
JMLR: Workshop and Conference Proceedings 63:1–16, 2016 ACML 2016

Non-Linear Smoothed Transductive Network Embedding
with Text Information

Weizheng Chen1 cwz.pku@gmail.com

Xia Zhang1 zhangxia9403@gmail.com

Jinpeng Wang2 jinpwa@microsoft.com

Yan Zhang1 zhyzhy001@gmail.com

Hongfei Yan1 yhf1029@gmail.com

Xiaoming Li1 lxm.at.pku@gmail.com
1 School of Electronic Engineering and Computer Science, Peking University, Beijing, China
2 Microsoft Research, Beijing, China

Editors: Robert J. Durrant and Kee-Eung Kim

Abstract

Network embedding is a classical task which aims to map the nodes of a network to low-
dimensional vectors. Most of the previous network embedding methods are trained in
an unsupervised scheme. Then the learned node embeddings can be used as inputs of
many machine learning tasks such as node classification, attribute inference. However, the
discriminant power of the node embeddings maybe improved by considering the node label
information and the node attribute information.

Inspired by traditional semi-supervised learning techniques, we explore to train the
node embeddings and the node classifiers simultaneously with the text attributes informa-
tion in a flexible framework. We present Non-Linear Smoothed Transductive Network
Embedding (NLSTNE), a transductive network embedding method, whose embeddings
are enhanced by modeling the non-linear pairwise similarity between the nodes and the
non-linear relationships between the nodes and the text attributes. We use the node clas-
sification task to evaluate the quality of the node embeddings learned by different models
on four real-world network datasets. The experimental results demonstrate that our model
outperforms several state-of-the-art network embedding methods.

1. Introduction

Data that has the network architecture characteristic, such as social network and document
network, has been studied by the computer science research community for a long time.
Nowdays, statistical machine learning techniques are widely used in the network analysis
area for various important tasks, say, node classification(Yang et al., 2016), network vi-
sualization(Tang et al., 2016), user alignment (Liu et al., 2016) and link prediction(Tang
et al., 2015b). However, a real network is usually represented as a high dimensional sparse
adjacent matrix which makes it difficult to apply traditional machine learning algorithms
on the network data.

Network embedding, also known as network representation learning, is a fundamental
problem in the network analysis area. The key idea is to project each node into a low-

c⃝ 2016 W. Chen1, X. Zhang1, J. Wang2, Y. Zhang1, H. Yan1 & X. Li1.



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

dimensional vector space. Thus the node embeddings can be used as features for other
data mining tasks. Many primeval network embedding methods are based on spectral
factorization, such as LLE (Roweis and Saul, 2000), Laplacian Eigenmap (Belkin and Niyogi,
2001) and DGE (Chen et al., 2007). They have graceful mathematical properties but very
large computational complexity which leads to inefficiency or unavailability to deal with
large networks.

Recently, motivated by the success of the unsupervised distributed representation learn-
ing techniques in the natural language processing area, several novel network embedding
methods have been proposed to learn distributed dense representations for networks. Per-
ozzi et al. proposes DeepWalk (Perozzi et al., 2014), in which the node sequences are
sampled from a network and fed to the Skip-Gram (Mikolov et al., 2013) model as pseudo
sentences. Tang et al. later presents LINE (Tang et al., 2015a), in which one edge is sam-
pled with several negative noisy edges in each iteration to optimize an objective function
that preserves the first-order proximity or second-order proximity. Though the above two
models can handle very large networks, they still have weaknesses. In the real world, the
nodes in the networks are usually associated with the label or the category information,
such as the conference that a paper belongs to in a paper citation network, the company a
person works in the LinkedIn social network. Because the label information is not utilized
in the unsupervised framework, the distinguishability of the learned embedding is limited.
Furthermore, both DeepWalk and LINE ignore the rich text attributes in real networks.
For instance, the users in Twitter and Facebook social network are associated with plenty
user generated contents which can provide great potential to improve the expressive power
of the node embeddings.

To incorporate the label information into the network embedding process, semi-supervised
learning techniques, especially transductive learning methods, have been adapted to en-
hance the discriminative power of the learned embeddings. LSHM (Jacob et al., 2014) and
MMDW (Tu et al., 2016) are two representative methods among them. They both can learn
node embeddings and train a classifier on the labeled nodes simultaneously. But LSHM use
a simple linear regularization smoothing term to encode the pairwise structure information
of a network, which could not accurately depict the non-linear topological property (Luo
et al., 2011). And MMDW is optimized in a matrix decomposition framework, which is
not suitable for large networks. In addition, the performance of these two models is limited
since the text information is not considered.

In this paper, we propose NLSTNE, an efficient semi-supervised network embedding
method. Three components of NLSTNE, i.e., a non-linear smoothing term for the non-
linear network structure information, a non-linear loss function for the text information
and Linear Support Vector Machines for the label information, are naturally coupled and
trained alternately. Note that even if one of the three information is not available, our model
can still make use of the rest two. Therefore, NLSTNE is a general network embedding
method which is not depend on the text information.

In summary, this paper has the following three major contributions:

1. We propose a novel transductive network embedding model, namely NLSTNE. NL-
STNE is able to combine the label information and the non-linear structure informa-
tion together to learn discriminative node features in a low-dimensional space. Signif-

2



Non-Linear Smoothed Transductive Network Embedding with Text Information

icant memory saving can be acquired since NLSTNE can achieve its best performance
when the length of the embedding vector is 10.

2. Our model can be further enhanced by incorporating the text attribute information
into the embedding process. The semantic similarity of nodes can be preserved in the
learned node embeddings by modeling the non-linear relationships between the nodes
and the words.

3. To illustrate the superiority of the proposed model, the learned embeddings are eval-
uated within the multi-class node classification task on four real datasets with or
without the text information. The results show that our model outperforms other
state-of-the-art baselines significantly. Specifically, our model achieves more than 17%
improvement over the most competitive baseline MMDW (Tu et al., 2016) when only
10% nodes are labeled. We also provide a parameter sensitivity study to demonstrate
the robustness of our model.

The rest of this paper is organized as follows. Section 2 gives a discussion of the related
work. Section 3 formally defines our research problem. Section 4 introduces our proposed
model and its implementation in details. Section 5 presents the experimental results of node
classification and parameter tuning. Finally we conclude in Section 6.

2. Related Work

Our work is primarily related to network embedding models. According to whether the
label information is used, we break up those models into two separate categories.

The first category is unsupervised network embedding models. Usually these models
learn the node embeddings by optimizing an objective function designed to preserve some
certain properties of the network structure. For example, DGE (Chen et al., 2007) embeds
the nodes of a directed network to a vector space by preserving the inherent pairwise node
relations measured by transition probability and the stationary distribution. In recent
years, DeepWalk(Perozzi et al., 2014) adopts Skip-Gram (Mikolov et al., 2013), a popular
distributed word representation learning method, to the network representation learning
task. It has been shown that DeepWalk is actually equivalent to factoring a matrix whose
entry is the logarithm of the average probability that a node can randomly walk to another
node in a fixed number of steps. Tang et al. later propose LINE(Tang et al., 2015a),
which optimizes a carefully designed objective function that preserves both the first-order
proximity and second-order proximity. Cao et al. present GraRep (Cao et al., 2015) ,
which integrates the global structural information of the network into the learning process
by optimizing k-step loss functions in a matrix factorization framework. Walklets (Perozzi
et al., 2016) considers the offsets between the nodes observed in a random walk to learn
a series of representations. Like DeepWalk, all these models can be explained as a neural
matrix factorization framework whose input is usually a function of the adjacent matrix.
How to incorporate the text information of nodes into the embedding process has also been
studied. The most recent work is TADW (Yang et al., 2015), in which SVD is performed on
the TF-IDF matrix of all documents to get robust text features. TADW applies inductive

3



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

matrix completion (Natarajan and Dhillon, 2014) to leverage the text features into the
matrix factorization style DeepWalk.

The second category is semi-supervised network embedding models. Semi-supervised
network embedding models are usually tuned for the node classification task by taking the
label information into consideration. Usually, a semi-supervised network embedding model
is an extension of an unsupervised network embedding model (Jacob et al., 2014; Li et al.,
2016; Tu et al., 2016). For instance, The objective function of DDRW (Discriminative Deep
Random Walk) (Li et al., 2016) is a linear combination of two parts. The first part is
the objective function of DeepWalk. And the second part is the objective function of a l2
regularized support vector machine trained on the labeled nodes. Furthermore, it is still
not well studied how to utilized text information of nodes into a semi-supervised network
embedding framework. Thus our motivation is to enhance node embeddings with the rich
text attributes information and the label information simultaneously.

3. Problem Formulation

Given a partially labeled network G = (V,E), V is the set of nodes and E ⊆ (V ×V ) is the
set of edges. For an edge ei,j ∈ E, wij is its weight. If there is no edge between vi and vj , we
set wij = 0 .We use L = {v1, ..., v|L|} and U = {v|L|+1, ..., v|L|+|U |} to represent the labeled
nodes and the unlabeled nodes respectively. Here, V = L ∪ U and |V | = |L| + |U |. Let K
be the number of labels in the network, we use a vector yi to encode the label information
of node vi. If vi has the label k ∈ {1, ...,K}, yki = 1, otherwise yki = −1.

The target of network embedding is to learn a continuous vector representation zi ∈ Rd

for each node vi, where d ≪ |V |. In most previous related works, the node embeddings
are used to solve the task of predicting labels of the unlabeled nodes. If we adopt an
unsupervised network embedding method, the first step is to learn embeddings of all nodes
without considering the known labels of the labeled nodes. Then the embeddings of the
labeled nodes are used to train a classifier and the embeddings of the unlabeled nodes
are fed to the classifier to get the predicted results. However, in a transductive network
embedding method, the embeddings of all nodes and a classifier trained on the labeled nodes
will be optimized alternatively. Thus, the label information is directly used to enhance the
distinguishability of the embeddings of the labeled nodes, which in turn improves the quality
of the unlabeled nodes’ embeddings. Finally, the learned classifier can be used to predict
the labels of the unlabeled nodes.

4. Our Model

In this section, we first describe our non-linear smoothing regularization term. Next, we
describe how to model the non-linear relationships between nodes and attributes. Then,
we introduce how to utilize the label information by training a classifier. Finally, we pro-
pose a novel transductive network embedding method, NLSTNE. The model training and
complexity analysis are also discussed.

4



Non-Linear Smoothed Transductive Network Embedding with Text Information

4.1. Non-Linear Network Smoothing

To preserve the network structure information in the learned node embeddings, LSHM,
a representative semi-supervised network embedding model, adopts the following linear
smoothing regularization term:

Ols =
∑

(i,j)∈E

wij ||zi − zj ||2. (1)

Here, Ols is inspired by Laplacian Eigenmaps (Belkin and Niyogi, 2001), which is a classical
unsupervised dimension reduction algorithm. By minimizing Ols, the embeddings of nodes
linked by an edge will get closer in the measure of Euclidean distance in the hidden space.
To preserve the pairwise similarity in the network, the norm’s square of the difference of
the vectors of the linked nodes is used as the penalty term in Ols. However, previous work
(Luo et al., 2011) stated that the network structure may be highly non-linear .

We also consider the pairwise similarity, namely the weight of the edge between two
nodes. Given two nodes vi and vj , whose embedding vectors are zi and zj respectively, we
adopt the sigmoid function σ(x) = 1

1+exp(−x) to model the probability that an edge between
them is observed:

p1(vi, vj) =σ(zi
Tzj)

=
1

1 + exp(−ziTzj)
,

(2)

where p1(·, ·) is a probability distribution over all node pairs. According to the observed
network structure information, the corresponding empirical probability of p1(·, ·) is defined
as:

p̂1(vi, vj) =
wij

Z
, (3)

where Z =
∑

(i,j)∈E wij is a normalization constant. If the learned node embeddings capture
enough network structure information, the two distributions p1(·, ·) and p̂1(·, ·) should be
close to each other. By adopting Kullback-Leibler divergence (Kullback and Leibler, 1951)
as the distance metric between two probability distributions, we define the following loss
function to model the network structure:

Onetwork =DKL(p̂1||p1)

=
∑

(i,j)∈E

p̂1(i, j) log
p̂1(i, j)

p1(i, j)

=
∑

(i,j)∈E

p̂1(i, j) log p̂1(i, j)−
∑

(i,j)∈E

p̂1(i, j) log p1(i, j)

=
∑

(i,j)∈E

p̂1(i, j) log p̂1(i, j)−
1

Z

∑
(i,j)∈E

wij log p1(i, j).

(4)

After omitting those constants from the above function, we get our non-linear smoothing
regularization term:

5



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

Onls =−
∑

(i,j)∈E

wij log p1(vi, vj)

=
∑

(i,j)∈E

wij log
[
1 + exp (−ziTzj)

]
,

=
∑

(i,j)∈E

wijO
ij
nls.

(5)

where Oij
nls is the non-linear smoothing loss for the edge eij . The properties of the learned

node embeddings by minimizing the above non-linear smoothing term Onls and the linear
smoothing term Ols are very different. For two nodes vi and vj , if the value of wij is
large, the Euclidean distance of zi and zj will be small when Ols is minimized. However,
in the case of minimizing Onls, the inner product of zi and zj will be large which results
in a large probability defined in Eqn. (2). Thus we believe that the proposed non-linear
smoothing term Onls can better capture non-linear network structure information than the
linear smoothing term Ols.

4.2. Text Attributes Modeling

In the real-world networks, the nodes often have rich text attributes (namely words). For
example, users in online social network such as Twitter and Facebook publish a large number
of posts, and papers in a citation network are associated with the corresponding text content.
It is necessary to uncover the potential effect of the nodes text attributes in NRL process.
In this part, we will build a new a component to model the non-linear relationship between
nodes and attributes.

Assuming the vocabulary of text attributes is A, by throwing out the attributes order
information in each node’s text content, we can transfer those text contents into a bipartite
network B = {V ∪ A,EB}, in which we put the nodes on one side and the attributes on
the other side. For an edge bij ∈ EB, its weight fij is the frequency that the attribute aj
appears in the text content of the node vi. To learn node embeddings from this bipartite
network, the probability that the context attribute aj is observed given a node vi is defined
as the following softmax function:

p2(aj |vi) =
exp(hj

T · zi)∑|A|
k=1 exp(hk

T · zi)
, (6)

where hj ∈ Rn is the context embedding vector of the attribute aj . Then according to the
observed text attribute information, the corresponding empirical probability distribution of
p2 can be defined as:

p̂2(aj |vi) =
fij∑

k∈Na(i)
fik

, (7)

where Na(i) is the set of attributes that are connected to vi in B. By adopting Kullback-
Leibler divergence as the distance metric again, the following objective function designed
for the text information will be minimized:

6



Non-Linear Smoothed Transductive Network Embedding with Text Information

Ot =
∑
i∈V

λiDKL(p̂2(·|vi)||p2(·|vi)), (8)

where λi =
∑

k∈Na(i)
fik is the importance of di in B. After removing some constants, the

above loss function is simplified as:

Ot =−
∑

(i,j)∈EB

fij log p2(aj |vi). (9)

It is computationally expensive to directly optimize Eqn. (9) since we need to iterate
all the attributes in A. Hence, we can use the negative sampling technique (Mikolov et al.,
2013) to reduce the computation complexity. Thus Ot is rewritten as:

Ot =−
∑

(i,j)∈EB

fij

{
log σ(hj

T · zi) +
M∑

m=1

Ean∼Pn(a)

[
log σ(−hn

T · zi)
]}

=
∑

(i,j)∈EB

fij

{
Oij

r +

M∑
m=1

Ean∼Pn(a)O
in
n

} (10)

where M is the number of negative edges and Pn(a) ∝ (
∑|V |

i=1 fia)
0.75 is the noisy attribute

distribution. For each real edge bij ∈ EB, we sample M negative noisy edges bin according

to Pn(a). We set Oij
r = − log σ(hj

T · zi) and Oin
n = − log σ(−hn

T · zi) to represent the loss
function for a real edge bij and a negative noisy edges bin respectively.

4.3. Linear Support Vector Machine

In machine learning area, Linear Support Vector Machine (LSVM) is a widely used classi-
fier which usually yields competitive and stable performance. Here, we adopt LSVM as our
basic classifier. First of all, let’s consider a binary classification problem for label k. By
using labeled nodes as training data, the objective loss of LSVM for label k is:

|L|∑
i=1

[
max(0, 1− yki zi

Tθk) + λ||θk||2
]
, (11)

where θk is the parameter vector of the LSVM for label k, λ is the regularization parameter.
To solve the multi-class and multi-label classification problem, a typical solution is to train
multiple one-vs-the-rest classifiers. Since we have K possible labels for each node, we just
need to train K one-vs-the-rest LSVMs. We use the sum of the K LSVMs as the objective
loss function for classification, which can be written as:

Oc =

|L|∑
i=1

K∑
k=1

[
max(0, 1− yki zi

Tθk) + λ||θk||2
]
,

=

|L|∑
i=1

Oi
c

(12)

7



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

where Oi
c =

∑K
k=1

[
max(0, 1− yki zi

Tθk) + λ||θk||2
]
is the classification loss of node vi.

Note that though the hinge loss function used in Oc is not differentiable, Oc still can be
approximately minimized by using Stochastic Gradient Descent (SGD).

4.4. Non-Linear Smoothed Transductive Network Embedding

To encode the network structure information, the label information and the text attribute
information (if available) into the unified network embeddings, we use a weighted linear
combination of Onls, Oc and Ot to formulate the objective loss function of the NLSTNE
model:

ONLSTNE =β(αOc +Onls) + γ(αOc +Ot)

=
∑

(i,j)∈E

βwij

{
αI(i ≤ |L|)

K∑
k=1

[
max(0, 1− yki zi

Tθk) + λ||θk||2
]
+

αI(j ≤ |L|)
K∑
k=1

[
max(0, 1− ykj zj

Tθk) + λ||θk||2
]
+ log

[
1 + exp (−ziTzj)

]}

+
∑

(i,j)∈EB

γfij

{
αI(i ≤ |L|)

M+1∑
m=1

K∑
k=1

[
max(0, 1− yki zi

Tθk) + λ||θk||2
]

− log σ(hj
T · zi)−

M∑
m=1

Ean∼Pn(a)

[
log σ(−hn

T · zi)
]}

=
∑

(i,j)∈E

βwij

{
αOi

c + αOj
c +Oij

nls

}
+

∑
(i,j)∈EB

γfij

{
α

M+1∑
m=1

Oi
c +Oij

r +
M∑

m=1

Ean∼Pn(a)O
in
n

}
(13)

where α, β and γ are three tunable trade-off parameters, I(x) is an indicator function. Note
that the value of γ is either 0 or 1. If the text attribute information is available, we set
γ = 1. Otherwise we set γ = 0 to make NLSTNE a general transductive semi-supervised
network embedding model. Furthermore, the value of β is one of {0.25, 0.5, 1.0, 2.0, 4.0} and
λ is either 0.01 or 0.001.

Once the classifier parameters and the node embeddings are learned by minimizing
ONLSTNE , the labels of those unlabeled nodes can be predicted by feeding their embeddings
to the learned LSVMs.

4.5. Training and Complexity Analysis

As shown in Algorithm 1, we give a brief introduction to the optimization framework of
NLSTNE-T. In general, SGD method has been used to update the parameters of the classi-
fier and the embeddings alternately. Θ is a d×K matrix whose kth column is the classifier
parameter vector θk. η is the learning rate of SGD.

Line 3-7 shows how the label information and the non-linear network structure infor-
mation are incorporated together. In each iteration, we first sample an edge eijfrom E
according to the weight of the edges. For each node of the edge, if it is labeled, the classifier
parameters and its node embedding will be updated by using the UpdateLSVM algorithm

8



Non-Linear Smoothed Transductive Network Embedding with Text Information

defined in Algorithm 2. Then regardless of whether it is labeled or not, its embedding will
be updated according to the non-linear smoothing loss Oij

nls.
In a similar way, Line 8-17 shows how the label information and the text attribute

information are incorporated together. We sample a real edge bij from EB according to the
weight of bij . Then we successively update Θ, zi and hj . Finally we sample M negative
noisy edge bin and update the corresponding parameters.

Algorithm 1 Stochastic Gradient Descent for NLSTNE-T

input : a partially labeled network G and its corresponding text bipartite network B
output: node embeddings z, attribute embeddings h, classifier parameters Θ

1 initialize all node, attribute embeddings and classifier parameters randomly
2 for A fixed number of iterations do
3 sample an edge eij from E according to wij > 0
4 UpdateLSVM(zi,Θ, βαη)
5 UpdateLSVM(zj ,Θ, βαη)

6 zi ← zi − βη
∂Oij

nls
∂zi

= zi + βησ(−ziTzj)zj
7 zj ← zj − βη

∂Oij
nls

∂zi
= zj + βησ(−ziTzj)zi

8 sample an edge bij from EB according to fij > 0
9 UpdateLSVM(zi,Θ, γαη)

10 zi ← zi − γη ∂Oij
r

∂zi
= zi + γησ(−ziThj)hj

11 hj ← hj − γη ∂Oij
r

∂hj
= hj + γησ(−ziThj)zi

12 for m← 1 to M do
13 sample a negative noisy attribute an from Pn(a)
14 UpdateLSVM(zi,Θ, γαη)

15 zi ← zi − γη ∂Oin
n

∂zi
= zi − γησ(zi

Thn)hn

16 hn ← hn − γη ∂Oin
n

∂hn
= hn − γησ(zi

Thn)zi
17 end

18 end

Algorithm 2 UpdateLSVM(zi,Θ, η)

if i ≤ L then

Θ← Θ− η ∂Oi
c

∂Θ

zi ← zi − η ∂Oi
c

∂zi

end

Now we analyze the time complexity of NLSTNE model. By adopting the alias method
(Walker, 1974), sampling an edge from E or sampling an attribute from Pn(a) takes only

O(1) time. In general, the probability that a random sampled node is labeled is |L|
|V | . Note

that Θ actually contains K parameter vectors, so K + 1 vectors need to be updated if
UpdateLSVM is executed. In one iteration of Algorithm 1, the average number of vectors

9



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

need to be updated is 4 + 2M + |L|
|V |(M + 3)(K + 1) < MK + 3M + 3K + 7. In practice,

we find that the number of iterations I should be proportional to the number of edges |E|,
say I = 80|E|. Therefore, the overall time complexity of NLSTNE is O(d|E|MK) when
text information is available. If we have no text information, the time complexity reduces
to O(d|E|K). Since the time complexity of NLSTNE is not depend on |V |, it can scale up
to very large networks.

For simplification and clarification, in the following paper, when we say NLSTNE, we
refer to the reduced version of our model in which γ = 0. And when we say NLSTNE-T,
we refer to the full version of our model in which the text information is used.

5. Experiments

In this section, we first conduct multi-class node classification task to evaluate different
network embedding methods quantitatively on four real-world networks. Then we report
the result of parameter sensitivity experiment to show the robustness of our model.

5.1. Dataset

Table 1: Statistics of the experimental datasets.

Name Citeseer Wiki DBLP-3A DBLP-4A

|V | 3,324 2,405 18,058 27,199
|E| 4,732 17,981 103,011 66,832
K 6 17 3 4

#Attributes per node 11.45 647.38 0 21.01
#Labels per node 1 1 1 1.15

We select two citation networks used in (Tu et al., 2016), Citeseer and Wiki, and two user
coauthor networks, DBLP-3A (Tang et al., 2015a) and DBLP-4A (Sun et al., 2009), as our
experimental datasets. Citeseer and Wiki are unweighted networks in which the directed
citation relationships are transformed into the undirected edges. In Citeseer, nodes are
papers and the text attributes are generated from titles and abstracts. In Wiki, nodes are
Web pages and the text contents are extracted as text attributes. DBLP-3A and DBLP-
4A are constructed in the same way. If two users have co-authored a paper, we add an
undirected edge to link them. The weight of the edge is the number of their collaborative
papers. The titles of all the paper published by one user are recognized as his or her text
attributes. But text information of DBLP-3A is not available. In DBLP-3A, nodes are
researchers in three different areas, namely data mining, machine learning and computer
vision. In DBLP-4A, nodes are researchers in four different areas, namely data mining,
machine learning, database and information retrieval.

For all these four networks, the different research areas are considered as the labels.
Among them, only nodes in DBLP-4A can have multiple labels and nodes in other datasets
only have one label. Some basic statistics of our datasets are given in Table 1.

10



Non-Linear Smoothed Transductive Network Embedding with Text Information

5.2. Compared Algorithms

We compare the performance of the following 10 algorithms:

• DeepWalk (Perozzi et al., 2014). DeepWalk is an unsupervised network embedding
method. The parameters of DeepWalk are set as follows, the sliding window size w
= 10, the length of each node sequence t = 40, the number of node sequences for per
node γ = 80.

• LINE(1st) (Tang et al., 2015a). LINE with first-order proximity, in which linked nodes
will have closer representations.

• LINE(2nd) (Tang et al., 2015a). LINE with second-order proximity, in which nodes
with similar neighbors will have similar representations.

• LSHM (Jacob et al., 2014). A transductive network embedding method, which uses
a smoothing term to capture the linear network structure information.

• MMDW (Tu et al., 2016). A transductive network embedding method based on matrix
decomposition, which also trains a Linear Support Vector Machine as its classifier.

• BOW. Each node is represented as a TF-IDF vector.

• TADW (Yang et al., 2015). A state-of-the-art unsupervised document network em-
bedding algorithm based on inductive matrix completion.

• NLSTNE-T. Our proposed model. We set α = 1, γ = 1, M = 5. For Citeseer and
DBLP-4A, we set β = 1 and λ = 0.01. For Wiki, we set β = 0.5 and λ = 0.001.

• NLSTNE. A reduced version of NLSTNE-T. The parameters of NLSTNE-T are same
to NLSTNE-T except that γ = 0.

• NLSUNE-T. An unsupervised reduced version of NLSTNE-T. The parameters of
NLSTNE-T are same to NLSTNE-T except that α = 0.

5.3. Node Classification

We adopt the widely used node classification task (Tang et al., 2015a; Yang et al., 2015;
Tu et al., 2016) to evaluate the quality of the node embeddings learned by different models.
Since NLSTNE-T, NLSTNE, LSHM and MMDW all train a max-margin LSVM as their
classifiers. To make a fair comparison, the one-vs-rest LSVM is used as classifier for other
models. For DBLP-4A, we adopt Micro-F1 and Macro-F1 as the evaluation metrics. For
other mono-label datasets, we use accuracy as the evaluation metric. All reported results
are averaged over 20 runs.

Table 2-6 show the averaged results of classification with different training ratios when
the dimension d is set to 200 for all models. We mainly have two observations from those
tables:

(1) When the text information is not considered, NLSTNE consistently outperforms
DeepWalk, LINE, LSHM and MMDW by a noticeable margin. Compared with LSHM,

11



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

Table 2: Accuracy (%) of node classification on Citeseer.

Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 52.62 56.62 56.63 57.42 57.48 57.27 58.47 56.81 55.05
LINE(1st) 45.70 51.22 54.55 56.28 57.02 58.05 58.94 59.77 59.37
LINE(2nd) 46.68 51.23 53.36 55.41 57.55 58.14 58.37 59.00 59.04
LSHM 53.67 57.73 60.10 61.61 62.69 63.43 64.09 65.51 66.02
MMDW 54.72 59.64 62.60 64.10 65.83 68.96 69.56 69.58 69.16
NLSTNE 55.86 60.82 64.33 66.88 68.35 70.58 73.11 73.33 74.61

BOW 64.89 69.40 71.82 72.53 72.90 74.40 74.66 75.02 75.12
TADW 70.80 73.00 73.99 74.53 74.71 75.09 75.30 75.41 75.86

NLSUNE-T 69.53 71.04 71.98 72.51 72.65 72.52 72.75 73.16 73.49
NLSTNE-T 71.32 73.62 74.29 75.33 76.53 77.44 77.50 78.97 79.33

Table 3: Accuracy (%) of node classification on Wiki.

Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 55.49 58.67 60.86 63.09 64.38 65.85 66.89 67.75 67.88
LINE(1st) 54.92 61.98 64.76 66.30 67.66 68.01 68.86 67.92 69.42
LINE(2nd) 57.09 59.90 62.30 62.86 63.82 64.74 64.60 65.18 65.10
MMDW 57.25 62.01 65.04 66.67 66.89 68.23 69.22 70.18 72.61
LSHM 55.56 58.73 61.81 61.62 64.86 65.22 67.15 66.83 68.58

NLSTNE 58.14 62.62 65.29 67.62 68.99 70.98 70.88 71.49 71.90

BOW 72.16 76.62 77.83 79.35 80.05 80.72 80.69 81.19 81.83
TADW 72.00 75.40 77.66 78.84 79.13 80.49 80.76 79.96 80.08

NLSUNE-T 75.16 79.35 80.74 81.95 82.64 82.63 83.59 83.61 83.97
NLSTNE-T 76.37 79.61 81.90 82.23 83.17 83.32 83.97 84.96 85.41

Table 4: Accuracy (%) of node classification on DBLP-3A.

Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 83.18 83.64 84.06 84.10 84.46 84.16 84.51 84.28 84.94
LINE(1st) 77.93 79.77 80.16 80.46 80.61 80.75 80.74 81.08 81.35
LINE(2nd) 79.46 80.29 80.66 81.05 81.22 81.10 81.45 81.14 81.25
LSHM 82.98 85.15 85.97 87.51 88.20 89.02 89.15 89.57 90.58
MMDW - - - - - - - - -
NLSTNE 83.38 85.74 87.43 88.65 89.50 90.27 90.99 91.01 91.46

NLSTNE achieves nearly 5.5%, 4.1%, 1.3%, 4.8% improvement on Citeseer, Wiki, DBLP3A
and DBLP-4A in the measure of Accuracy or Micro-F1 when the training ratio is 0.5. Due
to the lack of memory, the most promising baseline, MMDW, could not handle DBLP-3A
and DBLP-4A on our Linux server with 64G memory. However, NLSTNE actually only
need no more than 0.5G memory to process DBLP-3A and DBLP-4A on the same server.

(2) When the text information is considered, NLSTNE-T consistently outperforms all
other models. NLSTNE-T achieves nearly 1.8%, 4.0%, 9.2% improvement over the most

12



Non-Linear Smoothed Transductive Network Embedding with Text Information

Table 5: Micro-F1 (%) of node classification on DBLP-4A.

Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 66.85 68.03 68.57 68.79 68.85 68.95 69.10 69.31 69.50
LINE(1st) 64.06 65.73 66.39 66.77 66.67 66.89 66.81 66.96 67.20
LINE(2nd) 65.87 66.83 67.24 67.37 67.68 67.59 67.63 67.61 67.49
MMDW - - - - - - - - -
LSHM 70.09 73.36 76.53 78.84 81.13 84.87 85.40 87.58 87.73

NLSTNE 72.53 78.62 82.59 85.51 87.91 89.65 90.99 92.37 93.75

BOW 78.25 81.65 83.51 85.02 86.53 87.32 88.24 89.14 89.88
TADW 80.30 82.05 82.23 82.40 82.87 83.47 83.32 82.26 82.94

NLSUNE-T 81.28 81.79 82.09 82.11 82.23 82.23 83.37 82.39 82.57
NLSTNE-T 82.56 86.40 88.79 90.43 91.93 93.13 93.86 94.66 95.00

Table 6: Macro-F1 (%) of node classification on DBLP-4A.

Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 52.03 54.62 59.80 60.29 61.26 65.41 65.84 66.53 68.16
LINE(1st) 60.88 62.54 63.14 63.53 63.45 63.64 63.55 63.76 64.16
LINE(2nd) 62.41 63.54 64.00 64.05 64.45 64.38 64.41 64.37 64.11
MMDW - - - - - - - - -
LSHM 68.76 72.47 75.87 78.37 80.72 84.17 84.91 87.13 87.29

NLSTNE 71.58 77.59 81.56 84.63 87.05 88.92 90.33 91.77 93.29

BOW 76.89 80.41 82.47 84.06 85.62 86.49 87.53 88.42 89.02
TADW 78.91 80.64 80.89 80.95 81.43 82.08 81.99 81.13 81.83

NLSUNE-T 79.87 80.37 80.72 80.75 80.86 80.86 80.89 80.99 81.30
NLSTNE-T 81.90 85.56 87.98 89.69 91.29 92.55 93.34 94.20 94.62

competitive baseline TADW on Citeseer, Wiki and DBLP-4A in the measure of Accuracy
or Micro-F1 when the training ratio is 0.5. Compared with TADW, NLSTNE-T has two
advantages. First, the network structure information and the text information can be
better balanced by choosing an appropriate β. For example, even NLSUNE-T performs
better than TADW on Wiki. Second, the node embeddings learned by NLSTNE-T are
more discriminative by incorporating the label information.

5.4. Parameter Sensitivity

We investigate the parameter sensitivity in this part to test the stability of our model.
Specially, we evaluate the effect of different values of the embedding dimensions d, the
trade-off parameters α and β on the classification results. when one parameter is tested, all
other parameters are fixed to their default values. When the training ratio is 0.2, we show
the results of parameter sensitivity on Citeseer and DBLP-4A in Figure 1 and 2.

First, we can see that NLSTNE-T and NLSTNE are not sensitive to d at all when d ∈
[10, 1280]. Actually, even d = 10 is enough to make our models achieve their approximate
optimal performance. Meanwhile, it is not easy to determine the value of d for TADW.

13



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

Particularly, TADW is worse than NLSTNE when d < 40. When d is too small or too large,
the performance of TADW will tend to decrease. Overall, TADW gets its best performance
when d is around 320 on both Citeseer and DBLP-4A. So the memory requirements to
store the node embeddings of our models are only 3.1% of TADW. This demonstrates that
significant memory savings can be acquired by incorporating the label information.

Second, we show that α = 1 and β = 1 are appropriate initial values for NLSTNE-T.
When α ∈ [0.001, 0.1] , the predictive power of the node embeddings can not be guaranteed
since the weight of the classification loss is too small to train the LSVMs. When α = 10, the
network structure information and the text attribute information can not be well captured
since the weight of the classification loss is too large. We should give more attention to
the parameter β. If the quality of the network structure information and the text attribute
information are roughly comparable, β = 1 can well balance them. For example, we set
β = 1 for Citeseer and DBLP-4A since the documents of the nodes in them are short texts.
But we set β = 0.5 for Wiki since the documents of the nodes in it are long texts.

10 40 160 640

0.4

0.6

d

A
c
c
u
ra

c
y

NLSTNE-T

NLSTNE

TADW

(a) Accuracy on Citeseer

10 40 160 640

0.6

0.7

0.8

d

M
ic
ro

-F
1

NLSTNE-T

NLSTNE

TADW

(b) Micro-F1 on DBLP-4A

Figure 1: Parameter sensitivity w.r.t. d.

10−3 10−2 10−1 100 101

0.5

0.6

0.7

α

A
c
c
u
ra

c
y

β = 0.25

β = 0.5

β = 1.0

β = 2.0

β = 4.0

(a) Accuracy on Citeseer

10−3 10−2 10−1 100 101

0.75

0.8

0.85

α

M
ic
ro

-F
1

β = 0.25

β = 0.5

β = 1.0

β = 2.0

β = 4.0

(b) Micro-F1 on DBLP-4A

Figure 2: Parameter sensitivity w.r.t. α and β.

14



Non-Linear Smoothed Transductive Network Embedding with Text Information

6. Conclusion

In this paper, we explore the problem of learning node embeddings in a transductive frame-
work. We present NLSTNE, an efficient and effective model to learn more discriminative
node embedding by utilizing the label information and the non-linear structure information.
Furthermore, the text attribute information can be incorporated into NLSTNE in a flexible
way. The experimental results show that our models outperform several state-of-the-art
methods markedly on four benchmark datasets.

An important direction of our future work is to enhance our model by adopting deep
learning techniques. Note that the embeddings updated by the SVM based classifier is shal-
low. A deep neural network may help us learn deep and more informative node embeddings.

7. Acknowledgments

This work is supported by 973 Program with Grant No.2014CB340400, NSFC with Grant
No.U1536201 and No.61272340. Yan Zhang is supported by NSFC with Grant No. 61532001
and No. 61370054, and MOE-RCOE with Grant No. 2016ZD201. We thank the three
anonymous reviewers for their insightful comments.

References

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. In NIPS, volume 14, pages 585–591, 2001.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with
global structural information. In Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management, pages 891–900. ACM, 2015.

Mo Chen, Qiong Yang, and Xiaoou Tang. Directed graph embedding. pages 2707–2712,
2007.

Yann Jacob, Ludovic Denoyer, and Patrick Gallinari. Learning latent representations of
nodes for classifying in heterogeneous social networks. In Proceedings of the 7th ACM
international conference on Web search and data mining, pages 373–382. ACM, 2014.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical
Statistics, 22(1):79–86, 1951.

Juzheng Li, Jun Zhu, and Bo Zhang. Discriminative deep random walk for network classi-
fication. 2016.

Li Liu, William K Cheung, Xin Li, and Lejian Liao. Aligning users across social networks
using network embedding. In Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence (IJCAI-16), pages 1774–1780, 2016.

Dijun Luo, Feiping Nie, Heng Huang, and Chris H Ding. Cauchy graph embedding. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
553–560, 2011.

15



Chen1 Zhang1 Wang2 Zhang1 Yan1 Li1

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

Nagarajan Natarajan and Inderjit S Dhillon. Inductive matrix completion for predicting
gene–disease associations. Bioinformatics, 30(12):i60–i68, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710. ACM, 2014.

Bryan Perozzi, Vivek Kulkarni, and Steven Skiena. Walklets: Multiscale graph embeddings
for interpretable network classification. arXiv preprint arXiv:1605.02115, 2016.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, 290(5500):2323–2326, 2000.

Yizhou Sun, Jiawei Han, Jing Gao, and Yintao Yu. itopicmodel: Information network-
integrated topic modeling. In 2009 Ninth IEEE International Conference on Data Mining,
pages 493–502. IEEE, 2009.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:
Large-scale information network embedding. In Proceedings of the 24th International
Conference on World Wide Web, pages 1067–1077. International World Wide Web Con-
ferences Steering Committee, 2015a.

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-
dimensional data. In Proceedings of the 25th International Conference on World Wide
Web, pages 287–297. International World Wide Web Conferences Steering Committee,
2016.

Jie Tang, Tiancheng Lou, Jon Kleinberg, and S Wu. Transfer link prediction across hetero-
geneous social networks. ACM TOIS, 2015b.

CunChao Tu, Weicheng Zhang, zhiyuan Liu, and Maosong Sun. max-margin deepwalk:
discriminative learning of network representation. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI-16), pages 3889–3895,
2016.

Alastair J Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 8(10):127–128, 1974.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. Network
representation learning with rich text information. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, IJCAI’15, pages 2111–2117. AAAI Press,
2015. ISBN 978-1-57735-738-4.

Zhilin Yang, William Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

16


	Introduction
	Related Work
	Problem Formulation
	Our Model
	Non-Linear Network Smoothing
	Text Attributes Modeling
	Linear Support Vector Machine
	Non-Linear Smoothed Transductive Network Embedding
	Training and Complexity Analysis

	Experiments
	Dataset
	Compared Algorithms
	Node Classification
	Parameter Sensitivity

	Conclusion
	Acknowledgments

