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Abstract

The generalization ability of minimizers of the empirical risk in the context of binary clas-
sification has been investigated under a wide variety of complexity assumptions for the
collection of classifiers over which optimization is performed. In contrast, the vast majority
of the works dedicated to this issue stipulate that the training dataset used to compute the
empirical risk functional is composed of i.i.d. observations and involve sharp control of uni-
form deviation of i.i.d. averages from their expectation. Beyond the cases where training
data are drawn uniformly without replacement among a large i.i.d. sample or modelled as
a realization of a weakly dependent sequence of r.v.’s, statistical guarantees when the data
used to train a classifier are drawn by means of a more general sampling/survey scheme and
exhibit a complex dependence structure have not been documented in the literature yet. It
is the main purpose of this paper to show that the theory of empirical risk minimization can
be extended to situations where statistical learning is based on survey samples and knowl-
edge of the related (first order) inclusion probabilities. Precisely, we prove that minimizing
a (possibly biased) weighted version of the empirical risk, refered to as the (approximate)
Horvitz-Thompson risk (HT risk), over a class of controlled complexity lead to a rate for
the excess risk of the order OP((κN (logN)/n)1/2) with κN = (n/N)/mini≤N πi, when data
are sampled by means of a rejective scheme of (deterministic) size n within a statistical
population of cardinality N ≥ n, a generalization of basic sampling without replacement
with unequal probability weights πi > 0. Extension to other sampling schemes are then
established by a coupling argument. Beyond theoretical results, numerical experiments
are displayed in order to show the relevance of HT risk minimization and that ignoring
the sampling scheme used to generate the training dataset may completely jeopardize the
learning procedure.

Keywords: Empirical risk minimization, Horvitz-Thompson estimator, learning rate bound,
negatively associated random variables, probabilistic theory of pattern recognition, sam-
pling method, survey scheme
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Statistical Learning based on Survey Data

1. Introduction

Whereas statistical learning techniques crucially exploit data that can serve as examples to
train a decision rule, they may also make use of weights individually assigned to the obser-
vations, resulting from survey sampling stratification. Such weights could correspond either
to true inclusion probabilities or else to calibrated or post-stratification weights, minimizing
some discrepancy under certain margin constraints for the inclusion probabilities. In the
context of statistical inference based on survey data, the asymptotic properties of specific
statistics such as Horvitz-Thompson estimators (cf Horvitz and Thompson (1951)), whose
computation involves not only the observations but also the weights, have been widely in-
vestigated: in particular, mean estimation and regression have been the subject of much
attention, refer to Hajek (1964), Robinson (1982), Berger (1998) for instance, and a com-
prehensive functional limit theory for distribution function estimation is progressively doc-
umented in the statistical literature, see Breslow and Wellner (2007), Breslow et al. (2009),
Saegusa and Wellner (2011). At the same time, the last decades have witnessed a rapid
development of the field of machine-learning. Revitalized by different breakout algorithms
(e.g. SVM, boosting methods), its practice is now supported by a sound probabilistic theory
based on recent non asymptotic results in the study of empirical processes, see Koltchin-
skii (2006), Boucheron et al. (2005). However, most papers dedicated to theoretical results
grounding the Empirical Risk Minimization approach (ERM in short), the main paradigm
of statistical learning, assume that the training of a decision rule is based on a dataset
formed of independent replications of a generic random vector Z, a collection of N ≥ 1
i.i.d. observations Z1, . . . , ZN namely. In contrast, few results are available in situations
where the training dataset is generated by a more complex sampling scheme. One may
refer to Bardenet and Maillard (2015) for concentration inequalities permitting to study
the generalization ability of empirical risk minimizers when the training data are obtained
by standard sampling without replacement (SWOR in abbreviated form) or to Steinwart
et al. (2009) in the case where the decision rule is learnt from a path of a weakly dependent
stochastic process.

It is the goal of this paper to extend the ERM theory to situations where the training
dataset is generated by means of a more general sampling scheme, with possibly unequal
probability weights. We first consider the case of rejective sampling (sometimes refered to as
conditional Poisson sampling), an important generalization of basic SWOR. The rate bound
results obtained by means of properties of so-termed negatively related random variables in
this case are next shown to extend to a class of more general sampling schemes by a coupling
argument. In addition, numerical experiments have been carried out in order to provide
empirical evidence of the approach developed. They show in particular that statistical
accuracy of the ERM approach may go down the drain if the sampling scheme underlying
the training dataset is ignored.

The paper is organized as follows. In section 2, the probabilistic framework of the
present study is described at length and basic results of the probabilistic theory of classi-
fication are briefly recalled, together with some important notions of survey theory. The
main theoretical results are stated in section 3, while illustrative numerical experiments are
presented in section 4. Technical proofs are deferred to the Appendix section, as well as
additional technical details related to the sampling schemes under study.
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2. Background and Preliminaries

As a first go, we start with recalling key concepts pertaining to the theory of empirical
risk minimization in binary classification, the flagship problem in statistical learning. A few
notions related to survey theory are next described, which will be involved in the subsequent
analysis. Throughout the article, the indicator function of any event E is denoted by I{E},
the Dirac mass at any point a by δa, the power set of any set E by P(E), the cardinality
of any finite set A by #A.

2.1. Binary Classification - Empirical Risk Minimization Theory

The binary classification problem is considered as a running example all along the pa-
per. Because it can be easily formulated, it is undeniably the most documented statistical
learning problem in the literature and certain results extend to more general frameworks
(e.g. multiclass classification, regression, ranking). Let (Ω,A,P) be a probability space
and (X,Y ) a random pair defined on (Ω,A,P), taking its values in some measurable prod-
uct space X × {−1,+1}, with common distribution P (dx, dy): the r.v. X models some
observation, hopefully useful for predicting the binary label Y . The distribution P can
also be described by the pair (F, η) where F (dx) denotes the marginal distribution of the
input variable X and η(x) = P{Y = +1 | X = x}, x ∈ X , is the posterior distribution.
The objective is to build, based on the training dataset at disposal, a measurable mapping
g : X 7→ {−1,+1}, called a classifier, with minimum risk:

L(g)
def
= P{g(X) ̸= Y }. (1)

It is well-known folklore in the probabilistic theory of pattern recognition that the Bayes
classifier g∗(x) = 2I{η(x) ≥ 1/2}−1 is a solution of the risk minimization problem infg L(g),
where the infimum is taken over the collection of all classifiers defined on the input space
X . The minimum risk is denoted by L∗ = L(g∗). Since the distribution P of the data is
unknown, one substitutes the true risk with its empirical estimate

L̂n(g) =
1

n

n∑
i=1

I{g(Xi) ̸= Yi}, (2)

based on a sample (X1, Y1), . . . , (Xn, Yn) of independent copies of the generic random pair
(X,Y ). The true risk minimization is then replaced by the empirical risk minimization

min
g∈G

L̂n(g), (3)

where the minimum is taken over a class G of classifier candidates, supposed rich enough
to include the naive Bayes classifier (or a reasonable approximation of the latter). Con-
sidering a solution ĝn of (3), a major problem in statistical learning theory is to establish
upper confidence bounds on the excess of risk L(ĝn) − L∗ in absence of any distributional
assumptions and taking into account the complexity of the class G (e.g. described by geo-
metric or combinatorial features such as the VC dimension) and some measure of accuracy
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of approximation of P by its empirical counterpart Pn = (1/n)
∑n

i=1 δ(Xi,Yi) over the class
G. Indeed, one typically bounds the excess of risk of the empirical risk minimizers as follows

L(ĝn)− L∗ ≤ 2 sup
g∈G

|L̂n(g)− L(g)|+
(
inf
g∈G

L(g)− L∗
)
.

The second term on the right hand side is referred to as the bias and depends on the richness
of the class G, while the first term, called the stochastic error, is controlled by means of
results in empirical process theory, see Boucheron et al. (2005).

Remark 1 (On risk surrogates) Although its study is of major interest from a theo-
retical perspective, the problem (3) is generally NP-hard. For this reason, the cost function
I{−Y g(X) > 0} is replaced in practice by a nonnegative convex cost function ϕ(Y g(X)),
turning empirical risk minimization to a tractable convex optimization problem. Typi-
cal choices include the exponential cost ϕ(u) = exp(u) used in boosting algorithms, the
hinge loss ϕ(u) = (1 + u)+ in the case of support vector machines and the logit cost
ϕ(u) = log(1 + exp(u)) for Neural Networks, see Bartlett et al. (2006) and the references
therein. Extension of the results established in the present paper to such risk surrogates are
straightforward and left to the reader.

In this paper, we consider the situation where the training data used to compute of the
empirical risk (2) is not an i.i.d. sample but the product of a more general sampling plan
of fixed size n ≥ 1.

2.2. Sampling Schemes and Horvitz-Thompson Estimation

LetN ≥ 1. In the standard superpopulation framework we consider, (X1, Y1), . . . , (XN , YN )
is a sample of independent copies of (X,Y ) observed on a finite population IN := {1, . . . , N}.
We call a survey sample of (possibly random) size n ≤ N of the population IN , any subset
s := {i1, . . . , in(s)} ∈ P(IN ) with cardinality n =: n(s) less that N . A sampling design is
determined by a conditional probability distribution RN on the set of all possible samples
s ∈ P(IN ) given the original data DN = {(Xi, Yi) : i ∈ IN}. For any i ∈ {1, . . . , N}, the
first order inclusion probability, πi = PRN

{i ∈ S} is the probability that the unit i belongs to
a random sample S drawn from the conditional distribution RN . We set π = (π1, . . . , πN ).
The second order inclusion probabilities are denoted by πi,j = PRN

{(i, j) ∈ S2}, for any
i ̸= j in {1, . . . , N}2. The information related to the observed sample S ⊂ {1, . . . , N} is
fully enclosed in the r.v. ϵN = (ϵ1, . . . , ϵN ), where ϵi = I{i ∈ S} for 1 ≤ i ≤ N . The 1-d
marginal conditional distributions of the sampling scheme ϵN given DN are the Bernoulli
distributions B(πi) = πiδ1+(1−πi)δ0, 1 ≤ i ≤ N , and the covariance matrix ΓN of the r.v.
ϵN has entries given by ΓN (i, j) = πi,j−πiπj , with πi,i = πi by convention, for 1 ≤ i, j ≤ N .
Observe that, equipped with the notations above,

∑
1≤i≤N ϵi = n(S). One may refer to

Deville (1987) for accounts of survey sampling techniques. Notice also that, in many ap-
plications, the inclusion probabilities are built using some extra information, typically by
means of auxiliary random variables W1, . . . , WN defined on (Ω,A,P) and taking their val-
ues in some measurable space W: ∀i ∈ {1, . . . , N}, πi = nh(Wi)/

∑
1≤j≤N h(Wj), where

nmax1≤i≤n h(Wi) ≤
∑

1≤i≤N h(Wi) almost-surely and h : W →]0, +∞[ is a measurable
link function. The (Xi, Yi,Wi)’s are generally supposed to be i.i.d. copies of a generic r.v.
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(X,Y,W ). See Särndall and B. Swensson (2003) for more details. For simplicity, the πi’s
are supposed to be deterministic in the subsequent analysis, which boils down to carrying
out the study conditionally upon the Wi’s in the example aforementioned.

Horvitz-Thompson risk. As defined in Horvitz and Thompson (1951), the Horvitz-
Thompson version of the (not available) empirical risk L̂N (g) = N−1

∑
1≤i≤N I{Yi ̸= g(Xi)}

of any classifier candidate g based on the sampled data {(Xi, Yi) : i ∈ S} with S ∼ RN is
given by:

LϵN (g) =
1

N

∑
i∈S

1

πi
I{g(Xi) ̸= Yi} =

1

N

N∑
i=1

ϵi
πi

I {g(Xi) ̸= Yi} (4)

with the convention that 0/0 = 0 and where the subscript ϵN = (ϵ1, . . . , ϵN ) denotes the
vector in correspondence with the sample S. Observe that, conditionally upon the (Xi, Yi)’s,
the quantity (4), that shall be referred to as the empirical Horvitz-Thompson risk (empirical
HT risk in short) throughout the paper, is an unbiased estimate of the empirical risk L̂N (g).
Its (pointwise) consistency and asymptotic normality are established in Robinson (1982) and
Berger (1998) for a variety of sampling schemes.

This article is devoted to investigating the statistical performance of minimizers ḡN
of the HT risk (4) over the class G under adequate assumptions for the sampling scheme
RN used to generate the training dataset. We point out that such an analysis is far from
straightforward due to the possible depence structure of the terms involved in the summation
(4): except in the Poisson case (recalled below), concentration results for empirical processes
cannot be directly applied to control maximal deviations of the type

sup
g∈G

|LϵN (g)− L(g)|.

Conditional Poisson sampling. One of the simplest sampling plan is undeniably the
Poisson survey scheme (without replacement), a generalization of Bernoulli sampling origi-
nally proposed in Goodman (1949) for the case of unequal weights: the ϵi’s are independent
and the sampling distribution is thus entirely determined by the first order inclusion prob-
abilities pN = (p1, . . . , pN ) ∈]0, 1[N :

∀s ∈ P(IN ), PN (s) =
∏
i∈S

pi
∏
i/∈S

(1− pi). (5)

Observe in addition that the behavior of the quantity (4) can be then investigated by
means of results established for sums of independent random variables. However, the major
drawback of this sampling plan lies in the random nature of the corresponding sample
size, impacting significantly the variability of (4). The variance of the Poisson sample size
is given by dN =

∑N
i=1 pi(1 − pi), while the conditional variance of (4) is in this case:∑n

i=1((1− pi)/pi)I{g(Xi) ̸= Yi}. For this reason, rejective sampling, a sampling design RN

of fixed size n ≤ N , is often preferred in practice. It generalizes the simple random sampling
without replacement (where all samples with cardinality n are equally likely to be chosen,
with probability (N−n)!/n!, all the corresponding first and second order probabilities being
thus equal to n/N and n(n−1)/(N(N−1)) respectively). Denoting by πN = (π1, . . . , πN )
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its first order inclusion probabilities and by Sn = {s ∈ P(IN ) : #s = n} the subset of all
possible samples of size n, it is defined by:

∀s ∈ Sn, RN (s) = C
∏
i∈s

pi
∏
i/∈s

(1− pi), (6)

where C = 1/
∑

s∈Sn

∏
i∈s pi

∏
i/∈s(1− pi) and the vector pN = (p1, . . . , pN ) ∈]0, 1[N yields

first order inclusion probabilities equal to the πi’s and is such that
∑

i≤N pi = n. Under this
latter additional condition, such a vector pN exists and is unique (see Dupacova (1979))
and the related representation (6) is then said to be canonical1. Comparing (6) and (5)
reveals that rejective RN sampling of fixed size n can be viewed as Poisson sampling given
that the sample size is equal to n. It is for this reason that rejective sampling is usually
referred to as conditional Poisson sampling. One must pay attention not to get the πi’s and
the pi’s mixed up: the latter are the first order inclusion probabilities of PN , whereas the
former are those of its conditional version RN . However they can be related by means of
the results stated in Hajek (1964) (see Theorem 5.1 therein): ∀i ∈ {1, . . . , N},

πi(1− pi) = pi(1− πi)× (1− (π̃ − πi) /d
∗
N + o(1/d∗N )) , (7)

pi(1− πi) = πi(1− pi)× (1− (p̃− pi) /dN + o(1/dN )) , (8)

where d∗N =
∑N

i=1 πi(1−πi), π̃ = (1/d∗N )
∑N

i=1 π
2
i (1−πi) and p̃ = (1/dN )

∑N
i=1(pi)

2(1−pi).
More examples of sampling schemes with fixed size are given in Appendix C.

3. Main Results

We first consider the case where statistical learning is based on the observation of a sample
drawn by means of a rejective scheme. As shall be seen below, the main argument underlying
the results obtained relies on the fact that the related scheme form a collection of negatively
associated (binary) random variables, a rather tractable type of dependence structure. This
property being shared by many other sampling schemes of deterministic size, the same
argument can be thus naturally applied to carry out a similar rate analysis for training
data produced by such plans. Extensions of these results to more general sampling schemes
are also considered by means of a coupling technique.

3.1. Horvitz-Thompson Empirical Risk Minimization in the Rejective Case

For clarity, we first recall the definition of negatively associated random variables, see Joag-
Dev and Proschan (1983).

Definition 2 Let Z1, . . . , Zn be random variables defined on the same probability space,
valued in a measurable space (E, E). They are said to be negatively associated iff for any
pair of disjoint subsets A1 and A2 of the index set {1, . . . , n}

Cov (f((Zi)i∈A1), g((Zj)j∈A2)) ≤ 0, (9)

for any real valued measurable functions f : E#A1 → R and g : E#A2 → R that are both
increasing in each variable.

1. Notice that any vector p′
N ∈]0, 1[N such that pi/(1− pi) = cp′i/(1− p′i) for all i ∈ {1, . . . , n} for some

constant c > 0 can be used to write a representation of RN of the same type as (6)
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The theorem stated below reveals that any rejective scheme ϵN forms a collection of
negatively associated r.v.’s. The proof is given in Appendix A.

Theorem 3 Let N ≥ 1 and ϵN = (ϵ1, . . . , ϵN ) be the vector of indicator variables related
to a rejective plan on IN . Then, the binary random variables ϵ1, . . . , ϵN are negatively
associated.

The result above permits to handle the dependence of the terms involved in the summa-
tion (4). It is the key argument for proving the following proposition, which extends results
for training datasets generated by basic sampling without replacement (i.e. in the case of
all equal weights: πi = n/N for i = 1, . . . , N), refer to Bardenet and Maillard (2015) (see
also Serfling (1974)).

Proposition 4 Suppose that the sampling scheme ϵN is rejective with first order inclusion
probabilities πN and that the class G is of finite VC dimension V < +∞. Set κN =
(n/N)/mini≤N πi. Then, the following assertions hold true.

(i) For any δ ∈ (0, 1), with probability larger than 1− δ, we have: ∀n ≤ N ,

sup
g∈G

∣∣∣L̄ϵN (g)− L̂N (g)
∣∣∣ ≤

√
2κN

log(2δ ) + V log(N + 1)

n
+ 2κN

log(2δ ) + V log(N + 1)

3n
.

(10)

(ii) For any solution ḡN of the minimization problem infg∈G LϵN (g) is such that, for any
δ ∈ (0, 1), with probability at least 1− δ, we have: ∀N ≥ 1,

L(ḡN )− L∗ ≤ 2

√
2κN

log(4δ ) + V log(N + 1)

n
+ 4κN

log(4δ ) + V log(N + 1)

3n

+ C

√
V

N
+ 2

√
2 log(2δ )

N
+ inf

g∈G
L(g)− L∗.

The factor κN involved in the bounds above reflects the influence of the sampling scheme
(notice incidentally that κN ≥ 1 since

∑
i≤N πi = n). In the SWOR case, i.e. when

πi = n/N for all i ∈ {1, . . . , N}, it is then minimum, equal to 1. More generally, when
n = o(N) as N → +∞, as soon as the weights cannot vanish faster than n/N , the rate
achieved by minimizers of the HT risk is of the order OP(

√
(logN)/n). Many sampling

schemes (e.g. Rao-Sampford sampling, Pareto sampling, Srinivasan sampling) of fixed size
are actually described by random vectors ϵN with negatively associated components, see
Brändén and Jonasson (2012) or Kramer et al. (2011). Hence, Proposition 4’s proof shows
that the bounds stated above immediately extend to these cases. See Appendix C for more
details and references. Before showing how the rate bounds established can be extended to
even more general sampling schemes, a few remarks are in order.

Remark 5 (Complexity assumptions) We point out that the results stated can be es-
tablished, essentially by means of the same argument as that developed in the Appendix,
under complexity assumptions of different nature, involving metric entropy conditions for
instance (see e.g. van der Vaart and Wellner (1996)). Such straightforward extensions are
left to the reader.
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Remark 6 (Model Selection) A slight modification of the argument involved in Propo-
sition 4 straightforwardly leads to bounds on the expected excess risk E[L(ḡϵN )]−infg∈G L(g).
Following the Structural Risk Minimization principle (see Vapnik (2001)), such VC bounds
can be next used as complexity regularization terms to penalize additively the HT risk (4)
and, for a sequence of model classes Gk with k ≥ 1 of finite VC dimension, select the classi-
fier among the minimizers {argming∈Gk

L̄ϵN (g), k ≥ 1}, which has approximately minimal
risk. Due to space limitations, details are left to the reader.

Remark 7 (Biased HT risk) As recalled in Appendix B, the canonical parameters pN

are practically used to build a rejective sampling scheme ϵN rather than its vector of first
order inclusion probabilities (π1, . . . , πN ), whose explicit computation based on the pi’s
is a difficult task, refer to Chen et al. (1994) for dedicated algorithms. For this rea-
son, one could be naturally tempted to minimize the alternative risk estimate L̃ϵN (g) =
(1/N)

∑
i≤N (ϵi/pi)I{Yi ̸= g(Xi)}. As proved in Appendix B, refinements of Eq. (7)-(8)

show that

sup
g∈G

|L̃ϵN (g)− L̄ϵN (g)| ≤
1

N

N∑
i=1

∣∣∣∣ 1pi − 1

πi

∣∣∣∣ ≤ 6NκN/(ndN ), (11)

one may directly derive a rate bound for solutions of infg∈G L̃ϵN (g) from bound (ii) in
Proposition 4. In particular, the learning rate achieved by ḡN is preserved when 1/

√
n =

O(mini≤N πi) as N, n → +∞.

3.2. Extensions to More General Sampling Schemes

We now extend the rate bound analysis carried out in the previous subsection to more
complex sampling schemes (described by a random vector ϵ∗N possibly exhibiting a very
complex dependence structure). In order to give an insight into the arguments which the
extension is based on, additional notations are required. In this section, we consider a
general sampling design R∗

N with first order inclusion probabilities π∗
N = (π∗

1, . . . , π∗
N )

described by the vector ϵ∗N = (ϵ∗1, . . . , ϵ∗N ) and investigate the performance of minimizers

ḡ∗N of the HT empirical risk L̄ϵ∗N
(g) = (1/N)

∑N
i=1(ϵ

∗
i /π

∗
i )I{Yi ̸= g(Xi)} over a class G. We

also consider a rejective sampling scheme RN described by the r.v. ϵN , with first order
inclusion probabilities πN = (π1, . . . , πN ) defined on the same probability space, as well
as the following quantity:

ĽϵN (g) =
1

N

N∑
i=1

ϵi
π∗
i

I{Yi ̸= g(Xi)} (12)

for any classifier g. Observe that (12) differs from the HT empirical risk L̄ϵN (g) related
to the rejective sampling scheme ϵN in the weights it involves, the π∗

i ’s instead of the πi’s
namely. Equipped with this notation, the excess of risk of the HT empirical risk minimizer
can be bounded as follows:

L(ḡ∗N )− inf
g∈G

L(g) ≤ 2 sup
g∈G

∣∣∣L(g)− L̂N (g)
∣∣∣+ 2 sup

g∈G

∣∣∣L̂N (g)− L̄ϵN (g)
∣∣∣

+ 2 sup
g∈G

∣∣L̄ϵN (g)− ĽϵN (g)
∣∣+ 2 sup

g∈G

∣∣∣ĽϵN (g)− L̄ϵ∗N
(g)
∣∣∣ . (13)
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Whereas the first term on the right hand side of (13) can be classically controlled using
Vapnik-Chervonenkis and McDiarmid inequalities (see e.g. Vapnik (2001)), assertion (i) of
Proposition 4 provides a control of the second term. Following in the footsteps of Hajek
(1964), the third term shall be bounded by means of a coupling argument, i.e. a specific
choice of the joint distribution of (ϵ∗N , ϵN ) satisfying the distributional margin constraints,
while the second term is controlled by assumptions related to the closeness between the
first order inclusion probabilities π∗

N and πN . More precisely, the assumptions required in
the subsequent analysis involve the total variation distance between the sampling plans RN

and R∗
N :

dTV (RN , R∗
N )

def
=

1

2

∑
s∈P(IN )

|RN (s)−R∗
N (s)|.

Theorem 8 Suppose that Proposition 4’s assumptions are fulfilled. Set κ∗N = (n/N)mini≤N π∗
i

and κN = (n/N)/mini≤N πi. Then, there exists a universal constant C < +∞ such that
we have, ∀N ≥ 1,

E
[
L(ḡ∗N )− inf

g∈G
L(g)

]
≤ 2

√
2κN

log(4δ ) + V log(N + 1)

n
+ 4κN

log(4δ ) + V log(N + 1)

3n

+ C

√
V

N
+ 2

√
2 log(2δ )

N
+ 2(κ∗N + κN )(N/n)dTV (RN , R∗

N ), (14)

where the infimum is taken over the set of rejective schemes RN with first order inclusion
probabilities πN = (π1, . . . , πN ).

The proof is given in Appendix A. The rate bound obtained depends on the minimum
error made when approximating the sampling plan by a rejective sampling plan in terms of
total variation distance. In practice, following in the footsteps of Hajek (1964) or Berger
(1998), it can be controlled by exhibiting a specific coupling (ϵ∗N , ϵN ). One may refer to
Berger (1998) for many coupling results of this nature, in particular when the approximating
scheme ϵN is of rejective type.

4. Illustrative Numerical Experiments

In this section we display numerical experiments to illustrate the relevance of HT risk
minimization. We first consider the case where g(X) = sign(k(X)T θ + b), where k is some
mapping function, T denotes the transposition operator, θ, b are some parameters. As
mentionned in 1, we consider the hinge loss as a convex surrogate of the 0− 1 loss and add
some l2 regularization term. This leads to the ”Weighted SVM” formulation below:

min
θ,b

1

N

∑
i∈S

1

πi
max(0, 1− Yi(k(Xi)

T θ − b)) + λ∥θ∥2.

We use the gaussian r.b.f kernel and perform cross validation to appropriately choose the
value of λ. We then consider the task of learning classification trees using the CART algo-
rithm. These classifiers are trained using the scikit-learn library Pedregosa et al. (2011) and,
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we account for the randomness of our experiments by shuffling our datasets and repeating
the experiments 50 times.

We first generate a two class dataset D in R10 of size 20000 by sampling independent
observations from two multivariate normal distribution. A similar dataset Dtest of size 2000
is generated to test our classifiers. Denoting by Id the identity matrix in Rd, the positive
class has mean (0, . . . , 0) and covariance matrix equal to I10, the negative class has mean
(1, . . . , 1) and covariance matrix equal to 10×I10. We then build a dataset D̃ of size 1100 via
a rejective sampling scheme applied to D. Observations from the negative class being more
noisy we assign them first order probability equal to 0.1, and assign first order probability
equal to 0.01 to observation from the positive class. To allow for a fair comparison, we also
build a dataset D̂ of size 1100 by sampling without replacement within D. We then learn
the different classifiers on D̃ and D̂, and display the results in Table1.

Mean Standard deviation

Weighted SVM on D̃ 0.02 0.005

Unweighted SVM on D̃ 0.18 0.02

SVM on D̂ 0.04 0.005

Weighted CART on D̃ 0.06 0.01

Unweighted CART on D̃ 0.11 0.03

CART on D̂ 0.08 0.01

Table 1: Average over 50 runs of the prediction error on Dtest and its standard deviation.

Overall, taking into account the inclusion probability allows to consider a training set of
reduced size and therefore reduce the computationnal complexity of the learning procedure
without damaging the quality of the prediction.

The same conclusions can be drawn from the analysis of the following datasets which
were obtained via a stratified sampling design. We point out that this sampling scheme
involves negatively associated (binary) random variables so that the theoretical results ob-
tained in this paper apply to training data sampled by means of this scheme as well.

incaIndiv GJB privacy3 privacy4

N 4079 2001 316 301
Number of features 326 130 95 124

The dataset incaIndiv 2 contain informations on the food consumption of the french
population. The dataset GJB3 contains questions about job seeking and the internet,
workforce automation, online dating and smartphone use among Americans. The datasets
privacy3 4 and privacy4 5 contain questions about privacy and information sharing. On the

2. https://https://www.data.gouv.fr/fr/datasets/
3. http://www.pewinternet.org/datasets/june-10-july-12-2015-gaming-jobs-and-broadband/
4. http://www.pewinternet.org/datasets/nov-26-2014-jan-3-2015-privacy-panel-3/
5. http://www.pewinternet.org/datasets/jan-27-feb-16-2015-privacy-panel-4/
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datasets incaIndiv and incaCompl we try to predict whether or not someone is an adult,
on the dataset GJB we will try to learn to predict the gender, and on the datasets privacy3
and privacy4 we will predict an answer to some questions among 5 possibilities.

We perform our experiments by randomly splitting the datasets incaIndiv, incaCompl,GJB
into a training set (roughly 70 percent of the initial dataset) and a test set. The size of
privacy3 and privacy4 being much smaller we perform 10-fold cross-validation.

incaIndiv GJB privacy3 privacy4

Weighted SVM 0.16 0.36 0.46 0.48
Unweighted SVM 0.19 0.43 0.50 0.52
Weighted CART 0.04 0.41 0.49 0.54
Unweighted CART 0.05 0.43 0.52 0.57

Table 2: Average over 50 runs of the prediction error

5. Conclusion

Most theoretical studies providing a statistical explanation for the success of learning algo-
rithms based on the ERM paradigm fully ignore the possible impact of the sampling scheme
producing the training data and stipulate that observations are independent replications of
a generic r.v. or are uniformly sampled without replacement in a larger dataset. Through
the generalizable example of rejective sampling, this paper shows that such studies can be
extended to situations where training data are obtained by more general sampling schemes
and possibly exhibit a complex dependence structure, provided that related probablity
weights are appropriately incorporated in the risk functional.
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Appendix A. Technical Proofs

A.1. Proof of Theorem 3

Considering the usual representation of the distribution of (ϵ1, . . . , ϵN ) as the conditional
distribution of a sample of independent Bernoulli variables (ϵ∗1, . . . , ϵ

∗
N ) conditioned upon

the event
∑N

i=1 ϵ
∗
i = n (see subsection 2.2), the result is a consequence of Theorem 2.8 in

Joag-Dev and Proschan (1983).

A.2. Bernstein inequality for sums of negatively associated random variables

For simplicity, we first establish the following tail bound for negatively associated random
variables, which extends the usual Bernstein inequality in the i.i.d. setting, see Bernstein
(1964). Proofs of Proposition 4 and Theorem 8 are then deduced from Theorem 3 and
Theorem 9 (see Appendix A) .

Theorem 9 Let Z1, . . . , ZN be negatively associated real valued random variables such
that |Zi| ≤ c < +∞ a.s. E[Zi] = 0 and E[Z2

i ] = σ2
i for 1 ≤ i ≤ N . Then, for all t > 0, we

have: ∀N ≥ 1,

P

{
N∑
i=1

Zi ≥ t

}
≤ exp

(
− t2

2
3ct+ 2

∑N
i=1 σ

2
i

)
.

Before detailing the proof, observe that a similar bound holds true for the tail probability

P
(∑N

i=1 Zi ≤ −t
)
(and for P

(
|
∑N

i=1 Zi| ≥ t
)
as well, up to a multiplicative factor 2). Refer

also to Theorem 4 in Janson (1994) for a similar result in a more restrictive setting (i.e. for
tail bounds related to sums of negatively associated r.v.’s).
Proof The proof starts off with the usual Chernoff method: for all λ > 0,

P

{
N∑
i=1

Zi ≥ t

}
≤ exp

(
−tλ+ logE

[
et

∑N
i=1 Zi

])
. (15)

Next, observe that, for all t > 0, we have

E
[
et

∑n
i=1 Zi

]
= E

[
etZnet

∑n−1
i=1 Zi

]
≤ E

[
etZn

]
E
[
et

∑n−1
i=1 Zi

]
≤

n∏
i=1

E
[
etZi

]
, (16)
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using the property (9) combined with a descending recurrence on i. The proof is finished
by plugging (16) into (15), using an adequate control of the log-Laplace transform of the
Zi’s and optimizing finally the resulting bound w.r.t. λ > 0, just like in the proof of the
classic Bernstein inequality, see Bernstein (1964).

Appendix B. On Biased HT Risk Minimization

Eq. (11) directly results from the following lemma.

Lemma 10 We have, for p′is such Suppose that dN ≥ 1. We have, for all i ∈ {1, . . . , N},

|1/πi − 1/pi| ≤
6

dN
× (1− πi)/πi.

Proof The proof follows from the representation (5.14) on p1509 in Hajek (1964). Denote
by PN a Poisson sampling distribution on IN with inclusion probabilities p1, ldots, pN , the
canonical parameters of RN . For all i ∈ {1, . . . , N}, we have:

πi
pi

1− pi
1− πi

=

 ∑
s∈P(IN ): i∈IN\{s}

P (s)

−1 ∑
s∈P(IN ): i∈IN\{s}

P (s)
∑
h∈s

1− ph∑
j∈s(1− pj) + (ph − pi)

=

 ∑
s: i∈IN\{s}

PN (s)

−1 ∑
s: i∈IN\{s}

PN (s)
∑
h∈s

1− ph∑
j∈s(1− pj)

(
1 + (ph−pi)∑

j∈s(1−pj)

)
Now recall that for any x ∈]− 1, 1[, we have:

1− x ≤ 1

1 + x
≤ 1− x+ x2.

It follows that

πi
pi

1− pi
1− πi

≤ 1−

 ∑
s: i∈IN\{s}

P (s)

−1 ∑
s: i∈IN\{s}

P (s)
∑
h∈s

(1− ph)(ph − pi)(∑
j∈s(1− pj)

)2
+

 ∑
s: i∈IN\{s}

P (s)

−1 ∑
s: i∈IN\{s}

P (s)
∑
h∈s

(1− ph)(ph − pi)
2(∑

j∈s(1− pj)
)3

Following now line by line the proof on p. 1510 in Hajek (1964) and noticing that
∑

j∈s(1−
pj) ≥ 1/2dN (see Lemma 2.2 in Hajek (1964)), we have∣∣∣∣∣∣∣

∑
h∈s

(1− ph)(ph − pi)(∑
j∈s(1− pj)

)2
∣∣∣∣∣∣∣ ≤

1(∑
j∈s(1− pj)

) ≤ 2

dN
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and similarly ∑
h∈s

(1− ph)(ph − pi)
2(∑

j∈s(1− pj)
)3 ≤ 1(∑

j∈s(1− pj)
)2 ≤ 4

d2N
.

This yieds: ∀i ∈ {1, . . . , N},

1− 2

dN
≤ πi

pi

1− pi
1− πi

≤ 1 +
2

dN
+

4

d2N

and

pi(1− πi)(1−
2

dN
) ≤ πi(1− pi) ≤ pi(1− πi)(1 +

2

dN
+

4

d2N
),

leading then to

− 2

dN
(1− πi)pi ≤ πi − pi ≤ pi(1− πi)(

2

dN
+

4

d2N
)

and finally to

−(1− πi)

πi

2

dN
≤ 1

pi
− 1

πi
≤ (1− πi)

πi
(
2

dN
+

4

d2N
).

Since 1/d2N ≤ 1/dN as soon as dN ≥ 1, the lemma is proved.

Appendix C. Sampling Training Data - Technical Details

C.1. Further details on the rejective scheme

Let n ≤ N and consider a vector π = (π1, . . . , πN ) of first order inclusion probabilities.
Further define Sn := {s ∈ P(IN ) : #s = n}, the set of all samples in population IN with
cardinality n. The rejective sampling Hajek (1964); Berger (1998), sometimes called con-
ditional Poisson sampling, exponential design without replacement or maximum entropy
design, is the sampling design RN that selects samples of fixed size n(s) = n so as to max-
imize the entropy measure H(RN ) = −

∑
s∈Sn

RN (s) logRN (s), subject to the constraint
that its vector of first order inclusion probabilities coincides with π. It is easily implemented
in two steps:

1. Draw a sample S according to a Poisson plan PN , with properly chosen first order
inclusion probabilities pN = (p1, . . . , pN ). The representation is called canonical
if
∑N

i=1 pi = n. In that case, relationships between each pi and πi, 1 ≤ i ≤ N , are
established in Hajek (1964).

2. If n(S) ̸= n, then reject sample S and go back to step one, otherwise stop.

Vector p must be chosen in a way that the resulting first order inclusion probabilities
coincide with π, by means of a dedicated optimization algorithm Tillé (2006). The corre-

sponding probability distribution is given for all s ∈ P(IN ) by RN (s) = PN (s) I{#s=n}∑
s′∈Sn

PN (s′) ∝∏
i∈s pi

∏
i/∈s(1− pi)× I{#s = n}, where ∝ denotes the proportionality.
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C.2. Stratified sampling

A stratified sampling design permits to draw a sample S of fixed size n(S) = n ≤ N within
a population IN that can be partitioned into K ≥ 1 distinct strata IN1 , . . . , INK

(known
a priori) of respective sizes N1, . . . , NK adding up to N . Let n1, . . . , nK be non-negative
integers such that n1 + · · · + nK = n, then the drawing procedure is implemented in K
steps: within each stratum INk

, k ∈ {1, . . . ,K}, perform a SWOR of size nk ≤ Nk yielding

a sample Sk. The final sample is obtained by assembling these sub-samples: S =
∪K

k=1 Sk.
The probability of drawing a specific sample s by means of this survey design is Rstr

N (s) =∑K
k=1

(
Nk

nk

)−1

. Naturally, first and second order inclusion probabilities depend on the

stratum to which each unit belong: for all i ̸= j in UN , πi(R
str
N ) =

∑K
k=1

nk
Nk

I{i ∈ UNk
} and

πi,j(R
str
N ) =

∑K
k=1

nk(nk−1)
Nk(Nk−1) I{(i, j) ∈ U2

Nk
}.

C.3. Rao-Sampford sampling

The Rao-Sampford sampling design generates samples s ∈ P(IN ) of fixed size n(s) = n with
respect to some given first order inclusion probabilities πRS := (πRS

1 , . . . , πRS
N ), fulfilling the

condition
∑N

i=1 π
RS
i = n, with probability

RRS
N (s) = η

∑
i∈s

πRS
i

∏
j /∈s

πRS
j

1− πRS
j

.

Here, η > 0 is chosen such that
∑

s∈P(IN )R
RS
N (s) = 1. In practice, the following algorithm

is often used to implement such a design Berger (1998):

1. select the first unit i with probability πRS
i /n,

2. select the remaining n−1 units j with drawing probabilities proportional to πRS
j /(1−

πRS
j ), j = 1, . . . , N ,

3. accept the sample if the units drawn are all distinct, otherwise reject it and go back
to step one.
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