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Abstract
We describe two open problems related to first order regret bounds for contextual bandits. The first
asks for an algorithm with a regret bound of Õ(

√
L?K lnN) where there areK actions,N policies,

andL? is the cumulative loss of the best policy. The second asks for an optimization-oracle-efficient
algorithm with regret Õ(L

2/3
? poly(K, ln(N/δ))). We describe some positive results, such as an

inefficient algorithm for the second problem, and some partial negative results.
Keywords: contextual bandits, first-order regret bounds, oracle-efficient algorithms

1. Introduction and Preliminaries

The contextual bandits problem (Langford and Zhang, 2008) is a generalization of classic multi-
armed bandits, where a learner sequentially interacts with the environment to find a good policy,
despite limited feedback. Contextual bandit learning arises in recommendation, advertising, and
elsewhere, and has been successfully deployed in real-world systems (Agarwal et al., 2016).

The theory for contextual bandits has focused on developing computationally efficient algo-
rithms with optimal worst-case statistical performance. However, there is little progress in designing
more adaptive algorithms that can perform much better when the environment is relatively benign.
Given that adaptivity is possible in many other online learning settings (e.g. the expert setting (Fre-
und and Schapire, 1997)), here we ask whether a specific yet standard first-order data-dependent
bound is achievable for contextual bandits. We believe that this is not only a challenging puzzle, but
also one that can further improve the practicality of contextual bandits.

The contextual bandits problem is defined as follows. LetX be an arbitrary context space andK
be the number of actions. A mapping π : X → [K] is called a policy and the learner is given a fixed
set of policies Π. For simplicity, we assume Π is a finite set but with a huge cardinality N = |Π|.
The whole learning process proceeds in rounds. At each round t = 1, . . . , T , the environment first
decides a pair of context xt ∈ X and loss vector `t ∈ [0, 1]K , and then reveals xt to the learner. The
learner then picks an action at ∈ [K] and observes its loss `t(at). The regret of the learner against
a fixed policy π ∈ Π after T rounds is defined as: R(π) =

∑T
t=1 `t(at)− `t(π(xt)).

We consider two settings. In the stochastic setting, the context-loss pairs are i.i.d. from a dis-
tribution D, and we denote by π? = argminπ∈Π E(x,`)∼D `(π(x)) the optimal policy and L? =
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TE(x,`)∼D `(π?(x)) the optimal cumulative loss. In the adversarial setting, the context-loss pairs
are decided in an arbitrary way before the game starts,1 and, overloading notation, we define
π? = argminπ∈Π

∑T
t=1 `t(π(xt)) and L? =

∑T
t=1 `t(π?(xt)) to be the optimal policy and loss

respectively. We measure performance by the regret against the optimal policy, that is,R(π?).
The classic algorithm for contextual bandits is EXP4 (Auer et al., 2002), which enjoys a worst-

case optimal regret bound E[R(π?)] = O(
√
TK lnN) in the adversarial setting, but requires main-

taining a weight for each policy and is thus inefficient. To circumvent this computational obstacle,
many existing works assume access to an optimization oracle:
Definition 1 An optimization oracle takes any set of context and loss pairs S = {(xi, `i)}i∈I and
outputs argminπ∈Π

∑
(x,`)∈S `(π(x)). An algorithm is oracle-efficient if it runs in poly(T,K, lnN)

time given access to an optimization oracle (excluding the running time of the oracle itself).
Agarwal et al. (2014) derive a statistically-optimal oracle-efficient algorithm for the stochastic set-
ting with other recent algorithmic advances (Rakhlin and Sridharan, 2016; Syrgkanis et al., 2016a,b)
and hardness results (Hazan and Koren, 2016).

2. The Problems

Our goal is to obtain more adaptive and data-dependent regret bounds that can be much smaller than
Õ(
√
T ) in some cases. Specifically, we ask the following two questions:2

(Q1) Is there an algorithm which guarantees R(π?) = Õ(
√
L?K ln(N/δ) + poly(K, ln(N/δ)))

with probability 1− δ, in either the adversarial or the stochastic setting?3

(Q2) Is there an oracle-efficient algorithm (Def. 1) for the stochastic setting that guaranteesR(π?) =

Õ((L
2/3
? + 1)poly(K, ln(N/δ))) with probability 1− δ?

The bound in Problem (Q1) is a very natural and standard first-order bound. Indeed, it is well-
known that with full information, which is the classical experts problem (Freund and Schapire,
1997), one can get Õ(

√
L? ln(N/δ)) regret using the exponential weights algorithm.4 Even for

multi-armed bandits where Π is justK fixed-action policies, bounds of the form Õ(
√
L?K ln(K/δ))

are known (Allenberg et al., 2006; Foster et al., 2016). Similar bounds also exist in more challenging
bandit variants (Neu, 2015). Therefore, replacing the dependence on T by L? in the regret bound
is natural; however, no such bounds are known for contextual bandits, and obtaining one appears to
be challenging, even with an inefficient algorithm in the stochastic setting.

We note that by treating each policy as an arm, the aforementioned bandit algorithms produce a
Õ(

√
L?N ln(N/δ)) bound. However, the polynomial dependence on N makes this unacceptable.

However, in Section 3 we will show that Õ((L
2/3
? + 1)poly(K, ln(N/δ))) is achievable with an

inefficient algorithm even in the adversarial setting. Therefore, in Problem (Q2), we ask whether
the same bound can be achieved by an oracle-efficient algorithm in the simpler stochastic setting.
In Section 4 we mention why some existing methods and their variants fail to achieve this. In fact,
we will consider resolving the following relaxed version of (Q2) as important progress:

(Q2’) Is there an oracle-efficient algorithm for the stochastic setting that guarantees o(
√
T ) regret

as long as L? = O(Tα) for some constant 0 ≤ α < 1?
1. For simplicity we only consider an oblivious adversary here.
2. For simplicity we even assume the value L? is given to the algorithm ahead of time.
3. We use Õ to suppress dependence on lnT , lnK and ln ln(N/δ).
4. For conciseness we often omit the lower order term that is independent of L?, such as K ln(N/δ).
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3. Positive Results

Turning first to Problem (Q1), we show that using the GREEN clipping trick (Allenberg et al., 2006)
on the action distribution produced by EXP4 achieves Õ(L

2/3
? poly(K, ln(N/δ))) regret with high

probability. Specifically, the algorithm uses the EXP4 update rule pt+1(π) ∝ pt(π) exp(−η ˜̀
t(π(xt)))

where ˜̀
t(a) is a loss estimate to be described shortly and η is the learning rate. The projected dis-

tribution over actions given context xt is defined as: pt(a|xt) =
∑

π:π(xt)=a
pt(π) for any a. The

algorithm picks action a with probability p̃t(a|xt) ∝ 1{pt(a|xt) ≥ γ}pt(a|xt) for some fixed
threshold γ, and the loss estimate is then defined as ˜̀

t(a) = `t(a)1{at = a}/p̃t(a|xt) for all a.
Let L̂ =

∑T
t=1 `t(at) be the cumulative loss of the learner. Following the analysis of Allenberg

et al. (2006) gives the bound:

L̂ ≤
T∑
t=1

˜̀
t(π?(xt)) +KγL̂+

lnN

η
+ η

T∑
t=1

˜̀
t(at)

where the last term is at most ηL̂/γ since p̃t(at|xt) is at least γ.5 Using Freedman’s inequality

one can bound
∑T

t=1
˜̀
t(π?(xt)) by L? + 2

√
L? ln(1/δ)

γ + ln(1/δ)
γ . Finally setting γ =

√
η/K, η =

min{L−2/3
? K−1/3(lnN)2/3, 1/(2K)} and re-arranging show that the regret isO(L

2/3
? (K lnN)1/3+

K lnN) with probability at least 1− δ.
Turning to (Q2), we mention two attempts. First for the stochastic setting, a standard analysis of

an explore-then-exploit approach using Bernstein’s inequality produces anO((TL?K ln(N/δ))1/3+√
TK ln(N/δ)) regret bound. While this improves upon the original T 2/3 regret of Langford and

Zhang (2008), the
√
T term still makes the bound dominated by results of Agarwal et al. (2014).

We also mention without giving details that using the GREEN trick with the CONTEXT-FTPL
algorithm of Syrgkanis et al. (2016a) in their small-separator setting gives an expected regret bound
of O(L

3/4
? poly(d,K, lnN)) where d is the size of the separating set. Interestingly, this bound

has no dependence on T and holds in the adversarial setting, and the algorithm is oracle-efficient.
However, it crucially requires a small separator set, which is not available in general.

4. Negative Results

In this section we apply the clipping trick to some other algorithms for the stochastic setting. For
simplicity, we consider the (inefficient) POLICY ELIMINATION algorithm of Dudı́k et al. (2011),
upon which oracle-efficient algorithms were built (Dudı́k et al., 2011; Agarwal et al., 2014), in a
very simplified setup and show its failure in getting the desired bound.

Specifically, assume there are only two actions ag and ab,
√
T contexts x1, . . . , x

√
T , and

√
T+1

policies π0, π1, . . . , π√T such that π0(x) = ag for all x and πj(x) is ag if x 6= xj and ab otherwise.
The marginal distribution over the contexts is uniform, and the loss for ag and ab is always 0 and 1
respectively. Note that in this case π? = π0 and L? = 0.

Let Π0 = Π, γ be a clipping threshold, µ ∈ [0, 1/2K] be some minimum probability and qµ(a) =
(1−Kµ)q(a) + µ for q ∈ ∆K . Consider the following variant of POLICY ELIMINATION: at each
time t, find pt ∈ ∆Πt−1 subject to Ex

[
1

pµt (π(x)|x)

]
≤ 4K, ∀π ∈ Πt−1; then play a with probability

5. Note that here we must depart from the analysis of Allenberg et al. (2006), which is why we are getting L2/3
? .
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proportional to 1{pµt (a|xt) ≥ γ}pµt (a|xt); finally update Πt = {π ∈ Πt−1 : π(xt) 6= at ∨ `t(at) =
0} so that policies that are observed to make a mistake are eliminated. Now one can verify that

pt =
1

2
1πi +

1

2(|Πt−1| − 2)

∑
j 6=0,i

πj∈Πt−1

1πj ,

for any i 6= 0 s.t. πi ∈ Πt−1 satisfies the constraint (1π denotes the point mass at π). However,
since pµt (ab|xi) = 1/2, no matter what γ is on each round the algorithm either makes a mistake with
probability at least 1/(2

√
T ), or has made

√
T mistakes to eliminate all bad policies. Therefore the

expected regret is Ω(
√
T ). Several variants of this algorithm were also considered and all of them

were shown to have Ω(
√
T ) regret, indicating that some very different techniques are needed.

Prize We are offering a prize of $250 for positive or negative resolutions to (Q1) or (Q2).
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