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Abstract

Automatic Bayesian Covariance Discovery (ABCD) in Lloyd et al. (2014) provides a frame-
work for automating statistical modelling as well as exploratory data analysis for regression
problems. However ABCD does not scale due to its O(N3) running time for the kernel
search. This is undesirable not only because the average size of data sets is growing fast, but
also because there is potentially more information in bigger data, implying a greater need
for more expressive models that can discover finer structure. We propose Scalable Kernel
Composition (SKC), a scalable kernel search algorithm, to encompass big data within the
boundaries of automated statistical modelling.

1. Introduction

Automated statistical modelling is an area of research in its early stages, yet it is becoming
an increasingly important problem. As an increasing number of disciplines use statistical
analyses and models to help achieve their goals, the demand for statisticians, machine
learning researchers and data scientists is at an all time high. Automated systems for
statistical modelling aim to serve as an assistant to help increase the efficiency of these
human resources, if not as a best alternative where there is a shortage.

Duvenaud et al. (2013) take the first step of tackling the problem of structure discovery
in nonparametric regression by fitting a Gaussian Process (GP) to the data, with an algo-
rithm for automatically choosing a suitable parametric form of the kernel. This leads to
high predictive performance that matches those with kernels hand-selected by GP experts
(Rasmussen, 2006). There also exist other approaches that tackle this model selection prob-
lem by using a more flexible kernel (Wilson and Adams, 2013; Samo and Roberts, 2015).
However the distinctive feature of Duvenaud et al. (2013) is that the resulting GPs are
interpretable; the kernels are constructed in such a way that we can use them to describe
patterns in the data, and thus can be used for automated exploratory data analysis. Lloyd
et al. (2014) extend this to generate natural language analyses from these kernels, a proce-
dure which they name Automatic Bayesian Covariance Discovery (ABCD). The Automatic
Statistician1 implements this to output a 10-15 page report when given data input.

However a limitation of ABCD is that it does not scale; due to the O(N3) time for infer-
ence in GPs, the analysis is constrained to small data sets, specialising on one dimensional
time series data. This is a grave drawback in this era when data is getting bigger and more

1. See http://www.automaticstatistician.com/index/ for example analyses
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high dimensional. Moreover it is clear that the importance of model selection increases with
the size of the data set; we would like to select a more expressive model that adequately
captures the information in the bigger data. This paper proposes a scalable extension to
ABCD, to encompass big data within the boundaries of automated statistical modelling.

2. Automatic Bayesian Covariance Discovery (ABCD)

The Compositional Kernel Search (CKS) algorithm in Duvenaud et al. (2013) builds on
the idea that the sum and product of two positive definite kernels are also positive definite.
Starting off with a set B of base kernels defined on R×R, the algorithm searches through the
space of zero-mean GPs with kernels that can be expressed in terms of sums and products
of these base kernels. The base set B = {SE,LIN,PER} is used, which correspond to the
squared exponential, linear and periodic kernel respectively.2 So candidate kernels form
an open-ended space of GP models, allowing for an expressive model. A greedy search
is employed to explore this space, with each kernel scored by the Bayesian Information
Criterion (BIC) (Schwarz et al., 1978) after optimising the kernel hyperparameters by type
II maximum likelihood(ML-II). See Appendix A for the algorithm in detail.

The resulting kernel can be simplified to be expressed as a sum of product of base kernels,
which has the remarkable benefit of interpretation. In particular, note f1 ∼ GP (0, k1), f2 ∼
GP (0, k2)⇒ f1 + f2 ∼ GP (0, k1 + k2). So a sum of products of kernels can be interpreted
as sums of functions each with structure given by the product of kernels. Now each base
kernel in a product modifies the model in a consistent way. For example, multiplication
by SE converts global structure into local structure since SE(x, x′) decreases exponentially
with |x − x′|, and multiplication by LIN is equivalent to multiplication of the modeled
function by a linear function since f(x) ∼ GP (0, k) ⇒ xf(x) ∼ GP (0, k × LIN).3 Lloyd
et al. (2014) uses this observation for ABCD, giving a natural language description of the
resulting function modeled by the composite kernel. In summary ABCD consists of two
algorithms: the compositional kernel search CKS, and the natural language translation of
the kernel into a piece of exploratory data analysis.

3. Scaling up ABCD

ABCD in Section 2 provides a framework for a natural extension to big data settings, in
that we only need to be able to scale up the compositional kernel search algorithm, then
the natural language description of models can be directly applied.

The difficulty of the extension of the compositional kernel search to big data settings
lies in the O(N3) time for evaluation of the GP marginal likelihood and its gradients with
respect to the kernel hyperparameters. It is tempting to use as a proxy for the exact
likelihood either an approximate marginal likelihood or the exact marginal likelihood of
an approximate model. However we will need practically meaningful guarantees that relate
these approximate quantities to the exact marginal likelihood of the full GP model, in order
for the chosen kernel to faithfully reflect the actual structure in the data. These guarantees
on known approximate GP marginal likelihoods are often difficult to achieve. Instead we

2. The exact form of these base kernels are given in Appendix B
3. See Lloyd et al. (2014) for detailed interpretations for different base kernels
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provide a lower and upper bound to sandwich the exact marginal likelihood, and we use
this interval for model selection. To do so we give a brief overview of the relevant work on
low rank kernel approximations used for scaling up GPs, and we later outline how they can
be applied to obtain cheap lower and upper bounds.

3.1. Random Fourier Features

Random Fourier Features (RFF) (a.k.a.Random Kitchen Sinks) was introduced by Rahimi
and Recht (2007), which uses Bochner’s theorem (Rudin, 1964) to give an unbiased low-
rank approximation to the Gram matrix K = E[Φ>Φ] with Φ ∈ Rm×N (see Appendix C for
details). A bigger m lowers the variance of the estimate. Using this approximation, one can
compute determinants and inverses in O(Nm2) time. In the context of kernel composition
in Section 2, RFFs have the nice property that samples from the spectral density of the
sum or product of kernels can easily be obtained as sums or mixtures of samples of the
individual kernels (see Appendices C and D). We use this later to give a memory-efficient
upper bound on the exact marginal likelihood.

3.2. Nyström Methods and Sparse Gaussian Processes

The Nyström Method (Williams and Seeger, 2001; Drineas and Mahoney, 2005) selects a
set of m inducing points in the input space RD that attempt to explain all the covariance
in the Gram matrix of the kernel: the kernel is evaluated for each pair of inducing points
and also between the inducing points and the data, giving matrices Kmm,Kmn = K>nm.
This is used to create the Nyström approximation K̂ = Knm(Kmm)†Kmn of K. Applying
the Cholesky decomposition to Kmm, we see that the approximation admits the form Φ>Φ
and so allow efficient computations as for RFF. We later use the Nyström approximation
to give another upper bound on the exact marginal likelihood.

The Nyström approximation arises naturally in the sparse GP literature, where certain
distributions are approximated by simpler ones involving fm, the GP evaluated at the m
inducing points: the DTC approximation of Seeger et al. (2003) defines a model that gives
the marginal likelihood q(y) = N (y|0, K̂ + σ2I), whereas the FIC approximation of Snel-
son and Ghahramani (2005) gives q(y) = N (y|0, K̂ + diag(K − K̂) + σ2I), correcting the
Nyström approximation along the diagonals. Quinonero-Candela and Rasmussen (2005)
further improves this by introducing the PIC approximation, where the Nyström approxi-
mation is corrected on block diagonals with blocks typically of size m ×m. Note however
for FIC and PIC that the approximation is no longer low rank, but matrix inversion can
still be computed efficiently by Woodbury’s Lemma (see Appendix F).

The variational inducing points method (VAR) introduced by Titsias (2009) is rather
different to DTC/FIC/PIC in that it gives the following variational lower bound on the
exact log marginal likelihood (see paper for derivation):

log[N (y|0, K̂ + σ2I)]− 1

2σ2
Tr(K − K̂) (1)

This lower bound is optimised with respect to the inducing points and the kernel hyperpa-
rameters, which is shown in the paper to successfully yield tight lower bounds in O(Nm2)
time for reasonable values of m. Another useful property of VAR is that the lower bound
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can only increase as the set of inducing points grows (Titsias, 2009; Matthews et al., 2016).
Bauer et al. (2016) also points out that VAR always improves with extra computation, and
that it successfully recovers the true posterior GP in most cases, contrary to other sparse
GP methods. Hence this is what we use in the scalable structure discovery to obtain a
lower bound on the marginal likelihood and optimise the hyperparameters. Also note that
contrary to DTC/FIC/PIC, Equation (1) cannot be seen as the log marginal likelihood with
a plug-in estimate for the Gram matrix.

3.3. A Cheap Upper Bound on the Marginal Likelihood

Fixing the hyperparameters to be those tuned by VAR, we seek a cheap upper bound to the
exact marginal likelihood. Upper bounds and lower bounds are qualitatively different, and
in general it is more difficult to obtain an upper bound than a lower bound for the following
reason: first note that the marginal likelihood is the integral of the likelihood with respect
to the prior density of parameters. Hence to obtain a lower bound it suffices to exhibit
regions in the parameter space giving high likelihood. On the other hand, to obtain an
upper bound one must demonstrate the absence or lack of likelihood mass outside a certain
region. There has been some work on the subject (Beal, 2003; Ji et al., 2010), but to the
best of our knowledge there has not been any work on cheap upper bounds to the marginal
likelihood affordable in large N settings. So finding an upper bound from the perspective of
the marginal likelihood can be difficult. Instead, we exploit the fact that the GP marginal
likelihood has an analytic form, and treat it as a function of K.

The GP marginal likelihood is composed of two terms and a constant:

log p(y) = −1

2
log det(K + σ2I)− 1

2
y>(K + σ2I)−1y − N

2
log(2π) (2)

We give separate upper bounds on the negative log determinant (NLD) term and the neg-
ative inner product (NIP) term. For NLD, we give two candidate upper bounds. Firstly,
Bardenet and Titsias (2015) prove that

− 1

2
log det(K + σ2I) ≤ −1

2
log det(K̂ + σ2I) (3)

a consequence of K − K̂ being positive semi-definite. Hence the Nyström approximation
plugged into the NLD term serves as an upper bound. Note this can be computed in
O(Nm2) time by Sylvester’s Determinant Theorem (Appendix F).

Alternatively, note that the function f(X) = − log det(X) is convex on the set of positive
definite matrices (Boyd and Vandenberghe, 2004). Hence by Jensen’s inequality we have,
for Φ>Φ an unbiased estimate of K:

− 1

2
log det(K + σ2I) = f(K + σ2I) = f(E[Φ>Φ + σ2I]) ≤ E[f(Φ>Φ + σ2I)] (4)

Hence −1
2 log det(Φ>Φ+σ2I) is a stochastic upper bound to NLD that can be calculated

in O(Nm2). An example of such an unbiased estimator Φ is given by RFF. We compare
these two upper bounds to NLD in Section 4.

As for NIP, we point out that λy>(K + σ2I)−1y is the optimal value of the objective
function in kernel ridge regression minf∈H

∑N
i=1(yi − f(xi))

2 + λ‖f‖2H, where H is the
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Algorithm 1: Scalable Kernel Composition algorithm

Input: data x1, . . . , xn ∈ RD, y1, . . . , yn ∈ R, base kernel set B, depth d, maximum
number of inducing points m, kernel buffer size S

Output: k, the resulting kernel
For each base kernel on each dimension, obtain lower and upper bounds to BIC (BIC
interval), set k to be the kernel with highest upper bound, and add k to kernel buffer K.
C ← ∅
for depth=1:d do

From C, add to K all kernels whose intervals overlap with k if there are fewer than S of
them, else add the kernels with top S upper bounds.

for k′ ∈ K do
Add following kernels to C and obtain their BIC intervals:

(1) All kernels of form k′ +B where B is any base kernel on any dimension
(2) All kernels of form k′ ×B where B is any base kernel on any dimension

end
if exists kernel k∗ ∈ C with higher lower bound than k then

k ← k∗

end

end

Reproducing Kernel Hilbert space associated with k. The dual problem, whose objective
function has the same optimal value, is maxα∈RN −λ[α>(K + σ2I)α− 2α>y]. Noting that
maxα−g(α) = −minα g(α), replacing λ with σ2 and multiplying by a suitable constant we
have:

− 1

2
y>(K + σ2I)−1y = min

α∈RN

1

2
α>(K + σ2I)α− α>y (5)

Hence 1
2α
>(K+σ2I)α−α>y is an upper bound for NIP ∀α ∈ RN . Note that this is also

in the form of an objective for conjugate gradients(CG) (Shewchuk, 1994), so the optimal
value is at α̂ = (K+σ2I)−1y. We can approach the optimum for a tighter bound by using CG
or preconditioned CG (PCG) for O(m) iterations to get a reasonable approximation to α̂.
Each iteration of CG and the computation of the upper bound takes O(N2) time, but PCG
is very fast for large data sets and FIC/PIC give fastest convergence in general (Cutajar
et al., 2016). Also note that we only need to compute the upper bound once, whereas
one must evaluate the lower bound and its gradients multiple times for the hyperparameter
optimisation. We later confirm in Section 4 that the upper bound is fast to compute relative
to the lower bound optimisation. We also provide results to show the effectiveness of this
upper bound for various kernel approximations.

3.4. SKC: Scalable Kernel Composition using the Lower and Upper Bound

Given a kernel and a value of m, we can compute the lower and upper bounds as above to
obtain an interval for the exact GP marginal likelihood and hence the BIC of the kernel
with its hyperparameters optimised by VAR. These hyperparameters may of course not
be the global maximisers of the exact GP marginal likelihood, but as in ABCD we may
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optimise the marginal likelihood with multiple sets of random starting values to find the
local optimum closest to the global optimum.

Note that we can guarantee that the lower bound increases with larger m, but cannot
guarantee that the upper bound decreases. In fact, the upper bound is likely to increase as
well, since with larger m it is likely that one can find hyperparameters that give a higher
exact marginal likelihood, hence a higher upper bound. We verify this in later experiments.
Hence for kernel evaluation, it would be sensible to use the largest possible value of m that
one can afford, so that the exact marginal likelihood with hyperparameters optimised by
VAR is as close as possible to the exact marginal likelihood with optimal hyperparameters.

With these intervals for each kernel, we can perform a semi-greedy kernel search whereby
we expand the kernel tree on the top S intervals of the current depth. A summary of the
Scalable Kernel Composition algorithm is given in Algorithm 1. Further details on the
optimisation and initialisation are given in Appendix G.

4. Experiments

We present results for experiments showing the bounds we obtain for two small time series
and a multidimensional regression data set, for which ABCD is feasible. The first is the
annual solar irradiance data from 1610 to 2011, with 402 observations (Lean et al., 1995)
where we use the kernel (SE+SE)×PER. The second is the time series Mauna Loa CO2
data 4 with 689 observations with kernel SE×LIN + SE×PER. The multidimensional data
set is the concrete compressive strength data set with 1030 observations and 8 covariates.5

with kernel LIN4+SE1 × SE7+SE1 × SE2 × SE4 + SE2 × SE4 × SE8 + SE2 × SE4
× SE7 × SE8 × LIN4. All these kernels have been found by CKS. All observations and
covariates have been normalised to have mean 0 and variance 1.

(a) Solar: fix inducing points (b) Solar: learn inducing points

Figure 1: (a) Left: negative energy (lgo marginal likelihood + log prior) for fullGP with
optimised hyperparameters, optimised VAR lower bound for each of the 10 random ini-
tialisations per m, and the exact negative energy for the best hyperparameters out of the
10. Middle: exact NLD and upper bounds. Right: exact NIP and upper bounds after m
iterations of CG/PCG. (b) Same as Figure 1(a), except learning inducing points for the
VAR lower bound optimisation and using them for subsequent computations.

From the left of Figures 1(a), 4(a) and 5(a) (the latter two can be found in Appendix K)
we see that VAR gives a lower bound for the optimal marginal likelihood that improves with

4. Data can be found at ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt

5. Data can be found at https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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Figure 2: CKS SKC results for up to depth 6. Left: BIC of kernels chosen at each depth
by CKS. Right: BIC intervals of kernels that have been added to the buffer by SKC with
m = 80. The arrow indicates the kernel chosen at the end.

increasing m. From the variance of the different random initialisations, we see that having
around 10 initialisations seems sufficient. The best lower bound is tight relative to the
exact marginal likelihoods at the hyperparameters optimised by VAR. From the middle
plots, we observe that the Nyström approximation gives a very tight upper bound on the
NLD term, and does indeed increase with m. RFF gives upper bounds that are not as tight,
especially for larger values of m. From the right plots, we can see that PCG with any of the
three preconditioners (Nyström, FIC, PIC) give very tight upper bounds to the NIP term,
whereas CG may require more iterations to get tight, for example in Figures 4(a) and 4(b)
(latter two can be found in Appendix K).

Comparing Figures 1(a), 4(a) and 5(a) against Figures 1(b), 4(b) and 5(b), learning
inducing points does not lead to a vast improvement in the VAR lower bound. In fact the
differences are not very significant, and sometimes learning inducing points can get the lower
bound stuck in a bad local minimum, as indicated by the high variance of lower bounds in
the latter three figures. Moreover the differences in computational time is significant as we
can see in Table 1 of Appendix I. Hence the computation-accuracy trade-off is best when
fixing the inducing points.

Fixing the inducing points, we also compare times for the different computations in
Table 1. The gains from using the variational lower bound instead of the full GP is clear,
especially for the larger data sets, and we also confirm that it is indeed the optimisation
of the LB that is the bottleneck in terms of computational cost. We also see that the NIP
upper bound computation times are similarly fast for all m, thus convergence of PCG with
the PIC preconditioner is happening in only a few iterations.

We also compare the kernels chosen by CKS and by SKC for the three data sets. The
results are summarised in Figure 2. For solar, we see that the SKC successfully finds SE ×
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PER, which is the second highest kernel for CKS, with BIC very close to the top kernel.
For mauna, SKC selects (SE + PER)× SE + LIN, which is third highest for CKS and a
BIC very close to the top kernel. For concrete, a more challenging eight dimensional data
set, we see that the kernels selected by SKC do not match those selected by CKS, but it still
manages to find similar additive structure such as SE1+SE8 and SE4. Also PER7 found
by CKS is dubious, since it is unlikely that concrete compressive strength is a periodic
function of fine aggregate density, the seventh covariate. Of course, the BIC intervals for
kernels found by SKC are for hyperparameters found by VAR with m = 80, hence do not
necessarily contain the optimal BIC of kernels CKS. However the above results show that
our method is still capable of selecting appropriate kernels even for low values of m, without
having to home in to the optimal BIC using high values of m.

5. Conclusion and Future Work

We have introduced SKC, a scalable kernel discovery algorithm that extends CKS and
hence ABCD to bigger data sets. We have confirmed that SKC works well for small data
sets where ABCD is feasible. Next, we should test whether SKC finds suitable kernels for
medium sized data sets where ABCD is infeasible, but a single GP optimisation is just
about feasible; we may compare the BIC obtained by SKC and that obtained by optimising
for example the ARD kernel or spectral mixture kernel (Wilson and Adams, 2013). Then
we should go on to test SKC on large time series data with tens of thousands of data points
and known structure at different scales, for example global/local periodicities and linear
trends; we should investigate whether it can successfull find such structure. We should also
look into using grid integration for evaluation of kernels, which would give a more accurate
estimate of the model evidence than BIC. Note Laplace approximation adds on an expensive
Hessian term, for which it is unclear how one can obtain lower and upper bounds. ]
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