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Abstract

The motivations of multiple kernel learning (MKL) approach are to increase kernel expres-
siveness capacity and to avoid the expensive grid search over a wide spectrum of kernels.
A large amount of work has been proposed to improve the MKL in terms of the computa-
tional cost and the sparsity of the solution. However, these studies still either require an
expensive grid search on the model parameters or scale unsatisfactorily with the numbers
of kernels and training samples. In this paper, we address these issues by conjoining MKL,
Stochastic Gradient Descent (SGD) framework, and data augmentation technique. The
pathway of our proposed method is developed as follows. We first develop a maximum-a-
posteriori (MAP) view for MKL under a probabilistic setting and described in a graphical
model. This view allows us to develop data augmentation technique to make the inference
for finding the optimal parameters feasible, as opposed to traditional approach of train-
ing MKL via convex optimization techniques. As a result, we can use the standard SGD
framework to learn weight matrix and extend the model to support online learning. We
validate our method on several benchmark datasets in both batch and online settings. The
experimental results show that our proposed method can learn the parameters in a princi-
pled way to eliminate the expensive grid search while gaining a significant computational
speedup comparing with the state-of-the-art baselines.

Keywords: Multiple Kernel Learning, Data Augmentation, Stochastic Gradient Descent

1. Introduction
Support Vector Machine (SVM) was first proposed in (Cortes and Vapnik, 1995). From
then on, it has become a prevalent method for machine learning tasks (e.g., classification
and regression) and been widely applied to a variety of domains. The primary issue of SVM
is specifying the kernel function which best describes the similarity of any two data points.
There are a wide spectrum of linear or nonlinear kernel functions to choose and each kernel
function has its own parameters to tune. A common approach is to run a grid search over
sets of parameters to obtain the optimal one. However, to obtain acceptable accuracy, the
grid search requires us to scan through a huge number of kernel parameter sets, and hence
it is computationally expensive.
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A notable approach to relax the grid search is to use multiple kernel learning (MKL)
(Gönen and Alpaydın, 2011). In MKL approach, rather than using a single kernel, one
prefers combining a wide spectrum of kernels into a linear weighted sum of kernels whose
expressiveness capacity is increased. Many applications can take advantage from MKL
especially when data are presented with different notions of similarity or from multiple
channels. In these situations, it is more reasonable to combine multiple kernels, each of
which corresponds to a data representation, than to specify a single kernel, which usually
leads to a bias on the chosen kernel.

Different approaches have been proposed to combine multiple kernels. One of the re-
markable formulations was first proposed in (Bach et al., 2004) for binary classification and
then extended in (Zien and Ong, 2007) for multi-class case. The optimization problem of
this formulation is written as follows

min
W

(
λ

2
Ω (W) +

1

N

N∑
n=1

l (W; Φ (xn) , yn)

)
where W is the weight matrix, and the inner product of two feature vectors Φ (xi) and
Φ (xj): 〈Φ (xi) ,Φ (xj)〉 = k (xi,xj) =

∑F
f=1 dfkf (xi,xj) is a linear combination of F

kernel functions k1, . . . , kF with df ≥ 0, ∀f and
∑F

f=1 df = 1. The regularization term
Ω (W) is usually the group norm L2,p (p ≥ 1) of W and the loss function l (W; Φ (xn) , yn)
can be the Hinge loss function.

Besides predictive performance and expressiveness capacity, the sparsity of the weighted
matrix W is also interesting in MKL. The reason is that a sparse solution not only reduces
prediction time, but also gives an intuitive interpretation in some application domains
where we need to find which similarity notion or representation type is more important
than others (Kloft et al., 2009). To encourage the sparsity, the so-called Ultra-fast Multiple
Kernel Learning (UFO-MKL) was proposed in (Orabona and Jie, 2011) which employed
the elastic group norm Ω (W) = λ/2L2,p (W) + αL2,1 (W) to efficiently penalize redundant
kernels. Then, the optimization problem of UFO-MKL can be efficiently solved with a good
convergence rate using Stochastic Gradient Descent (SGD) framework (Shalev-Shwartz and
Kakade, 2009).

Nevertheless, the existing MKL approaches fail to completely avoid the grid search.
For example, besides the regularization parameter λ, the UFO-MKL introduces one more
parameter α that also needs to be tuned. In batch mode, although one can parallelize
the grid search, it takes an expensive computational resource. In addition, the ranges of
parameters in the grid search are usually wide because they are unknown or uncertain.
In online mode, since the dataset is growing continuously, these methods need to store
many models at the same time, each for a parameter set, to obtain the optimal accuracy.
To address the model selection problem, one notable approach is to leverage MKL with
Bayesian inference. At its crux, Bayesian MKL methods view MKL under probabilistic
perspective in a graphical model and aim to infer latent variables using Bayesian inference.
One of the state-of-the-art methods in this line is BEMKL (Gonen, 2012), that employs
a variational approximation to speed up the inference. However, it still requires inverting
N by N and F by F matrices that costs O

(
N3 + F 3 +N2F 2

)
, and hence heavily suffers

the curse of dimensionality with the training size N and the number of kernel functions
F . Moreover, BEMKL requires storing the full kernel matrices, thus it is also inefficient in
memory usage.
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In this paper, we present a new MKL framework utilizing the strengths of Bayesian
inference with Data Augmentation and Stochastic Gradient Descent. Our pathway is as
follows. First, we view MKL optimization of UFO-MKL under probabilistic perspective
using a graphical model representation. We utilize data augmentation technique (Polson
et al., 2011) which enables an efficient posterior inference by coupling the model W to ap-
propriate auxiliary variables. Conveniently, we can avoid the group norm L2,1 that makes
the optimization problem of UFO-MKL complicated. As a consequence, we can use a
maximum-a-posteriori (MAP) estimate with the standard SGD to infer W. Then, we use
Gibbs sampling to infer the latent variables in the augmented graphical model. Comparing
with UFO-MKL, our method shares the ability to scale with large-scale datasets and to
run in online mode. Our model, however, completely eliminates the grid search since the
hyperparameters can be inferred automatically. We validate our method on 8 benchmark
datasets and compare with state-of-the-art baselines. The experimental results show that
our method can automatically infer the appropriate parameters in a principled way un-
der both batch and online contexts while simultaneously gaining a computational speedup
comparing with the baselines.

2. Related work
In this section, we briefly review the literature mostly related to ours. In particular, we
summarize MKL approach in Section 2.1 and data augmentation technique in Section 2.2.

2.1. Multiple Kernel Learning
In recent years, multiple kernel learning has attracted great attention due to its advan-
tages over single kernel learning. The seminal works in MKL were proposed in (Cristianini
et al., 2001; Crammer et al., 2002). Later, the influential work of (Lanckriet et al., 2004)
proposed to formulate the MKL problem as a quadratically-constrained quadratic problem
(QCQP) which can be efficiently solved using general-purpose optimization toolboxes (e.g.,
Mosek (Andersen and Andersen, 2000)). However, this work is only suitable for small-scale
datasets. Bach et al. (2004) scaled up MKL by formulating the problem as a second-
order cone programming problem but the proposed model is still limited to medium-scale
datasets. To further scale up MKL, Sonnenburg et al. (2006) viewed the MKL problem as a
semi-infinite linear programming (SILP). Subsequently, Rakotomamonjy et al. (2008) sug-
gested applying sub-gradient descent (SD) to gain a MKL method faster than SILP. Then,
Xu et al. (2009) improved the scalability by extending level method and achieved a method
faster than SILP and SD. Regardless of the approaches used, most methods are based on an
alternating optimization strategy containing two steps: i) updating the combination kernel
function while the current learner-based solution is fixed and ii) finding the learner-based
solution with the fixed combination kernel function. Although this strategy can utilize the
existing efficient SVM solvers, it does not guarantee a bound on the maximum number of
iterations needed (Orabona and Jie, 2011).

A sparse kernel combination is a preferable choice in MKL as a useful tool for feature
selection or kernel selection (Kloft et al., 2009). A straightforward approach is to use L2,1
norm which allows the redundant kernels to be penalized and eliminated. Although the
group norm L2,1 yields a sparse solution, the fact that this group norm is not smooth
makes the optimization problem more complicated and slows down the convergence rate.
To alleviate this problem, several works have replaced the group norm L2,1 by the group

51



Nguyen Le Nguyen Nguyen Phung

norm L2,p (p ≥ 1) (Kloft et al., 2009; Orabona et al., 2010; Sun et al., 2010). Particularly,
Sun et al. (2010) developed an efficient method based on sequential minimal optimization
(SMO). The proposed algorithm can solve the MKL problem directly instead of iteratively
solving intermediate SVMs. However, the solution obtained from these methods is not
truly sparse because the kernel weights do not become exactly zero although they can be
extremely small. UFO-MKL was proposed by Orabona and Jie (2011) to address this issue
by introducing an elastic group norm that allows the redundant kernels to be penalized
and eliminated while being able to utilize the framework proposed in (Shalev-Shwartz and
Kakade, 2009) to efficiently solve its optimization problem directly in the primal form.

It is noteworthy that the aforementioned methods can relax the grid search but cannot
completely avoid it since there are still model parameters to be tuned. For example with
UFO-MKL, the regularization parameter λ and the sparsity control parameter α need to
be tuned using the grid search. A notable approach to address this issue is to use Bayesian
inference. To enable Bayesian inference in MKL, it requires to view a MKL problem under
the probabilistic perspective captured in a graphical model. Girolami and Rogers (2005)
conducted a hierarchical probabilistic model for MKL and used variational method to esti-
mate the posterior distribution. Subsequently, this model was extended by (Damoulas and
Girolami, 2009) wherein multinomial logistic likelihood was replaced by multinomial probit
likelihood and Gibbs sampling was used for inference. Girolami and Zhong (2007) assumed
that each decision function of each representation was drawn from Gaussian Process. Based
on this assumption, three methods was proposed to make inference including Gibbs sam-
pling, variational approximation and expectation propagation. Zhang et al. (2011) proposed
a fully Bayesian inference and used a Markov chain Monte Carlo for posterior predictions.
A mixture of a point-mass distribution and Silverman’s g-prior was employed to encourage
the sparsity. Recently, Gonen (2012) proposed an efficient inference scheme using varia-
tional method. Although the work of (Gonen, 2012) is proven more efficient and faster than
previous works, it still scales cubically with the training size and the number of kernels.

2.2. Data Augmentation Technique

The underlying premise of data augmentation technique is to integrate unobserved data or
auxiliary variables in order to make computation tractable. This technique has increasingly
drawn an attention in a variety of problems, including (Albert and Chib, 1993), (Meng and
Van Dyk, 1999), (Holmes et al., 2006) and (Frühwirth-Schnatter et al., 2009). A recent
notable work in SVM problem was proposed by (Polson et al., 2011). From that seminal
contribution, much work has used this idea to apply other problems, such as (Perkins
et al., 2015), (Chen et al., 2015) and (Nguyen et al., 2016a). In our work, we introduce the
auxiliary variable λmf to engage with each weight wmf for a computationally tractable joint
distribution, and hence the weight matrix W can be sampled in a tractable form manner.
By doing this, we can also avoid the group norm L2,1 optimization problem and thus make
it easy to leverage the standard SGD framework to estimate W.

3. Preliminary

In this section, we present some notions and mathematical definitions used throughout our
paper. We use bold capital letters (e.g., W, X) to represent matrices. Vectors are displayed
using bold lower letters (e.g., y). For any positive integer number N , the set including the
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first N positive numbers is defined as [N ] , {1, 2, . . . , N}. Given a logical statement P , the
indicator function I[P ] renders 1 if P is true and renders 0 if otherwise.

Given a m by n matrix W = [W1, . . . ,Wn], the group norm Lp,q of the matrix W is

defined as ‖W‖p,q ,
∥∥∥[‖W1‖p , . . . , ‖Wn‖p

]∥∥∥
q
. The Frobenius norm is a special case of the

group norm when p = q = 2.
A random variable X is said to follow an inverse Gaussian distribution IG (µ, λ) with

mean E (X) = µ and variance D (X) = µ3/λ if its density distribution function is

p (x | µ, λ) =
1√

2πx3
exp

{
−λ (x− µ)2

2µ2x

}
A random variable Y is known to have generalized inverse Gaussian distribution GIG (γ, ψ, χ)
if it has the following probability density function

p (y | γ, ψ, χ) = C (λ, ψ, χ) yλ−1exp

{
−1

2

(
χ

y
+ ψy

)}
where C (λ, ψ, χ) is the normalization constant quantity. Their relationship is that if a
random variable Y has generalized inverse Gaussian distribution GIG

(
1
2 , λ, χ

)
then Y −1 =

X ∼ IG (λ, µ) where µ = (λ/χ)
1/2 (Polson et al., 2011).

4. Multiple Kernel Learning with Data Augmentation approach

In this section, we present our proposed MKL framework. We first start with the optimiza-
tion problem. Then, we describe how to apply the data augmentation approach to infer
the latent representation of the support vectors using Bayesian setting. Next, we present
the graphical model and posterior inference. Finally, we extend our model for the online
setting.

4.1. Optimization problem

Given training set D = {(xn, yn)}Nn=1, where each instance xn ∈ RD is a D−dimensional
feature vector and yn ∈ Y = {1, . . . ,M} is the corresponding label of xn. Following the work
of (Crammer and Singer, 2002), with multi-class classification setting, we aim at learning M
representative hyperplanes W1, . . . ,WM in the feature space to give discriminative values
for data in M classes1. Let us further define the weight matrix as W = [W1, . . . ,WM ]T.
The decision function is as follows

f (x) = max
m∈{1,...,M}

〈Wm,Φ (x)〉 (1)

where Φ (x) is the representation of data instance x in the feature space. The feature
map Φ (.) from the input space to the feature space can be defined via a kernel function
k: X × X → R and k (xi,xj) = 〈Φ (xi) ,Φ (xj)〉 where X is the data domain.

In multiple kernel learning, the feature map Φ (.) is constituted by F component feature
maps (i.e., Φf (.) , f = 1, . . . , F ) and hence, each representative hyperplane Wm consis-
tently consists of F components. In particular, we have the following representations

Φ (x) =
[
Φ1 (x) , . . . ,ΦF (x)

]
and Wm = [wm1, . . . ,wmF ]

It follows that the decision function in Equation (1) can be rewritten explicitly as

1. For consistency with remaining parts, we denote Wm instead of wm. As we will show, in multiple kernel
learning, Wm is a matrix made of the concatenation of vectors.
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f (x) = max
m∈{1,...,M}

 F∑
f=1

〈
wmf ,Φ

f (x)
〉

To encourage the sparsity as in (Orabona and Jie, 2011), we employ an elastic group norm
and achieve the following optimization problem

min
W

(
1

N

N∑
n=1

l (W; xn, yn) +
α′

2
‖W‖22,2 + β′ ‖W‖2,1

)
(2)

where the group norms ‖W‖22,2 =
∑M

m=1

∑F
f=1 ‖wmf‖22 , ‖W‖2,1 =

∑M
m=1

∑F
f=1 ‖wmf‖2,

α′ is a regularization parameter, and β′ is a parameter for sparsity tuning.

In addition, the loss function l (W; xn, yn) for the multi-class (Crammer and Singer,
2002) is defined as

l (W; xn, yn) = max

{
0, 1 + max

m∈Y\yn
g (m,xn)− g (yn,xn)

}
(3)

where g (m,xn) = 〈Wm,Φ (xn)〉. The optimization problem in Equation (2) is rewritten as

min
W

Jα,β (W) =

N∑
n=1

l (W; xn, yn) +

M∑
m=1

F∑
f=1

(α
2
‖wmf‖22 + β ‖wmf‖2

) (4)

where α = α′N and β = β′N .

We now view the MKL problem in Equation (4) under a probabilistic perspective. The
solution of the optimization problem in Equation (4) is equal to the MAP estimate of the
following pseudo posterior distribution

p (W |X,y, α, β) ∝ exp {−Jα,β(W)} ∝ C (α, β) p (y |X,W) p (W | α, β) (5)

where we have defined

p (y |X,W) =

N∏
n=1

p (yn | xn,W) ∝
N∏
n=1

exp {−l (W; xn, yn)}

=
N∏
n=1

exp

{
−max

{
0, 1 + max

m∈Y\yn
g (m,xn)− g (yn,xn)

}}
(6)

p (W | α, β) ∝
M∏
m=1

F∏
f=1

exp
{
−
(α

2
‖wmf‖2 + β ‖wmf‖

)}

and C (α, β) is the normalization term. We note that p (yn | xn,W) =
exp

{
−max

{
0, 1 + maxm∈Y\yn g (m,xn)− g (yn,xn)

}}
is a pseudo likelihood. However,

we can use it as a proper likelihood because we can approximate exp {−max {0, z}} ≈
(1 + e−z)

−1
= S (−z) where S is the sigmoid function and z = 1 + maxm∈Y\yn g (m,xn)−

g (yn,xn).
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4.2. Data Augmentation Approach

To view the above MAP under the standpoint of Bayesian inference, it requires to find the
tractable form of the posterior distribution p (W |X,y, α, β) shown in Equation (5). To this
end, we utilize the data augmentation technique by coupling each component wmf to a ran-
dom variable λmf that induces a computationally tractable joint distribution p (wmf , λmf ).
In particular, we depart from the following equation (Andrews and Mallows, 1974)∫ ∞

0

a√
2πλmf

exp

{
−1

2

(
a2λmf + b2λ−1mf

)}
dλmf = e−|ab|

Substituting a = 1 and b = β ‖wmf‖ to the above equation, we gain∫ ∞

0

1√
2πλmf

exp

{
−1

2

(
λmf + β2λ−1mf ‖wmf‖2

)}
dλmf = e−β‖wmf‖ (7)

Multiply Equation (7) with e−
α
2 ‖wmf‖

2

, we have∫ ∞

0

1√
2πλmf

exp

{
−1

2

(
λmf +

(
β2λ−1mf + α

)
‖wmf‖2

)}
dλmf = e

−
(
α
2 ‖wmf‖

2
+β‖wmf‖

)

It follows that the conditional distribution of wmf given α, β can be obtained by marginal-
izing out the random variable λmf . In particular, we have the following equation

p (wmf | α, β) =

∫ ∞
0

p (wmf , λmf | α, β) dλmf

where we have defined the joint distribution of wmf and λmf as

p (wmf , λmf | α, β) =
1√

2πλmf
exp

{
−1

2

(
λmf +

(
β2λ−1mf + α

)
‖wmf‖2

)}
(8)

Therefore, we achieve the following formula

p (W,λ | α, β) =

M∏
m=1

F∏
f=1

exp

{
−1

2

(
λmf +

(
β2λ−1mf + α

)
‖wmf‖2

)}
(9)

where M and F are the number of classes and the number of kernels, respectively. In what
follows, we present the augmented graphical model and give the detail of the inference.

4.3. Graphical Model Representation for MKL via Data Augmentation

The augmented graphical model of our proposed method is illustrated in Figure 1. Our
graphical model can be interpreted as follows:

• The regularization parameter α is drawn from the Gamma distribution with the shape
parameter κ0 and the scale parameter θ0, i.e., α ∼ G (κ0, θ0).

• The parameter β for sparsity tuning is drawn from Normal distribution with the mean
parameter µ0 and the variance parameter is σ20, i.e., β ∼ N

(
µ0, σ

2
0

)
.
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• Given α and β, each weight vector wmf and auxiliary variable λmf
(m = 1, . . . ,M, f = 1, . . . , F ) is drawn from the distribution with probability density
function described in Equation (8).

• For each data point xn (n = 1, . . . , N), the corresponding output label yn is drawn
from pseudo likelihood described in Equation (6).

Based on this graphical model, we further show how to make inference and learn parameters
in the following section. Note that we still need hyper-parameters (i.e., κ0, θ0, µ0, σ0) to fit
the model. The underlying idea of building a hierarchy of parameters is to make model
more robust with data. Comparing with regularization parameter α and sparsity tuning
parameter β, these hyper-parameters are not sensitive to data. As in the BEMKL method,
we fix the values of these hyper-parameters for all datasets.

αxn β

yn

wmf λmf

µ0 σ0κ0 θ0

N

M × F

α ∼ G (κ0, θ0)
β ∼ N

(
µ0, σ

2
0

)
wmf , λmf | α, β ∼ Equation (8)
yn | xn,wmf ∼ Equation (6)

Figure 1: Graphical model of MKL with Data Augmentation approach.

4.4. Model Inference and Parameter Learning

We use the Gibbs sampling for posterior inference. In what follows, we present the details
of inference for each random variable.

4.4.1. Sampling W

We derive the posterior p (W |X,y,λ, α, β) ∝ p (y |X,W) p (W,λ | α, β). To infer W,
we use MAP estimate as

W = argmax
W

p (W |X,y,λ, α, β) = argmax
W

(log p (y |X,W) + log p (W,λ | α, β))

Replacing the Equations (6) and (9) to the above equation, we achieve the following opti-
mization problem

min
W

 1

N

N∑
n=1

l (W; xn, yn) +
1

2

M∑
m=1

F∑
f=1

(
α′ + ββ′λ−1mf

)
‖wmf‖2
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Since the group norm L21 disappears, we can employ the standard SGD framework to
efficiently solve the above optimization problem. The update rule for SGD is as follows

wmf =

(
1− 1

t

)
wmf−

1

γmf t

(
I[l(W;xnt ,ynt)>0∧m=mt]Φ

f (xnt)− I[l(W;xnt ,ynt)>0∧m=ynt ]
Φf (xnt)

)
where γmf = α′ + ββ′λ−1mf , and mt = argmaxm∈Y\ynt g (m,xnt). Note that we handle
wmf indirectly through a set of weights and each weight is associated with a feature vector
Φf (xnt). Then we apply kernel trick when calculate the loss function l (W; xnt , ynt).

4.4.2. Sampling λ

From the Equation (9), we have

p (λmf |W, α, β) ∝ 1√
2πλmf

exp

{
−1

2

(
λmf +

β2 ‖wmf‖2

λmf

)}
∼ GIG

(
1

2
, 1, β2 ‖wmf‖2

)
For completeness, we recall the formula in Section 3 that a random variable Y has gen-

eralized inverse Gaussian distribution GIG
(
1
2 , λ, χ

)
then Y −1 = X ∼ IG (λ, µ) where

µ = (λ/χ)1/2. Therefore, we can sample λ−1mf from the inverse Gaussian distribution

IG
(
1, 1/β‖wmf‖

)
.

4.4.3. Sampling α and β

Finally, we need to sample parameter α and β. We derive the joint distribution as follows

p (α, β |W,λ) ∝ p (W,λ | α, β) p (α, β |. ) ∝ exp

−1

2

M∑
m=1

F∑
f=1

(
β2λ−1mf + α

)
‖wmf‖2

 p (α, β |. )

We note that p (α |. ) is the Gamma distribution G (κ0, θ0) and p (β |. ) is the Normal distri-
bution N

(
µ0, σ

2
0

)
. Using the conjugate prior property of Normal-Gamma distribution, we

then have

p (α, β |W,λ) ∝ exp

−1

2

M∑
m=1

F∑
f=1

(
β2λ−1mf + α

)
‖wmf‖2

ακ0−1exp

{
− α
θ0

}
exp

{
−(β − µ0)2

2σ20

}

∝ ακ0−1 exp

{
− α

2θ0/(2+wθ0)

}
exp

{
−(β − µ0/

√
1+τσ2

0)
2

2σ2
0/(1+τσ2

0)

}
where w̄ =

∑M
m=1

∑F
f=1 ‖wmf‖2 and τ̄ =

∑M
m=1

∑F
f=1 λ

−1
mf ‖wmf‖2.

Therefore, p (α |W,λ) is also Gamma distribution G (κl, θl) with the shape parameter
κl = κ0 and the scale parameter θl = 2θ0/(2+wθ0), and p (β |W,λ) is also Normal distribution
N
(
µl, σ

2
l

)
with the mean µl = µ0/

√
1+τσ2

0 and the variance σ2l = σ2
0/(1+τσ2

0).
To summarize, we present the pseudo-code of our proposed method in Algorithm 1. We

also note that the norm ‖wmf‖ can be updated incrementally.

4.5. Multiple Kernel Learning under Online Setting
The pseudo-code in Algorithm 1 is designed for batch setting where the entire training
set must be available at the training time. The reason is that to efficiently sample α, β
and λ in the next step, the SGD needs to go through the entire training set one or some
rounds to accurately update the matrix W. However, under the online setting, data come
continuously, sequentially and evolve rapidly. Consequently, the training sets at different
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Algorithm 1 MKL with Data Augmentation approach for batch setting.

Input: D = {(xn, yn)}Nn=1 , κ0, θ0, µ0, σ0, T
Output: W = (wmf )
begin

l← 1 and W = 0
repeat

Sampling αl ∼ G (κl−1, θl−1) and βl ∼ N
(
µl−1, σ

2
l−1
)

Calculate α′l = αl/N and β′l = βl/N
for t← 1 to T do

Sampling nt from [N ]
Calculate ϕ←

(
1− 1

t

)
; γmf ← α′l + βlβ

′
lλ
−1
mf and mt ← argmax

m∈Y \ynt

g (m,xnt)

wmf ← ϕwmf− 1
γmf t

(
I[l(W;xnt ,ynt)>0∧m=mt]Φ

f (xnt)− I[l(W;xnt ,ynt)>0∧m=ynt ]
Φf (xnt)

)
end

Sampling λ−1mf ∼ IG
(

1, 1
βl‖wmf‖

)
Update w̄ ←

∑M
m=1

∑F
f=1 ‖wmf‖2 and τ̄ ←

∑M
m=1

∑F
f=1 λ

−1
mf ‖wmf‖2

Update κl ← κl−1 and θl−1 ← 2θl−1

2+wθl−1

Update µl ← µl−1√
1+τσ2

l−1

and σl ← σl−1√
1+τσ2

l−1

l← l + 1
until l = max loop;

end

moments might be totally different and hence, if we allow sampling α, β and λ whenever the
system receives data, the incremental information in the matrix W may not be sufficient
to efficiently guide α, β and λ. To address this issue, we propose to regularly update the
matrix W, but to periodically sample α, β and λ. In fact, these variables are scheduled
to periodically sample in the learning progress. The algorithm for our online version is
presented in Algorithm 2.

5. Experiments

In this section, we present our evaluation on the proposed method and compare it against
the other state-of-the-art methods. First, we describe our experiment setting in Section 5.1.
Then, we report our experimental results on batch mode and online mode in Section 5.2
and 5.3, respectively.

5.1. Experiment Setting

We establish the experiments on 8 benchmark datasets from a variety of domains. All
datasets are preprocessed to have zero mean and unit variance across features. Protein
(Wang, 2002), pendigits (Alimoglu and Alpaydin, 1996), gisette (Guyon et al., 2004), ger-
man (A. Asuncion, 2007), mushrooms (Schlimmer, 1981), ijcnn1 (Prokhorov, 2001) and
shuttle datasets are available at the LIBSVM Repository2. For flowers17 dataset (Nils-
back and Zisserman, 2006), we obtained from Visual Geometry Group’s website3 where
seven precomputed distance matrices on different types of representation of data are avail-
able. From these distance matrices, we generate 1400 kernel matrices by calculating

2. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3. http://www.robots.ox.ac.uk/~vgg/data/flowers/17/
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Algorithm 2 MKL with Data Augmentation approach for online setting

Input: κ0, θ0, µ0, σ0, dtupdate
Output: W = (wmf )
begin

W = 0
for n← 1 to ∞ do

Receive (xn, yn) ∼ PX×Y where PX×Y is joint distribution over X × Y
if n mod dtupdate = 0 then

Sampling αl ∼ G (κl−1, θl−1) and βl ∼ N
(
µl−1, σ

2
l−1
)

Calculate α′l = αl/n and β′l = βl/n

end

Calculate ϕ←
(
1− 1

t

)
; γmf ← α′l + βlβ

′
lλ
−1
mf and mt ← argmax

m∈Y \yn

g (m,xn)

wmf ← ϕwmf − 1
γmf t

(
I[l(W;xn,yn)>0∧m=mt]Φ

f (xn)− I[l(W;xn,yn)>0∧m=yn]Φ
f (xn)

)
if n mod dtupdate = 0 then

Sampling λ−1mf ∼ IG
(

1, 1
βl‖wmf‖

)
Update w̄ ←

∑M
m=1

∑F
f=1 ‖wmf‖2 and τ̄ ←

∑M
m=1

∑F
f=1 λ

−1
mf ‖wmf‖2

Update κl ← κl−1 and θl−1 ← 2θl−1

2+wθl−1

Update µl ← µl−1√
1+τσ2

l−1

and σl ← σl−1√
1+τσ2

l−1

end

end

end

exp (−γ × d (xi,xj) /s) where s is the mean distance between training point pairs and γ
is chosen in the grid of 200 instances from 2−5 to 25. For other datasets, we employ Gaus-
sian kernels with F different widths in the range from 2−15 to 215, where the value of F
for each dataset is reported in Table 1. We compare our proposed method MKL-DA with
UFO-MKL (Orabona and Jie, 2011) and BEMKL (Gonen, 2012). The codes of baseline
methods are achieved from the corresponding authors. All experiments are performed on
the computer with the configuration of Xeon E5 2.6 GHz and 96 GB of RAM. We also
repeat 5 times and record the corresponding mean value.

5.2. Batch mode comparison

We carry out a set of experiments to study the behavior of our proposed method com-
pared with other baselines. To select trade-off parameters for UFO-MKL, we do cross
validation with 5 folds in considered ranges of the regularization parameter λ in the grid{

2−5, 2−3, . . . , 25
}

and the sparsity tuning parameter α in the grid {0.0001, . . . , 0.02} as
recommended in (Orabona and Jie, 2011). With BEMKL, we fix the hyper-parameters
(αλ, βλ, αγ , βγ , αω, βω) = (1, 1, 1, 1, 1, 1) as suggested in (Gonen, 2012). For our proposed
method, we set hyper-parameters (κ0, θ0, µ0, σ0) = (1, 1, 1, 1).

We measure the performance in terms of total training time, accuracy, precision, speci-
ficity and F−score. We also note that we report the total time including grid search instead
of the time of one parameter set. The results are reported in Table 1. Here we observe
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Methods Training time Accuracy F−score Precision Recall Specificity
(h) (%) (%) (%) (%) (%)

flowers17 (F = 1,400;M = 17;N = 680)

MKL-DA 0.51 75.23 74.95 78.80 75.23 98.45

BEMKL 1.30 82.06 81.37 83.60 82.06 98.88

UFO-MKL 6.31 75.29 75.25 81.46 75.29 98.46

protein (F = 20;M = 3;N = 17,666;D = 357)

MKL-DA 6.36 68.52 52.00 67.55 54.13 77.84

BEMKL 8.74 70.29 66.16 67.72 65.26 83.66

UFO-MKL 176.89 53.00 51.52 40.68 55.59 75.82

gisette (F = 300;M = 2;N = 6,000;D = 5,000)

MKL-DA 1.37 96.88 96.86 96.88 96.86 96.86

BEMKL 6.15 97.90 97.90 97.91 97.90 97.90

UFO-MKL 33.39 97.74 97.74 97.74 97.74 97.74

mushrooms (F = 300;M = 2;N = 6,500;D = 112)

MKL-DA 0.06 99.99 99.99 99.99 99.99 99.99

BEMKL 12.62 100 100 100 100 100

UFO-MKL 3.33 100 100 100 100 100

pendigits (F = 200;M = 3;N = 2,000;D = 180)

MKL-DA 1.96 93.65 92.96 93.63 93.06 99.22

BEMKL 1,250.80 97.45 97.47 97.48 97.48 99.71

UFO-MKL 2,134.26 96.60 96.62 96.64 96.65 99.62

german (F = 300;M = 2;N = 800;D = 24)

MKL-DA 0.01 75.10 65.68 73.72 67.54 67.54

BEMKL 0.05 77.00 68.92 71.46 67.66 67.66

UFO-MKL 0.41 75.20 66.47 68.57 65.65 65.65

ijcnn1 (F = 300;M = 2;N = 49,990;D = 22)

MKL-DA 16.59 96.50 88.59 94.16 84.50 84.50

BEMKL NA NA NA NA NA NA

UFO-MKL 461.33 96.86 89.68 95.97 85.17 85.17

shuttle (F = 300;M = 7;N = 43,500;D = 9)

MKL-DA 5.14 99.73 70.87 79.54 66.86 99.86

BEMKL NA NA NA NA NA NA

UFO-MKL 424.11 99.19 67.50 91.64 62.56 99.75

Table 1: Performance comparison on benchmark datasets. F denotes the number of kernel
functions, M represents the number of classes, N is the training size, D is the dimension of
data, and NA means the result is not available. Our proposed method reduces significantly
in the total training time (as shown in the second column) while still yields comparable
accuracy in comparison with other state-of-the-art baselines (as shown gray columns).

that the total training time of UFO-MKL is much higher than MKL-DA and BEMKL. It is
because UFO-MKL needs to find the optimal parameters (i.e., the regularation parameter
λ and sparsity tuning parameter α) by grid search, and this affects significantly the overall
training time. Conversely, both MKL-DA and BEMKL can tune the trade-off parameter,
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Running time (h) Accuracy (%)
Datasets

UFO-MKL MKL-DAO1 MKL-DAO2 UFO-MKL MKL-DAO1 MKL-DAO2

mushrooms 7.90 0.03 0.03 95.76 97.25 98.11

gisette 271.92 0.20 0.21 87.25 88.83 88.71

pendigits 18.28 0.23 0.43 88.25 79.85 83.41

ijcnn1 130.40 1.65 1.65 91.42 88.97 88.97

Table 2: Running time and accuracy comparison on benchmark datasets under online set-
ting. MKL-DAO1 and MKL-DAO2 denote MKL-DAO method with dtupdate = 100 and
dtupdate = 200 respectively.

and thus do not need grid search strategy. However, BEMKL takes O
(
N3 + F 3 +N2F 2

)
running time for matrix inversion. In addition, the BEMKL system consumes a large
amount of memory for loading kernel matrix. Consequently, BEMKL is suitable only for
small datasets which contain no more than ten thousands data points. For example, in
our experiments, BEMKL cannot run with ijcnn1 and shuttle datasets, thus the results are
not available as we denote NA in Table 1. In contrast, the training time of MKL-DA is
significantly less than BEMKL and UFO-MKL, while the accuracy performances are still
comparable with other baselines.

5.3. Online mode comparison

As mentioned above, the extended version of our proposed method (named MKL-DAO)
can learn under online setting. Meanwhile, BEMKL cannot be applied for online learning
because BEMKL needs to load full kernel matrix for matrix inversion, which is not available
in online learning context. For UFO-MKL, we modified the code to enable it to work under
online setting. We investigate our proposed method under two different settings: dtupdate =
100 (named MKL-DAO1) and dtupdate = 200 (named MKL-DAO2). The performance
of compared methods is presented in Table 2. As observed from experimental results,
the running time of MKL-DAO is much less than UFO-MKL. Due to the online setting,
we cannot do grid search for UFO-MKL which needs to store the models corresponding
to the parameter sets to obtain the optimal accuracy, which means that if we have 100
pairs of λ and α, we need to store 100 models. In contrast, MKL-DAO can periodically
choose an optimal trade-off parameters after learning some data points, and hence yields
to the optimal solution faster than UFO-MKL. In our experiments, for UFO-MKL, we
consider the parameter λ in the grid

{
2−5, 2−3, . . . , 25

}
and the parameter α in the grid

{0.0001, . . . , 0.02}. However, this range is not suitable for all datasets, e.g., the accuracy of
UFO-MKL in mushrooms and gisette datasets are lower than MKL-DAO. This shows the
limitation of UFO-MKL when the range of parameters is unknown in advance..

To have a better comparison in terms of running time and accuracy between our pro-
posed method and UFO-MKL, we use Quadrant Score (QS) (Nguyen et al., 2016b) which
shows the difference among learning methods. The best learning method not only obtains
higher accuracy but also costs less time than others. Mathematically, QS can be calculated

by QS = sqrt
(

(100− acc)2 + (100× time/limit)
)

where limit is the maximum value on

the time axis. This formula shows that the best learning method has running time 0 and
accuracy 100%. We visualize QS comparison between MKL-DAO and UFO-MKL on several
datasets in Figure 2. Intuitively, for each dataset, our proposed methods (the square and
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Figure 2: Quadrant Visualization plotting the performance under the online setting. The
markers locating near the left-bottom corner of the graph show the better performance in
term of running time and accuracy.

the circle ones) locate nearer the left-bottom corner of the graph in comparison with UFO-
MKL, i.e. the QS of MKL-DAO is always less than UFO-MKL. This observation shows
that MKL-DAO is more efficient than UFO-MKL when views two aspects of performance
(running time and accuracy) simultaneously.

6. Conclusion
In this paper, we have considered the multiple kernel learning problem under probabilistic
perspective to avoid the grid search. We then have utilized the data augmentation technique
to make the posterior optimization problem tractable. Conveniently, the L2,1 optimization
problem can be reduced into the L2,2 optimization problem which is much easier to solve.
Consequently, we can apply stochastic gradient descent framework resulting in the proposed
methods that can automatically learn the parameters in both batch and online settings. We
validate the proposed method on benchmark datasets and compare with the state-of-the-
art methods. Experimental results indicate that our proposed method is effectively scalable
and can be extended to run under online setting.
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