bounds, and then compare the performance of our algorithm with PLSI and matrix
factorization on real-life datasets

2. Latent Variable Model

Our method retains the same latent variable structure from PLSI (Hofmann, 2004). How-
ever, instead of using EM algorithm, we extract the parameters by factorizing second and
third order moments of the dataset.

2.1. Generative Model

Let us assume that there are U users and D items, and the latent variable h can assume
K states. For any user u ∈ {u1, u2 . . . uU}, if nu is the number of items associated with nu,
then we first choose a latent state of h ∈ {1, 2 . . .K} from the discrete distribution P

[
h|u
]
,

then we choose an item y ∈ {y1, y2 . . . yD} from the discrete distribution P
[
y|h
]
, and repeat

it for nu times. The final sample x ∈ RD for user u contains counts of different items, which
sums to nu.

The generative process is as follows.

For every user u ∈ {u1 . . . uN}, repeat for nu times:

h ∼ Discrete(P
[
h|u
]
)

y ∼ Discrete(P
[
y|h
]
)

(1)

Let us denote the probability of the latent variable h assuming the state k ∈ 1 . . .K as,

πk = P
[
h = k

]
(2)

Let us define µ̄k ∈ RD as the probability vector of all the items conditional to the latent
state k ∈ 1 . . .K, i.e.

µ̄k = P
[
y|h = k

]
(3)

Let the matrix O ∈ RD×K denote the conditional probabilities for the items, i.e. Oi,k =
P
[
yi|h = k

]
. Then O = [µ̄1|µ̄2| . . . |µ̄K]. We assume that the matrix O is of full rank, and

the columns of O are fully identifiable. The aim of our algorithm is to estimate the matrix
O as well as the vector π, and then derive the user personalization parameters P

[
h = k|u

]
from them.

Following the generative model in equation 1, we can define the probability of individual
item as,

P [yj] =
K∑
k=1

P [yj |h]P [h = k] =
K∑
k=1

µkjπk,∀j = 1, 2, . . . D

Therefore, the average probability of the items across the data can be defined as,

M1 = P [y1, y2, . . . yD]
⊤ =

K∑
k=1

πk [µk1 , µk2 . . . µkD]
⊤ =

K∑
k=1

πkµ̄k (4)

208

Fast Collaborative Filtering

Now, we try to formulate the matrix of the joint probability distribution of the items.
Let us assume that we choose two items w1 and w2 from the list of any user. Please note
that, P [w1 = yj] or P [w2 = yj] is same as P [yj] for any item yj . Also, P [w1 = yi, w2 = yj]
is same as P [yi, yj] for any two items yi and yj . Therefore,

P [yi, yj]

= P [w1 = yi, w2 = yj]

=

K∑
k=1

P [w1 = yi, w2 = yj |h = k]P [h = k]

=

K∑
k=1

P [w1 = yi|h = k]P [w2 = yj |h = k]P [h = k]

=

K∑
k=1

P [yi|h = k]P [yj |h = k]P [h = k]

=

K∑
k=1

µkiµkjπk ∀i, j ∈ {1, 2 . . . D}

Defining M2 as the pairwise probability matrix, with M2ij = P
[
yi, yj

]
, we can express

it as,

M2 =

K∑
k=1

πkµ̄kµ̄
⊤
k =

K∑
k=1

πkµ̄k ⊗ µ̄k (5)

Similarly, the tensor M3 defined as the third order probability moment, with M3ijl =
P [yi, yj , yl], can be represented as,

M3 =
K∑
k=1

πkµ̄k ⊗ µ̄k ⊗ µ̄k (6)

2.2. Parameter Extraction

The first step of parameter extraction is to whiten the matrix M2, where we try to find a
low-rank matrix W such that W⊤M2W = I. This is a method similar to the whitening in
ICA, with the covariance matrix replaced with the co-occurrence probability matrix in our
case.

The whitening is usually done through eigenvalue decomposition of M2. If the K maxi-
mum eigenvalues of M2 are {νk}Kk=1, and the corresponding eigenvectors are {ωk}Kk=1, then
the whitening matrix of rank K is computed as W = ΩΣ−1/2, where Ω =

[
ω1|ω2| . . . |ωK

]
,

& Σ = diag(ν1, . . . , νK).
Upon whitening M2 takes the form

W⊤M2W = W⊤(K∑
k=1

πkµ̄kµ̄
⊤
k

)
W =

K∑
k=1

(√
πkW

⊤µ̄k

)(√
πkW

⊤µ̄k

)⊤
=

K∑
k=1

µ̃kµ̃
⊤
k = I (7)

209

Dasgupta

Hence µ̃k =
√
πkW

⊤µ̄k are orthonormal vectors. Multiplying M3 along all three dimen-
sions by W , we get

M̃3 = M3(W,W,W) =

K∑
k=1

πk(W
⊤µ̄k)⊗ (W⊤µ̄k)⊗ (W⊤µ̄k) =

K∑
k=1

1
√
πk

µ̃k ⊗ µ̃k ⊗ µ̃k (8)

Upon canonical decomposition of M̃3, if the eigenvalues and eigenvectors are {λk}Kk=1

and {vk}Kk=1 respectively, then λk = 1/√πk. i.e., πk = λ−2
k , and,

vk = µ̃k =
√
πkW

⊤µ̄k =
1

λk
W⊤µ̄k (9)

The µ̄ks can be recovered as µ̄k = λkW
†vk, where W † is the pseudo-inverse of W⊤, i.e.,

W † = W
(
W⊤W

)−1
. Since we normalize the columns of O as Oyk =

Oyk∑
v Oyk

. it is sufficient

to compute µ̄k = W †uk, since λk will be cancelled during normalization. The matrix O can
be constructed as O =

[
µ̄1|µ̄2| . . . |µ̄K

]
.

2.3. User Personalization

Once we have O and π, the probability of a user u ∈ {u1, u2 . . . uN} given h can be expressed
as,

P
[
u|h = k

]
=
∏
y∈Yu

P
[
y|h = k

]
(10)

where Yu is the list of items selected by the user u in the training set.
Then the user personalization probabilities P

[
h = k|u

]
can be estimated using Bayes

Rule.

P
[
h = k|u

]
=

P
[
h = k

]∏
y∈Yu

P
[
y|h = k

]∑K
k=1 P

[
h = k

]∏
y∈Yu

P
[
y|h = k

] = πk
∏

y∈Yu
Oyk∑K

k=1 πk
∏

y∈Yu
Oyk

(11)

Finally, we compute the probability of a user ũ selecting an item ỹ by the following
equation, and recommend the items with the highest probability for the user ũ.

P
[
ỹ|ũ
]
=

K∑
k=1

P
[
ỹ|h = k

]
P
[
h = k|ũ

]
=

∑K
k=1 πkOỹk

∏
y∈Yũ

Oyk∑K
k=1 πk

∏
y∈Yũ

Oyk

(12)

Please note that although we use the same latent variable model as PLSI (Hofmann,
2004), our model parameters are onlyO and π. Therefore our number of effective parameters
is only (D − 1)K + (K − 1), unlike the case of PLSI that uses (D − 1)K + N(K − 1)
parameters.The personalization parameters are not model parameters in our case since we
derive them from O and π.

210

Fast Collaborative Filtering

3. Implementation Detail

We create an estimation of the sparse moments M2 by counting the pairwise occurrence
of the items across the selections made by all the users in the dataset, and normalizing by
the total number of occurrence in each case. This can be achieved in one pass through the
dataset using frameworks like Hadoop. Alternatively, if X ∈ RN×D is the binary sparse
matrix representing the data, then the pairwise occurrence matrix can be estimated by
X⊤X, whose sum of all elements is,

∑
y

∑
y

X⊤X =
∑
y

∑
y

N∑
i=1

x⊤i xi =
N∑
i=1

∑
y

∑
y

x⊤i xi =

N∑
i=1

nnz(xi)
2

where xi is the row of X corresponding to the ith user, and nnz(xi) is the number of non-
zero elements in xi, i.e., the number of items associated with ith user. Therefore, M2 can
be estimated as,

M̂2 =
1∑N

i=1 nnz(xi)
2
X⊤X (13)

Similarly, the triple-wise occurrence tensor can be estimated as X⊗X⊗X, and the sum
of all of the elements of the tensor is

∑
y

∑
y

∑
y X ⊗X ⊗X =

∑N
i=1 nnz(xi)

3. Therefore,
M3 can be estimated as,

M̂3 =
1∑N

i=1 nnz(xi)
3
X ⊗X ⊗X (14)

The dimensions of M̂2 and M̂3 are D2 and D3 respectively, but in practice, these
quantities are extremely sparse. Also, we can estimate M̃3 without estimating M3. Since
ˆ̃M3 = M̂3(W,W,W), it can be estimated as,

ˆ̃M3 =
1∑N

i=1 nnz(xi)
3
XW ⊗XW ⊗XW (15)

M̃3 has a dimension of K3, and can be conveniently stored in the memory (K ≪ D).
Estimating M̃3 takes a second pass through the entire dataset. The entire algorithm is
outlined as Algorithm 1. We used the Tensor Toolbox (Bader et al., 2015) for tensor
decomposition. Once the matrix O and πk are extracted, it requires one more pass through
the entire dataset to compute the user probabilities (P [h|u]), resulting in a total of three
passes for the extraction of all parameters. Although it is possible to make predictions
using only O and π, it is advisable to compute P [h|u] beforehand to avoid computation
cost during prediction step.

The number of elements in M2 is O
(∑N

i=1 nnz(xi)
2
)
, with the worst case occur-

ring when no two users has any item in common, and all the elements in X⊤X is one.
The complexity of extracting K largest eigenvalue of M2 during the whitening step is

O
(
K
(∑N

i=1 nnz(xi)
2
))

. The complexity of Equation 15 is Θ(NK3). The tensor factor-

ization step has a complexity of O
(
K4 log (1/ϵ)

)
to extract all K eigenvalues of M̃3 up to

211

Dasgupta

Algorithm 1 Method of Moments for Parameter Extraction

Input: Sparse Data X ∈ RN×D and K ∈ Z+

Output: P
[
y|h
]
and P

[
h|u
]

1. Estimate M̂2 = (X⊤X)/
∑N

i=1 nnz(xi)
2 (pass # 1)

2. Compute K maximum eigenvalues of M̂2 as {νk}Kk=1, and corresponding eigenvec-
tors as {ωk}Kk=1. Define Ω =

[
ω1|ω2| . . . |ωK

]
, and Σ = diag (ν1, ν2, . . . , νK)

3. Estimate the whitening matrix Ŵ = ΩΣ−1/2 so that Ŵ⊤M̂2Ŵ = IK×K

4. Estimate ˆ̃M3 = (XŴ ⊗XŴ ⊗XŴ)/
∑N

i=1 nnz(xi)
3 (pass # 2)

5. Compute eigenvalues {λk}Kk=1 and eigenvectors {vk}Kk=1 of ˆ̃M3

6. Estimate the columns of O as ˆ̄µk = Ŵ †vk, where Ŵ † = Ŵ (Ŵ⊤Ŵ)
−1

, and π̂k =
λ−2
k , ∀k ∈ 1, 2 . . .K

7. Assign Ô = [ˆ̄µ1| ˆ̄µ2| . . . | ˆ̄µK] & π̂ = [π̂1, π̂2 . . . π̂K]⊤

8. Estimate P
[
y|h = k

]
=

Ôyk∑
y Ôyk

, ∀k ∈ 1 . . .K, y ∈ y1 . . . yD

9. Estimate P
[
h = k|u

]
=

π̂k
∏

y∈Yu
Ôyk∑K

k=1 π̂k
∏

y∈Yu
Ôyk

,∀k ∈ 1 . . .K, u ∈ u1 . . . uN (pass # 3)

an accuracy of ϵ. These three steps contribute the most to the computational burden of the
algorithm. The complexity of the overall algorithm is,

O
(
K
(N∑

i=1

nnz(xi)
2
)
+NK3 +K4 log (1/ϵ)

)

3.1. Convergence Bound

Theorem 1 Let us assume that we draw N i.i.d samples x1, x2 . . . xN corresponding to N

users using the generative process in Equation 1. Let us define ε =

(
1 +

√
log(1/δ)

2

)
for

some δ ∈ (0, 1). Then, if the number of users N ≥ max(n1, n2, n3), where

• n1 = c2

(
logK + log log

(
K
c1

·
√

πmax
πmin

))
• n2 = Ω

((
ε

d̃2sσK(M2)

)2)

• n3 = Ω

(
K2
(

10
d̃2sσK(M2)5/2

+ 2
√
2

d̃3sσK(M2)3/2

)2
ε2
)

212

Fast Collaborative Filtering

for some constants c1 and c2, and we run Algorithm 1 on the data, then the following
bounds on the estimated parameters hold with probability at least 1− δ,

||µk − µ̂k|| ≤

(
160
√

σ1(M2)

d̃2sσK(M2)5/2
+

32
√

2σ1(M2)

d̃3sσK(M2)3/2
+

4
√
σ1(M2)

d̃2sσK (M2)

)
ε√
N

and,

|πk − π̂k| ≤

(
200

σK(M2)5/2
+

40
√
2

σK(M2)3/2

)
ε

d̃3s
√
N

where σ1(M2) . . . σK(M2) are the K largest eigenvalues of the pairwise probability matrix
M2, d̃2s = 1

N

∑N
i=1 nnz(xi)

2 and d̃3s = 1
N

∑N
i=1 nnz(xi)

3, with nnz(xi) representing the
non-zero elements in the ith sample.

The proof is in the appendix.

4. Experimental Results

We show the implementation of our model on three publicly available datasets so that
the results can be reproduced whenever necessary. The datasets contain records of user-
item interactions over a period, and truly represents implicit feedback systems. We do not
convert any dataset with user ratings into implicit feedback dataset, as it may not be an
accurate representation of implicit feedback scenario.

The different attributes of datasets are described in Table 1. We use K = 100 for all
the models in our experiments. For the standard form of PLSI, we run EM algorithm until
Lt − Lt−1 < .001× |Lt−1|, where Lt is the log-likelihood at iteration t, resulting in around
25 − 30 iterations for each dataset. We use the implementation of WRMF and BPR from
MyMediaLite library 1 developed by the authors of (Rendle et al., 2009). We found that the
rest of the algorithms, such as (Kang et al., 2016), (Pan and Chen, 2013) or (Cheng et al.,
2014) lacks scalability to train on large datasets, at least in their current implementation
provided by the authors. We could not find an implementation of AdaBPR(Liu et al.,
2015) from the authors. The article uses much smaller datasets, e.g. the authors select only
27,216 users and 9,994 songs from the Million Song Dataset. We used WRMF and BPR for
the benchmarking purpose since most of the relevant literature on recommendation systems
considered these two algorithms as the state-of-art.

For every dataset, we compute the Precision@τ , Recall@τ , and Mean Average Precision
(MAP@τ) for τ ∈ {5, 10, 20, 40, 60, 80, 100, 200, 300, 400, 500}. The Precision-Recall curves
as well as MAP@τ is shown in Figure 2, and the computation time in Table 2. We carried out
our experiments on Unix Platform on a single machine with a single-core 2.4GHz processor
and 8GB memory, and did not use multi-threading or any other performance enhancement
technique. 2.

1. http://www.mymedialite.net/
2. The code is available at https://github.com/Sayan21/RecSys

213

http://www.mymedialite.net/
https://github.com/Sayan21/RecSys

Dasgupta

Table 1: Descriptions of the Datasets
Name Type # of Users # of Items # of tuples

(training)
Sparsity
(training)

of tuples
(test)

Ta-Feng Online Grocery 24, 304 21, 533 417, 246 5.44×10−4 274, 479

Million Song Music Subscription 110, 000 163, 206 1, 450, 933 8.08×10−5 1, 368, 430

Yandex Search Engine logs 1M 718, 675 5, 669, 541 7.89×10−6 3, 516, 216

0 0.1 0.2 0.3 0.40

0.02

0.04

0.06

0.08

0.1

0.12

Pr
ec
is
io
n

Recall

WRMF
BPR
PLSI
MoM

(a) Precision-Recall
(TaFeng)

0 0.05 0.1 0.15 0.20

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ec
is
io
n

Recall

WRMF
BPR
PLSI
MoM

(b) Precision-Recall (Mil-
lion Song)

0 0.05 0.1 0.15 0.20

0.01

0.02

0.03

0.04

0.05

Pr
ec
is
io
n

Recall

BPR
PLSI
MoM

(c) Precision-Recall (Yan-
dex)

0 100 200 300 400 5000

0.01

0.02

0.03

0.04

0.05

M
A
P

WRMF
BPR
PLSI
MoM

(d) MAP (Ta-Feng)

0 100 200 300 400 5000

0.005

0.01

0.015

0.02

0.025

0.03

M
A
P

WRMF
BPR
PLSI
MoM

(e) MAP (Million Song)

0 100 200 300 400 5000

0.01

0.02

0.03

0.04

M
A
P

BPR
PLSI
MoM

(f) MAP (Yandex)

Figure 2: Precision-Recall curves (1st row) and Mean Average Precision or MAP (2nd row)
of different methods on the three datasets

4.1. Ta-Feng Dataset

Ta-Feng dataset consists of online grocery purchase records for the months of January,
February, November and December in 2001.We combine the records of January and Novem-
ber resulting in a training set consisting of around 24,000 users and 21,000 products, and
around 470,000 sales records. The records of February and December are combined to form
the test set. BPR achieves the highest MAP of all, but MoM produces the best Precision-
Recall curve, taking similar time as BPR.

Table 2: Computation Time (sec)

Dataset WRMF BPR PLSI MoM

Ta-Feng 2200 108 1081 120

Million Song 14262 510 3036 600

Yandex - 2100 15300 2512

214

Fast Collaborative Filtering

4.2. Million Song Dataset

Million Song dataset contains the logs of 1 million users listening to 385,000 song tracks
with 48 million observations. Here, we use a subset of the data consisting of 100,000 users
and around 165,000 song tracks with around 1.45 million observations released in Kaggle.
MoM performs the best regarding MAP and Precision-Recall, except for higher values of τ
when WRMF catches up.

4.3. Yandex Search Log Dataset

Yandex dataset contains the search logs of 27 days for 5.7 million users and 70.3 million
URLs. We selected 718,675 URLs, each of which had at least five clicks since it is not
possible to personalize URLs with very few clicks. We randomly selected 1M users who
clicked one of those 718,675 URLs.We used the data of first 14 days as the training set, and
the last 13 days as the test set. WRMF did not finish even after running for a day. MoM
outperformed BPR and PLSI while taking similar time as BPR.

5. Conclusion

Here we propose a collaborative filtering algorithm for implicit feedback based on the second
and third order moment factorization of the data. Existing methods like PLSI suffers from
local maxima problem. Although Matrix factorizations operate on a convex loss, it is
far from trivial to reach the global minima of the loss function through gradient descent
alternately on user and item features. The Method of Moments, on the other hand, comes
with guaranteed convergence bound. The only drawback of Method of Moments is that it
will not work when there are only a few users available such that N < Θ(K2). However,
modern recommendation systems usually operate on a large number of users, and this is
far from a possibility.

We demonstrate the competitive performance of Method of Moments through experi-
ments on three real-world datasets, chosen from different domains. BPR performs better in
MAP for Ta-Feng datasets. However, as the size and the sparsity of the datasets increase,
the performance of BPR gets worse. The Method of Moments performs the best for Million
Song and Yandex datasets while taking similar time as BPR. PLSI or Matrix Factorization
(WRMF) clearly lacks the scalability that MoM offers, neither do they produce any better
result. Further, MoM depends only on various linear algebraic operations, and it is embar-
rassingly parallel to implement on any parallel platforms. This makes MoM a very suitable
choice for large-scale datasets.

References

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor decompo-
sitions for learning latent variable models. Journal of Machine Learning Research, 15:2773–2832, 2014.
URL http://jmlr.org/papers/v15/anandkumar14b.html.

Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6. Available online, February
2015. URL http://www.sandia.gov/∼tgkolda/TensorToolbox/.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:
993–1022, March 2003. ISSN 1532-4435.

215

http://jmlr.org/papers/v15/anandkumar14b.html
http://www.sandia.gov/~tgkolda/TensorToolbox/

Dasgupta

Arun Tejasvi Chaganty and Percy Liang. Spectral experts for estimating mixtures of linear regressions.
arXiv preprint arXiv:1306.3729, 2013.

Yao Cheng, Li’ang Yin, and Yong Yu. Lorslim: Low rank sparse linear methods for top-n recommendations.
In Data Mining (ICDM), 2014 IEEE International Conference on, pages 90–99. IEEE, 2014.

Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news personalization:
scalable online collaborative filtering. In Proceedings of the 16th international conference on World Wide
Web, pages 271–280. ACM, 2007.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In Proceedings of
the 23rd international conference on Machine learning, pages 233–240. ACM, 2006.

Zeno Gantner, Lucas Drumond, Lars Schmidt-thieme, and Christoph Freudenthaler. Bayesian personalized
ranking for non-uniformly sampled items. In JMLR, Workshop and Conference Proceedings 18, pages
231–247, 2012.

Asela Gunawardana and Christopher Meek. A unified approach to building hybrid recommender systems.
In Proceedings of the Third ACM Conference on Recommender Systems, RecSys ’09, pages 117–124, 2009.
ISBN 978-1-60558-435-5.

Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89–115,
January 2004. ISSN 1046-8188.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM ’08, pages 263–
272, 2008. ISBN 978-0-7695-3502-9.

Zhao Kang, Chong Peng, and Qiang Cheng. Top-n recommender system via matrix completion. In AAAI,
2016.

Tamara G. Kolda and Jackson R. Mayo. Shifted power method for computing tensor eigenpairs. SIAM
Journal on Matrix Analysis and Applications, 32(4):1095–1124, October 2011. doi: 10.1137/100801482.

Chenxi Lin, Gui-Rong Xue, Hua-Jun Zeng, and Yong Yu. Using probabilistic latent semantic analysis for
personalized web search. In Web Technologies Research and Development-APWeb 2005, pages 707–717.
Springer, 2005.

Yong Liu, Peilin Zhao, Aixin Sun, and Chunyan Miao. A boosting algorithm for item recommendation with
implicit feedback. In Proceedings of the 24th International Conference on Artificial Intelligence, pages
1792–1798. AAAI Press, 2015.

Brian McFee, Thierry Bertin-Mahieux, Daniel P.W. Ellis, and Gert R.G. Lanckriet. The million song dataset
challenge. In Proceedings of the 21st International Conference Companion on World Wide Web, WWW
’12 Companion, pages 909–916, 2012. ISBN 978-1-4503-1230-1.

Weike Pan and Li Chen. Gbpr: Group preference based bayesian personalized ranking for one-class collabo-
rative filtering. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence,
pages 2691–2697. AAAI Press, 2013.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian person-
alized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, pages 452–461. AUAI Press, 2009.

Mark Steyvers and Tom Griffiths. Probabilistic topic models. Handbook of latent semantic analysis, 427(7):
424–440, 2007.

Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based music recommenda-
tion. In Advances in Neural Information Processing Systems, pages 2643–2651, 2013.

216

Fast Collaborative Filtering

Chong Wang and David M Blei. Collaborative topic modeling for recommending scientific articles. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 448–456. ACM, 2011.

Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to rank with
joint word-image embeddings. Machine Learning, 81(1):21–35, 2010. ISSN 0885-6125. doi: 10.1007/
s10994-010-5198-3. URL http://dx.doi.org/10.1007/s10994-010-5198-3.

Appendix A. Vector Norms

Let the true pairwise probability matrix and the third order probability moment be M2 =
p(y, y) and M3 = p(y, y, y), where y stands for the items. Let us assume that we select
N i.i.d. samples x1, . . . xN from the population, and the estimates of pairwise matrix and
third order moment are M̂2 = p̂(y, y) and M̂3 = p̂(y, y, y). Let εM2 = ||M2 − M̂2||2. We
use the second order operator norm of the matrices here. Let us assume εM2 ≤ σK(M2)/2,
where σK is the Kth largest eigenvalue of M2. We will derive the conditions which satisfies
this later.

If Σ = diag(σ1, σ2 . . . σK) are the top-K eigenvalues of M2, and U are the corresponding
eigenvectors, then the whitening matrix W = UΣ−1/2. Also, W⊤M2KW = IK×K , where
M2K is the K rank approximation of M2. Then,

||W ||2 =
√
max eig(W⊤W) =

√
max eig(Σ−1) =

1√
σK(M2)

Similarly, if W † = W (W⊤W)−1, then W † = WΣ = UΣ1/2. Therefore,

||W †||2 =
√

max eig(Σ) =
√
σ1(M2) (16)

Let Ŵ be the whitening matrix for M̂2, i.e., Ŵ⊤M̂2Ŵ = IK×K . Then by Weyl’s
inequality,
σk(M2)− σk(M̂2) ≤ ||M2 − M̂2||, ∀k = 1, 2 . . .K.

Therefore,

||Ŵ ||22 =
1

σK(M̂2)
≤ 1

σK (M2)− ||M2 − M̂2||
≤ 2

σK (M2)
(17)

Also, by Weyl’s Theorem,

||Ŵ †||22 = σ1(M̂2) ≤ σ1(M2) + εM2 ≤ 1.5σ1(M2) =⇒ ||Ŵ †||2 ≤
√
1.5σ1(M2) ≤ 1.5

√
σ1(M2)
(18)

Let D be the eigenvectors of ŴM2Ŵ , and A be the corresponding eigenvalues. Then
we can write, ŴM2Ŵ=ADA⊤. Then W = ŴAD−1/2A⊤ whitens M2, i.e., W

⊤M2W = I.
Therefore,

217

http://dx.doi.org/10.1007/s10994-010-5198-3

Dasgupta

||I −D||2 = ||I −ADA⊤||2
= ||I − ŴM2Ŵ ||2
= ||ŴM̂2Ŵ − ŴM2Ŵ ||2
≤ ||Ŵ ||22||M2 − M̂2||

≤ 2

σK (M2)
εM2 (19)

εW = ||W −WAD1/2A⊤||2
= ||W ||2||I −AD1/2A⊤||2
= ||W ||2||I −D1/2||2
≤ ||W ||2||I −D1/2||2||I +D1/2||2
= ||W ||2||I −D||2

≤ 2

σK(M2)3/2
εM2 (20)

εW † = ||W † − Ŵ †||2
= ||Ŵ †AD1/2A⊤ − Ŵ †||2
= ||Ŵ †||2||I −AD1/2A⊤||2

≤ ||Ŵ †||2||I −D||2 ≤
2
√

σ1(M2)

σK (M2)
εM2 (21)

Appendix B. Tensor Norm

Let us define the second order operator norm of a tensor T ∈ RD×D×D as,

||T ||2 = sup
v
{|T (v, v, v)| : v ∈ RD&||v|| = 1} (22)

Lemma 2 For a tensor T ∈ RD×D×D, ||T ||2 ≤ ||T ||F , where ||T ||F is the Frobenius norm
defined as,

||T ||F =

√∑
i,j,k

(Ti,j,k)2

Proof For any real matrix A, ||A||2 ≤ ||A||F . Let us unfold the tensor T as the collection
of D matrices, as, T = {T1, T2 . . . TD}. Then,

T (v, v, v) = v⊤[T1v|T2v| . . . |TKv]v = ⟨[v⊤T1v, v
⊤T2v, . . . v

⊤TKv], v⟩ (23)

218

Fast Collaborative Filtering

Therefore,

||T ||2 = sup
v
{|T (v, v, v)| : v ∈ RD&||v|| = 1}

= sup
v
{
∣∣∣⟨[v⊤T1v, v

⊤T2v, . . . , v
⊤TKv], v⟩

∣∣∣ : v ∈ RD&||v|| = 1}

Using Cauchy-Schwarz inequality,

||T ||2 ≤ sup
v
{
∣∣∣∣∣∣[v⊤T1v, v

⊤T2v, . . . v
⊤TKv]

∣∣∣∣∣∣ ||v|| : v ∈ RD&||v|| = 1}

= sup
v
{
∣∣∣∣∣∣[v⊤T1v, v

⊤T2v, . . . v
⊤TKv]

∣∣∣∣∣∣ : v ∈ RD&||v|| = 1}

=
∣∣∣∣[||T1||2 , ||T2|| , . . . ||TD||

]∣∣∣∣
≤
∣∣∣∣[||T1||F , ||T2||F , . . . ||TD||F

]∣∣∣∣
=

√(
||T1||2F + ||T2||2F + . . .+ ||TD||F

)
= ||T ||F (24)

Lemma 3 (Robust Power Method from (Anandkumar et al., 2014)) If T̂ = T + E ∈
RK×K×K , where T is an symmetric tensor with orthogonal decomposition T =

∑K
k=1 λkuk ⊗ uk ⊗ uk

with each λk > 0, and E has operator norm ||E||2 ≤ ϵ. Let λmin = minKk=1{λk} and
λmax = maxKk=1{λk}. Let there exist constants c1, c2 such that ϵ ≤ c1 · (λmin/K), and
N ≥ c2(logK + log log (λmax/ϵ)). Then if Algorithm 1 in (Anandkumar et al., 2014) is
called for K times, with L = poly(K) log(1/η) restarts each time for some η ∈ (0, 1), then
with probability at least 1− η, there exists a permutation π on [K], such that,

||uπ(k) − ûk|| ≤ 8
ϵ

λπ(k)
, |λk − λπ(k)| ≤ 5ϵ ∀k ∈ [K] (25)

Since ϵ ≤ c1 · (λmin/K) and λk = 1√
πk
,∀k ∈ [K], we need

N ≥ c2

(
logK + log log

(
Kλmax

c1λmin

))
= c2

(
logK + log log

(
K

c1

√
πmax

πmin

))
(26)

This contributes in the first lower bound (n1) of N in Theorem 1.

Appendix C. Tail Inequality

Lemma 4 If we draw N i.i.d. samples x1, x2 . . . xN through the generative process in Equa-
tion 1 corresponding to N users, and the vectors probability mass function of the items y es-
timated from these N samples are p̂(y) whereas the true p.m.f is p(y) with y ∈ {y1, y2 . . . yD}
, then with probability at least 1− δ with δ ∈ (0, 1),

219

Dasgupta

||p̂(y)− p(y)||F ≤ 2

d̃1s
√
N

(
1 +

√
log(1/δ)

2

)
(27)

||p̂(y, y)− p(y, y)||F ≤ 2

d̃2s
√
N

(
1 +

√
log(1/δ)

2

)
(28)

||p̂(y, y, y)− p(y, y, y)||F ≤ 2

d̃3s
√
N

(
1 +

√
log(1/δ)

2

)
(29)

where, d̃1s = 1
N

∑N
i=1 nnz(xi), d̃2s = 1

N

∑N
i=1 nnz(xi)

2, d̃3s = 1
N

∑N
i=1 nnz(xi)

3, and
nnz(xi) is the non-zero entries in row xi of the data X as described in section 3.

The proof is included in the supplementary material.

Appendix D. Bounds on the Parameters

Assigning ε =

(
1 +

√
log(1/δ)

2

)
in the inequalities of Lemma 4, we get

εM2 = ||p̂(y, y)− p(y, y)||2 ≤ ||p̂(y, y)− p(y, y)||F ≤ 2ε

d̃2s
√
N

, and

εM3 = ||M3 − M̂3||2 = ||p̂(y, y, y)− p(y, y, y)||2 ≤ ||p̂(y, y, y)− p(y, y, y)||F ≤ 2ε

d̃3s
√
N

since operator norm is smaller than Frobenius norm for both matrices and tensors.

Therefore, to satisfy εM2 ≤ σK(M2)/2, we need N ≥ Ω

((
ε

d̃2sσK(M2)

)2)
. This con-

tributes in the second lower bound (n2) of N in Theorem 1.
From Appendix B in (Chaganty and Liang, 2013),

εtw = ||M3(W,W,W)− M̂3(Ŵ , Ŵ , Ŵ)||2

≤ ||M3||2
(
||Ŵ ||22 + ||Ŵ ||2||W ||2 + ||W ||22

)
εW + ||Ŵ ||3εM3

≤ ||M3||2
(2 +

√
2 + 1)

σK(M2)
εW +

2
√
2

σK(M2)3/2
εM3

≤ ||M3||2
(3 +

√
2)

σK(M2)
· 2

σK(M2)3/2
εM2 +

2
√
2

σK(M2)3/2
εM3

≤ 10||M3||2
σK(M2)5/2

· εM2 +
2
√
2

σK(M2)3/2
εM3

≤

(
10

d̃2sσK(M2)5/2
+

2
√
2

d̃3sσK(M2)3/2

)
2ε√
N

(30)

Please note that ||M3||2 ≤ ||M3||F ≤ 1, because M3 is a tensor with individual elements
as probabilities, with the sum of all elements being 1.

220

Fast Collaborative Filtering

From 3, ϵ ≤ c1 · (λmin/K), and we can assign ϵ as the upper bound of εtw. To satisfy
this, we need (

10

d̃2sσK(M2)5/2
+

2
√
2

d̃3sσK(M2)3/2

)
2ε√
N

≤ c1
λmin

K
, or,(

10

d̃2sσK(M2)5/2
+

2
√
2

d̃3sσK(M2)3/2

)
2ε√
N

≤ c1
1

K
√
πmax

Since πmax ≤ 1, we need N ≥ Ω

(
K2
(

10
d̃2sσK(M2)5/2

+ 2
√
2

d̃3sσK(M2)3/2

)2
ε2
)
. This con-

tributes to n3 in Theorem 1.
Here, we will derive the final bounds for the reconstruction error for the parameters.

Since µk = W †uk (Algorithm 1), with probability at least 1− δ,

||µk − µ̂k||
= ||W †uk − Ŵ †ûk||
= ||W †uk −W †ûk +W †ûk − Ŵ †ûk||
≤ ||W †||2||uk − ûk||+ ||W † − Ŵ †||2||ûk||

≤ ||W †||2
8ϵ

λk
+ εW †

≤ 8
√

σ1(M2)ϵ+
2
√
σ1(M2)

σK (M2)
εM2

(31)

Since 1
λk

=
√
πk ≤ 1. Therefore, with probability at least 1− δ,

||µk − µ̂k|| ≤ 8
√
σ1(M2)

(
10

d̃2sσK(M2)5/2
+

2
√
2

d̃3sσK(M2)3/2

)
2ε√
N

+
2
√
σ1(M2)

σK (M2)

2ε

d̃2s
√
N

≤

(
160
√

σ1(M2)

d̃2sσK(M2)5/2
+

32
√

2σ1(M2)

d̃3sσK(M2)3/2
+

4
√
σ1(M2)

d̃2sσK (M2)

)
ε√
N

(32)

|πk − π̂k| =

∣∣∣∣∣ 1λ2
k

− 1

λ̂2
k

∣∣∣∣∣ =
∣∣∣∣∣(λk + λ̂k)(λk − λ̂k)

λ2
kλ̂

2
k

∣∣∣∣∣ = ∣∣∣√πkπ̂k

(√
πk +

√
π̂k

)
(λk − λ̂k)

∣∣∣
≤ 2|λk − λ̂k| ≤ 10ϵ (33)

since |λk − λ̂k| ≤ 5ϵ from Lemma 3. Therefore, with probability at least 1− δ, we get

|πk − π̂k| ≤

(
200

σK(M2)5/2
+

40
√
2

σK(M2)3/2

)
ε

d̃3s
√
N

(34)

where ε =

(
1 +

√
log(1/δ)

2

)
all along. This completes the proof of Theorem 1.

221

	Introduction
	Latent Variable Model
	Generative Model
	Parameter Extraction
	User Personalization

	Implementation Detail
	Convergence Bound

	Experimental Results
	Ta-Feng Dataset
	Million Song Dataset
	Yandex Search Log Dataset

	Conclusion
	Vector Norms
	Tensor Norm
	Tail Inequality
	Bounds on the Parameters

