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Abstract
In this paper, we consider the problem of probabilistically modelling symbolic music data.
We introduce a representation which reduces polyphonic music to a univariate categorical
sequence. In this way, we are able to apply state of the art natural language processing
techniques, namely the long short-term memory sequence model. The representation we
employ permits arbitrary rhythmic structure, which we assume to be given.

We show that our model is effective on four out of four piano roll based benchmark
datasets. We further improve our model by augmenting our training data set with trans-
positions of the original pieces through all musical keys, thereby convincingly advancing
the state of the art on these benchmark problems. We also fit models to music which is
unconstrained in its rhythmic structure, discuss the properties of the model, and provide
musical samples.

We also describe and provide with full (non piano roll) timing information our new
carefully preprocessed dataset of 19700 classical midi music files — significantly more than
previously available.

1. Introduction

Algorithmic music composition is an interesting and challenging problem which has inspired
a wide variety of investigations Fernandez and Vico (2013). A number of factors make this
problem challenging. From a neuroscience perspective, there is growing evidence linking the
way we perceive music and the way we perceive natural language Patel (2010). As such, we
are highly sensitive to subtleties and irregularities in either of these sequential data streams.

The intensity of natural language processing (NLP) research has surged along with the
availability of datasets derived from the internet. Within the field of NLP, the broad range
of techniques collectively known as deep learning have proven dominant in a number of
sub-domains — see e.g. Chelba et al. (2013). Much of this research may find analogy in
music, including algorithmic composition. Indeed, the very problem of data driven natural
language generation is currently the subject of vigorous investigation by NLP researchers
Graves (2013); Mathews et al. (2016).

Nonetheless, algorithmic composition presents unique technical challenges. In contrast
to the words that make up text data, musical notes may occur contemporaneously. In
this way, viewed as a sequence modelling problem, music data is multivariate. Moreover,
the distribution of valid combinations of notes is highly multi-modal — while a number of
musical chords may be plausible in a given context, arbitrary combinations of the notes
which make up those chords may be rather implausible.

c© 2016 C. Walder.
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In section 2 we begin by providing an overview of the relevant work in NLP and
algorithmic composition. Section 3 introduces the key elements of our approach: Long
Short-Term Memory (LSTM) sequence modelling, our reduction to univariate prediction,
our data representation, and our data augmentation scheme. In section 4 we present our
experimental results, before summing up and suggesting some possible directions for future
work in the final section 5, and providing details on our new dataset in appendix A.

2. Related Work

2.1. Natural Language Processing

Early NLP work focused on intuitively plausible models such as Chomsky’s (arguably
Anglo-centric) context free grammars, and their probabilistic generalizations. More recently
however, less intuitive schemes such as n-gram models have proven more reliable for many
real world problems (Manning and Schütze, 1999). In just the last few years, an arguably
even more opaque and data driven set of techniques collectively known as deep learning
have been declared the new state of the art on a range of tasks (Chelba et al., 2013). A
key building block is the so called recurrent neural network (RNN), the example of which
we are most concerned with is the LSTM of Hochreiter and Schmidhuber (Hochreiter and
Schmidhuber, 1997). Like all RNNs, the LSTM naturally models sequential data by receiving
as one of its inputs its own output from the previous time step. As clearly articulated in
the original work of Hochreiter and Schmidhuber (1997), the LSTM is especially designed
to overcome certain technical difficulties which would otherwise prevent the capturing of
long range dependencies in sequential data. Nonetheless, the power of the model has been
largely dormant until the ready availability of massively parallel computing architectures
in the form of relatively inexpensive graphics processing units (GPUs). In a basic LSTM
language model, the output ot of the LSTM at time t is used to predict the next word xt+1,
while the unobserved state st stores contextual information. The xt typically encode words
as one hot vectors with dimension equal to the size of the lexicon and a single non-zero
element equal to one at the index of the word. Before inputting to the LSTM cell, the xt

are transformed linearly by multiplication with an embedding matrix, which captures word
level semantics. This embedding may be learned in the context of the language model, or
pre-trained using a dedicated algorithm such as that of Pennington et al. (2014).

2.2. Algorithmic Composition

Polyphonic music modelling may be viewed as a sequence modelling problem, in which
the elements of the sequence are, for example, those sets of notes which are sounding at a
particular instant in time. Sequence modelling has a long history in machine learning, and a
large body of literature exists which studies such classic approaches as the hidden Markov
model (HMM) (Bishop, 2007). Recently, more general RNN models have been shown to
model musical sequences more effectively in practice (Boulanger-Lewandowski et al., 2012).

RNNs have long been applied to music composition. The CONCERT model of Mozer
(1994) models a melody line along with its rhythmic structure, as well as an accompanying
chord sequence. CONCERT uses the five dimensional pitch representation of Shepard (1982)
in order to capture a notion of perceptual distance. Another interesting feature of CONCERT

175



Walder

(a) staff notation

midi 63 0 0 0 0 0 0 1 1 1 0
midi 62 0 0 1 1 0 0 0 0 0 0
midi 60 0 0 0 0 0 1 1 1 1 0
midi 58 0 1 1 1 0 0 0 0 0 0
midi 55 0 0 0 1 1 1 1 0 1 0

t 0 0 0 0.5 1 1 1 1.5 1.5 2
∆tevent 1 1 1 0 1 1 0 0.5 0 0
∆tstep 0 0 0.5 0.5 0 0 0.5 0 0.5 0
εonset 0 1 0 0 0 1 0 0 0 0
εoffset 0 0 0 0 1 0 0 1 0 1
target 58 62 55 - 60 63 - 55 - -

lower bound 0 58 0 - 0 60 - 0 - -

(b) our representation

Figure 1: The first bar of Tchaikovsky’s Song of the Lark — see section 3.3 for a description.

is the treatment of rhythmic information, in which note durations are explicitly modeled.
Aside from CONCERT, the majority of models employ a simple uniform time discretization,
which severely limits the applicability of the models to realistic settings.

Allan and Williams (2005) used an HMM with hidden state fixed to a given harmonic
sequence, and learned transition probabilities (between chords) and emission probabilities
(governing note level realizations).

The suitability of the LSTM for algorithmic composition was noted in the original work
of Hochreiter and Schmidhuber (1997), and later investigated by Eck and Schmidhuber
(2002) for the blues genre, although the data set and model parameter space were both small
in the context of current GPU hardware.

Finally, note that other ideas specifically from NLP have been used for music, including
hierarchical grammars (Granroth-Wilding and Steedman, 2012; De Haas et al., 2011).

3. Our Approach

3.1. LSTM Language Model Architecture

We wish to leverage insights from state of the art language models, so we take the multi-layer
LSTM of Zaremba et al. (2014) as our starting point. This model broadly fits our general
description of the LSTM based language model in subsection 2.1, with several non-trivial
computational refinements such as an appropriate application of dropout regularization
(Srivastava et al., 2014). We will show that the model of Zaremba et al. (2014) is effective in
our context as well, by reducing the music modelling problem to a suitable form.

3.2. Reduction to Univariate Prediction

It is possible, as in the RNN-Restricted Boltzmann Machine RNN-RBM of Boulanger-
Lewandowski et al. (2012), to modify the output or prediction layer of the basic RNN
language model, to support multivariate prediction. As we shall see, our reduction to a
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univariate problem is at least as effective in practice. Moreover, by reducing the problem in
this way, we can leverage future advances in the highly active research area of NLP.

The reduction is motivated by the problem of modelling a density over multisets c ∈ C
with underlying set of elements X = {1, 2, . . . , d}. For our purposes, X represents the set of
d musical notes (or piano keys, say), and c is an unordered set of (possibly repeated) notes
in a chord. Since X contains ordinal elements, we can define a bijective function f : C → O,
where O is the set of ordered tuples with underlying set of elements X . Now, for o ∈ O such
that o =

(
o1 ≤ o2 ≤ . . . , o|o|

)
, we can always write

p(o) =
|o|∏
i=1

p(oi|o1, o2, . . . , oi−1). (1)

Hence, we can learn p(o) (and hence p(c)) by solving a sequence of univariate learning
problems. If the cardinality |o| is unknown, we simply model an “end” symbol, which we
may denote by d+ 1.

This is similar in spirit to the fully visible sigmoid belief network (FVSBN) of Neal (1992),
which is in turn closely related to the neural autoregressive distribution estimator (NADE) of
Larochelle and Murray (2011). Both the FVSBN and NADE have been combined with RNNs
and applied to algorithmic composition, by Gan et al. (2015) and Boulanger-Lewandowski
et al. (2012), respectively. These methods employ a similar factorization to (1), but apply it
to a binary indicator vector of dimension d, which has ones in those positions for which the
musical note is sounding. Our approach is well suited to sparse problems (those in which
|o| � d), and also to unrolling in time in order to reduce the polyphonic music problem to a
sequence of univariate prediction problems, as we explain in the next section. Indeed, to
apply the unrolling in time idea of the next sub-section to an FVSBN type setup would
require unrolling d steps per chord, whereas as we shall see our approach need only unroll as
many steps as there are notes in a given chord.

3.3. Data Representation

Following from the previous section, our idea is essentially to model each note in a piece
of music sequentially given the previous notes, ordered first temporally and then, for notes
struck at the same time, in ascending order of pitch. Similarly to the previous subsection,
this defines a valid probability distribution which — in contrast to the RNN-RBM but
similarly to the RNN-NADE model of Boulanger-Lewandowski et al. (2012) — is tractable
by construction.1

To achieve this, we employ the data representation of Figure 1. In this work, we assume
the rhythmic structure, that is the note onset and offset times, is fixed. While we could
model this as well, such a task is non-trivial and beyond the scope of this work.

In Figure 1, the musical fragment is unrolled into an input matrix (first ten rows), a
target row, and a lower bound row. At each time step, the LSTM is presented with a column
of the input, and should predict the value in the target row, which is the midi number of
the next note to be “turned on”. The lower bound is due to the ordering by pitch — notes

1. For example, there no known tractable means of computing the exact normalization constant of an RBM,
as is required for computing say the test set likelihoods we report in section 4.
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with simultaneous onsets are ordered such that we can bound the value we are predicting,
so we must incorporate this into the training loss function.

Roughly speaking, the “midi” rows of the input indicate which notes are on at a given
time. We can only allow one note to turn on at a time in the input, since we predict one note
at a time, hence the second column has only pitch 58 turned on, and the algorithm should
ideally predict that the next pitch is 62 (given a lower bound of 58), even though musically
these notes occur simultaneously. Conversely, we can and do allow multiple pitches to turn
off simultaneously (as in columns 5 and 10), since we are not predicting these — the notes
to turn off are dictated by the rhythmic structure (algorithmically, this requires some simple
book keeping to keep track of which note(s) to turn off).

The non-midi input rows 6 to 10 represent the rhythmic structure in a way which we
intend to aid in the prediction. ∆tevent is the duration of the note being predicted, ∆tstep is
the time since the previous input column, εonset is 1 if and only if we are predicting at the
same time as in the previous column, εoffset is 1 if and only if we are turning notes off at the
same time as in the previous column, and t represents the time in the piece corresponding
to the current column (in practice we scale this value to range from 0 to 1). In the figure,
the time columns are all in units of quarter notes.

This representation allows arbitrary timing information, and is not restricted to a uniform
discretization of time as in many other works, e.g. Boulanger-Lewandowski et al. (2012);
Allan and Williams (2005). A major problem with the uniform discretization approach is that
in order to represent even moderately complex music, the grid would need to be prohibitively
fine grained, making learning difficult. Moreover, unlike the “piano roll” approaches we
explicitly represent onsets and offsets, and are able to discriminate between, say, two eighth
notes of the same pitch following one another as opposed to a single quarter note.

3.4. On our Assumption of Fixed Rhythmic Information

While we would like to model the rhythmic structure, this turns out to be challenging. Indeed,
even with assumption that rhythmic structure is given the problem is rather non-trivial.
After all, although the present work is among the most sophisticated models, even with
fixed rhythmic information taken from professional composers our results clearly fall short
of complete human results. Hence, a reasonable first step is to subdivide the problem by
modelling only the pitches.

Previous authors have modelled a simplified set of possible durations, as in Mozer (1994)
and more recently Colombo et al. (2016). However, modelling realistic durations and start
times would require a prohibitively fine grained temporal discretisation (for the data from
Boulanger-Lewandowski et al. (2012), it turns out that the largest acceptable subdivision is
one 480th of a quarter note). Modelling this in turn requires more sophisticated machinery,
such as a point process model (Daley and Vere-Jones, 2003; Du et al., 2016). In the meantime,
and until acceptable solutions to the present problem are developed, assuming fixed timing
has the advantage of allowing arbitrarily complex rhythmic structures.

In summary, rather than fully modeling an overly simplistic music representation, we
partially model a more realistic music representation. Our findings an advancements may be
generalised to the full joint distribution over pitch and timing, since we can always employ
the chain rule of probability on the set of n triples (xi, ti, di) representing (pitch, start time,
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duration), to decompose

p (n, {xi, tt, di}ni=1) = p({xi}ni=1 |n, {(ti, di)}ni=1)× p(n, {(ti, di)}ni=1), (2)

where the first factor on the right hand side is our present concern.

3.5. Data Augmentation

Data augmentation provides a simple way of encoding domain specific prior knowledge in
any machine learning algorithm. For example, the performance of a generic kernel based
classifier was advanced to the then state of the art in digit recognition by augmenting the
training dataset with translations (in the image plane, for example by shifting all images
by one pixel to the right), yielding the so-called virtual support vector machine algorithm
of Schölkopf et al. (1996). There, the idea is that if the transformation leaves the class
label unchanged, then the predictive power can be improved by having additional (albeit
dependent) data for training. It can also be rather effective to encode such prior knowledge
directly in the model, however this is typically more challenging in practice (LeCun et al.,
1998), and beyond the scope of the present work.

Here we transpose our training data through all 12 (major or minor) keys, by transposing
each piece by n semi-tones, for n = −6,−5, . . . , 4, 5. To the best of our knowledge this
method has not been used in this context, with many authors instead transposing all pieces
to some target key(s), such as C/A minor as in Allan and Williams (2005) or C/C minor
as in Boulanger-Lewandowski et al. (2012). Although simple and widely applicable to all
approaches, we will see that augmenting in this way will lead to a uniformly substantial
improvement in predictive power on all the datasets we consider. Moreover, by augmenting
we can avoid the non-trivial sub-problem of key identification, which is arguably not even
relevant for pieces that modulate.

4. Experiments

In this section, we first provide an overview of our experimental setup, before proceeding to
demonstrate the efficacy of our approach. We proceed with the latter in two steps. First, in
subsection 4.2 we verify the effectiveness of our model and data representation by comparing
with previous approaches to the modelling of piano roll data. Then, in subsection 4.3 we
demonstrate our model on the new task of modelling non piano-roll data.

4.1. Implementation Details and Experimental Setup

After representing the data in the form depicted in Figure 1, our algorithmic setup is similar
to Zaremba et al. (2014), with two minor differences. The first is that some of the data
columns do not have prediction targets (those with a dash in the target row of Figure 1).
Here, we apply the usual LSTM recurrence but without any loss function contribution (in
training) or output sampling (when generating samples from the trained model). The second
difference is that the target value is lower bounded by a known value in some cases as
described in subsection 3.3. The correct way to implement this is trivial: only those output
layer logits whose indices satisfy the bound are considered at the output layer. In line with
the parameter naming conventions of Zaremba et al. (2014), we used two LSTM layers, an
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Table 1: Mean test set log-likelihoods per time step, for the piano roll problems introduced
in Boulanger-Lewandowski et al. (2012), where aug=augmented training data,
pool=pooled training datasets — see subsection 4.2.

Model Reference PMD NOT MUS JSB
DBN-LSTM5 Vohra et al. (2015) -4.63 -1.32 -3.91 -3.47
HMM Allan and Williams (2005) — — — -9.24
TSBN Gan et al. (2015) -7.98 -3.67 -6.81 -7.48
RNN-NADE Boulanger-Lewandowski et al. (2012) -7.05 -2.31 -5.60 -5.56
LSTM ours -6.67 -2.06 -5.16 -5.01
LSTM (aug) ours -5.43 -1.66 -4.46 -4.34
LSTM (aug+pool) ours -4.94 -1.57 -4.41 -4.45

800 dimensional linear embedding, a dropout “keep” fraction of 0.45, mini batches of size 50,
and we unrolled of the recurrence relation for 150 steps for training. We used the Adam
optimizer with the recommended default parameters Kingma and Ba (2014). We optimized
for up to 60 epochs, but terminated early if the validation likelihood did not improve (vs.
the best so far) while the training likelihood did improve (vs. the best so far) four times in a
row, at which point we kept the model with best validation score. This typically took 10 to
20 epochs in total, requiring up to around two days training for our largest problem. After
training however, it only took around a second to sample an entire new piece of music, even
with highly unoptimized code. Our implementation used Google’s tensorflow deep learning
library,2 and we did most of the work on an NVIDIA Tesla K40 GPU.

4.2. Piano-Roll Benchmark Tests

Our first test setup is identical to Boulanger-Lewandowski et al. (2012). In line with that
work we report log likelihoods rather than the perplexity measure which is more typical in
NLP. Four datasets are considered, all of which are derived from midi files. Piano-midi.de
(PMD) is a collection of relatively complex classical pieces transcribed for piano (Poliner
and Ellis, 2007). Nottingham (NOT) is a collection of folk tunes with simple melodies
and block chords.3 MuseData (MUS) is a collection of high quality orchestral and piano
pieces from CCARH.4 J. S. Bach (JSB) is a corpus of chorales harmonized by J.S. Bach,
with splits taken from (Allan and Williams, 2005).

To compare with previous results of Boulanger-Lewandowski et al. (2012); Gan et al.
(2015) we used the pre-processed data provided in piano roll format, which is a sequence
of sets of notes lying on a uniform temporal grid with a spacing of an eighth note, and
pre-defined train/test/validation splits. To adapt our more general model to this problem,
we added an “end” symbol along with each set of notes, as per subsection 3.2. We also

2. www.tensorflow.org
3. ifdo.ca/~seymour/nottingham/nottingham.html
4. www.musedata.org
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Table 2: Average test set log-likelihoods per time step for the piano roll problems introduced
in Boulanger-Lewandowski et al. (2012).

Test
PMD NOT MUS JSB

T
ra

in

PMD -5.43 -3.26 -5.90 -7.76
NOT -15.28 -1.66 -17.12 -18.40
MUS -5.47 -3.00 -4.46 -6.49
JSB -13.83 -10.03 -16.16 -4.34

omitted the t row of Figure 1, which contains a form of “forward information”. In this way,
our model solved precisely the same modelling problem as Boulanger-Lewandowski et al.
(2012), and our likelihoods are directly comparable.

The results in Table 1 include the best model from Boulanger-Lewandowski et al. (2012),
as well as that of Gan et al. (2015). The LSTM row corresponds to our basic model, which
performs encouragingly, outperforming the previous methods on all four datasets. The LSTM
(aug) row uses the data augmentation procedure of subsection 3.5, which proves effective by
outperforming the basic model (and all previous approaches) convincingly, on all datasets.
The only exception is the DBN-LSTM model.5 Finally, in addition to the augmentation, we
pooled the data from (the training and validation splits of) all four datasets, and tested on
each dataset, in order to get an idea of how well the model can generalize across the different
data sets. The difference here is minor in all cases but piano-midi.de, where we see further
improvement, which is interesting given that piano-midi.de appears to be the most complex
dataset overall. Although there is a small deterioration of this LSTM (aug+pool) model on
the J.S. Bach test set, we see from Table 2, which is a cross table of performance for training
on one dataset and testing on another, that this is not the complete picture. Indeed, models
trained and tested on different datasets unsurprisingly do far worse than our pooled data
model. This unsurprisingly suggests that our model with pooling and augmentation is the
best overall given all datasets.

4.3. A New Benchmark Problem

In the previous section, we adapted our model to the case where time is uniformly discretised,
but the number of notes sounding at each time step is unknown. In this section, we use the
original midi file data to construct a different, arguably more musically relevant problem.
The data, which we have preprocessed as described in appendix A, and made available
online6 is now in the form of sets of tuples indicating the onset time, offset time, and
midi note number, of each event in the original midi file. We model the midi note names
conditional on the rhythmic structure (onset and offset times).

Before modelling the above data, we applied a simple preprocessing step in order to clean
the timing information. This step was necessary due to the imprecise timing information
in some of the source midi files, and would have no effect on “clean” midi data derived

5. The DBN-LSTM likelihoods are merely optimistic bounds on the true values.
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from musical scores. In particular, we quantized the onset and offset times to the nearest
96th of a quarter note, unless this would collapse a note to zero duration in which case we
left the onset and offset times unchanged. This was especially helpful for the case of the
piano-midi.de data, where the onset and offset times often occur extremely close to one
another. There are two distinct reasons why we apply this pre-processing step:

1. By quantizing the offset times, we reduce the number of columns in our data represen-
tation, since more notes can “turn off” simultaneously in a single input column. See
Figure 1 and the corresponding description of the data representation in subsection 3.3.
This in turn effectively allows the LSTM to model longer range temporal dependencies.

2. By quantizing the onset times, our ordering technique (see subsections 3.2 and 3.3),
which orders first by time and then by pitch, will more consistently represent those
onsets which are close enough to be considered practically simultaneous.

The results in Table 3 are now in the form of mean log-likelihood per note, rather than
per time step, as before. We also include results for our new dataset CMA (see appendix A).
In the set-up of Boulanger-Lewandowski et al. (2012), a uniformly random prediction would
give a log likelihood of − log(2d) (we assume no unison intervals) where d is the number of
possible notes. For d = 88 notes (spanning the full piano keyboard range of A0 to C8) as
in Boulanger-Lewandowski et al. (2012), this number is approximately −61. For our new
problem however, a uniformly random prediction will have a mean log-likelihood per note of
− log(d) which is approximately −4.47 for d = 88. Overall then, the results in Table 3 are
qualitatively similar to the previous results, after accounting for the expected difference of
scale.

Note that it is not practical to compare with the previous piano-roll algorithms in this
case. It turns out that the greatest common divisor of note durations and start times in the
files of Boulanger-Lewandowski et al. (2012) dictates a minimum temporal resolution of 480
“ticks” per quarter note, rendering those algorithms impractical (note that the piano roll
format used in the previous work and in subsection 4.2 used a resolution of an eighth note,
or two ticks per quarter note).

Importantly however, we can generate music with an arbitrarily complex rhythmic
structure. We generated a large number of example outputs by sampling from our model
given the rhythmic structure from each of the test set pieces contained in the MuseData
corpus.6

We also attempted to visually identify some of the structure we have captured. For the
pooled and augmented model, we visualized the embedding matrix which linearly maps the
raw inputs into what in NLP would be termed a latent semantic representation. A clear
structure is visible in Figure 3. The model has discovered the functional similarity of notes
separated by an interval of one or more octaves. This is interesting given that all notes are
orthogonal in the raw input representation, and that the training was unsupervised. In NLP,
similar phenomena have been observed Pennington et al. (2014), as well as more sophisticated
relations such as “Queen - King + brother ≈ sister”. We tried to identify similar higher order
relationships in our embedding, by comparing intervals, analyzing mapped counterparts to
the triads of the circle of fifths, etc., but the only clear relationship we discovered that of the

6. Our data and output audio samples: http://users.cecs.anu.edu.au/~christian.walder/
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Table 3: Mean test set log-likelihoods per note for the non piano roll midi data, where
aug=augmented training data, pool=pooled training datasets — see subsection 4.3.

Model PMD NOT MUS JSB CMA
LSTM -2.99 -1.18 -1.71 -1.32 -1.24
LSTM (aug) -2.28 -0.99 -1.33 -1.07 -1.11
LSTM (aug+pool) -2.12 -1.03 -1.37 -1.25 -1.09

Figure 2: Two bars of the model’s output, featuring a relatively complex rhythmic sequence
which occurs 52 seconds into the Mozart K157 audio sample included in the root
level of the audio samples directory in the supplementary material.6

octave, described above. This does not mean the model hasn’t identified these relationships
however, since the embedding is only the first layer in a multi-layer model.

5. Summary and Outlook

We presented a model which reduces the problem of polyphonic music modelling to one of
modelling a temporal sequence of univariate categorical variables. By doing so, we were
able to apply state of the art neural language models from natural language processing. We
further obtain a relatively large improvement in performance by augmenting the training
data with transpositions of the pieces through all musical keys — a simple but effective
approach which is directly applicable to all algorithms in this domain. Finally, we obtain
a moderate additional improvement by pooling data from various sources. An important
feature of our approach is its generality in terms of rhythmic structure — we can handle
any fixed rhythmic structure and are not restricted to a uniform discretization of time as
in a piano roll format. This lead us to derive a new benchmark data set, which is crucial
for further advancing the state of the art in algorithmic composition. Future work could 1)
model the rhythmic information, rather than conditioning on it, 2) provide a mechanism
for user constraints on the output, as has been done with Markov models by applying
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Figure 3: Correlations between the columns of the learned embedding matrix, which maps
inputs to higher dimensional “semantic” representations. The row/column labels
can either be seen by zooming in on an electronic copy or understood from the
following description: the last 5 rows/columns correspond to the last five rows
of the input (upper) part of Figure 1 (b), while the remaining rows/columns
correspond to sequential midi numbers. The off-diagonal stripes suggest that the
model has discovered the importance of the octave.

branch and bound search techniques (Pachet and Roy, 2011), or 3) introduce longer range
dependencies and motif discovery using attentional models (see e.g. Luong et al. (2015)).
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Appendix A. Data

In this appendix we provide an overview of the symbolic music datasets we offer in pre-
processed form6. Note that the source of four out of five of these datasets is the same set of
midi files used in Boulanger-Lewandowski et al. (2012), which also provides pre-processed
data. Our new CMA dataset is relatively extensive, with 19700 files (c.f. 124, 382, 783, 1037
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Figure 4: Our filtering score for the original 20,006 midi files provided by the website
http://www.classicalarchives.com. We kept the top 19,700, discarding files
with a score greater than 3.9.

for PMD, JSB, MUS and NOT, respectively). We are kindly permitted to release the CMA
data in the form we provide, but not to provide the original midi files.

Boulanger-Lewandowski et al. (2012) provide “piano roll” representations, which essen-
tially consist of a regular temporal grid (of period one eighth note) of on/off indicators for
each midi note number.

To address the limitations of this format, we extracted additional information the midi
files. Our goal is to represent the start and end times of each midi event, rather than whether
they are sounding or not at each time on a regular temporal grid. Our representation consists
of sets of five-tuples of integers representing 1. piece number (corresponding to a midi file),
2. track (or part) number, defined by the midi channel in which the note event occurs, 3.
midi note number, ranging 0-127 according to the midi standard, and 16-110 inclusive for
the data we consider here, 4. note start time, in “ticks”, (2400 ticks = 1 beat = one quarter
note), 5. note end time, also in ticks.

Please refer to the data archive itself for a detailed description of the format.6

A.1. Preprocessing

We applied the following processing steps and filters to the raw midi data.

• Combination of piano “sustain pedal” signals with key press information to obtain
equivalent individual note on/off events.

• Removal of duplicate/overlapping notes which occur on the same midi channel (while
not technically allowed, this still occurs in real midi data due to the permissive nature
of the midi file format). Unfortunately, this step is ill posed, and different midi software
packages handle this differently. We process notes sequentially in order of start time,
ignoring note events that overlap a previously added note event.
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• Removal of midi channels with less than two note events (these occurred in the
MUS and CMA datasets, and were always information tracks containing authorship
information and acknowledgements, etc.).

• Removal of percussion tracks. These occurred in some of the Haydn symphonies and
Bach Cantatas contained in the MUS dataset, as well as in the CMA dataset. It is
important to filter these as the percussion instruments are not necessarily pitched,
and hence the midi numbers in these tracks are not comparable with those of pitched
instruments, which we aim to model.

• Re-sampling of the timing information to a resolution of 2400 ticks per quarter note,
as this is the lowest common multiple of the original midi file resolutions for the four
datasets considered in Boulanger-Lewandowski et al. (2012), which were either 100,
240 or 480. We accept some quantization error for some of the CMA files, although
2400 is already an unusually fine grained midi quantization.

For our new CMA dataset, we also removed 306 of the 20,006 midi files due to their
suspect nature. We did this by assigning a heuristic score to each file and ranking. The score
was computed by first training our model on the union of the four (transposed) datasets,
JSB, PMD, NOT and MUS. We then computed the negative log-probability of each midi
note number in the raw CMA data under the aforementioned model. Finally, we defined
our heuristic score as, for each file, the mean of these negative log probabilities plus the
standard error. The scores we obtained in this way are depicted in Figure 4. An informal
listening test verified that the worst scoring files were indeed rather suspicious.

A.2. Splits

The four datasets used in Boulanger-Lewandowski et al. (2012) retain the original training,
testing, and validation splits used in that work. For CMA, we took a careful approach to
data splitting. The main issue was data duplicates, since the midi archive we were provided
contained multiple versions of several pieces, each encoded slightly differently by a different
transcriber. To reduce the statistical dependence between the train/test/validation splits of
the CMA set, we used the following methodology:

1. We computed a simple signature vector for each file, which consisted of the concatena-
tion of two vectors. The first was the normalised histogram of midi note numbers in
the file. For the second vector, we quantized the event durations into a set of sensible
bins, and computed a normalised histogram of the resulting quantised durations.

2. Given the signature vectors associated with each file, we performed hierarchical clus-
tering using scipy.cluster.hierarchy.dendrogram from the python scipy library.7
We then ordered the files by traversing the resulting hierarchy in a depth first fashion.

3. Given the above ordering, we took contiguous chunks of 15,760, 1,970 and 1,970 files
for the train, test, validation sets, respectively. This leads to a similar ratio of split
sizes as used by Boulanger-Lewandowski et al. (2012).

7. https://www.scipy.org
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Figure 5: Summary of the CMA dataset. Note the log scale on three of the plots.

A.3. Basic Exploratory Plots

We provide some basic exploratory plots in Figure 5.
The Note Distribution and Number of Notes Per Piece plots are self explanatory.

The CMA data features two pieces with 46 parts — Ravel’s Valses Nobles et Sentimentales,
and Venus, by Gustav Holst. Note that this information is for future reference only — we
have yet to take advantage of the part information in our models.

The least obvious sub-figures are those on the lower-right labeled Peak Polyphonicity
Per Piece. Polyphonicity simply refers to the number of simultaneously sounding notes,
and this number can be rather high. For the PMD data, this is mainly attributable to
musical “runs” which are performed with the piano sustain pedal depressed, for example
in some of the Liszt pieces. For the MUS data, this is mainly due to the inclusion of large
orchestral works which feature many instruments. The CMA data, of course, contains both
of the aforementioned sources of high levels of polyphonicity.
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