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Abstract

We propose a localized approach to multiple kernel learning that can be formulated as a
convex optimization problem over a given cluster structure. For which we obtain general-
ization error guarantees and derive an optimization algorithm based on the Fenchel dual
representation. Experiments on real-world datasets from the application domains of com-
putational biology and computer vision show that convex localized multiple kernel learning
can achieve higher prediction accuracies than its global and non-convex local counterparts.
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1. Introduction

Kernel-based methods such as support vector machines have found diverse applications due
to their distinct merits such as the descent computational complexity, high usability, and the
solid mathematical foundation (e.g., Schölkopf and Smola, 2002). The performance of such
algorithms, however, crucially depends on the involved kernel function as it intrinsically
specifies the feature space where the learning process is implemented, and thus provides a
similarity measure on the input space. Yet in the standard setting of these methods the
choice of the involved kernel is typically left to the user.

A substantial step toward the complete automatization of kernel-based machine learning
is achieved in Lanckriet et al. (2004), who introduce the multiple kernel learning (MKL)
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framework (Gönen and Alpaydin, 2011). MKL offers a principal way of encoding com-
plementary information with distinct base kernels and automatically learning an optimal
combination of those (Sonnenburg et al., 2006a). MKL can be phrased as a single convex
optimization problem, which facilitates the application of efficient numerical optimization
strategies (Bach et al., 2004; Kloft et al., 2009; Sonnenburg et al., 2006a; Rakotomamonjy
et al., 2008; Xu et al., 2010; Kloft et al., 2008a; Yang et al., 2011) and theoretical under-
standing of the generalization performance of the resulting models (Srebro and Ben-David,
2006; Cortes et al., 2010; Kloft et al., 2010; Kloft and Blanchard, 2011, 2012; Cortes et al.,
2013; Ying and Campbell, 2009; Hussain and Shawe-Taylor, 2011; Lei and Ding, 2014).
While early sparsity-inducing approaches failed to live up to its expectations in terms of
improvement over uniform combinations of kernels (cf. Cortes, 2009, and references therein),
it was shown that improved predictive accuracy can be achieved by employing appropriate
regularization (Kloft et al., 2011, 2008b).

Currently, most of the existing algorithms fall into the global setting of MKL, in the
sense that all input instances share the same kernel weights. However, this ignores the fact
that instances may require sample-adaptive kernel weights.

For instance, consider the two images of a horses given to the right. Multiple kernels can
be defined, capturing the shapes in the image and the color distribution over various chan-
nels. On the image to the left, the depicted horse and the image backgrounds exhibit dis-
tinctly different color distributions, while for the image to the right the contrary is the case.
Hence, a color kernel is more significant to
detect a horse in the image to the left than
for the image the right. This example moti-
vates studying localized approaches to MKL
(Yang et al., 2009; Gönen and Alpaydin,
2008; Li et al., 2016; Lei et al., 2015; Mu
and Zhou, 2011; Han and Liu, 2012).

Existing approaches to localized MKL (reviewed in Section 1.1) optimize non-convex
objective functions. This puts their generalization ability into doubt. Indeed, besides the re-
cent work by (Lei et al., 2015), the generalization performance of localized MKL algorithms
(as measured through large-deviation bounds) is poorly understood, which potentially could
make these algorithms prone to overfitting. Further potential disadvantages of non-convex
localized MKL approaches include computationally difficulty in finding good local minima
and the induced lack of reproducibility of results (due to varying local optima).

This paper presents a convex formulation of localized multiple kernel learning, which
is formulated as a single convex optimization problem over a precomputed cluster struc-
ture, obtained through a potentially convex or non-convex clustering method. We derive
an efficient optimization algorithm based on Fenchel duality. Using Rademacher complex-
ity theory, we establish large-deviation inequalities for localized MKL, showing that the
smoothness in the cluster membership assignments crucially controls the generalization er-
ror. Computational experiments on data from the domains of computational biology and
computer vision show that the proposed convex approach can achieve higher prediction
accuracies than its global and non-convex local counterparts (up to +5% accuracy for splice
site detection).
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1.1. Related Work

Gönen and Alpaydin (2008) initiate the work on localized MKL by introducing gating
models

f(x) =

M∑
m=1

ηm(x; v)⟨wm, ϕm(x)⟩+ b, ηm(x; v) ∝ exp(⟨vm, x⟩+ vm0)

to achieve local assignments of kernel weights, resulting in a non-convex MKL problem.
To not overly respect individual samples, Yang et al. (2009) give a group-sensitive formu-
lation of localized MKL, where kernel weights vary at, instead of the example level, the
group level. Mu and Zhou (2011) also introduce a non-uniform MKL allowing the kernel
weights to vary at the cluster-level and tune the kernel weights under the graph embedding
framework. Han and Liu (2012) built on Gönen and Alpaydin (2008) by complementing the
spatial-similarity-based kernels with probability confidence kernels reflecting the likelihood
of examples belonging to the same class. Li et al. (2016) propose a multiple kernel clustering
method by maximizing local kernel alignments. Liu et al. (2014) present sample-adaptive
approaches to localized MKL, where kernels can be switched on/off at the example level by
introducing a latent binary vector for each individual sample, which and the kernel weights
are then jointly optimized via margin maximization principle. Moeller et al. (2016) present
a unified viewpoint of localized MKL by interpreting gating functions in terms of local re-
producing kernel Hilbert spaces acting on the data. All the aforementioned approaches to
localized MKL are formulated in terms of non-convex optimization problems, and deep the-
oretical foundations in the form of generalization error or excess risk bounds are unknown.
Although Cortes et al. (2013) present a convex approach to MKL based on controlling the
local Rademacher complexity, the meaning of locality is different in Cortes et al. (2013):
it refers to the localization of the hypothesis class, which can result in sharper excess risk
bounds (Kloft and Blanchard, 2011, 2012), and is not related to localized multiple kernel
learning. Liu et al. (2015) extend the idea of sample-adaptive MKL to address the issue
with missing kernel information on some examples. More recently, Lei et al. (2015) propose
a MKL method by decoupling the locality structure learning with a hard clustering strategy
from optimizing the parameters in the spirit of multi-task learning. They also develop the
first generalization error bounds for localized MKL.

2. Convex Localized Multiple Kernel Learning

2.1. Problem setting and notation

Suppose that we are given n training samples (x1, y1), . . . , (xn, yn) that are partitioned
into l disjoint clusters S1, . . . , Sl in a probabilistic manner, meaning that, for each clus-
ter Sj , we have a function cj : X → [0, 1] indicating the likelihood of x falling into
cluster j, i.e.,

∑
j∈Nl

cj(x) = 1 for all x ∈ X . Here, for any d ∈ N, we introduce the
notation Nd = {1, . . . , d}. Suppose that we are given M base kernels k1, . . . , kM with
km(x, x̃) = ⟨ϕm(x), ϕm(x̃)⟩km , corresponding to linear models fj(x) = ⟨wj , ϕ(x)⟩ + b =∑

m∈NM
⟨w(m)

j , ϕm(x)⟩+ b, where wj = (w
(1)
j , . . . , w

(M)
j ) and ϕ = (ϕ1, . . . , ϕM ). We consider

the following proposed model, which is a weighted combination of these l local models:

f(x) =
∑
j∈Nl

cj(x)fj(x) =
∑
j∈Nl

cj(x)
[ ∑
m∈NM

⟨w(m)
j , ϕm(x)⟩

]
+ b. (1)

83



Lei Binder Dogan Kloft

2.2. Proposed convex localized MKL method

The proposed convex localized MKL model can be formulated as follows.

Problem 1 (Convex Localized Multiple Kernel Learning (CLMKL)—Primal) Let
C > 0 and p ≥ 1. Given a loss function ℓ(t, y) : R×Y → R convex w.r.t. the first argument
and cluster likelihood functions cj : X → [0, 1], j ∈ Nl, solve

inf
w,t,β,b

∑
j∈Nl

∑
m∈NM

∥w(m)
j ∥22

2βjm
+ C

∑
i∈Nn

ℓ(ti, yi)

s.t. βjm ≥ 0,
∑

m∈NM

βp
jm ≤ 1 ∀j ∈ Nl,m ∈ NM∑

j∈Nl

cj(xi)
[ ∑
m∈NM

⟨w(m)
j , ϕm(xi)⟩

]
+ b = ti, ∀i ∈ Nn.

(P)

The core idea of the above problem is to use cluster likelihood functions for each ex-
ample and separate ℓp-norm constraint on the kernel weights βj := (βj1, . . . , βjM ) for each
cluster j (Kloft et al., 2011) . Thus each instance can obtain separate kernel weights. The
above problem is convex, since a quadratic over a linear function is convex (e.g., Boyd and
Vandenberghe, 2004, p.g. 89). Note that Slater’s condition can be directly checked, and
thus strong duality holds.

2.3. Dualization

This section gives a dual representation of Problem 1. We consider two levels of duality: a
partially dualized problem, with fixed kernel weights βjm, and the entirely dualized problem
with respect to all occurring primal variables. From the former we derive an efficient two-
step optimization scheme (Section 3). The latter allows us to compute the duality gap and
thus to obtain a sound stopping condition for the proposed algorithm. We focus on the
entirely dualized problem here. The partial dualization is given in Appendix C of the long
version of this paper (Lei et al., 2016).

Dual CLMKL Optimization Problem For wj = (w
(1)
j , . . . , w

(M)
j ), we define the ℓ2,p-

norm by ∥wj∥2,p := ∥(∥w(1)
j ∥k1 , . . . , ∥w

(M)
j ∥kM )∥p = (

∑
m∈NM

∥w(m)
j ∥pkm)

1
p . For a function h,

we denote by h∗(x) = supµ[x
⊤µ− h(µ)] its Fenchel-Legendre conjugate. This results in the

following dual.

Problem 2 (CLMKL—Dual) The dual problem of (P) is given by

sup∑
i∈Nn αi=0

{
− C

∑
i∈Nn

ℓ∗(−αi

C
, yi)−

1

2

∑
j∈Nl

∥∥∥( ∑
i∈Nn

αicj(xi)ϕm(xi)
)M
m=1

∥∥∥2
2, 2p

p−1

}
. (D)
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Proof [Dualization] Using Lemma A.2 of (Lei et al., 2016) to express the optimal βjm in

terms of w
(m)
j , the problem (P) is equivalent to

inf
w,t,b

1

2

∑
j∈Nl

( ∑
m∈NM

∥w(m)
j ∥

2p
p+1

2

) p+1
p

+ C
∑
i∈Nn

ℓ(ti, yi)

s.t.
∑
j∈Nl

[
cj(xi)

∑
m∈NM

⟨w(m)
j , ϕm(xi)⟩

]
+ b = ti, ∀i ∈ Nn.

(2)

Introducing Lagrangian multipliers αi, i ∈ Nn, the Lagrangian saddle problem of Eq. (2) is

sup
α

inf
w,t,b

1

2

∑
j∈Nl

( ∑
m∈NM

∥w(m)
j ∥

2p
p+1

2

) p+1
p

+ C
∑
i∈Nn

ℓ(ti, yi)−
∑
i∈Nn

αi

(∑
j∈Nl

cj(xi)
∑

m∈NM

⟨w(m)
j , ϕm(xi)⟩+ b− ti

)
= sup

α

{
− C

∑
i∈Nn

sup
ti

[−ℓ(ti, yi)−
1

C
αiti]− sup

b

∑
i∈Nn

αib−

sup
w

[∑
j∈Nl

∑
m∈NM

⟨
w

(m)
j ,

∑
i∈Nn

αicj(xi)ϕm(xi)
⟩
− 1

2

∑
j∈Nl

( ∑
m∈NM

∥w(m)
j ∥

2p
p+1

2

) p+1
p
]}

(3)

def
= sup∑

i∈Nn αi=0

{
− C

∑
i∈Nn

ℓ∗(−αi

C
, yi)−

∑
j∈Nl

[1
2

∥∥( ∑
i∈Nn

αicj(xi)ϕm(xi)
)M
m=1

∥∥2
2, 2p

p+1

]∗}

The result (2) now follows by recalling that for a norm ∥ · ∥, its dual norm ∥ · ∥∗ is defined
by ∥x∥∗ = sup∥µ∥=1⟨x, µ⟩ and satisfies: (12∥ · ∥

2)∗ = 1
2∥ · ∥

2
∗ (Boyd and Vandenberghe, 2004).

Furthermore, it is straightforward to show that ∥ · ∥2, 2p
p−1

is the dual norm of ∥ · ∥2, 2p
p+1

.

2.4. Representer Theorem

We can use the above derivation to obtain a lower bound on the optimal value of the primal
optimization problem (P), from which we can compute the duality gap using the theorem
below. The proof is given in Appendix A.2 in (Lei et al., 2016).

Theorem 3 (Representer Theorem) For any dual variable (αi)
n
i=1 in (D), the optimal

primal variable {w(m)
j (α)}l,Mj,m=1 in the Lagrangian saddle problem (3) can be represented as

w
(m)
j (α)=

[ ∑
m̃∈NM

∥
∑
i∈Nn

αicj(xi)ϕm̃(xi)∥
2p
p−1

2

]− 1
p
∥∥∑
i∈Nn

αicj(xi)ϕm(xi)
∥∥ 2

p−1

2

[∑
i∈Nn

αicj(xi)ϕm(xi)
]
.

2.5. Support-Vector Classification

For the hinge loss, the Fenchel-Legendre conjugate becomes ℓ∗(t, y) = t
y (a function of t)

if −1 ≤ t
y ≤ 0 and ∞ elsewise. Hence, for each i, the term ℓ∗(−αi

C , yi) translates to − αi
Cyi

,
provided that 0 ≤ αi

yi
≤ C. With a variable substitution of the form αnew

i = αi
yi
, the complete

dual problem (D) reduces as follows.
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Problem 4 (CLMKL—SVM Formulation) For the hinge loss, the dual CLMKL prob-
lem (D) is given by:

sup
α:0≤α≤C,

∑
i∈Nn αiyi=0

− 1

2

∑
j∈Nl

∥∥∥( ∑
i∈Nn

αiyicj(xi)ϕm(xi)
)M
m=1

∥∥∥2
2, 2p

p−1

+
∑
i∈Nn

αi, (4)

A corresponding formulation for support-vector regression is given in Appendix B in
(Lei et al., 2016).

3. Optimization Algorithms

As pioneered in Sonnenburg et al. (2006a), we consider here a two-layer optimization proce-
dure to solve the problem (P) where the variables are divided into two groups: the group of

kernel weights {βjm}l,Mj,m=1 and the group of weight vectors {w(m)
j }l,Mj,m=1. In each iteration,

we alternatingly optimize one group of variables while fixing the other group of variables.
These iterations are repeated until some optimality conditions are satisfied. To this aim,
we need to find efficient strategies to solve the two subproblems.

It is not difficult to show (cf. Appendix C in (Lei et al., 2016)) that, given fixed kernel
weights β = (βjm), the CLMKL dual problem is given by

sup
α:

∑
i∈Nn αi=0

−1

2

∑
j∈Nl

∑
m∈NM

βjm

∥∥∥ ∑
i∈Nn

αicj(xi)ϕm(xi)
∥∥∥2
2
− C

∑
i∈Nn

ℓ∗(−αi

C
, yi), (5)

which is a standard SVM problem using the kernel

k̃(xi, xĩ) :=
∑

m∈NM

∑
j∈Nl

βjmcj(xi)cj(xĩ)km(xi, xĩ) (6)

This allows us to employ very efficient existing SVM solvers (Chang and Lin, 2011). In
the degenerate case with cj(x) ∈ {0, 1}, the kernel k̃ would be supported over those sample
pairs belonging to the same cluster.

Next, we show that, the subproblem of optimizing the kernel weights for fixed w
(m)
j and

b has a closed-form solution.

Proposition 5 (Solution of the Subproblem w.r.t. the Kernel Weights) Given fixed

w
(m)
j and b, the minimal βjm in optimization problem (P) is attained for

βjm = ∥w(m)
j ∥

2
p+1

2

( ∑
k∈NM

∥w(k)
j ∥

2p
p+1

2

)− 1
p
. (7)

We present the detailed proof in Appendix A.3 in (Lei et al., 2016) due to lack of space.

To apply Proposition 5 for updating βjm, we need to compute the norm of w
(m)
j , and this

can be accomplished by the following representation of w
(m)
j given fixed βjm: (cf. Appendix

C in (Lei et al., 2016))

w
(m)
j = βjm

∑
i∈Nn

αicj(xi)ϕm(xi). (8)
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The prediction function is then derived by plugging the above representation into Eq. (1).
The resulting optimization algorithm for CLMKL is shown in Algorithm 1. The al-

gorithm alternates between solving an SVM subproblem for fixed kernel weights (Line 4)
and updating the kernel weights in a closed-form manner (Line 6). To improve the effi-
ciency, we start with a crude precision and gradually improve the precision of solving the
SVM subproblem. The proposed optimization approach can potentially be extended to an
interleaved algorithm where the optimization of the MKL step is directly integrated into
the SVM solver. Such a strategy can increase the computational efficiency by up to 1-2
orders of magnitude (cf. (Sonnenburg et al., 2006a) Figure 7 in Kloft et al. (2011)). The
requirement to compute the kernel k̃ at each iteration can be further relaxed by updating
only some randomly selected kernel elements.

Algorithm 1: Training algorithm for convex localized multiple kernel learning (CLMKL).

input: examples {(xi, yi)
n
i=1} ⊂

(
X × {−1, 1}

)n
together with the likelihood functions {cj(x)}lj=1,

M base kernels k1, . . . , kM .

initialize βjm = p
√

1/M,w
(m)
j = 0 for all j ∈ Nl,m ∈ NM

while Optimality conditions are not satisfied do

calculate the kernel matrix k̃ by Eq. (6)
compute α by solving canonical SVM with k̃

compute ∥w(m)
j ∥22 for all j,m with w

(m)
j given by Eq. (8)

update βjm for all j,m according to Eq. (7)
end

An alternative strategy would be to directly optimize (2) (without the need of a two-
step wrapper approach). Such an approach has been presented in Sun et al. (2010) in the
context of ℓp-norm MKL.

3.1. Convergence Analysis of the Algorithm

The theorem below, which is proved in Appendix A.4 in (Lei et al., 2016), shows convergence
of Algorithm 1. The core idea is to view Algorithm 1 as an example of the classical block
coordinate descent (BCD) method, convergence of which is well understood.

Theorem 6 (Convergence analysis of Algorithm 1) Assume that

(B1) the feature map ϕm(x) is of finite dimension, i.e, ϕm(x) ∈ Rem , em < ∞,∀m ∈ NM

(B2) the loss function ℓ is convex, continuous w.r.t. the first argument and ℓ(0, y) <
∞, ∀y ∈ Y

(B3) any iterate βjm traversed by Algorithm 1 has βjm > 0
(B4) the SVM computation in line 4 of Algorithm 1 is solved exactly in each iteration.

Then, any limit point of the sequence traversed by Algorithm 1 minimizes the problem (P).

3.2. Runtime Complexity Analysis

At each iteration of the training stage, we need O(n2Ml) operations to calculate the ker-
nel (6), O(n2ns) operations to solve a standard SVM problem, O(Mln2

s) operations to
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calculate the norm according to the representation (8) and O(Ml) operations to update
the kernel weights. Thus, the computational cost at each iteration is O(n2Ml). The time
complexity at the test stage is O(ntnsMl). Here, ns and nt are the number of support
vectors and test points, respectively.

4. Generalization Error Bounds

In this section we present generalization error bounds for our approach. We give a purely
data-dependent bound on the generalization error, which is obtained using Rademacher
complexity theory (Bartlett and Mendelson, 2002). To start with, our basic strategy is to
plug the optimal βjm established in Eq. (7) into (P), so as to equivalently rewrite (P) as a
block-norm regularized problem as follows:

min
w,b

1

2

∑
j∈Nl

[ ∑
m∈NM

∥w(m)
j ∥

2p
p+1

2

] p+1
p
+C

∑
i∈Nn

ℓ
(∑

j∈Nl

cj(xi)
[ ∑
m∈NM

⟨w(m)
j ,ϕm(xi)⟩

]
+ b, yi

)
. (9)

Solving (9) corresponds to empirical risk minimization in the following hypothesis space:

Hp,D := Hp,D,M =

{
fw : x →

∑
j∈Nl

cj(xi)
[ ∑
m∈NM

⟨w(m)
j , ϕm(xi)⟩

]
:
∑
j∈Nl

∥wj∥22, 2p
p+1

≤ D

}
.

The following theorem establishes the Rademacher complexity bounds for the function
class Hp,D, from which we derive generalization error bounds for CLMKL in Theorem 9.
The proofs of the Theorems 8, 9 are given in Appendix A.5 in (Lei et al., 2016).

Definition 7 For a fixed sample S = (x1, . . . , xn), the empirical Rademacher complexity
of a hypothesis space H is defined as R̂n(H) := Eσ supf∈H

1
n

∑
i∈Nn

σif(xi), where the ex-

pectation is taken w.r.t. σ = (σ1, . . . , σn)
⊤ with σi, i ∈ Nn, being a sequence of independent

uniform {±1}-valued random variables.

Theorem 8 (CLMKL Rademacher complexity bounds) The empirical Rademacher
complexity of Hp,D can be controlled by

R̂n(Hp,D) ≤
√
D

n
inf

2≤t≤ 2p
p−1

(
t
∑
j∈Nl

∥∥∥( ∑
i∈Nn

c2j (xi)km(xi, xi)
)M
m=1

∥∥∥
t
2

)1/2

. (10)

If, additionally, km(x, x) ≤ B for any x ∈ X and any m ∈ NM , then we have

R̂n(Hp,D) ≤
√
DB

n
inf

2≤t≤ 2p
p−1

(
tM

2
t

∑
j∈Nl

∑
i∈Nn

c2j (xi)
)1/2

.

Theorem 9 (CLMKL Generalization Error Bounds) Assume that km(x, x) ≤ B, ∀m ∈
NM , x ∈ X . Suppose the loss function ℓ is L-Lipschitz and bounded by Bℓ. Then, the follow-
ing inequality holds with probability larger than 1−δ over samples of size n for all classifiers
h ∈ Hp,D:

Eℓ(h) ≤ Eℓ,z(h) +Bℓ

√
log(2/δ)

2n
+ 2

√
DB

n
inf

2≤t≤ 2p
p−1

(
tM

2
t
[∑
j∈Nl

∑
i∈Nn

c2j (xi)
])1/2

,

where Eℓ(h) := E[ℓ(h(x), y)] and Eℓ,z(h) := 1
n

∑
i∈Nn

ℓ(h(xi), yi).

88



Localized Multiple Kernel Learning

The above bound enjoys a mild dependence on the number of kernels. One can show
(cf. Appendix A.5 in (Lei et al., 2016)) that the dependence is O(logM) for p ≤ (logM −
1)−1 logM and O(M

p−1
2p ) otherwise. In particular, the dependence is logarithmically for

p = 1 (sparsity-inducing CLMKL). These dependencies recover the best known results for
global MKL algorithms in Cortes et al. (2010); Kloft and Blanchard (2011); Kloft et al.
(2011).

The bounds of Theorem 8 exhibit a strong dependence on the likelihood functions,
which inspires us to derive a new algorithmic strategy as follows. Consider the special case
where cj(x) takes values in {0, 1} (hard cluster membership assignment), and thus the term
determining the bound has

∑
j∈Nl

∑
i∈Nn

c2j (xi) = n. On the other hand, if cj(x) ≡ 1
l , j ∈ Nl

(uniform cluster membership assignment), we have the favorable term
∑

j∈N
∑

i∈Nn
c2j (xi) =

n
l . This motivates us to introduce a parameter τ controlling the complexity of the bound
by considering likelihood functions of the form

cj(x) ∝ exp(−τdist2(x, Sj)), (11)

where dist(x, Sj) is the distance between the example x and the cluster Sj . By letting τ = 0
and τ = ∞, we recover uniform and hard cluster assignments, respectively. Intermediate
values of τ correspond to more balanced cluster assignments. As illustrated by Theorem 8,
by tuning τ we optimally adjust the resulting models’ complexities.

5. Empirical Analysis and Applications

5.1. Experimental Setup

We implement the proposed convex localized MKL (CLMKL) algorithm in MATLAB and
solve the involved canonical SVM problem with LIBSVM (Chang and Lin, 2011). The
clusters {S1, . . . , Sl} are computed through kernel k-means (e.g., Dhillon et al., 2004), but
in principle other clustering methods (including convex ones such as Hocking et al. (2011))
could be used. To further diminish k-means’ potential fluctuations (which are due to random
initialization of the cluster means), we repeat kernel k-means t times, and choose the one
with minimal clustering error (the summation of the squared distance between the examples
and the associated nearest cluster) as the final partition {S1, . . . , Sl}. To tune the parameter
τ in (11) in a uniform manner, we introduce the notation

AE(τ) :=
1

nl

∑
i∈Nn

∑
j∈Nl

exp(−τdist2(xi, Sj))

maxj̃∈Nl
exp(−τdist2(xi, Sj̃))

to measure the average evenness (or average excess over hard partition) of the likelihood
function. It can be checked that AE(τ) is a strictly decreasing function of τ , taking value 1
at the point τ = 0 and l−1 at the point τ = ∞. Instead of tuning the parameter τ directly,
we propose to tune the average excess/evenness over a subset in [l−1, 1]. The associated
parameter τ are then fixed by the standard binary search algorithm.

We compare the performance attained by the proposed CLMKL to regular localized
MKL (LMKL) (Gönen and Alpaydin, 2008), localized MKL based on hard clustering
(HLMKL) (Lei et al., 2015), the SVM using a uniform kernel combination (UNIF) (Cortes,
2009), and ℓp-norm MKL (Kloft et al., 2011), which includes classical MKL (Lanckriet et al.,
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2004) as a special case. We optimize ℓp-norm MKL and CLMKL until the relative duality
gap drops below 0.001. The calculation of the gradients in LMKL (Gönen and Alpaydin,
2008) requires O(n2M2d) operations, which scales poorly, and the definition of the gating
model requires the information of primitive features, which is not available for the biolog-
ical applications studied below, all of which involve string kernels. In Appendix D of (Lei
et al., 2016), we therefore give a fast and general formulation of LMKL, which requires only
O(n2M) operations per iteration. Our implementation of which is available from the follow-
ing webpage, together with our CLMKL implementation and scripts to reproduce the exper-
iments: https://www.dropbox.com/sh/hkkfa0ghxzuig03/AADRdtSSdUSm8hfVbsdjcRqva?dl=0.

In the following we report detailed results for various real-world experiments. Further
details are shown in Appendix E of (Lei et al., 2016).

5.2. Splice Site Recognition

Our first experiment aims at detecting splice sites in the organism Caenorhabditis elegans,
which is an important task in computational gene finding as splice sites are located on the
DNA strang right at the boundary of exons (which code for proteins) and introns (which
do not). We experiment on the mkl-splice data set, which we download from http:

//mldata.org/repository/data/viewslug/mkl-splice/. It includes 1000 splice site instances
and 20 weighted-degree kernels with degrees ranging from 1 to 20 (Ben-Hur et al., 2008).
The experimental setup for this experiment is as follows. We create random splits of this
dataset into training set, validation set and test set, with size of training set traversing
over the set {50, 100, 200, 300, . . . , 800}. We apply kernel-kmeans with uniform kernel to
generate a partition with l = 3 clusters for both CLMKL and HLMKL, and use this kernel
to define the gating model in LMKL. To be consistent with previous studies, we use the area
under the ROC curve (AUC) as an evaluation criterion. We tune the SVM regularization
parameter from 10{−1,−0.5,...,2}, and the average evenness over the interval [0.4, 0.8] with
eight linearly equally spaced points, based on the AUCs on the validation set. All the base
kernel matrices are multiplicatively normalized before training. We repeat the experiment
50 times, and report mean AUCs on the test set as well as standard deviation. Figure 1 (a)
shows the results as a function of the training set size n.

We observe that CLMKL achieves, for all n, a significant gain over all baselines. This
improvement is especially strong for small n. For n = 50, CLMKL attains 90.9% accuracy,
while the best baseline only achieves 85.4%, improving by 5.5%. Detailed results with stan-
dard deviation are reported in Table 1. A hypothetical explanation of the improvement from
CLMKL is that splice sites are characterized by nucleotide sequences—so-called motifs—
the length of which may differ from site to site (Sonnenburg et al., 2008). The 20 employed
kernels count matching subsequences of length 1 to 20, respectively. For sites characterized
by smaller motifs, low-degree WD-kernels are thus more effective than high-degree ones,
and vice versa for sites containing longer motifs.

5.3. Transcription Start Site Detection

Our next experiment aims at detecting transcription start sites (TSS) of RNA Polymerase
II binding genes in genomic DNA sequences. We experiment on the TSS data set, which
we downloaded from http://mldata.org/repository/data/viewslug/tss/. This data set,
which is included in the larger study of Sonnenburg et al. (2006b), comes with 5 kernels.
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Figure 1: Results of the gene finding experiments: splice site detection (left) and transcrip-
tion start site detection (right). To clean the presentation, results for UNIF are
not given here. The parameter p for CLMKL, HLMKL and MKL is set as 1 here.

50 100 200 300 400 500 600 700 800

UNIF 79.5±2.8• 84.2±2.2• 88.0±1.7• 90.0±1.7• 91.6±1.5• 92.4±1.5• 93.3±1.7• 93.6±1.7• 93.8±2.3•
LMKL 79.8±2.7• 84.2±2.3• 88.4±1.7• 90.5±1.7• 91.9±1.5• 92.8±1.5• 93.7±1.6• 94.1±1.7• 94.3±2.2•

MKL

p=1 80.2±2.8• 85.2±2.0• 89.2±1.6• 91.1±1.6• 92.5±1.5• 93.1±1.5• 93.9±1.4• 94.0±1.6• 94.2±2.1•
p=2 79.6±2.8• 84.3±2.2• 88.3±1.7• 90.4±1.6• 91.8±1.5• 92.5±1.5• 93.4±1.6• 93.6±1.6• 93.8±2.2•

p=1.33 79.7±2.9• 84.6±2.1• 88.6±1.7• 90.6±1.6• 92.0±1.5• 92.7±1.5• 93.5±1.5• 93.7±1.6• 93.8±2.1•

HLMKL

p=1 84.9±2.0• 87.7±1.8• 90.4±1.6• 91.5±1.4• 93.0±1.3• 92.9±1.6• 93.9±1.5• 94.3±1.6• 95.0±2.0•
p=2 84.9±2.0• 87.0±1.7• 90.4±1.4• 91.1±1.6• 92.6±1.4• 93.5±1.6• 94.7±1.4• 94.6±1.4• 94.4±2.2•

p=1.33 85.4±1.9• 88.5±1.7• 90.1±1.6• 91.7±1.4• 92.7±1.2• 93.4±1.6• 94.6±1.5• 94.4±1.7• 94.4±2.1•

CLMKL

p=1 90.9±1.6 91.3±1.4• 93.3±1.2• 93.8±1.2• 94.3±1.0• 94.8±1.2 95.3±1.3• 95.1±1.4• 95.2±2.0•
p=2 90.5±1.6• 92.3±1.2• 93.0±1.2• 94.0±1.2 94.4±1.1• 94.7±1.2• 95.4±1.4• 95.3±1.5• 95.6±1.9•

p=1.33 90.9±1.5 90.1±1.3 92.7±1.2 94.1±1.2 94.8±1.1 94.9±1.1 95.6±1.2 95.4±1.5 95.4±1.9

Table 1: Performances achieved by LMKL, UNIF, regular ℓp MKL, HLMKL, and CLMKL
on Splice Dataset. • indicates that CLMKL with p = 1.33 is significantly better
than the compared method (paired t-tests at 95% significance level).

The SVM based on the uniform combination of these 5 kernels was found to have the
highest overall performance among 19 promoter prediction programs (Abeel et al., 2009).
It therefore constitutes a strong baseline. To be consistent with previous studies (Abeel
et al., 2009; Kloft, 2011; Sonnenburg et al., 2006b), we use the area under the ROC curve
(AUC) as an evaluation criterion. We consider the same experimental setup as in the splice
detection experiment. The gating function and the partition are computed with the TSS
kernel, which carries most of the discriminative information (Sonnenburg et al., 2006b). All
kernel matrices were normalized with respect to their trace, prior to the experiment.

Figure 1 (b) shows the AUCs on the test data sets as a function of the number of training
examples.We observe that CLMKL attains a consistent improvement over other competing
methods. Again, this improvement is most significant when n is small. Detailed results
with standard deviation are reported in Table 2.
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50 100 200 300 400 500 600 800 1000

UNIF 83.9±2.4• 86.2±1.3• 87.6±1.0• 88.4±0.9• 88.7±0.9• 89.1±0.9• 89.2±1.0• 89.6±1.1• 89.8±1.1•
LMKL 85.2±1.2• 85.9±1.1• 86.6±1.1• 87.1±1.0• 87.2±0.9• 87.3±1.0• 87.5±1.0• 88.1±1.1• 88.7±1.3•

MKL

p=1 86.0±1.7• 87.7±1.0• 88.9±0.9• 89.6±0.9• 90.0±0.9• 90.3±0.9• 90.5±0.9 91.0±0.9 91.2±0.9

p=2 85.1±2.0• 86.9±1.1• 88.1±0.9• 88.8±0.9• 89.2±0.9• 89.6±0.9• 89.8±1.0• 90.3±1.0• 90.7±0.9•
p=1.33 85.7±1.8• 87.5±1.0• 88.7±0.9• 89.4±0.9• 89.8±0.9• 90.2±0.9• 90.4±0.9• 90.9±0.9• 91.2±0.9•

HLMKL

p=1 86.8±1.2• 87.8±1.0• 88.7±0.9• 89.4±0.9• 89.8±1.0• 90.0±1.0• 90.4±1.0• 90.7±1.0• 91.0±1.0•
p=2 86.3±1.4• 87.5±1.0• 88.5±0.9• 89.3±0.9• 89.4±0.9• 89.7±0.9• 89.8±1.0• 90.3±1.1• 90.5±1.0•

p=1.33 86.5±1.4• 87.7±1.1• 88.7±0.9• 89.3±0.9• 89.8±1.0• 90.1±0.9• 90.2±1.0• 90.7±1.0• 91.0±0.9•

CLMKL

p=1 87.6±1.2 88.5±1.0 89.4±0.8 90.0±0.9 90.3±0.9• 90.6±0.9 90.8±0.9• 91.2±0.9• 91.4±0.9

p=2 87.3±1.3• 88.3±1.0• 89.1±0.8• 89.6±0.8• 89.9±0.9• 90.2±0.9• 90.3±0.9• 90.7±1.0• 90.9±0.9•
p=1.33 87.6±1.2 88.6±0.9 89.4±0.8 89.9±0.9 90.2±0.9 90.5±0.9 90.6±1.0 91.1±1.0 91.3±0.9

Table 2: Performances achieved by LMKL, UNIF, regular ℓp MKL, HLMKL and CLMKL
on TSS Dataset. • indicates that CLMKL with p = 1.33 is significantly better
than the compared method (paired t-tests at 95% significance level).

5.4. Protein Fold Prediction

Protein fold prediction is a key step towards understanding the function of proteins, as the
folding class of a protein is closely linked with its function; thus it is crucial for drug design.
We experiment on the protein folding class prediction dataset by Ding and Dubchak (2001),
which was also used in Campbell and Ying (2011); Kloft (2011); Kloft and Blanchard (2011).
This dataset consists of 27 fold classes with 311 proteins used for training and 383 proteins
for testing. We use exactly the same 12 kernels as in Campbell and Ying (2011); Kloft
(2011); Kloft and Blanchard (2011) reflecting different features, such as van der Waals
volume, polarity and hydrophobicity. We precisely replicate the experimental setup of
previous experiments by Campbell and Ying (2011); Kloft (2011); Kloft and Blanchard
(2011), which is detailed in Appendix E.1 of (Lei et al., 2016). We report the mean prediction
accuracies, as well as standard deviations in Table 3.

The results show that CLMKL surpasses regular ℓp-norm MKL for all values of p, and
achieves accuracies up to 0.6% higher than the one reported in Kloft (2011), which is higher
than the initially reported accuracies in Campbell and Ying (2011). LMKL works poorly
in this dataset, possibly because LMKL based on precomputed custom kernels requires to
optimize nM additional variables, which may overfit.

5.5. Visual Image Categorization—UIUC Sports

We experiment on the UIUC Sports event dataset (Li and Fei-Fei, 2007) consisting of 1574
images, belonging to 8 image classes of sports activities. We compute 9 χ2-kernels based

UNIF LMKL
MKL HLMKL CLMKL

p = 1 p = 1.2 p = 2 p = 1 p = 1.2 p = 2 p = 1 p = 1.2 p = 2
ACC 68.4• 64.3• 68.7• 74.2• 70.8• 72.7± 1.3• 74.6± 0.6 72.4± 0.8• 71.3± 0.5• 75.0± 0.7 71.7± 0.5•

Table 3: Results of the protein fold prediction experiment. • indicates that CLMKL with
p = 1.2 is significantly better than the compared method (paired t-tests at 95%
significance level).
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on SIFT features and global color histograms, which is described in detail in Appendix E.2
of (Lei et al., 2016), where we also give background on the experimental setup.

From the results shown in Table 4, we observe that CLMKL achieves a performance
improvement by 0.26% over the ℓp-norm MKL baseline while localized MKL as in Gönen
and Alpaydin (2008) underperforms the MKL baseline.

MKL LMKL CLMKL MKL LMKL CLMKL
ACC 90.00 87.29 90.26 ∆ 0+11=0- 0+1=10- 4+6=1-

Table 4: Results of the visual image recognition experiment on the UIUC sports dataset. ∆
indicates on how many outer cross validation test splits a method is worse (n−),
equal (n =) or better (n+) than MKL.

5.6. Execution Time Experiments

To demonstrate the efficiency of the proposed implementation, we compare the train-
ing time for UNIF, LMKL, ℓp-norm MKL, HLMKL and CLMKL on the TSS dataset.
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We fix the regularization parameter C = 1.
We fix l = 3 and AE = 0.5 for CLMKL, and
fix l = 3 for HLMKL. On the image to the
right, we plot the training time versus the
training set size. We repeat the experiment
20 times and report the average training
time here. We optimize CLMKL, HLMKL
and MKL until the relative gap is under
10−3. The figure implies that CLMKL
converges faster than LMKL. Furthermore,
training an ℓ2-norm MKL requires signifi-
cantly less time than training an ℓ1-norm
MKL, which is consistent with the fact that
the dual problem of ℓ2-norm MKL is much smoother than the ℓ1-norm counterpart.

6. Conclusions

Localized approaches to multiple kernel learning allow for flexible distribution of kernel
weights over the input space, which can be a great advantage when samples require varying
kernel importance. As we show in this paper, this can be the case in image recognition
and several computational biology applications. However, almost prevalent approaches to
localized MKL require solving difficult non-convex optimization problems, which makes
them potentially prone to overfitting as theoretical guarantees such as generalization error
bounds are yet unknown.

In this paper, we propose a theoretically grounded approach to localized MKL, consisting
of two subsequent steps: 1. clustering the training instances and 2. computation of the
kernel weights for each cluster through a single convex optimization problem. For which
we derive an efficient optimization algorithm based on Fenchel duality. Using Rademacher
complexity theory, we establish large-deviation inequalities for localized MKL, showing that
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the smoothness in the cluster membership assignments crucially controls the generalization
error. The proposed method is well suited for deployment in the domains of computer
vision and computational biology. For splice site detection, CLMKL achieves up to 5%
higher accuracy than its global and non-convex localized counterparts.

Future work could analyze extension of the methodology to semi-supervised learning
(Görnitz et al., 2009, 2013) or using different clustering objectives (Vogt et al., 2015; Hocking
et al., 2011) and how to principally include the construction of the data partition into our
framework by constructing partitions that can capture the local variation of prediction
importance of different features.
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