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Thompson Sampling for the MNL-Bandit
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We consider a sequential subset selection problem under parameter uncertainty, a decision
maker is faced with the problem of determining which subset (of at most cardinality K) of N
items to present to users that arrive sequentially and user preferences for said items are unknown.
Each user either selects one of the items s/he is offered or selects none. Every item presents some
reward which is item-specific. Based on the observations of items users have selected, the decision
maker needs to ascertain the composition of the “best bundle,” which involves balancing an explo-
ration over bundles to learn the users’ preferences, while simultaneously exploiting the bundles that
exhibit good reward. This problem arises in many real-world instances, perhaps most notably in
display-based online advertising. Here the publisher has to select a set of advertisements to display
to users. Due to competing ads, the click rates for an individual ad depends on the overall subset of
ads to be displayed; this is referred to as a substitution effect. To capture these substitution effects,
choice models are often used to specify user preferences in the form of a probability distribution
over items in a subset. In this work, we model user preferences over N substitutable items and an
outside option (possibility of the offer set having no preferred item), using the widely used multino-
mial logit (MNL) model with unknown parameters v0, v1, . . . , vN . Under this model the probability
that a user chooses item i when set S ⊂ {1, · · · , N} is offered is given by,

pi(S,v) =


vi

v0 +
∑

j∈S vj
, if i ∈ S ∪ {0}

0, otherwise,
(1)

and therefore the expected revenue when subset S is offered is given by

R(S,v) =
∑
i∈S

ripi(S,v) =
∑
i∈S

rivi
1 +

∑
j∈S vj

. (2)

We have a specified time horizon T and can offer at most K products at each time step. If S∗ is
the optimal assortment, our objective is to offer subsets S1, · · · , ST so as to maximize the expected
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cumulative rewards over a finite horizon T , or alternatively, minimize the regret, defined as

Reg(T,v) =
T∑
t=1

R(S∗,v)− E[R(St,v)], (3)

where R(S,v) is the expected revenue when assortment S is offered as defined in (2). We refer to
this problem as the MNL-Bandit problem.

The problem can be formulated as a classical multi-armed (MAB) problem by considering every
assortment as an arm, however that would lead to exponentially many arms. Popular extensions of
MAB for “large scale” problems include the linear bandit (e.g., Auer (2003)). However, these
approaches do not apply directly to our problem, since the revenue corresponding to each offered
set is not linear in problem parameters. Other works (see Gopalan et al. (2014) ) consider a variant
of MAB where one can play a subset of arms in each round and the expected reward is a function
of rewards of the arms played. This setting is similar to the MNL-Bandit, though the regret bounds
they develop are dependent on the instance parameters as well as the number of possible actions
which can be large in our combinatorial problem setting. Rusmevichientong et al. (2010) and Sauré
and Zeevi (2013) considered the MNL-Bandit problem in the context of online retail. Both papers
develop an “explore first and exploit later” approach, where a fixed set of assortments are explored to
learn the MNL parameters to a desired (known) accuracy, and then this information is exploited for
the rest of the selling period. Their approaches require prior knowledge of a “separability parameter”
that is typically not available in practice. In a more recent paper, Agrawal et al. (2016) show how
to exploit specific characteristics of the MNL model to develop a policy based on the principle of
“optimism under uncertainty” (UCB-like algorithm, see Auer et al. (2002)) which does not rely on
the a priori knowledge of this gap or separation information and achieves a worst-case regret bound
of O(

√
NT log T ). It is widely recognized that UCB-type algorithms that optimize the worst case

regret typically tend to spend too much time in the exploration phase, resulting in poor performance
in practice. To that end, several studies (Oliver and Li (2011), May et al. (2012)) have demonstrated
that TS significantly outperforms the state of the art methods in practice.

Motivated by the attractive empirical properties of TS, in this work we focus on a Thompson
Sampling (TS) approach to the MNL-Bandit problem. Our main contribution is a TS based approach
that is computationally efficient and yet achieves parameter independent (optimal in order) regret
bounds. Specifically, we present a computationally efficient TS algorithm for the MNL-Bandit
which uses a prior distribution on the parameters of the MNL model such that the posterior update
under the MNL-bandit feedback is tractable. A key ingredient in our approach is a two moment
approximation of the posterior and the ability to judicially correlate samples, which is done by em-
bedding the two-moment approximation in a normal family. It is shown that our algorithm achieves
a worst-case (prior-free) regret bound of O(

√
NT log TK) under a mild assumption that v0 ≥ vi

for all i (more on the practicality of this assumption in the full version of the paper). This regret
bound is independent of the parameters of the MNL choice model and hence holds uniformly over
all problem instances. The regret is comparable to the existing upper bound of O(

√
NT log T ) and

the lower bound of Ω(
√
NT/K) provided by Agrawal et al. (2016) under the same assumptions,

yet the numerical results demonstrate that our Thompson Sampling based approach significantly
outperforms the UCB-based approach of Agrawal et al. (2016). The methods developed in this pa-
per highlight some of the key challenges involved in adapting the TS approach to the MNL-Bandit,
and present a blueprint to address these issues that we hope will be more broadly applicable, and
form the basis for further work in the intersection of combinatorial bandits.
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