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Abstract
Privacy concern has been increasingly important in many machine learning (ML) problems. We
study empirical risk minimization (ERM) problems under secure multi-party computation (MPC)
frameworks. Main technical tools for MPC have been developed based on cryptography. One of
limitations in current cryptographically private ML is that it is computationally intractable to eval-
uate non-linear functions such as logarithmic functions or exponential functions. Therefore, for
a class of ERM problems such as logistic regression in which non-linear function evaluations are
required, one can only obtain approximate solutions. In this paper, we introduce a novel crypto-
graphically private tool called secure approximation guarantee (SAG) method. The key property
of SAG method is that, given an arbitrary approximate solution, it can provide a non-probabilistic
assumption-free bound on the approximation quality under cryptographically secure computation
framework. We demonstrate the benefit of the SAG method by applying it to several problems
including a practical privacy-preserving data analysis task on genomic and clinical information.

1. Introduction

Privacy preservation has been increasingly important in many machine learning (ML) tasks. In
this paper, we consider empirical risk minimizations (ERMs) when the data is distributed among
multiple parties, and these parties are unwilling to share their data to other parties. For example,
if two parties have different sets of features for the same group of people, they might want to
combine these two datasets for more accurate predictive model building. On the other hand, due to
privacy concerns or legal regulations, these two parties might want to keep their own data private.
The problem of learning from multiple confidential databases have been studied under the name of
secure multi-party computation (secure MPC).
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Figure 1: Our multi-party computation study for disease risk prediction based on genomic and clin-
ical information

This paper is motivated by our recent secure MPC project on genomic and clinical data (Figure
1). Our task is to develop a model for predicting the risk of a disease based on genomic and clinical
information of potential patients. The difficulty of this problem is that genomic information were
collected in a research institute, while clinical information were collected in a hospital, and both
institutes do not want to share their data to others. However, since the risk of the disease is dependent
both on genomic and clinical features, it is quite valuable to use both types of information for the
risk modeling.

Various tools for secure MPC have been taken from cryptography, and privacy-preserving ML
approaches based on cryptographic techniques have been called cryptographically private ML. A
key building block of cryptographically private ML is homomorphic encryption by which sum or
product of two encrypted values can be evaluated without decryption. Many cryptographically
private ML algorithms have been developed, e.g., for linear regression (Hall et al., 2011; Niko-
laenko et al., 2013) and SVM (Laur et al., 2006; Yu et al., 2006) by using homomorphic encryption
property. One of limitations in current cryptographically private ML is that it is computationally
intractable to evaluate non-linear functions such as logarithmic functions or exponential functions
in homomorphic encryption framework. Since non-linear function evaluations are required in many
fundamental statistical analyses such as logistic regression, it is crucially important to develop a
method that can alleviate this computational bottleneck. One way to circumvent this issue is to
approximate non-linear functions. For example, in Nardi et al.’s work (Nardi et al., 2012) for secure
logistic regression, the authors proposed to approximate a logistic function by sum of step functions,
which can be computed under secure computation framework.

Due to the very nature of MPC, even after the final solution is obtained, the users are not allowed
to access to private data. When the resulting solution is an approximation, it is important for the
users to be able to check its approximation quality. Unfortunately, most existing cryptographically
private ML method does not have such an approximation guarantee mechanism. Although a prob-
abilistic approximation guarantee was provided in the aforementioned secure logistic regression
study (Nardi et al., 2012), the approximation bound derived in that work depends on the unknown
true solution, meaning that the users cannot make sure how much they can trust the approximate
solution.
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(B) Class probabilities by true and approx-
imate solutions and the bounds obtained by
the SAG method.

Figure 2: An illustration of the proposed SAG method in a simple logistic regression example.
The left plot (A) shows the logistic function (blue) and its approximation (red) proposed
in (Nardi et al., 2012). The right plot (B) shows the true (blue) and approximate (red)
class probabilities of five training instances (the instance IDs 1, . . . , 5 are shown in the
horizontal axis), where the former is obtained with true logistic function, while the latter
is obtained with the approximate logistic function. The green intervals in plot (B) are the
approximation guarantee intervals provided by the SAG method. The key property of the
SAG method is that these intervals are guaranteed to contain the true class probabilities.

The goal of this paper is to develop a practical method for secure computations of ERM prob-
lems. To this end, we introduce a novel secure computation technique called secure approximation
guarantee (SAG) method. Given an arbitrary approximate solution of an ERM problem, the SAG
method provides non-probabilistic assumption-free bounds on how far the approximate solution is
away from the true solution. A key difference of our approach with existing ones is that our ap-
proximation bound is not for theoretical justification of an approximation algorithm itself, but for
practical decision making based on a given approximate solution. Our approximation bound can be
obtained without any information about the true solution, and it can be computed with a reasonable
computational cost under secure computation framework, i.e., without the risk of disclosing private
information.

In order to develop the SAG method, we introduce two novel technical contributions in this
paper. We first introduce a novel algorithmic framework for computing approximation guarantee
that can be applied to a class of ERM problems whose loss function is non-linear and its secure
evaluation is difficult. In this framework, we use a pair of surrogate loss functions that bounds
the non-linear loss function from below and above. Our second contribution is to implement these
surrogate loss functions by piecewise-linear functions, and show that they can be cryptographi-
cally securely computed. Furthermore, we empirically demonstrate that the bounds obtained by the
SAG method are much tighter than the bounds in (Nardi et al., 2012) despite the former is non-
probabilistic and assumption-free. Figure 2 is an illustration of the SAG method in a simple logistic
regression example.

128



SECURE APPROXIMATION GUARANTEE

Notations We use the following notations in the rest of the paper. We denote the sets of real num-
bers and integers as R and Z, respectively. For a natural numberN , we define [N ] := {1, 2, . . . , N}
and ZN := {0, 1, . . . , N − 1}. The Euclidean norm is written as ∥ · ∥. Indicator function is written
as Iχ i.e., Iχ = 1 if χ is true, and Iχ = 0 otherwise. For a protocol Π between two parties, we
use the notation Π(IA, IB) → (OA,OB), where IA and IB are inputs from the parties A and B,
respectively, and OA and OB are outputs given to A and B, respectively.

2. Preliminaries

2.1. Problem statement

Empirical risk minimization (ERM) Let {(xi, yi) ∈ X × Y}i∈[n] be the training set, where
the input domain X ⊂ Rd is a compact region in Rd, and the output domain Y is {−1,+1} in
classification problems and R in regression problems. In this paper, we consider the following class
of empirical risk minimization problems:

argmin
w

λ

2
∥w∥2 + 1

n

∑
i∈[n]

ℓ(yi,x
⊤
i w), (1)

where ℓ is a loss function subdifferentiable and convex with respect to w, and λ > 0 is the regular-
ization parameter. L2 regularization in (1) ensures that the solution w is within a compact region
W ⊂ Rd.

We consider the cases where ℓ is hard to compute in secure computation framework, i.e., ℓ
includes non-linear functions such as log and exp. Popular examples includes logistic regression
ℓ(y,x⊤w) := log(1 + exp(−x⊤w)) − yx⊤w, Poisson regression ℓ(y,x⊤w) := exp(x⊤w) −
yx⊤w, and exponential regression ℓ(y,x⊤w) := (y exp(−x⊤w))− x⊤w.

Secure two-party computation We consider secure two-party computation scenario where the
training set {(xi, yi)}i∈[n] is vertically-partitioned between two parties A and B (Vaidya and Clifton,
2003), i.e., A and B own different sets of features for common set of n instances. More precisely,
let party A own the first dA features and party B own the last dB features, i.e., dA + dB = d. We
consider a scenario where the labels {yi}i∈[n] are also owned by either party, and we let party B own
them here. We assume that both parties can identify the instance index i ∈ [n], i.e., it is possible
for both parties to make communications with respect to a specified instance. We denote the input
data matrix owned by parties A and B as XA and XB , respectively. Furthermore, we denote the
n-dimensional vector of the labels as y := [y1, . . . , yn]

⊤.

Semi-honest model In this paper, we develop the SAG method so that it is secure (meaning that
private data is not revealed to the other party) under the semi-honest model (Goldreich, 2001). In
this security model, any parties are allowed to guess other party’s data as long as they follow the
specified protocol. In other words, we assume that any of the parties do not modify the specified
protocol. The semi-honest model is a standard security model in cryptographically private ML.

2.2. Cryptographically Secure Computation

Paillier cryptosystem For secure computations, we use Paillier cryptosystem (Paillier, 1999) as
an additive homomorphic encryption tool, i.e., we can obtain E(a+ b) from E(a) and E(b) without
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decryption, where a and b are plaintexts and E(·) is the encryption function. Paillier cryptosystem
has the semantic security (Goldreich, 2004) (the IND-CPA security), which roughly means that it is
difficult to judge whether a = b or a ̸= b by knowing E(a) and E(b).

Paillier cryptosystem is a public key cryptosystem with additive homomorphism over ZN (i.e.,
modN ). In this cryptosystem, the private key is two large prime numbers p and q, and the public
key is (N, g) ∈ Z × ZN2 , where N = pq and g is an integer co-prime with N2. Given a plaintext
m ∈ ZN , a ciphertext of E(m) is obtained with a random integer R ∈ ZN as E(m) = gmRN

mod N2. Ciphertext E(m) is decrypted with the private key whatever R is chosen. With the
encryption, the additive homomorphism E(a) ·E(b) = E(a+ b) and E(a)b = E(ab) holds for any
plaintexts a, b ∈ ZN . Hereafter, we denote by EpkA(·) and EpkB (·) the encryption functions with
the public keys issued by party A and B, respectively.

Note that we need computations of real numbers rather than integers in data analysis tasks.
First, negative numbers can be treated with the similar technique to the two’s complement. In order
to handle real numbers, we multiply a magnification constant M for each input real number for
expressing it with an integer. Here, there is a tradeoff between the accuracy and range of acceptable
real number, i.e., for large M , accuracy would be high, but only possible to handle a limited range
of real numbers.

2.3. Related works

The most general framework for cryptographically private ML is the Yao’s garbled circuit (Yao,
1986), where any desired secure computation is expressed as an electronic circuit with encrypted
components. In principle, Yao’s garbled circuit can evaluate any function securely, but its compu-
tational costs are usually extremely large. Unfortunately, it is impractical to securely compute the
ERM problem with only the garbled circuit.

Nardi et al. (Nardi et al., 2012) studied cryptographically private approach for logistic regres-
sion. As briefly mentioned in §1, in order to circumvent the difficulty of secure non-linear function
evaluations, the authors proposed to approximate logistic function by empirical cumulative density
function (CDF) of logistic distributions (see Figure 2(A) as an example). Denoting the true solution
and the approximate solution as w∗ and ŵ, respectively, the authors showed that the difference
∥w∗ − ŵ∥ is no greater than nc1 max ∥xi∥

Lγλmin
with probability greater than 1− 2 exp(−cL1−2γ), where

L is the sample size for the empirical CDF, λmin is the smallest eigenvalue of Fisher information
matrix, and c > 0, c1 > 0, γ ∈ (0, 1/2) are constants. This approximation error bound cannot be
used for knowing the approximation quality of the given approximate solution ŵ because the bound
depends on the unknown true solution w∗ 1. Furthermore, in experiment section, we demonstrate
that the SAG method can provide much tighter non-probabilistic bounds than the above probabilistic
bound in (Nardi et al., 2012).

3. Secure Approximation Guarantee(SAG)

The basic idea behind the SAG method is to introduce two surrogate loss functions ϕ and ψ that
bound the target non-linear loss function ℓ from below and above. In what follows, we show that,
given an arbitrary approximate solution ŵ, if we can securely evaluate ϕ(ŵ), ψ(ŵ) and a subgra-

1. The minimum eigenvalue λ1 depends on w∗.
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dient ∂ϕ/∂w |w=ŵ, we can securely compute bounds on the true solution w∗ which itself cannot
be computed under secure computation framework.

First, the following theorem states that we can obtain a ball in the solution space in which the
true solution w∗ certainly exists.

Theorem 1. Let ϕ : R → R and ψ : R → R be functions that satisfy ϕ(y,x⊤w) ≤ ℓ(y,x⊤w) ≤
ψ(y,x⊤w) ∀y ∈ Y,x ∈ X ,w ∈ W , and assume that they are convex and subdifferentiable with
respect to w. Then, for any ŵ ∈ W ,

∥w∗ −m(ŵ)∥ ≤ r(ŵ),

i.e., the true solution w∗ is located within a ball in W with the center m(ŵ) := 1
2

(
ŵ − 1

λ∇Φ(ŵ)
)
,

and the radius r(ŵ) :=

√∥∥1
2

(
ŵ + 1

λ∇Φ(ŵ)
)∥∥2 + 1

λ (Ψ(ŵ)− Φ(ŵ)), where Φ(ŵ) := 1
n

∑
i∈[n] ϕ(yi,x

⊤
i ŵ),

Ψ(ŵ) := 1
n

∑
i∈[n] ψ(yi,x

⊤
i ŵ) and ∇Φ(ŵ) is a subgradient of Φ at w = ŵ.

The proof of Theorem 1 is presented in Appendix A.
Using Theorem 1, we can compute a pair of lower and upper bounds of any linear score in the

form of η⊤w∗ for an arbitrary η ∈ Rd as the following Corollary states.

Corollary 2. For an arbitrary η ∈ Rd,

LB(η⊤w∗) ≤ η⊤w∗ ≤ UB(η⊤w∗), (2)

where

LB(η⊤w∗) := η⊤m(ŵ)− ∥η∥r(ŵ) (3a)

UB(η⊤w∗) := η⊤m(ŵ) + ∥η∥r(ŵ). (3b)

The proof of Corollary 2 is presented in Appendix A.
Many important quantities in data analyses are represented as a linear score. For example, in

binary classification, the classification result ỹ of a test input x̃ is determined by the sign of the
linear score x̃⊤w∗. It suggests that we can certainly classify the test instance as LB(x̃⊤w∗) >
0 ⇒ ỹ = +1 and UB(x̃⊤w∗) < 0 ⇒ ỹ = −1. Similarly, if we are interested in each coefficient
w∗
h, h ∈ [d], of the trained model, by setting η = eh where eh is a d-dimensional vector of all 1s

except 0 in the h-th component, we can obtain a pair of lower and upper bounds on the coefficient
as LB(e⊤hw

∗) ≤ w∗
h ≤ UB(e⊤hw

∗).
We note that Theorem 1 and Corollary 2 are inspired by recent works on safe screening and re-

lated problems (El Ghaoui et al., 2012; Xiang et al., 2011; Ogawa et al., 2013; Liu et al., 2014; Wang
et al., 2014; Xiang et al., 2014; Fercoq et al., 2015; Okumura et al., 2015), where an approximate
solution is used for bounding the optimal solution without solving the optimization problem.

4. SAG implementation with piecewise-linear functions

In this section, we present how to compute the bounds on the true solution discussed in §3 under
secure computation framework. Specifically, we propose using piecewise-linear functions for the
two surrogate loss functions ϕ and ψ. In §4.1, we present a protocol of secure piecewise-linear func-
tion evaluation (SPL). In §4.2, we describe a protocol for securely computing the bounds. In full
version of our paper (Takada et al.), we describe a specific implementation for logistic regression.
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Figure 3: An example of bounding convex function of one variable log(1 + exp(−s)) with piece-
wise linear functions with K sections for s ∈ [−10, 10]

4.1. Secure piecewise-linear function computation

Let us denote a piecewise-linear function with K pieces defined in s ∈ [T0, TK ] as

g(s) = (αjs+ βj)ITj−1≤s<Tj , (4)

where {(αj , βj)}j∈[K] are the coefficients of the j-th linear segment and T0 < T1 < . . . < TK−1 <
TK are breakpoints. For continuity, we assume that αjTj + βj = αj+1Tj + βj+1 for all j ∈
{0, 1, . . . ,K − 1}.

An advantage of piecewise-linear functions is that, for any one-dimensional convex function,
a lower bounding function can be easily obtained by using its tangents, while an upper bounding
function can be also easily obtained by using its chords. In addition, we can easily control the trade-
off between the accuracy and the computational complexity by changing the number of pieces K.
Figure 3 shows examples of two piecewise-linear surrogate loss functions for a non-linear function
log(1 + exp(−s)) for several values of K.

The following theorem states that a piecewise-linear function g(s) can be securely evaluated.

Theorem 3. Suppose that party A has EpkB (sA) and party B has EpkA(sB) such that s = sA+sB .
Then, the two parties can securely evaluate the encrypted value of the piecewise-linear function
value g(s) in the sense that there is a secure protocol that outputs EpkB (gA) and EpkA(gB) respec-
tively to party A and party B such that gA + gB = g(s).

The proof of Theorem 3 is presented in full version (Takada et al.). In the proof, we develop
such a protocol called SPL, whose input-output property is represented as

SPL(EpkB (sA), EpkA(sB)) → (EpkB (gA), EpkA(gB)).

Let oj(s) := Is∈[Tj−1,Tj), j ∈ [K], denote the indicator of an event that a scalar s is in the
j-th piece. The difficulty of secure piecewise-linear function evaluation is that we need to securely
compute E(oj(s)). We use a protocol presented in (Damgard et al., 2008) in order to compute
E(Ia<b) from E(a) and E(b), and then compute E(oj(s)) as

E(oj(s)) = E(Is≥Tj−1 − Is≥Tj ) = E(Is≥Tj−1)E(Is≥Tj )
−1.
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Using the indicators {oj(s)}j∈[K], the piecewise-linear function value g(s) is written as

g(s) =
∑
j∈[K]

oj(s)(αjs+ βj), (5)

which can be securely computed if E(oj(s)) and E(s) are available.
We finally note that, in Theorem 1, when ϕ(s) is represented as a piecewise-linear function,

its subgradient ∂ϕ(s)/∂s is represented as a piecewise-constant function and so is the subgradient
∇Φ(ŵ). We can develop a secure piecewise-constant function evaluation protocol based on the
same idea as above (detailed in the proof of Theorem 3 in full version (Takada et al.)).

4.2. Secure bound computation

We describe here how to compute the bounds on the true solution in the form of (2) when the
surrogate loss functions ϕ and ψ are implemented with piecewise-linear functions. We consider a
class of loss functions ℓ that can be decomposed as

ℓ(y,x⊤w) = u(s(y,x⊤w)) + v(y,x⊤w), (6)

where u is a non-linear function whose secure evaluation is difficult, while s(y,x⊤w), v(y,x⊤w),
and their subgradients are assumed to be securely evaluated. Note that most commonly-used loss
functions can be written in this form. For example, in the case of logistic regression (§2.1), u(s) =
log(1 + exp(−s)), s(y,x⊤w) = x⊤w and v(y,x⊤w) = −yx⊤w.

We consider a situation that two parties A and B own encrypted approximate solution ŵ sep-
arately for their own features, i.e., parties A and B own EpkB (ŵA) and EpkA(ŵB), respectively,
where ŵA and ŵB the first dA and the following dB components of ŵ.

4.2.1. SECURE COMPUTATIONS OF THE BALL

The following theorem states that the center m(ŵ) and the radius r(ŵ) can be securely computed.

Theorem 4. Suppose that party A hasXA andEpkB (ŵA), while party B hasXB , y andEpkA(ŵB).
Then, the two parties can securely compute the center m(ŵ) and the radius r(ŵ) in the sense
that there is a secure protocol that outputs EpkB (mA(ŵ)) and EpkB (rA(ŵ)2) to party A, and
EpkA(mB(ŵ)) andEpkA(rB(ŵ)2) to party B such that mA(ŵ)+mB(ŵ) = m(ŵ) and rA(ŵ)2+
rB(ŵ)2 = r(ŵ)2.

We call such a protocol as secure ball computation (SBC) protocol. whose input-output prop-
erty is characterized as

SBC((XA, EpkB (ŵA)), (XB,y, EpkA(ŵB))

→ ((EpkB (mA(ŵ)), EpkB (rA(ŵ)2)),

(EpkA(mB(ŵ)), EpkA(rB(ŵ)2)))

To prove Theorem 4, we only describe secure computations of three components in the SBC pro-
tocol. We omit the security analysis of the other components because they can be easily derived
from the security properties of Paillier cryptosystem (Paillier, 1999), comparison protocol (Damgard
et al., 2008) and multiplication protocol (Nissim and Weinreb, 2006).
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Encrypted values of Ψ(ŵ)−Φ(ŵ) This quantity can be obtained by summing ψ(xi)−ϕ(xi) for
i ∈ [n]. Denoting ϕ := u(s)+v and ψ := u(s)+v, where u and u are lower and upper bounds of u
implemented with piecewise-linear functions, respectively, we can compute ψ(xi)−ϕ(xi) = u−u
by using SPL protocol for each of u and u.

Encrypted values of ∇Φ(ŵ) This quantity can be obtained by summing ∇ϕ at w = ŵ. Since
∇ϕ = ∂

∂wu(s) +
∂v
∂w = u′(s) ∂s

∂w + ∂v
∂w , its encrypted version can be written as E(∇ϕ) =

E(u′(s) ∂s
∂w )E( ∂v

∂w ). Here, u′(s) can be securely evaluated because u′ is piecewise-constant func-
tion, while ∂s

∂w and ∂v
∂w are securely computed from the assumption in (6). For computingE(u′(s) ∂s

∂w )

from E(u′(s)) and E( ∂s
∂w ), we can use the secure multiplication protocol in (Nissim and Weinreb,

2006).

Encrypted value of r(ŵ)2 In order to compute this quantity, we need the encrypted value of
∥1
2(ŵ + 1/λ∇Φ)∥2, which can be also computed by using the secure multiplication protocol in

(Nissim and Weinreb, 2006).

4.2.2. SECURE COMPUTATIONS OF THE BOUNDS

Finally we discuss here how to securely compute the upper and the lower bounds in (2) from the
encrypted m(ŵ) and r(ŵ)2. The protocol depends on who owns the test instance and who receives
the resulted bounds. We describe here a protocol for a particular setup where the test instance x̃
is owned by two parties A and B, i.e., x̃ = [x̃⊤

A x̃⊤
B]

⊤ where x̃A and x̃B are the first dA and the
following dB components of x̃, and that the lower and the upper bounds are given to either party.
Similar protocols can be easily developed for other setups.

Theorem 5. Let party A owns x̃A, EpkB (mA(ŵ)) and EpkB (rA(ŵ)2), and party B owns x̃B ,
EpkA(mB(ŵ)) and EpkA(rB(ŵ)2), respectively. Then, either party A or B can receive the lower
and the upper bounds of x̃⊤w∗ in the form of (2) without revealing x̃A and x̃B to the others.

The proof of Theorem 5 is presented in full version (Takada et al.). We note that a party who
receives bounds from the protocol would get some information about the center mB(ŵ) and the
radius rB(ŵ), but no other information about the original dataset is revealed.

5. Experiments

We conducted experiments for illustrating the performances of the proposed SAG method. The
experimental setup is as follows. We used Paillier cryptosystem with N = 1024-bit public key and
comparison protocol (Damgard et al., 2008) for 60 bits of integers. The program is implemented
with Java, and the communications between two parties are implemented with sockets between
two processes working in the same computer. We used a single computer with 3.07GHz Xeon
CPU and 48GB RAM. Except when we investigate computational costs, computations were done
on unencrypted values. Note that the proposed SAG method provide bounds on the true solution
w∗ based on an arbitrary approximate solution ŵ. In all the experiments presented here, we used
approximate solutions obtained by Nardi et al. (2012) approach as the approximate solution ŵ. In
what follows, we call the bounds or intervals obtained by the SAG method as SAG bounds and SAG
intervals, respectively.
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Table 1: Data sets used for the logistic regression. All are from UCI Machine Learning Repository.
data set training set validation set d

Musk 3298 3300 166
MGT 9510 9510 10

Spambase 2301 2301 57
OLD 1268 1268 72

5.1. Logistic regression

We first investigated several properties of the SAG method by applying it to four benchmark datasets
summarized in Table 1. Due to the space limitation, only the results on Musk dataset are shown in
the main text, and results on other datasets are presented in full version (Takada et al.).

First, in Figure 4, we compared the tightness of the bounds on the predicted classification proba-
bilities for two randomly chosen validation instances xi defined as p(xi) := 1/(1+exp(−x⊤

i w
∗)),

i = 1, 2. In the figure, four types of intervals are plotted. The orange ones are probabilistic bounds
in (Nardi et al., 2012) with the probability 90%. The blue, green and purple ones were obtained by
the SAG method with K = 100, 1000 and ∞, respectively, where K is the number of pieces in the
piecewise-linear approximations. Here, K = ∞ means that the true loss function ℓ was used as the
two surrogate loss functions ϕ and ψ. The results clearly indicate that bounds obtained by the SAG
method are clearly tighter than those by Nardi et al.’s approach despite that the latter is probabilistic
and cannot be securely computed in practice. When comparing the results with different K, we can
confirm that large K yields tighter bounds. The results with K = 1000 are almost as tight as those
obtained with the true loss function (K = ∞).

Figure 5 also shows similar plots. Here, we investigated how the tightness of the SAG bounds
changes with the quality of the approximate solution ŵ. In order to consider approximate solutions
with different levels of quality, we computed three approximate solutions withL = 10, 100 and 1000
in Nardi et al.’s approach, where L is the sample size used for approximating the logistic function
(see §2). The results clearly indicate that tighter bounds are obtained when the quality of the ap-
proximate solution is higher (i.e., larger L).

Figure 6 illustrates how the SAG bounds can be useful in binary classification problems. In
binary classification problems, if a lower bound of the classification probability is greater than 0.5,
the instance would be classified to positive class. Similarly, if an upper bound of the classifica-
tion probability is smaller than 0.5, the instance would be classified to negative class. The green
histograms in the figure indicate how many percent of the validation instances can be certainly clas-
sified as positive or negative class based on the SAG bounds. The blue lines indicate the average
length of the SAG intervals, i.e., the difference between the upper and the lower bounds. The results
clearly indicate that, as the number of piecesK increases in the SAG method, the tighter bounds are
obtained, and more validation instances can be certainly classified. On the other hand, probabilistic
bounds in Nardi et al.’s approach cannot provide certain classification results because their bounds
are too loose.

Finally, we explain the computational cost for computing the SAG bounds. The computational
cost mainly depends on the number of the comparison protocols. In fact, when we use K-piece
piecewise linear functions as ϕ and ψ, we need to conduct the comparison for nK time to compute
each of Φ(ŵ) and Ψ(ŵ) (§3). In our setting, one comparison needs about 0.8 second. In the real
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Figure 4: The result of proposed bounds for some test instances (data set Musk)
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L = 10
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L = 100
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L = 1000

Figure 5: Change of bounds for the change of the accuracy of the approximated solution ŵ (data
set Musk)
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Figure 6: Rate of successfully classified test instances and the average of size of bounds by different
bound calculations (Nardi’s, K ∈ {100, 200, 500, 1000,∞}) (data set Musk)
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(A) Poisson regression
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(B) Exponential regression

Figure 7: Proposed bounds for Poisson and exponential regressions
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Figure 8: Bounds of coefficients for disease risk evaluation

application, we set K for a trade-off between the tightness of the bounds and the computational
cost.

5.2. Poisson and exponential regressions

We applied the SAG method to t Poisson regression and exponential regression. Poisson regression
was applied to a problem for predicting the number of produced seeds 2. Exponential regression was
applied to a problem for predicting survival time of lung cancer patients 3. The results are shown
in Figure 7. The left plot (A) shows the result of Poisson regression, where the SAG intervals on
the predicted number of seeds are plotted for several randomly chosen instances. The right plot (B)
shows the SAG bounds on the predicted survival probability curve, in which we can confirm that
the true survival probability curve is included in the SAG bound.

5.3. Privacy-preserving logistic regression to genomic and clinical data analysis

Finally, we apply the SAG method to a logistic regression on a genomic and clinical data analysis,
which is the main motivation of this work (§1). We apply the SAG method for computing the bounds
of coefficients of the logistic regression model as described in §3.

In this experiment, 13 genomic (SNP) and 10 clinical features of 134 potential patients are
provided from a research institute and a hospital, respectively 4. The SAG bounds on each of these
23 coefficients are plotted in Figure 8. Although we do not know the true coefficient values, we
can at least identify features that positively/negatively correlated with the disease risk (note that, if
the lower/upper bound is greater/smaller than 0, the feature is guaranteed to have positive/negative
coefficient in the logistic regression model).

6. Conclusions

We studied empirical risk minimization (ERM) problems under secure multi-party computation
(MPC) frameworks. We developed a novel technique called secure approximation guarantee (SAG)
method that can be used when only an approximate solution is available due to the difficulty of
secure non-linear function evaluations. The key property of the SAG method is that it can securely
provide the bounds on the true solution, which is practically valuable as we illustrated in benchmark
data experiments and in our motivating problem on genomic and clinical data.

2. http://hosho.ees.hokudai.ac.jp/˜kubo/stat/2015/Fig/poisson/data3a.csv
3. http://help.xlstat.com/customer/portal/kb article attachments/60040/original.xls
4. Due to confidentiality reasons, we cannot describe the details of the dataset. Here, we only analyzed a randomly

sampled small portion of the datasets just for illustration purpose.
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Appendix A

Proofs of Theorem 1 and Corollary 2 (bounds of w∗ from ŵ)

First we present the following proposition which will be used for proving Theorem 1.

Proposition 6. Consider the following general problem:

min
z

g(z) s.t. z ∈ Z, (7)

where g : Z → R is a subdifferentiable convex function and Z is a convex set. Then a solution z∗

is the optimal solution of (7) if and only if

∇g(z∗)⊤(z∗ − z) ≤ 0 ∀ z ∈ Z,

where ∇g(z∗) is the subgradient vector of g at z = z∗.

See, for example, Proposition B.24 in (Bertsekas, 1999) for the proof of Proposition 6.

Proof of Theorem 1. Using a slack variable ξ ∈ R, let us first rewrite the minimization problem (1)
as

min
w∈Rd,ξ∈R

J(w, ξ) := ξ +
λ

2
∥w∥2

s.t. ξ ≥ 1

n

∑
i∈[n]

ℓ(yi,x
⊤
i w). (8)

Note that the optimal solution of the problem (8) is w = w∗ and ξ = ξ∗ := 1
n

∑
i∈[n] ℓ(yi,x

⊤
i w

∗).
Using the definitions of ψ and Ψ, we have 1

n

∑
i∈[n] ℓ(yi,x

⊤
i ŵ) ≤ 1

n

∑
i∈[n] ψ(yi,x

⊤
i ŵ) = Ψ(ŵ).

It means that (ŵ,Ψ(ŵ)) is a feasible solution of the problem (8). Applying this fact into Proposi-
tion 6, we have

∇J(w∗, ξ∗)⊤
([

w∗

ξ∗

]
−
[

ŵ
Ψ(ŵ)

])
≤ 0, (9)

where ∇J(w∗, ξ∗) ∈ Rd+1 is the gradient of the objective function in (8) evaluated at (w∗, ξ∗).
Since J(w, ξ) is a quadratic function of w and ξ, we can write ∇J(w∗, ξ∗) explicitly, and (9) is
written as

λ∥w2∥+ ξ∗ − λw∗⊤ŵ −Ψ(ŵ) ≤ 0

⇔ λ∥w∗2∥+ 1

n

∑
i∈[n]

ℓ(yi,x
⊤
i w

∗)

− λw∗⊤ŵ −Ψ(ŵ) ≤ 0 (10)

From the definition of ϕ and Φ, we can plug 1
n

∑
i∈[n] ℓ(yi,x

⊤
i w

∗) ≥ 1
n

∑
i∈[n] ϕ(yi,x

⊤
i w

∗) =
Φ(w∗) into (10). Then,

λ∥w∗2∥+Φ(w∗)− λw∗⊤ŵ −Ψ(ŵ) ≤ 0 (11)
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Furthermore, noting that ϕ and Φ are convex with respect w, by the definition of convex functions
we get

Φ(w∗) ≥ Φ(ŵ) +∇Φ(ŵ)⊤(w∗ − ŵ). (12)

By plugging (12) into (11),

λ∥w∗2∥+Φ(ŵ) +∇Φ(ŵ)⊤(w∗ − ŵ)

−λw∗⊤ŵ −Ψ(ŵ) ≤ 0 (13)

Noting that (13) is a quadratic function of w∗, we obtain∥∥∥∥w∗ − 1

2

(
ŵ − 1

λ
∇Φ(ŵ)

)∥∥∥∥2
≤
∥∥∥∥12

(
ŵ +

1

λ
∇Φ(ŵ)

)∥∥∥∥2 + 1

λ
(Ψ(ŵ)− Φ(ŵ)) .

It means that the optimal solution w∗ is within a ball with the center m(ŵ) and the radius r(ŵ),
which completes the proof. ■

Next, we prove Corollary 2.

Proof of Corollary 2. We show that the lower bound of the linear model output value w∗⊤x is
x⊤m(ŵ)− ∥x∥r(ŵ) under the constraint that

∥w∗ −m(ŵ)∥ ≤ r(ŵ).

To formulate this, let us consider the following constrained optimization problem

min
w∈Rd

w⊤x s.t. ∥w −m(ŵ)∥2 ≤ r(ŵ)2. (14)

Using a Lagrange multiplier µ > 0, the problem (14) is rewritten as

min
w∈Rd

w⊤x s.t. ∥w −m(ŵ)∥2 ≤ r(ŵ)2,

= min
w∈Rd

max
µ>0

(
w⊤x+ µ(∥w −m(ŵ)∥2 − r(ŵ)2)

)
=max

µ>0

(
− µr(ŵ)2 +min

w

(
µ∥w −m(ŵ)∥2 +w⊤x

))
=max

µ>0
H(µ) :=

(
− µr(ŵ)2 − ∥x∥2

4µ
+ x⊤m(ŵ)

)
,

where µ is strictly positive because the constraint ∥w −m(ŵ)∥2 ≤ r(ŵ)2 is strictly active at the
optimal solution. By letting ∂H(µ)/∂µ = 0, the optimal µ is written as

µ∗ :=
∥x∥
2r(ŵ)

= argmax
µ>0

H(µ).

Substituting µ∗ into H(µ),

x⊤m(ŵ)− ∥x∥r(ŵ) = max
µ>0

H(µ).

The upper bound part can be shown similarly. ■
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