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Abstract
Developing efficient and guaranteed nonconvex algorithms has been an important challenge in
modern machine learning. Algorithms with good empirical performance such as stochastic gradi-
ent descent often lack theoretical guarantees. In this paper, we analyze the class of homotopy or
continuation methods for global optimization of nonconvex functions. These methods start from an
objective function that is efficient to optimize (e.g. convex), and progressively modify it to obtain
the required objective, and the solutions are passed along the homotopy path. For the challenging
problem of tensor PCA, we prove global convergence of the homotopy method in the “high noise”
regime. The signal-to-noise requirement for our algorithm is tight in the sense that it matches
the recovery guarantee for the best degree-4 sum-of-squares algorithm. In addition, we prove a
phase transition along the homotopy path for tensor PCA. This allows us to simplify the homotopy
method to a local search algorithm, viz., tensor power iterations, with a specific initialization and a
noise injection procedure, while retaining the theoretical guarantees.
Keywords: Tensor PCA, homotopy, continuation, Gaussian smoothing, nonconvex optimization,
global optimization.

1. Introduction

Non-convex optimization is a critical component in modern machine learning. Unfortunately, theo-
retical guarantees for nonconvex optimization have been mostly negative, and the problems are com-
putationally hard in the worst case. Nevertheless, simple local-search algorithms such as stochastic
gradient descent have enjoyed great empirical success in areas such as deep learning. As such,
recent research efforts have attempted to bridge this gap between theory and practice.

For example, one property that can guarantee the success of local search methods over noncon-
vex functions is when all local minima are also the global minima. Interestingly, it has been recently
proven that many well known nonconvex problems do have this property, under mild conditions.
Consequently, local-search methods, which are designed to find a local optimum, automatically
achieve global optimality. Examples of such problems include matrix completion (Ge et al., 2016),
orthogonal tensor decomposition (Anandkumar et al., 2014; Ge et al., 2015), phase retrieval (Sun
et al., 2016), complete dictionary learning (Sun et al., 2015), and so on. However, such a class
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of nonconvex problems is limited, and there are many practical problems with poor local optima,
where local search methods can fail.

The above property, while very helpful, imposes a strong assumption on the nonconvex problem.
A less restrictive requirement for the success of local search methods is the ability to initialize local
search in the basin of attraction of the global optimum using another polynomial-time algorithm.
This approach does not require all the local optima to be of good quality, and thus can cover a
broader set of problems. Efficient initialization strategies have recently been developed for many
nonconvex problems such as overcomplete dictionary learning (Arora et al., 2014; Agarwal et al.,
2014), tensor decomposition (Anandkumar et al., 2015), robust PCA (Netrapalli et al., 2014), mixed
linear regression (Yi et al., 2016) and so on.

Although the list of such tractable nonconvex problems is growing, currently, the initialization
algorithms are problem-specific and as such, cannot be directly extended to new problems. An in-
teresting question is whether there exist common principles that can be used in designing efficient
initialization schemes for local search methods. In this paper, we demonstrate how a class of homo-
topy continuation methods may provide such a framework for efficient initialization of local search
schemes.

1.1. Homotopy Method

The homotopy method is a general and a problem independent technique for tackling nonconvex
problems. It starts from an objective function that is efficient to optimize (e.g. convex function), and
progressively transforms it to the required objective (Mobahi and Fisher III, 2015b). Throughout
this progression, the solution of each intermediate objective is used to initialize a local search on
the next one. A particular approach for constructing this progression is to smooth the objective
function. Precisely, the objective function is convolved with the Gaussian kernel and the amount
of smoothing is varied to obtain the set of transformations. Intuitively, smoothing “erases wiggles”
on the objective surface (which can lead to poor local optima), thereby resulting in a function that
is easier to optimize. Global optimality guarantees for the homotopy method have been recently
established (Mobahi and Fisher III, 2015a; Hazan et al., 2016). However, the assumptions in these
results are either too restrictive (Mobahi and Fisher III, 2015a) or extremely difficult to check (Hazan
et al., 2016). In addition, homotopy algorithms are generally slow since local search is repeated
within each instantiation of the smoothed objective.

In this paper, we address all the above issues for the nonconvex tensor PCA problem. We ana-
lyze the homotopy method and guarantee convergence to global optimum under a set of transparent
conditions. Additionally, we demonstrate how the homotopy method can be drastically simplified
without sacrificing the theoretical guarantees. Specifically, by taking advantage of the phase transi-
tions in the homotopy path, we can avoid the intermediate transformations of the objective function.
In fact, we can start from the extreme case of “easy” (convex) function of the homotopy, and use
its solution to initialize local search on the original objective. Thus, we show that the homotopy
method can serve as a problem independent principle for obtaining a smart initialization which is
then employed in local search methods. Although we limit ourselves to the problem of tensor PCA
in this paper, we expect the developed techniques to be applicable for a broader set of nonconvex
problems.
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Method Bound on ⌧ Time Space
Power method + initialization + noise injection (ours) ˜

⌦(n3/4
)

˜O(n3
)

˜O(n)

Power method, random initialization ˜

⌦(n) ˜O(n3
)

˜O(n)

Sum-of-Squares ˜

⌦(n3/4
) > ⌦(n6

) > ⌦(n6
)

Recover and Certify ˜

⌦(n3/4
)

˜O(n5
) O(n4

)

Eigendecomposition of flattened matrix ˜

⌦(n3/4
)

˜O(n3
)

˜O(n2
)

Information-theoretic ˜

⌦(

p
n) Exp O(n)

Table 1: Table of comparison of various methods for tensor PCA. Here space does not include
the tensor itself. The power method with random initialization was analyzed in Richard
and Montanari (2014). sum-of-squares, Recover and Certify, and flattened tensor were
analyzed in Hopkins et al. (2015).

1.2. Tensor PCA

Tensor PCA problem is an extension of the matrix PCA. The statistical model for tensor PCA was
first introduced by Richard and Montanari (2014). This is a single spike model where the input
tensor T 2 Rn⇥n⇥n is a combination of an unknown rank-1 tensor and a Gaussian noise tensor A
with Aijk ⇠ N (0, 1) for i, j, k 2 [n].

T = ⌧v ⌦ v ⌦ v +A, (1)

where v 2 Rn is the signal that we would like to recover.
Tensor PCA belongs to the class of “needle in a haystack” or high dimensional denoising prob-

lems, where the goal is to separate the unknown signal from a large amount of random noise. Re-
covery in the high noise regime has intimate connections to computational hardness, and has been
extensively studied in a number of settings. For instance, in the spiked random matrix model, the
input is an additive combination of an unknown rank-1 matrix and a random noise matrix. The re-
quirement on the signal-to-noise ratio for simple algorithms, such as principal component analysis
(PCA), to recover the unknown signal has been studied under various noise models (Perry et al.,
2016; Bloemendal and Virág, 2013) and sparsity assumptions on the signal vector (Berthet et al.,
2013).

Previous algorithms for tensor PCA belong to two classes: local search methods such as tensor
power iterations (Richard and Montanari, 2014), and global methods such as sum of squares (Hop-
kins et al., 2015). Currently, the best signal-to-noise guarantee is achieved by the sum-of-squares
algorithm and the flattening algorithm, which are more expensive compared to power iterations (see
Table 1). In this paper, we analyze the Gaussian homotopy method for tensor PCA, and prove that
it matches the best known signal-to-noise performance. Hopkins et al. (2015) also showed a lower-
bound that no degree-4 (or lower) sum-of-squares algorithm can achieve better signal-to-noise ratio,
implying that our analysis is likely to be tight.

1.3. Contributions

We analyze a simple variant of the popular tensor power method, which is a local search method for
finding the best rank-1 approximation of the input tensor. We modify it by introducing a specific
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initialization and injecting appropriate random noise in each iteration. This runs almost in linear
time; see Table 1 for more details.

Theorem 1 (informal) There is an almost linear time algorithm for tensor PCA that finds the signal
v as long as the signal strength ⌧ =

˜

⌦(n3/4
).

Our algorithm achieves the best possible trade-offs among all known algorithms (see Table 1).
Our algorithm is inspired by the homotopy framework. In particular, we establish a phase

transition along the homotopy path.

Theorem 2 (informal) Under a plausible independence conjecture, there is a threshold ✓ such that
if the radius of smoothing is significantly larger than ✓, the smoothed function will have a unique
local and global maximum. If the radius of smoothing is smaller, then the smoothed function can
have multiple local maxima, but one of them is close to the signal vector v.

The above result allows us to skip the intermediate steps in the homotopy path. We only need
two end points of the homotopy path: the original objective function with no smoothing and with
an infinite amount of smoothing. The optimal solution for the latter can be obtained through any
local search method; in fact, in our case, it has a closed form. This serves as initialization for the
original objective function. In the proof we also design a new noise injection procedure that breaks
the dependency between the steps. This allows for simpler analysis and our algorithm does not rely
on the independence conjecture. We discuss this in more detail in Section 3.1.

The comparison of all the current algorithms for tensor PCA is given in Table 1. Note that the
space in the table does not include the space for storing the tensor, this is because the more practical
algorithms only access the tensor for a very small number of passes, which allows the algorithms
to be implemented online and do not need to keep the whole tensor in the memory. We see that
our algorithm has the best performance across all the measures. In our synthetic experiments (see
Section 5, we find that our method significantly outperforms the other methods: it converges to a
better solution faster and with a lower variance.

2. Preliminaries

In this section, we formally define the tensor PCA problem and its associated objective function.
Then we show how to compute the smoothed versions of these objective functions.

2.1. Tensors and Polynomials

Tensors are higher dimensional generalization of matrices. In this paper we focus on 3rd order
tensors, which correspond to a 3 dimensional arrays. Given a vector v 2 Rn, similar to rank one
matrices vv>, we consider rank 1 tensors v⌦3 to be a n⇥n⇥n array whose i, j, k-th entry is equal
to vivjvk.

For a matrix M , we often consider the quadratic form it defines: x

>
Mx. Similarly, for a

tensor T 2 Rn⇥n⇥n, we define a degree 3 polynomial T (x,x,x) =
Pn

i,j,k=1 Ti,j,kxixjxk. This
polynomial is just a special trilinear form defined by the tensor. Given three vectors x,y, z, the
trilinear form T (x,y, z) =

Pn
i,j,k=1 Ti,j,kxiyjzk. Using this trilinear form, we can also consider

the tensor as an operator that maps vectors to matrices, or two vectors into a single vector. In
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particular, T (x, :, :) is a matrix whose i, j-th entry is equal to T (x, ei, ej) where ei is the i-th basis
vector. Similarly, T (x,y, :) is a vector whose i-th coordinate is equal to T (x,y, ei).

Since the tensor T we consider is not symmetric (Aijk is not necessarily equal to Ajik or other
permutations), we also define the symmetric operator

�(x) = A(x,x, :) +A(x, :,x) +A(:,x,x).

2.2. Objective Functions for Tensor PCA

We first define the tensor PCA problem formally.

Definition 3 (Tensor PCA) Given input tensor T = ⌧ ·v⌦3
+A, where v 2 Rn is an arbitrary unit

vector, ⌧ � 0 is the signal-to-noise ratio, and A is a random noise tensor with iid standard Gaussian
entries, recover the signal v approximately (find a vector kxk = 1 such that hx,vi � 0.8).

Similar to the Matrix PCA where we maximize the quadratic form, for tensor PCA we can focus
on optimizing the degree 3 polynomial f(x) = T (x,x,x) over the unit sphere.

max

x

f(x) = ⌧hv,xi3 +A(x,x,x) (2)

kxk = 1

The optimal value of this program is known as the spectral norm of the tensor. It is often solved
in practice by tensor power method. Richard and Montanari (2014) noticed that:

Theorem 4 When ⌧ � C
p
n for large constant C, the global optimum of (2) is close to the signal

v.

Unfortunately, solving this optimization problem is NP-hard in the worst-case (Hillar and Lim,
2013). Currently, the best known algorithm uses sum-of-squares hierarchy and works when ⌧ �
Cn3/4. There is a huge gap between what’s achievable information theoretically (O(

p
n)) and what

can be achieved algorithmically (⌦(n3/4
)).

2.3. Gaussian Smoothing for the Objective Function

Guaranteed homotopy methods rely on smoothing the objective function by the Gaussian kernel
(Mobahi and Fisher III, 2015b,a). More precisely, smoothing the objective (2) requires convolving
it with the Gaussian kernel. Let g : X ⇥ R+ ! R be a mapping such that

g(x, t) = [f ? kt](x)

Here, kt is the Gaussian density function for N (0, t2In), satisfying

kt(x) =
1

(

p
2⇡t)n

· e�
kxk22
2t2 .

It is known that convolution of polynomials with the Gaussian kernel has a closed form ex-
pression (Mobahi, 2016). In particular, the objective function of the Tensor PCA has the following
smoothed form.
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Lemma 5 (Smoothed Tensor PCA Objective) The smoothed objective has the form

g(x, t) = ⌧hv,xi3 + t2h3⌧v + u,xi+A(x,x,x),

where the vector u is defined by uj =
Pn

i=1(Aiij +Aiji +Ajii). Moreover, it is easy to compute
vector z = 3⌧v + u given just the tensor T , as 8j, zj =

Pn
i=1(Tiij + Tiji + Tjii).

The proof of this Lemma is based on interpreting the convolution as an expectation Ey⇠N(0,In)[f(x+
y)]. We defer the detailed calculation to Appendix A.1

3. Tensor PCA by Homotopy Initialization

In this section we give a simple smart initialization algorithm for tensor PCA. Our algorithm only
uses two points in homotopy path – the infinite smoothing t ! 1 and the no smoothing t ! 0.
This is inspired by our full analysis of the homotopy path (see Section 4), where we show there is
a phase transition in the homotopy path. When the smoothing parameter is larger than a threshold,
the function behaves like the infinite smoothing case; when the smoothing parameter is smaller than
the threshold, the function behaves like the no smoothing case.

Recall that the smoothed function g(x, t) is:

g(x, t) = ⌧hv,xi3 + t2h3⌧v + u,xi+A(x,x,x) (3)

with u as a vector such that uj =

P
iAiij + Aiji + Ajii. When t ! 1, the solution of the

smoothed problem has the special form x

†
=

3⌧v+u

k3⌧v+uk . That is because the term t2h3⌧v + u,xi
dominates g and thus its maximizer under kxk2 = 1 yields x†.

Note that by Lemma 5, we can compute vector z zj =

Pn
i=1 Tiij + Tiji + Tjii, and we know

z = 3⌧v + u. Therefore we know x

†
=

z

kzk2 can be computed just from the tensor. We use
this point as an initialization, and then run power method on the original function. The resulting
algorithm is described in Algorithm 1.

In order to analyze the algorithm, we use the following independence condition, which states
that the “random”-looking vectors u and �(xp

) = A(x

p,xp, :)+A(x

p, :,xp
)+A(:,xp,xp

) indeed
have some properties satisfied by random vectors:

Condition 6 [Independence Condition] The norm and correlation with v for the vectors u and
�(xp

) are not far from expectation. More precisely: (1) kuk2 = O(n
p
m) and |hu,vi| = O(

p
nm log n);

(2) for the sequence computed by Algorithm 1, x

0,x1, · · · ,xm, 80  p  m, k�(xp
)k2 =

O(

p
nm)kxpk22 and |h�(xp

),vi| = O(

p
m log n)kxpk22.

Note that if in every step of the algorithm, the noise tensor A is resampled to be a fresh random
tensor, independent of the previous step x

p, then �(xp
) is just a random Gaussian vector. In this

case the condition is trivially satisfied. Of course, in reality x

i’s are dependent on A. However,
we are able to modify the algorithm by a noise injection procedure, that adds more noise to the
tensor T , and make the noise tensor “look” as if they were independent. The extra dependency
on m in Condition 6 comes from noise injection procedure and will be more clear in Section 3.1.
We will first show the correctness of the algorithm assuming independence condition here, and in
Section 3.1 we discuss the noise injection procedure and prove the independence condition.
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Theorem 7 When ⌧ � Cn3/4
log n for a large enough constant C, under the Independence Con-

dition (Condition 6), Algorithm 1 finds a vector xm such that hxm,vi � 0.8 in O(log log n) itera-
tions.

Algorithm 1: Tensor PCA by Homotopy Initialization
Input: Tensor T = ⌧ · v⌦3

+A;
Output: Approximation of v;
m = O(log log n);
8 j,x0

j =
P

i Tiij + Tiji + Tjii;
x

0
= x

0/kx0k; // Now x

0
= x

†

for k = 0 to m do
x

k+1
= T (x

k,xk, :) + T (x

k, :,xk
) + T (:,xk,xk

);
x

k+1
= x

k+1/kxk+1k;
end
return x

m;

The main idea is to show the correlation of xk and v increases in every step. In order to do
this, first notice that the initial point x† itself is equal to a normalization of 3⌧v + u, where the
norm of u and its correlation with v are all bounded by the Independence Condition. It is easy
to check that hx0,vi � n�1/4, which is already non-trivial because a random vector would only
have correlation around n�1/2. For the later iterations, let ˆxk be the vector xk before normalization
and we have ˆ

x

k+1
= 3⌧hv,xki2v + �(xk

). Notice that the first term is in the direction v, and the
Independence Condition bounds the norm and correlation with v for the second term. We can show
that the correlation with v increases in every iteration, because the initial point already has a large
inner product with v. The detailed proof is deferred to Appendix A.2.

3.1. Noise Injection Procedure

Algorithm 2: Tensor PCA with Homotopy Initialization and Noise Injection
Input: Tensor T = ⌧ · v⌦3

+A;
Output: Approximation of v;
m = O(log log n);
Sample B

0,B1, ...,Bm�1 2 Rn⇥n⇥n whose entries are N (0,m).
Let B =

1
m

Pm�1
p=0 B

p.
Let T p

= T � ¯

B +B

p

8 j,x0
j =

P
i T

0
iij + T

0
iji + T

0
jii;

x

0
= x

0/kx0k;
for k = 0 to m� 2 do

x

k+1
= T

k+1
(x

k,xk, :) + T

k+1
(x

k, :,xk
) + T

k+1
(:,xk,xk

);
x

k+1
= x

k+1/kxk+1k;
end
return x

m�1;
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In order to prove the Independence Condition, we slightly modify the algorithm (see Algo-
rithm 2). In particular, we add more noise in every step as follows

• Get the input tensor T = ⌧ · v⌦3
+A;

• Draw a sequence of Bp 2 Rn⌦3 such that Bp
ijk ⇠ N (0,m);

• Let T p
= T � B + B

p with B =

1
m

Pm�1
p=0 B

p, run Algorithm 2 by using T

p in the p-th
iteration;

Intuitively, by adding more noise the new noise will overwhelm the original noise A, and every time
it looks like a fresh random noise. We prove this formally by the following lemma:

Lemma 8 Let the sequence T

0, · · · ,Tm�1 be generated according to Algorithm 2. Let Qi
=

⌧v⌦3
+ C

i, where C

i’s are tensors with independent Gaussian entries. Each entry in C

i is dis-
tributed as N(0,m). The two sets of variables {T i} and {Qi} has the same distribution.

This Lemma states that after our noise injection procedure, the tensors T

0, ...,Tm�1 look ex-
actly the same as tensors where the noise A is sampled independently. The basic idea for this lemma
is that for two multivariate Gaussians to have the same distribution, we only need to show that they
have the same first and second moments. We defer the details to Appendix A.2.

Using Lemma 8 we can create a sequence of T p such that its noise tensor Ap
= A�B +B

p

is redrawn independently and each element is according to N (0,m). Now, because each T

i behave
as if it is drawn independently, we can prove the Independence Condition:

Lemma 9 (Noise Injection) Let T p be generated according to Algorithm 2 and A

p
= T

p �
⌧v⌦3. Let u0 be a vector such that u0

j =

P
iA

0
iij + A

0
iji + A

0
jii, and �p(xp

) = A

p
(x

p,xp, :

) +A

p
(x

p, :,xp
) +A

p
(:,xp,xp

). With high probability1, (1) ku0k2 = ⇥(n
p
m) and |hu0,vi| =

O(

p
nm log n); (2) for the sequence computed by Algorithm 2, x0,x1, · · · ,xm�1, 8 0  p  m�

1, k�p(xp
)k2 = ⇥(

p
nm)kxpk22 and |h�p(xp

),vi| = O(

p
m log n)kxpk22. As a result Condition 6

is satisfied.

This Lemma is now true because by Lemma 8, we know the noise tensors A

p is independent
of A0, ...,Ap�1. As a result Ap is independent of xp! This lemma then follows immediately from
standard concentration inequalities. We defer the full proof to Appendix A.2.

The noise injection technique is mostly a technicality that we need in order to make sure differ-
ent steps are independent. This is standard in analyzing nonconvex optimization algorithms. As an
example, previous works on alternating minimization for matrix completion (Jain et al., 2013) relied
on the availability of different subsamples in different iterations to obtain the theoretical guarantees.
Our noise injection procedure is very similar, however this is the first application of this idea for
the case of Gaussian noise. The main usage of the noise injection is to get rid of the dependence of
the noise matrix between different iterations. Moreover, this technique is designed to simplify the
proof and rarely used in the real applications. In practice, an algorithm without noise injection, like
Algorithm 1, usually performs well enough.

Combining Lemma 9 and Theorem 7, we know Algorithm 2 solves the tensor PCA problem
when ⌧ � Cn3/4

log n.

1. Throughout this paper by “with high probability” we mean the probability is at least 1 � 1/nC for a large constant
C.
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Remark 10 (Estimation of the variance in practice) In the above analysis, we assume the vari-
ance of entries of A is 1. In practice, we can estimate the variance �2 of entries of A from T by
computing its Frobenius norm. Note that when ⌧ is large, the simple power method already performs
well. The interesting case is when ⌧ is small, say ⌧ < n. In this case, the square of the Frobenius
norm of ⌧v⌦3

= ⌧2 while the square of the Frobenius norm of the noise matrix A in expectation
is �2n3 with variance �2O(n3

). Therefore, we can get a good estimation of �2 by computing the
square of the Frobenius norm of A divided by n3.

4. Characterizing the Homotopy Path

(a) t � n�1 (b) t ⇡ n�1 (c) t ⌧ n�1

Figure 1: Phase Transition for a 1-d function

This section analyzes the behavior of the smoothed objective function g as t varies. Under a
plausible conjecture, we prove that a phase transition occurs: when t is large g(x, t) behaves very
similarly to g(x,1) and when t is small g(x, t) behaves very similarly to g(x, 0). This motivates
the algorithms in the previous section, as the phase transition suggests the most important regimes
are very large t and t = 0.

In this section we first describe how the homotopy method works in more details. Then we
present an alternative objective function of Tensor PCA and derive its smoothed version. Finally,
we prove that when t � n�1, the smoothed function retains its maximizer around x

†. However,
when t ⌧ n�1, the configuration of critical points change, with only one of the critical points being
close to the solution v. Importantly, we can find our way from the vicinity of x† toward this critical
point via the dominant curvature direction of the function.

4.1. Homotopy

In the homotopy method, we start from the maximizer of the function with large amount of smooth-
ing t ! 1. We earlier denoted this maximizer as x†. Then we continuously decrease the amount
of smoothing t, while following the maximizer throughout this process, until reaching t = 0. We
call the path taken by the maximizer the homotopy path. It is formally defined as follows.

Definition 11 (Homotopy Path) A homotopy path x(t) is a continuous function x : T ! X
satisfying limt!1 x(t) = x

† and 8 t � 0, rg(x(t), t) = 0, where the gradient r is w.r.t. to the
first argument of g.

In practice, to search a homotopy path, one computes the initial point x† by analytical derivation
or numerical approximation as argmax

x

g(x, t) and then successively minimizes the smoothed
functions over a finite sequence of decreasing numbers t0 to tm, where t0 is sufficiently large, and
tm = 0. The resulted procedure is listed in Algorithm 3.
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Algorithm 3: Homotopy Method
Input: f : X ! R, a sequence t0 > t1 > · · · > tm = 0.
Output: A (good) local maximizer of f .
x

t0
= global maximizer of g(x, t0);

for k = 1 to m do
x

tk
= Local maximizer of g(x; tk), initialized at xtk�1 .

end
return x

tm .

4.2. Alternative Objective Function and Its Smoothing

Turning a constrained problem into an unconstrained problem can facilitate the computation of
the effective gradient and Hessian of g(x, t). In this section, we consider the alternative objective
function: we modify f(x) by adding the penalty term �3⌧

4 kxk
4
2:

fr(x) = ⌧hv,xi3 +A(x,x,x)� 3⌧

4

kxk42

Thus we consider the following unconstrained optimization problem,

max fr(x) = T (x,x,x)� 3⌧

4

kxk42. (4)

If we fix the magnitude kxk = 1, the function fr(�x) is �3
T (x,x,x) � 3⌧

4 �
4. The optimizer

of this is an increasing function of T (x,x,x). Therefore the maximizer of (4) is exactly in the
same direction as the constrained problem (2). The 3⌧/4 factor here is just to make sure the optimal
solution has roughly unit norm; in practice we can choose any coefficient in front of kxk4 and the
solution will only differ by scaling.

Moreover, note that if in the absence of noise tensor A, then

rfr(x) = 3⌧hv,xi2v � 3⌧

4

· 4kxk22x

To get the stationary point, we have

x =

3⌧

4

· hv,xi2
3⌧
4 · kxk22

v = v

Therefore, the new function fr(x) is defined on Rn and the maximizer of Rn is close to v. We also
compute the smoothed version of this problem:

Lemma 12 (Smoothed Alternative Objective) The smoothed version of the alternative objective
is

gr(x, t) = ⌧hv,xi3 + t2h3⌧v + u,xi+A(x,x,x)� 3⌧

4

�
kxk42 + 2t2(n+ 2)kxk22 + t4(n2

+ 2n)
�

Its gradient and Hessian are equal to

rgr(x, t) = 3⌧hv,xi2v + t2(3⌧v + u) + �(x)� 3⌧(kxk22x+ t2(n+ 2)x). (5)

10
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and

r2gr(x, t) = �3⌧((kxk22 + t2(n+ 2))I � 2hv,xivvT
+ 2xx

T
)

+ Psym[A(x, :, :) +A(:,x, :) +A(:, :,x)]. (6)

Here PsymM =

M+M

>

2 is the projection to symmetric matrices.

The proof of this Lemma is very similar to Lemma 5 and is deferred to Appendix A.3.

4.3. Phase Transition on the Homotopy Path

Notice that when t ! 1, the dominating terms in gr(x, t) are t2 terms (the only t4 term is a
constant). Therefore, gr(x, t) forms a quadratic function, so it has a unique global maximizer equal
to 3⌧v+u

3⌧(n+2) , denoted as x†. Notice that this vector has different norm compared to the x† in previous
section.

Before we state the Theorem, we need a counterpart of the Independence Condition. We call
this the Strong Independence Conjecture:

Conjecture 13 [Strong Independence Conjecture] Suppose T = ⌧v⌦3
+A and uj = Aiij+Aiji+

Ajii, �(x) = A(x,x, :) +A(x, :,x) +A(:,x,x) be defined as before. With high probability, (1)
kuk2 = ⇥(n) and |hu,vi| = O(

p
n log n); (2) for all xtk on the homotopy path, k�(xtk

)k2 =

⇥(

p
n)kxtkk22 and |h�(xtk

),vi| = O(

p
log n)kxtkk22,

Intuitively, this assumes that the noise is not adversarially correlated with the signal v on the
entire homotopy path. The main difference between the strong independence conjecture and the
weak independence conjecture is that they apply to different algorithms with different number of
iterations. The strong independence conjecture applies to the general Homotopy method, which may
have a large number of iterations, and thus a conjecture that depends on the number of iterations
does not provide us any useful properties. We use the strong independence conjecture to analyze the
general Homotopy method to gain intuitions in order to design our algorithm. The weak conjecture
is for our Algorithm 1, which only has O(log log n) rounds, and can be satisfied using the noise
injection technique. Although we cannot use noise injection to prove the strong independence
conjecture, similar conjectures are often used to get intuitions about optimization problems (Donoho
et al., 2009; Javanmard and Montanari, 2013; Choromanska et al., 2015).

Theorem 14 Assuming the Strong Independence Conjecture (Conjecture 13), when ⌧ = n3/4
log n,

1. When t � Cn�1 for a large enough constant C, there exists a local maximizer xt of gr(x, t)
such that kxt � x

†k2 = o(1)kx†k2;

2. When t < n�1
log

�2 n, we know there are two types of local maximizers xt:

• kxtk2 = ⇥(1) and hv,xti = ⇥(1). This corresponds to a local maximizer near the
true signal v.

• kxtk2 = ⇥(n� 1
4
log

�1 n) and hv,xti = O(n� 1
2
log

�1 n). These local maximizers
have poor correlation with the true signal.

11
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3. When t < n�1
log

�2 n, let b be the top eigenvector of r2
(gr(x†, t)), we know sin ✓(b,v) 

1/ log2 n.

Intuitively, this theorem shows that in the process of homotopy method, if we consider a contin-
uous path in the sense that tk+1 � tk is close to 0 for all k, then (1) at the beginning, xk is close to
x

†; (2) at some point k⇤, xk⇤ is a saddle point in the function g(x, tk⇤+1) and from the saddle point
we are very likely to follow the Hessian direction to actually converge to the good local maximizer
near the signal. This phenomenon is illustrated in Figure 1:

Figure 1(a) has large smoothing parameter, and the function has a unique local/global maxi-
mizer. Figure 1(b) has medium smoothing parameter, the original global maximizer now behaves
like a local minimizer in one dimension, but it in general could be a saddle point in high dimensions.
The Hessian at this point leads the direction of the homotopy path. In Figure 1(c) the smoothing is
small and the algorithm should go to a different maximizer.

5. Experiments

Homotopy PCA Power Method Flatten Algorithm

Figure 2: Success probabilities for the algorithms. y axis is n and x axis is ⌧ . Black means fail.

↵ = 1.1 ↵ = 1.5 ↵ = 2

Figure 3: Rate of Convergence. ⌧ = ↵n
3
4 , x axis is the number of iterations, y axis is the expected

correlation with signal v (with variance represented as error bars)

For brevity we refer to our Tensor PCA with homotopy initialization method (Algorithm 1) as
HomotopyPCA. We compare that with two other algorithms: the Flatten algorithm and the Power
method. The Flatten algorithm was originally proposed by Richard and Montanari (2014), where

12
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they show it works when ⌧ = ⌦(n). Hopkins et al. (2015) accelerated the Flatten algorithm to near-
linear time, and improved the analysis to show it works when ⌧ =

˜

⌦(n3/4
). The Power method is

similar to our algorithm, except it does not use intuitions from homotopy, and initialize at a random
vector. Note that there are other algorithms proposed in Hopkins et al. (2015), however they are
based on the Sum-of-Squares SDP hierarchy, and even the fastest version runs in time O(n5

) (much
worse than the O(n3

) algorithms compared here).
We first compare how often these algorithms successfully find the signal vector v, given different

values of ⌧ and n. The results are in Figure 2, in which y-axis represents n and x-axis represents ⌧ .
We run 50 experiments for each values of (n, ⌧), and the grayness in each grid shows how frequent
each algorithm succeeds: black stands for “always fail” and white stands “always succeed”. For
every algorithm, we say it fails if (1) when it converges, i.e., the result at two consecutive iterations
are very close, the correlation with the signal v is less than 80%; (2) the number of iterations exceeds
100. In the experiments for Power Method, we observe there are many cases where situation (1) is
true, although our new algorithms can always find the correct solution. In these cases the function
indeed have a local maximizer. From Figure 2, our algorithm outperforms both Power Method and
the Flatten algorithm in practice. This suggests the constant hiding in our algorithm is possibly
smaller.

Next we compare the number of iterations to converge with n = 500 and ⌧ = ↵n
3
4 , where

↵ varies in [1.1, 1.5, 2]. In Figure 3, the x-axis is the number of iterations, and the y axis is the
correlation with the signal v (error bars shows the distribution from 50 independent runs). For all
↵, Homotopy PCA performs well — converges in less than 5 iterations and finds the signal v. The
Power Method converges to a result with good correlations with the signal v, but has large variance
because it sometimes gets trapped in local optima. As for the Flatten algorithm, the algorithm
always converges. However, it takes more iterations compared to our algorithm. Also when ↵ is
small, the converged result has bad correlation with v.

13
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Appendix A. Omitted Proofs

A.1. Omitted Proof in Section 2

Lemma 15 (Lemma 5 restated)

g(x, t) = ⌧hv,xi3 + t2h3⌧v + u,xi+A(x,x,x),

where the vector u is defined by uj =
Pn

i=1(Aiij+Aiji+Ajii). Moreover, let z be a vector where
zj =

Pd
i=1(Tiij + Tiji + Tjii), then we have z = 3⌧v + u.

Proof We can write g(x, t) as an expectation

g(x, t) =

Z

Rn
f(x+ y)kt(y)dy = Ey⇠N(0,t2In)[f(x+ y)] = Ey⇠N(0,In)[f(x+ ty)]

Since f is just a degree 3 polynomial, we can expand it and use the lower moments of Gaussian
distributions:

g(x, t) = E[f(x+ ty)]

= E[⌧hv, (x+ ty)i3 +A(x+ ty,x+ ty,x+ ty)]

= ⌧hv,xi3 + 3⌧ t2hv,xi · E[hv,yi2] + E[A(x+ ty,x+ ty,x+ ty)]

= ⌧hv,xi3 + 3⌧ t2hv,xi+ t2
X

i,j

(Aiij +Aiji +Ajii)xj +A(x,x,x)

Therefore the first part of the lemma holds if we define u to be the vector uj =
P

iAiij +Aiji +

Ajii. In order to compute the vector 3⌧v + u, notice that the term h3⌧v + u,xi is the linear term
on x, and it is equal to

h3⌧v + u,xi = Ey⇠N(0,In)[T (x,y,y) + T (y,x,y) + T (y,y,x)].

This means

(3⌧v + u)j = Ey⇠N(0,In)[T (ej ,y,y) + T (y, ej ,y) + T (y,y, ej)] =
dX

i=1

(Tiij + Tiji + Tjii).

A.2. Omitted Proof in Section 3

Theorem 16 (Theorem 7 restated) When ⌧ � Cn3/4
log n for a large enough constant C, under

the Independence Condition (Condition 6), Algorithm 1 finds a vector xm such that hxm,vi � 0.8
in O(log log n) iterations.

Proof We first show the initial maximizer x0 already has a nontrivial correlation with v. Recall
x

0
=

3⌧v+u

k3⌧v+uk2 . Note that if ⌧ is very large such that k3⌧vk2 � 10kuk2, then we already have
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Algorithm 4: Tensor PCA by Homotopy Initialization
Input: Tensor T = ⌧ · v⌦3

+A;
Output: Approximation of v;
m = O(log log n);
8 j,x0

j =
P

i Tiij + Tiji + Tjii;
x

0
= x

0/kx0k; //x0
= x

†

for k = 0 to m do
x

k+1
= T (x

k,xk, :) + T (x

k, :,xk
) + T (:,xk,xk

);
x

k+1
= x

k+1/kxk+1k;
end
return x

m;

hx0,vi � 0.8. Later we will show that whenever hxi,vi � 0.8 all later iterations have the same
property.

Therefore, we are left with the case when kuk2 � 0.1k3⌧vk2 (this implies ⌧  O(n)). In this
case, by Condition 6 we know |hu,vi| = O(

p
nm log n) and kuk2 = O(n

p
m), therefore

k3⌧v + uk2 2
q

kuk22 + k3⌧vk22 �O(⌧
p
nm log n),

q
kuk22 + k3⌧vk22 +O(⌧

p
nm log n)

�

Therefore, k3⌧v+uk2 = ⇥(n
p
m). Assume ⌧ � Cn3/4

log

c n for large enough C (where we will
later show c = 1 suffices)

hx0,vi = 3⌧ + hu,vi
k3⌧v + uk2

=

1

O(n
p
m)

⇥(n
3
4 · logc n) � n� 1

4 · logc np
m

.

Now let us consider the first step of power method. Let ˆ

x

1 be the vector before normaliza-
tion. Observe that ˆ

x

1
= 3⌧hv,x0i2v + �(x0

). By Condition 6 we have bounds on k�(x0
)k and

|h�(x0
), vi|, therefore we have

hˆx1,vi = 3⌧hv,x0i2 + h�(x0
),vi 2

h
3⌧hv,x0i2 �O(

p
m log n), 3⌧hv,x0i2 +O(

p
m log n)

i
.

Note that when ⌧ � Cn3/4
log

c n and log

c n � m, the first term is much larger than
p
m log n.

Hence for the first iteration, we have hˆx1,vi � (3� o(1))⌧hv,x0i2 � 2Cn
1
4 · log3c n/m.

Similar as before, when k�(x0
)k2  0.1k3⌧hv,x0i2vk2, we already have hx1,vi � 0.8. On

the other hand, if k�(x0
)k2 � 0.1k3⌧hv,x0i2vk2, in this case, by Condition 6 we know k�(ˆx0

)k =

O(

p
nm). We again have kˆx1k2 2

p
k�(x0

)k22 + k3⌧hv,x0i2vk22 ±O(⌧hv,x0i2
p
nm). There-

fore, kˆx1k2 = O(

p
nm). Combining the bounds for the norm of ˆ

x

1 and its correlation with v,

h
ˆ

x

1

kˆx1k ,vi � n� 1
4 · log3c n/m

3
2 .

Therefore, when log

c n � m, the correlation between x

1 and v is larger than the correlation
between x

0 and v. This shows the first step makes an improvement.
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In order to show this for the future steps, we do induction over p. The induction hypothesis is
for every p, either hxp,vi � 0.8 or

hxp,vi � n� 1
4
log

3pc n/m2p� 1
2 .

Initially, for p = 0, we have already proved the induction hypothesis.
Now assume the induction hypothesis is true for p. In the next iteration, let ˆxp+1 be the vector

before normalization. Similar as before we have ˆ

x

p+1
= 3⌧hv,xpi2v + �(xp

).
When hxp,vi � 0.8, by Condition 6 we know the norm of k�(xp

)k is much smaller than
3⌧hxp,vi2. Therefore we still have hxp+1,vi � 0.8.

In the other case, we follow the same strategy as the first step. By Condition 6 we can compute
the correlation between ˆ

x

p+1 and v:

hˆxp+1,vi = 3⌧hv,xpi2 ±O(

p
m log n)

� 2Cn
1
4
log

3p+1c n/m2p+1�1.

For the norm of ˆ

x

p+1, notice that the first term 3⌧hv,xpi2v has norm 3⌧hv,xpi2, and the second
term �(xp

) has norm ⇥(

p
nm). Note that these two terms are almost orthogonal by Independence

Condition, therefore
kˆxp+1k2 = ⇥(⌧hv,xpi2) +O(

p
nm)

If 3⌧hv,xpi2 � �

p
nm, then kˆxp+1k2  (3+�

0
)⌧hv,xpi2, where �0 is a constant that is smaller

than 0.1 when � is large enough. Therefore in this case h x̂

p+1

kx̂p+1k2 ,vi � 0.8. Thus we successfully
recover v in the next step.

Otherwise, we know kˆxp+1k2 = O(

p
nm). Then,

h
ˆ

x

p+1

kˆxp+1k2
,vi � n� 1

4 · log3p+1c n/m2p+1� 1
2

If we select c = 1, after m = O(log log n) rounds, we have hxp,vi � n� 1
4
log

3pc n/m2p� 1
2 � 0.8,

therefore we must always be in the first case. As a result hxm,vi � 0.8.

Lemma 17 (Lemma 8 restated) Let the sequence T

0, · · · ,Tm�1 be generated according to Sec-
tion 3.1. Let Qi

= ⌧v⌦3
+ C

i, where C

i’s are tensors with independent Gaussian entries. Each
entry in C

i is distributed as N(0,m). The two sets of variables {T i} and {Qi} has the same
distribution.

Proof Note that both distributions are multivariate Gaussians. Therefore we only need to show that
they have the same first and second moments.

For the first moment, this is easy, we have E[T p
] = ⌧ · v⌦3 and E[Qp

] = ⌧ · v⌦3 for all p.
For the second moment (covariance), we consider the covariance between T p

ijk and T q
i0j0k0 . Note

that for the distribution Q, as long as the 4 tuple (p, i, j, k) 6= (q, i0, j0, k0) the correlation is 0. We
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first show when (i, j, k) 6= (i0, j0, k0) we have

Cov(T

p
ijk,T

q
i0j0k0) = E[(T p

ijk � ⌧vivjvk)(T
q
i0j0k0 � ⌧vi0vj0vk0)]

= E[(Bp
ijk �Bijk +Aijk)(B

q
i0j0k0 �Bi0j0k0 +Ai0j0k0)]

= E[Bp
ijk �Bijk +Aijk]E[Bq

i0j0k0 �Bi0j0k0 +Ai0j0k0 ]

= 0

Hence for these variables the two distributions have the same covariance.
Next we consider the case p 6= q,

Cov(T

p
ijk,T

q
ijk) = E[(T p

ijk � ⌧vivjvk)(T
q
ijk � ⌧vivjvk)]

= E[(Bp
ijk �Bijk +Aijk)(B

q
ijk �Bijk +Aijk)]

= � m� 1

m2
E[(Bp

ijk)
2
+ (B

q
ijk)

2
] +

X

l 6=p,q

1

m2
E[(Bl

ijk)
2
] + E[A2

ijk]

= � 2(m� 1)

m2
·m+

m� 2

m2
·m+ 1 = 0

The covariance for these entries also match.
Finally we need to consider the variance for each entry of T p and Q

p. To do that we compute
the Variance of T p

ijk

Var(T

p
ijk) = E[(T p

ijk � ⌧vivjvk)(T
p
ijk � ⌧vivjvk)]

= E[(Bp
ijk �Bijk +Aijk)(B

p
ijk �Bijk +Aijk)]

=

(m� 1)

2

m2
E[(Bp

ijk)
2
] +

X

l 6=p

1

m2
E[(Bl

ijk)
2
] + E[A2

ijk]

=

(m� 1)

2

m2
·m+

m� 1

m2
·m+ 1 = m

This is also the same as the variance of Qp
ijk. Therefore the two multivariate Gaussians have the

same mean and covariance, and must be the same distribution.

Lemma 18 (Lemma 9 restated) Let T p be generated according to Algorithm 2 and A

p
= T

p �
⌧v⌦3. Let u0 be a vector such that u0

j =

P
iA

0
iij + A

0
iji + A

0
jii, and �p(xp

) = A

p
(x

p,xp, :

) + A

p
(x

p, :,xp
) + A

p
(:,xp,xp

). With high probability, (1) ku0k2 = ⇥(n
p
m) and |hu0,vi| =

O(

p
nm log n); (2) for the sequence computed by Algorithm 2, x0,x1, · · · ,xm�1, 8 0  p  m�

1, k�p(xp
)k2 = ⇥(

p
nm)kxpk22 and |h�p(xp

),vi| = O(

p
m log n)kxpk22. As a result Condition 6

is satisfied.

Proof
Since by Lemma 8, we know the noise tensors Ap used in p-th step behave exactly the same as

independent Gaussian tensors. The vectors u0 and �(xp) are therefore spherical Gaussian random
variables conditioned on any value of xi. Therefore we can prove this lemma by standard Gaussian
concentration results.
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Claim 19 (Laurent and Massart, 2000) Suppose x is a d-dimensional spherical Gaussian, then

Pr[|kxk2 � E[kxk2]| � 1

2

E[kxk2]]  e�⌦(d).

Also, for any fixed vector v, hx,vi is also a Gaussian distribution that satisfies

Pr[|hx,vi| � t
p
E[hx,vi2]]  e�⌦(t2).

For terms like kupk and k�(xp
)k, we know the norm of a Gaussian random variable obeys the

�2 distribution and is highly concentrated to its expectation. For terms like hup,vi and h�(xp
),vi,

we know they are just Gaussian distributions and is always bounded by O(�
p
log n) with high

probability. Therefore we only need to compute the expected norms of these vectors.

E[kupk22] = E[
X

j

(

X

i

A

p
iij +A

p
iji +A

p
jii)

2
]

= E[
X

j

(

X

i 6=j

(A

p
iij)

2
+ (A

p
iji)

2
+ (A

p
jii)

2
) + 9(A

p
jjj)

2
]

= 3n(n� 1)m+ 9nm

= ⇥(n2m)

Therefore by Claim 19 we have kuk2 = ⇥(n
p
m) with high probability.

E[hup,vi] = E[
X

j

(

X

i

A

p
iij +A

p
iji +A

p
jii)vj ] = 0

E[hup,vi2] = E[
X

j

((

X

i

A

p
iij +A

p
iji +A

p
jii)vj)

2
]

= E[
X

j

v

2
j (9(A

p
jjj)

2
+

X

i 6=j

(A

p
iij)

2
+ (A

p
iji)

2
+ (A

p
jii)

2
)]

= 9m+ 3(n� 1)m

= ⇥(nm)

This means hu, vi is a Gaussian random variable with variance �2
= ⇥(nm), therefore for any

constant C 0, with probability at least 1 � n�C0 we know |hu, vi|  O(

p
nm log n). We can apply

union bound over all p and get the desired result.
Similarly we can compute the expected square norm of �(xp

) as below

E[k�(xp
)k22] = ⇥(1)E[kAp

(x

p,xp, :)k22]

= ⇥(1)E[
X

k

(

X

i,j

A

p
ijkx

p
ix

p
j )

2
]

= ⇥(1)E[
X

k

(

X

i,j

(A

p
ijk)

2
(x

p
i )

2
(x

p
j )

2
)]

= ⇥(1)nmkxpk42
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E[h�(xp
),vi] =

X

i,j,k

E[Ap
ijk(x

p
ix

p
jvk + x

p
i vjx

p
k + vix

p
jx

p
k)] = 0

E[h�(xp
),vi2] =

X

i,j,k

E[(Ap
ijk)

2
(x

p
ix

p
jvk + x

p
i vjx

p
k + vix

p
jx

p
k)

2
]

= 3m
X

k

v

2
k

X

i,j

(x

p
i )

2
(x

p
j )

2
+ 6m

X

i

(x

p
i )

2
X

j,k

vivjx
p
jx

p
k

= 3mkxpk42 + 6kxpk22hv,xpi2

 9mkxpk42

The bounds on k�(xp
)k and h�(xp

), vi follows immediately from these expectations.

A.3. Omitted Proof in Section 4

Lemma 20 (Lemma 12 restated) The smoothed version of the alternative objective is

gr(x, t) = ⌧hv,xi3 + t2h3⌧v + u,xi+A(x,x,x)� 3⌧

4

�
kxk42 + 2t2(n+ 2)kxk22 + t4(n2

+ 2n)
�

Its gradient and Hessian are equal to

rgr(x, t) = 3⌧hv,xi2v + t2(3⌧v + u) + �(x)� 3⌧(kxk22x+ t2(n+ 2)x).

and

r2gr(x, t) = �3⌧((kxk22 + t2(n+ 2))I � 2hv,xivvT
+ 2xx

T
) + Psym[A(x, :, :) +A(:,x, :) +A(:, :,x)].

Proof Similar to Lemma 5, we can write the smoothing operation as an expectation. By linearity
of expectation we know

gr(x, t) = g(x, t) + E[kx+ tyk42]

We can compute the new terms by the moments of Gaussians:

E[kx+ tyk42] = E[(kxk22 + 2thx,yi+ t2kyk22)2]
= E[kxk42 + 4t2hx,yi2 + t4kyk42 + 2t2kxk2kyk2]
= kxk42 + t2(2n+ 4)kxk22 + t4(n2

+ 2n) = kxk42 + 2t2(n+ 2)kxk22 + t4(n2
+ 2n).

Here in the second equation we omitted all the odd order terms for y because those terms have
expectation 0. The final step uses the moments of Gaussians.

The equation for gr(x, t) follows immediately, and since it is a polynomial it is easy to compute
its gradient and Hessian.

Before trying to characterize the local maxima on the homotopy path, let us first prove the
following property for the matrix Psym[A(x, :, :) +A(:,x, :) +A(:, :,x)].
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Lemma 21 Let H(x) = Psym[A(x, :, :) + A(:,x, :) + A(:, :,x)], there exists constants c�, c+

such that with probability at least 1� exp(�⌦(n)), for any unit vector x we have

c�
p
n  �max  c+

p
n.

Proof For the upperbound, we use the bound on tensor spectral norm. Tomioka and Suzuki (2014)
proved that for a random Gaussian tensor A, with probability at least 1 � exp(�⌦(n)) we know
for any vectors x,y, z, |A(x,y, z)|  O(

p
n). Therefore for any unit vector y, |y>H(x)y| =

|A(x,y,y) +A(y,x,y) +A(y,y,x)|  O(

p
n).

For the lowerbound, we use the distribution of the largest eigenvalue of Gaussian Orthog-
onal Ensemble. Suppose M is a random matrix whose entries are i.i.d. standard Gaussians,
then the symmetric matrix M+M

>
p
2

is distributed according to the Gaussian Orthogonal Ensem-
ble. Let P

x

? be the projection operator to the orthogonal subspace of x, then the key observation
is P

x

?H(x)P
x

? is (up to a constant scaling) distributed as a Gaussian Orthogonal Ensemble of
dimension (n� 1)⇥ (n� 1). To see this, the easiest way is to observe that Gaussians are invariant
under rotation, so we can take x = e1. Now for i, j = {2, 3, ..., n}, [P

x

?H(x)P
x

? ]i,j = A1ij +

A1ji+Ai1j+Aj1i+Aij1+Aji1. The random entries 1ij, i1j, ij1 do not overlap because i, j 6= 1.
Therefore the matrix is the sum of three Gaussian Orthogonal Ensembles, and by property of Gaus-
sians that is equivalent to

p
3 times a Gaussian Orthogonal Ensemble. Now, using the result in

Ledoux (2007), we know for any fixed x, Pr[�max(P
x

?H(x)P
x

?) 
p
n/2]  1�exp(�⌦(n2

)).
By standard covering argument (the ✏-net for n dimensional vectors have size (n/✏)O(n) which is
much smaller than exp(�⌦(n2

))), we know with high probability for all x �max(P
x

?H(x)P
x

?) �p
n/2. The lemma follows immediately because �max(H(x)) � �max(P

x

?H(x)P
x

?).

Now we are ready to prove Theorem 14. To capture the properties of the homotopy path, we
break it into three lemmas.

Lemma 22 When ⌧ = n3/4
log n, t � Cn�1 for large enough constant C, there exists a local

maximizer xt of gr(x, t) such that kxt � x

†k2 = o(1)kx†k2.

Proof Recall according to the objective we chose, the maximizer at infinity x

† can be computed
explicitly and we know x

†
=

3⌧v+u

3⌧(n+2) . By Conjecture 13, we can estimate the norm and correlation
with v:

kx†k2 = ⇥(n�3/4
log

�1 n), hx†,vi = (1± o(1))/n.

We shall first prove in the region B = {x : kx� x

†k2  1
2kx

†k2, hx,vi  10/n}, the Hessian
of the objective function is always negative definite. By standard analysis in convex optimization,
this in particular implies two things: 1. There can be at most one local maximizer in this region; 2.
If the function is µ-strongly-concave (r2g(x, t) ⌫ �µI), and a point x has krg(x, t)k  ✏, then
there is a local maximizer within ✏/µ. This particular implies if there is a point x in the interior
B0

= {x : kx � x

†k2  1
4kx

†k2, hx,vi  2/n} such that rg(x, t) is very small, then there must
exist a local maximizer in B.

By Lemma 12, we know the Hessian is equal to:

r2gr(x, t) = �3⌧((kxk22+t2(n+2))I�2hv,xivvT
+2xx

T
)+Psym[A(x, :, :)+A(:,x, :)+A(:, :,x)].
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In the region we are interested in, since hv,xi  10/n  t2(n+ 2)/2 when C is large enough,
we have the first term

�3⌧((kxk22 + t2(n+ 2))I � 2hv,xivvT
+ 2xx

T
) � �1.5⌧ t2(n+ 2)I.

On the other hand, for the second part we know by Lemma 21

Psym[A(x, :, :) +A(:,x, :) +A(:, :,x)] � 1

2

c+
p
nkx†k2I.

By our choice of parameters, ⌧ t2(n+2) = ⌦(n�1/4
log n), and

p
nkx†k2 = ⇥(n�1/4

log

�1 n),
therefore the first term dominates and we know the Hessian r2gr(x, t) � �⌧ t2(n+ 2)I .

When t is a large polynomial of n (e.g. t = n10), simple calculation shows the optima x

t is
very close to x

†, and we have x

t 2 B0. When C/n  t < n10, let t0 = n10, select t1, t2, ..., tq
such that tq = t, and ti, ti+1 are close enough that if xti 2 B0, by strong concavity we can get xti+1

exists and x

ti+1 2 B. We will prove x

ti 2 B0 by induction. The base case is already done.
Suppose x

ti�1 2 B0, we know that xti 2 B. We will use the first order condition to refine
our knowledge about xti and show x

ti 2 B0. From (5), we can derive the expression of stationary
points,

x

ti
=

3⌧hv,xtii2v + t2(3⌧v + u) + �(xti
)

3⌧(kxtik22 + t2(n+ 2))

(7)

Note that xti is a stationary point on homotopy path, so it should satisfy Conjecture 13. We also
know it is in B.

Since t � Cn�1, k⌧hv,xtii2vk2 = ⇥(n� 5
4
log n), kt2(3⌧v+u)k2 � ⌦(n�1

) and k�(xti
)k2 =

⇥(n�1
log

�2 n). Therefore, if we let w = 3⌧hv,xtii2v+ �(xti
) we know kwk2  o(1)kt2(3⌧v+

u)k2. The middle term dominates the numerator. Moreover, t2(n + 2) � ⌦(n�1
) and kxtik22 =

⇥(n�3/2
log

�2 n), and thus, t2n dominates the denominator. Now we have

x

ti
=

3⌧hv,xtii2v + t2(3⌧v + u) + �(xti
)

3⌧(kxtik22 + t2(n+ 2))

=

t2(3⌧v + u) +w

3⌧ t2(n+ 2)(1 + ✏)

=

3⌧v + u

3⌧(n+ 2)

· 1

1 + ✏
+

w

3⌧ t2(n+ 2)(1 + ✏)
.

= x

†
+ x

†
(

1

1 + ✏
� 1) +

w

3⌧ t2(n+ 2)(1 + ✏)
.

Since ✏ = o(1) and kwk2  o(1)kt2(3⌧v + u)k2, we know the two additional term has norm
o(1)kx†k2, therefore x

ti is very close to x

†.
Next we bound the correlation with v. We know hv,xtii  10/n because x

ti 2 B. Also, the
correlation between |hu,vi| = O(

p
n log n) and |h�(xti

),vi| = O(n�3/2
log

�3/2 n) are negligible
due to Conjecture 13, therefore we have

hxti ,vi  3⌧(10/n)2 + 3⌧ t2

3⌧ t2(n+ 2)(1 + ✏)
⇡ 10

2
+ C2

C2n
 2/n.

Here the inequality holds as long as C is large enough. Therefore xti 2 B0 and we finish the
induction.
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Next lemma shows what happens after the phase transition, when t is small.

Lemma 23 When ⌧ = n3/4
log n, t = n�1"(n), where "(n) = O(log

�2 n), the local maximizers
(excluding saddle points) xt of gr(x, t) are of the following types:

• good maximizers: kxtk22 = ⇥(1) and hv,xti = ⇥(1);

• bad maximizers: kxtk22 = ⇥(n� 1
2
log

�2 n) and hv,xti  O(n� 1
2
log

�2 n);

Proof
Now we use the second order necessary conditions. For all local maximizer, their gradient

should be 0 and their Hessian should be negative semidefinite.
First, from (7), we can compute the inner product between v and x

t:

hv,xti = 3⌧hv,xti2 + 3⌧ t2 + t2hu,vi+ h�(xt
),vi

3⌧(kxtk22 + t2(n+ 2))

Note that xt should satisfy the conditions in Conjecture 13, in particular |h�(xt,vi|  O(1)kxtk22.
Also, by Conjecture 13 we know t2hu,vi = t2O(

p
n log n) ⌧ 3⌧ t2, so it is negligible in scale

analysis. Therefore,

hv,xti = 3⌧hv,xti2 + (3± o(1))⌧ t2 ±O(

p
log n)kxtk22

3⌧(kxtk22 + t2n)
(8)

From (7), we can also compute the square of the norm of x:

kxtk22 =
9⌧2hv,xti4 + t4k3⌧v + uk22 + k�(xt

)k22 + ⌘(xt
)

9⌧2(kxtk22 + t2(n+ 2))

2

where the cross term ⌘(xt
)

⌘(xt
) = 6⌧hv,xti2hv, �(xt

)i+ 6⌧ t2hv,xti2(3⌧ + hv,ui) + 2t2h3⌧v + u, �(xt
)i

is negligible compared to the other terms. We again have the bound on k�(xt
)k2 from Conjecture 13

and therefore

kxtk22 =
9⌧2hv,xti4 + t4⇥(n2

) +⇥(n log n)kxtk42
9⌧2(kxtk22 + t2n)2

(9)

We proceed the proof via a case analysis on the relative order between kxtk22 and t2n.

Case 1: kxtk22 � t2n:

First, recall that the Hessian at xt must be a negative semidefinite. Therefore, ⌧kxtk22 must be
larger than �max(Psym(A(x

t, :, :) +A(:,xt, :) +A(:, :,xt
))). By Lemma 21 we have ⌧kxtk22 >

⇥(

p
n)kxtk2, which implies kxtk2 = ⌦(n� 1

4
log

�1 n). As a result, ⇥(n)kxtk42 dominates t4⇥(n2
)

in the nominator of (9). Henceforth, we have

kxtk22 = ⇥(1)

hv,xti4

kxtk42
+⇥(n� 1

2
log

�1 n)
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We know kxtk22 must be within constant factor to either hv,xti4
kxtk42

or n� 1
2
log

�1 n. These two
cases are discussed below

(1) If kxtk22 = ⇥(n� 1
2
log

�1 n), plug it into (8), we have

hv,xti = ⇥(1)

hv,xti2

kxtk22
+⇥(1)

t2

kxtk22
± O(

p
log n)

⌧

Therefore, the largest possible hv,xti is ⇥(n� 1
2
log

�1 n).
(2) If kxtk32 = ⇥(1)hv,xti2, plug it into (8):

hv,xti = ⇥(1)kxtk22 +⇥(1)

t2

kxtk22
± O(

p
log n)

⌧
= ⇥(1)kxtk22

Thus, we can conclude both kxtk2 and hv,xti are bounded by absolute constants.

Case 2: t2n � kxtk22

We will show this case cannot happen. Recall that the Hessian at xt must be a negative semidef-
inite. Therefore, ⌧ t2n must be larger than �max(Psym(A(x

t, :, :) +A(:,xt, :) +A(:, :,xt
))). By

Lemma 21, we have ⌧ t2n > ⇥(

p
n)kxtk2, which implies kxtk2 = t2⌧O(n1/2

). As a result, 3⌧ t2

dominates O(

p
log n)kxtk22 in the nominator of (8). Henceforth, we have

hv,xti = C1
hv,xti2

t2n
+ C2

1

n
,

where both C1, C2 are constants within 1 ± 2/3. Notice that if hv,xti2
t2n

� n�1, then hv,xti =

⇥(t2n), implying hv,xti2
t2n

= ⇥(t2n) = ⇥(

"2(n)
n ) ⌧ n�1. This is a contradiction, so we know,

hv,xti can only be ⇥(n�1
).

Moreover, notice that t4⇥(n2
) � ⇥(n log n)kxtk42 = t8⌧4O(n3

log n). Therefore, from (9),

kxtk22 =
1

t4
⇥(n�6

) +⇥(

1

⌧2
) ) kxtk2 = ⇥(n� 3

4
log

�1 n)

This contradicts with kxtk2 = t2⌧O(

p
n) = O(n� 3

4
log

�3 n). There cannot be a local maximizer
in this case.

Finally we show that the Hessian is correlated with the correct vector v near the threshold.

Lemma 24 For t = n�1"(n), where "(n) = O(log

�2 n), let b be the top eigenvector of r2
(gr(x†, t)),

we know sin ✓(b,v)  1/ log2 n.

Proof Recall the formula for the Hessian (6),

r2gr(x
†, t) = �3⌧((kx†k22+t2(n+2))I�2hv,x†ivvT

+2x

†
x

†T
)+Psym(A(x

†, :, :)+A(:,x†, :)+A(:, :,x†
)),

and x

†
=

v

n +

u

3⌧n with norm ⇥(

1
⌧ ) and correlation hx†,vi = ⇥(

1
n). Therefore, we have kx†k22 +

t2n = O(n�1
log

�4 n). By Lemma 21 the spectral norm of Psym(A(x

†, :, :) +A(:,x†, :) +A(:, :

,x†
)) is ⇥(n� 1

4
log

�1 n). Thus, we can write the Hessian as

r2gr(x
†, t) = 6⌧hv,x†ivv>

+E,
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where the main term vv

T has coefficient 6⌧hv,x†i = ⇥(n� 1
4
log n), and the spectral norm of E is

bounded by O(n�1/4
log

�1 n). By Davis Kahan theorem we know sin ✓(b,v)  O(1/ log2 n), that
is, the top eigenvector of the Hessian is O(1/ log2 n) close to v.
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