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Abstract

Many conventional statistical procedures are extremely sensitive to seemingly minor deviations
from modeling assumptions. This problem is exacerbated in modern high-dimensional settings,
where the problem dimension can grow with and possibly exceed the sample size. We consider the
problem of robust estimation of sparse functionals, and provide a computationally and statistically
efficient algorithm in the high-dimensional setting. Our theory identifies a unified set of determin-
istic conditions under which our algorithm guarantees accurate recovery. By further establishing
that these deterministic conditions hold with high-probability for a wide range of statistical models,
our theory applies to many problems of considerable interest including sparse mean and covariance
estimation; sparse linear regression; and sparse generalized linear models. In certain settings, such
as the detection and estimation of sparse principal components in the spiked covariance model, our
general theory does not yield optimal sample complexity, and we provide a novel algorithm based
on the same intuition which is able to take advantage of further structure of the problem to achieve
nearly optimal rates.

Keywords: Robustness, sparsity, linear regression, covariance estimation, sparse principal compo-
nents analysis (PCA), generalized linear models, logistic regression.

1. Introduction

Complex high-dimensional datasets pose a variety of computational and statistical challenges. In
attempts to address these challenges, the past decade has witnessed a significant amount of research
on sparsity constraints in statistical models. Sparsity constraints often lead to more interpretable
models, that can be estimated efficiently even in the high-dimensional regime where the sample size
n can be dwarfed by the model dimension d.

Much of the theoretical literature on sparse estimation has focused on providing guarantees
under strong, often impractical, generative assumptions. This in turn motivates the study of the
robustness of these statistical estimators, and the design of new robust estimators. Classically, the
sensitivity of conventional statistical procedures to apparently small deviations from the assumed
statistical model, was noted by Tukey (1975) who observed that estimators like the empirical mean
can be sensitive to even a single gross outlier. The formal study, of robust estimation, was initiated
by Huber (1964, 1965) who considered estimation procedures under the e-contamination model,

(© 2017 S. Balakrishnan, S.S. Du, J. Li & A. Singh.



BALAKRISHNAN DU L1 SINGH

where samples are obtained from a mixture model of the form:
P.=(1—¢)P +eQ, (D

where P is the uncontaminated target distribution, () is an arbitrary outlier distribution and e is the
expected fraction of outliers. Subsequent work in the literature on robust statistics, focused on the
design of robust estimators and the study of their statistical properties (see, for instance, the works
of Huber (2011); Hampel et al. (2011)). Recent research (Chen et al., 2015, 2016) has focussed on
providing a complementary minimax perspective by characterizing both minimax upper and lower
bounds on the performance of estimators in a variety of settings. Notably, the minimax estimation
rates in these settings typically have two aspects: (1) the dependence on the contamination parameter
€, which we refer to as the contamination dependence, and (2) the statistical rate (typically, a
function of the sample size n and the dimensionality d).

The major drawback of many of these classical robust estimators is that they are either heuristic
in nature (for instance, methods based on Winsorization (Hastings Jr et al., 1947)) and are generally
not optimal in the minimax sense, or are computationally intractable (for instance, methods based
on Tukey’s depth (Tukey, 1975) or on ¢; tournaments (Yatracos, 1985)).

Considering the low-dimensional setting where d < n, recent works (Diakonikolas et al.,
2016a; Lai et al., 2016; Charikar et al., 2016) provide some of the first computationally tractable,
provably robust estimators with near-optimal contamination dependence in a variety of settings.
Concretely, the paper of Lai et al. (2016) considers robust mean and covariance estimation for dis-
tributions with appropriately controlled moments, while the work of Diakonikolas et al. (2016a),
focuses on robust mean and covariance estimation for Gaussians and extends these results to var-
ious other models including the mixture of Gaussians. Although the focus of our paper is on the
multivariate setting, we note that several recent papers have provided robust estimation guarantees
for univariate distributions (Acharya et al., 2017; Chan et al., 2013, 2014; Daskalakis et al., 2012;
Diakonikolas et al., 2016b).

A Unified Framework for Robust Recovery We make several contributions to this line of re-
search. In more details, we focus on the sparse high-dimensional setting where the dimensionality
d is potentially much larger than the sample-size n but the unknown target parameter is k sparse
(and k < n). Building on the work of Diakonikolas et al. (2016a), our first main contribution is
to provide a unified framework for the estimation of sparse functionals. We identify a set of core
deterministic conditions, under which we can guarantee accurate recovery of a statistical functional
in polynomial-time. In contrast to prior work, this framework unifies, for instance, the robust es-
timation of the mean vector and of the covariance matrix of a high-dimensional distribution. Our
second main contribution, establishes that these deterministic conditions hold with high-probability
in many statistical models, even in the high-dimensional setting where n < d, under appropriate
sparsity assumptions. As a consequence, we obtain the first robust estimators in a variety of high-
dimensional problems of practical interest including sparse mean and covariance estimation; sparse
linear regression; and sparse generalized linear models. Finally, from a technical standpoint, as will
be discussed at more length in the sequel we introduce a variety of new techniques involving the
careful analysis of convex relaxations and delicate truncation arguments that we anticipate will be
useful in other related problems.

At a high level, we show that if the target parameter (e.g. mean or covariance) is corrupted,
higher order moments must also be corrupted. Moreover, if the target parameter is sparse, then the
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corruption of the higher order moments can be detected by inspecting a few coordinates, which in
turn allows us to improve our estimate of the target parameter. However, this comes at an inher-
ent statistical cost. In typical (non-robust) sparse estimation problems it suffices to obtain enough
samples for the empirical estimate to converge to its sparse population counterpart in the appro-
priate sparsity-respecting norm. Now, we also need some of the empirical higher order moments
to converge to their population counterparts, requiring more samples. This statistical price seems
unavoidable for computationally tractable procedures—in recent work, Diakonikolas et al. (2016c)
showed any statistical query (SQ) algorithm (Kearns, 1998) for robustly learning the sparse mean
of a Gaussian must pay this extra statistical cost. Specifically, they show that (up to log factors) our
rates are optimal for any SQ algorithm.

Going Beyond the Framework This poses the natural question: in what settings can we avoid
this statistical blowup? We consider the problem of estimating high-dimensional principal compo-
nents in the spiked covariance model (Johnstone, 2001) and show that by going beyond our general
framework and by tailoring our estimator specifically to this setting we are able to avoid this statis-
tical penalty and obtain near-optimal computationally tractable robust estimators.

The remainder of the paper is organized as follows. In Section 2, we provide some background
on robust estimation and formally introduce the examples we consider throughout this paper. Sec-
tion 3 is devoted to our main results and their consequences. Section 4 includes a description of
our main algorithm, and includes a sketch of its analysis with more technical details deferred to the
Appendices. In Section 5 we provide improved algorithms for detection and estimation in sparse
PCA. We conclude with a brief discussion of avenues for future work.

2. Background and Problem Setup

In this section we provide some background on robust estimation, before providing a precise defi-
nition of the statistical models we consider.

2.1. Robust estimation

In the robust estimation framework we suppose that we obtain samples {x1,...,z,} where each
sample x; is distributed according to the mixture model P, in Eqn. (1). In this model, the distribution
Q is allowed to be completely arbitrary and represents the distribution of “outliers”. An alternative
viewpoint arises from the observation that the set of possible distributions F is equivalent to the ¢;
ball around P of radius €. Indeed, we can alternatively view desirable estimators in this model as
those that are robust to model-misspecification (in the ¢; or total variation metric).

Our focus, will be on finite-dimensional functionals of the target distribution P. Formally, for a

given function g : RY s R?, we define the corresponding functional Og: P R?, where:
04(P) = Eqznplg()].

Motivated by similar considerations in high-dimensional statistics, our sparsity assumption will be
that the number of non-zeros ||04(P)||o < k. We will further denote the covariance as,

cov(0y(P)) = Eonrp [(9(z) = 04(P))(9(x) — 04(P))"] 2

Our algorithm will be based on appropriately weighting samples in order to match second order
information and in order to accomplish this we will rely on the existence of a certain algebraic
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form for the covariance. In particular, we will suppose that there exists a multivariate function
F : R% — R4 guch that F(6,(P)) = cov(6,(P)). An important restriction on this algebraic
form, that will enable accurate estimation, is that it be sufficiently regular. We first assume

Lioy = max )’UTCOV (64) v‘ 3)
llvllo:llvllg<k
for some constant L.,,. Second, we require that for any two vectors 61,602 € R?, there exist a
constant L and a universal constant C' such that

IF(61) — F(02)llop < Lrl61 — b2]|2 + C||61 — 62]]3. )

lop

Our bounds depend explicitly on Ly and L.o,. In the next subsection, we consider a variety of
examples and describe the appropriate functionals of interest and their corresponding covariances.

2.2. Illustrative examples

Our general results apply to a variety of statistical models and in this section we describe a few
concrete examples of interest.
Sparse Gaussian Mean Estimation: In this setting, we observe samples

{ZEl,...,ZEn}N(1—6)N(/L,I)+EQ, )

where each z; € R? and for an arbitrary Q '. The goal in this setting is to estimate 1 in the £5 norm
in the high-dimensional setting, under the assumption of sparsity, i.e. that ||u|lo < k. Using the
notation introduced earlier, the function ¢ is simply the identity, i.e. g(x) = x.
Sparse Gaussian Covariance Estimation: In this case, we observe samples

{z1,...; 20} ~ (1 —€)N(0,3) + €Q, 6)

where each x; € R and where the covariance matrix can be written as ¥ = I+, where ||Q2||o < k.
The goal in this problem is to estimate the sparse matrix {2. This problem is closely related to the
problem of Gaussian graphical modeling. Zeros in X signal marginal independencies, and this
can be used to construct a graphical display of the relationship between the features (Bien and
Tibshirani, 2011). In this problem, denoting by vec(M) the vectorization of the matrix M, and by
diag(M) its diagonal entries, we consider the function g(z) = vec(zz? — diag(zx”)). Further,
using ® to denote the Kronecker product, we have that: F(vec(S)) = vec(S)vec(S)T +5® S.
Finally, we note that via a simple reduction scheme (described in detail in Diakonikolas et al.
(2016a)) we can combine the above two settings in order to jointly estimate an unknown mean, and
an unknown covariance robustly in a high-dimensional setting provided both are sparse.
Sparse PCA in the Spiked Covariance Model: A popular model in which to study issues that
arise in the detection and estimation of high-dimensional principal components is the spiked covari-
ance model introduced by (Johnstone, 2001). Here we obtain samples

{z1,..., 20} ~ (1 = €)N(0,I 4 pvo?l) + €Q, @)
where v is a k-sparse vector, i.e. ||[v|lo = k, ||v|l2 = 1, p is the signal-to-noise ratio, and @ is
arbitrary. In other words, the sparse matrix .S in the sparse Gaussian covariance estimation problem
is assumed to be rank 1. We focus on two canonical tasks in this setting:

1. We address the unknown covariance case in the sequel.
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1. The detection problem which is to test for the existence of the rank 1 spike. More formally,
for some critical radius p.ir we consider distinguishing the two hypotheses:

Hy:p=0 and Hi:p > peit- (3

For any test ¢ : {z1,...,z,} — {0, 1}, we evaluate its detection risk, which is simply the
sum of its Type I and (maximal) Type II errors, i.e.
R(Y) = Po(¢ =1) + sup Py(¢ =0),
P2 Perit
where P, corresponds to the distribution of samples in Eqn. (7), and P corresponds to the
same distribution with p = 0.

2. The recovery or estimation problem which is to estimate the (uncorrupted) covariance matrix
in the Frobenius norm. This is equivalent to finding an estimate of the principal direction v,
: =N .— L1 55T _ 00T
where our loss is measured as L(v,v) := 7% ’va U H}op'

In the uncorrupted setting, it is folklore (see e.g. (Berthet and Rigollet, 2013a)) that n =
O(klogd/p?) samples are necessary for detection, and moreover that the minimax rate for esti-
mation is ©(y/klog d/np?) (Wang et al., 2016). However, for computationally efficient algorithms
the best known results are that n = O(k? log d/p?) suffice for detection, and to construct a tractable
estimator whose error scales as O(y/k?log d/np?). Furthermore, this rate is tight assuming the
planted clique hypothesis (Berthet and Rigollet (2013a); Wang et al. (2016)).

Linear Regression: Linear regression is a canonical problem in statistics. In the uncontaminated
setting we observe paired samples {(y1,21), ..., (yn, Z»)} Which are related via the linear model,

Yi = <xi7 /8> + €, (9)

where z;, 5 € R? and ¢; € R is some type of observation noise. In this paper, we assume that
x; ~ N(0,I)and ¢; ~ N(0,1), and our goal is to estimate the unknown £ in a high-dimensional
setting under the assumption that ||3||o < k. In this problem, we take g((y,x)) = yz, by making
the observation that the functional of interest 5 = E[yx|. Further, we can calculate the algebraic
form for the covariance as F/(3) = (||8]|3 + 1)1 + BB7.

Generalized Linear Models (GLMSs): We consider two distinct forms for GLMs in our work. The
first form is a non-linear regression model where the uncontaminated distribution P corresponds to
pairs {(y1,21), ..., (Yn, Tn)} which are related as,

yi = u({zs, B8)) + € (10)

where v is a known non-linear function, z;, 3 € R% and ¢; € R. As before we assume that,
x; ~ N(0,I), € ~ N(0,1), and further that there exist constants C; and C5 such that, u(0) < C;
and u is Co-Lipschitz, i.e. for any pair x,y € R we have that,

u(z) —u(y)| < Colz —y|.

The goal is to estimate the unknown, sparse /3. In this case, we choose g((y, z)) = W where
x' = (x, B). As a consequence of Stein’s identity we have that E[g((y,z))] = 3. Once again, by
Stein’s identity (see Appendix E) we obtain the algebraic form of the covariance:

(14 Ef()] E[2u(z)V2u(e') + (Vu(@))?]\ . 7
F(B)‘<<Emu<x'>]>2)”( EV,u(x)? )ﬁ .
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where 2/ = (x, (). Observe that F'(3) has the form 11 + k233" where x1 and ko are scalars. Fur-
ther notice that 2/ ~ N (0, I ﬁ||§) , so these quantities can be estimated easily using just {y1, ..., yn}

with a one-dimensional robust method like the median estimator. Therefore, from now on, we will
assume these quantities are known constants.

Logistic-type Models: Finally, our theory also applies to GLMs of the logistic regression form. In
the uncontaminated setting, we observe pairs {(y1, 1), ..., (Yn, Zn)}, where y; € {0, 1} where,

P(y; = 1|z;) = u({zi, B)),

and the assumptions on x and u are as before. In this case, the function g is identical to the previous
case, and its corresponding covariance is given as (see Appendix F):

( Elu) E[VZu(e’) - (Vu(@ )] .0
o )‘(<Emfu<x'>]>2>”< EVu(@)))? )os"

where 2’ = (x, (). With these preliminaries in place, we devote our next section to a description of
our main results concerning the robust high-dimensional estimation of these statistical models.

3. Main Results

In this paper, our contributions are two-fold. Our first result is to provide a general framework
for high dimensional robust recovery, which we show is powerful enough to encode many problems
involving sparsity. This consists of two ingredients: (1) a set of deterministic conditions under which
such recovery is possible, and then (2) concentration results which show that these deterministic
conditions hold after not too many samples. This yields our results for sparse mean estimation,
sparse covariance estimation, and sparse regression.

Our second result is to show that in the spiked covariance model, it is possible to move past this
framework (which fails to provide tight bounds in this setting), and construct a new convex program
for robust recovery. We first give a simple algorithm for the detection problem, then show that this
algorithm can be modified somewhat to also yield recovery. Here, our rates, unlike elsewhere in the
paper, match the computationally efficient rates without noise.

3.1. Notation

In this model defined in Eqn. (1), we can define two subsets of G, B C {1,...,n}, where i € G if
the corresponding sample is drawn from P, and ¢ € B otherwise. Following (Diakonikolas et al.,
2016a), we define a set of feasible weights as

- 1
SM:{{wl,...,wn}:zwi:1,0<wi<(l_ze)nw}. (1)
=1

Noting that with high-probability there are fewer than 2en points in the set B, the set .S, . with
high-probability contains the ideal weights which we denote w* whose entries are given as,
. Iieg)

= ——— Vi 12
w; iG] v 12)
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For any given weight vector w, we define its renormalized restriction to the points in G and B via,

g Wi A wy b Wi A Wy .
W = — W= = — Vi
DliegWi Wy 2lieBWi W
With this notation in place, we can further define a collection of quantities of interest for a fixed set
of weights w € S, .. A naive estimator of the functional is simply

O(w) = sz‘g(ﬂfz‘)a (13)
=1

and its error is denoted as A(w) = f(w) — 84(P). A more nuanced estimator further exploits the
expected sparsity of the functional by truncating its smaller entries. We define, for a positive vector
v, Py(v) to be the vector where the k-th largest entries in magnitude are retained (breaking ties
arbitrarily) and all other entries are set to 0. Then we define,

~

O(w) = Poy(w) (14)

and its error A (w) = ) (w) — 04 (P). Recalling, the definition of the covariance functional in
Eqn. (2) we define the error of the weighted covariance as,

E(w) =Y wilgla:) = (P))(g(xs) = 5(P))" — cov(0y(P)).
i=1

In allowing for a high-dimensional scaling, where d > n, we can no longer expect ﬁ(w) to be small
in an ¢ sense and £(w) to be small in an operator norm sense. Instead, we rely on establishing a
more limited control on these quantities. We define the k-sparse operator norm as,

lIM]

max _[|A17],

Kop ™ gcld)|s|<k

Finally, we define | M ||oc = max; j |M;;].

3.2. A general framework for robust recovery

With these definitions in place we can now state our main deterministic result. We begin by identi-
fying a set of deterministic conditions under which we can design a polynomial time algorithm that
is provably robust. We focus on functionals 6, for which Equations (3) and (4) are satisfied. Our
main deterministic result is the following:

Theorem 3.1 (Main Theorem) Suppose that, for samples {x1, ..., xy,} drawn from the e-contamination
model, we have that ||0,(z;)||2 < D, and further that there exist a universal constant Cy such that
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the following conditions hold:

IB| < 2en, (15)
LF+ Vv cov) )

1A w")]|oo < Cy ; 16)

1€(w)[loo < Ch

|PAB @)l < C1 ( LF+—V’CW) 6) Yw € Sue, a7)
( (18)

L%+uw )

1€ (@)l 0p < C1 ((LE + LCOV) §) Yw € Sy (19)

for some 6 = Q (€). Then there is an algorithm which runs in time polynomial in (n, d, %) and
outputs 0 satisfying H5— 0|2 < Ca ((V/Leov + L) ) for some absolute constant Cs.

Several remarks are in order. In order to apply the theorem to a specific statistical model,
we simply need to verify that the functional is sufficiently regular (see Equations (3) and (4)),
that the functional is bounded by a polynomial in (n,d, D,1/¢), and finally that the conditions in
Equations (15)-(19) are satisfied. We ensure boundedness via a simple pruning step that removes
gross, and easily detectable, outliers. In order to verify the main deviation conditions of the theorem,
we note that there are two types of deviation we need to control. The first type in Equations (16) and
(18) establishes strong /., control, decaying with the sparsity %, but only needs to hold for the ideal
weights w*. The other type of control, in Equations (17) and (19) is on an k-sparse operator norm
and needs to hold uniformly over the set .S, ., but importantly ignores the weights on the points in
B via restriction to w9. In concrete examples, we establish the latter control via the use of empirical
process arguments (selecting an appropriate covering and using the union bound).

Re-visiting Illustrative Examples We now turn our attention to the statistical problems intro-
duced earlier, and derive specific corollaries of our deterministic result. We begin with the case of
estimating a sparse Gaussian mean, when the covariance is the identity.

Corollary 3.1 (Robust Estimation of Sparse Gaussian Mean) Consider the model introduced in

2
Equation (5), then there are universal constants C1,Cy such that, if n > Cy (%g@) , then
there exists an algorithm that runs in time polynomial in (d,n) and outputs an estimate [i that with

probability at least 1 — T satisfies: ||fi — pl|5 < Ca€®log 1

It is worth noting that in contrast to prior work the sample complexity, has a logarithmic dependence
on the ambient dimension d, allowing for high-dimensional scalings where d >> n, provided that the
sparsity k2 < n. As in the work of Diakonikolas et al. (2016a), we obtain near-optimal contamina-
tion dependence scaling upto a logarithmic factor as roughly €2. Importantly, as emphasized in prior
work (Diakonikolas et al., 2016a; Lai et al., 2016) and in stark contrast to other tractable robust esti-
mators, the contamination dependence achieved by our algorithm is completely independent of the
dimension of the problem. In comparing to information-theoretic lower bounds (see Appendix B),
we notice that the sample complexity is worse by a factor k. As will be clearer in the sequel, this
increased sample complexity is due to use of a convex relaxation for sparse PCA (d’Aspremont
et al., 2007). This phenomenon, arises in a variety of statistical estimation problems and is believed
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to be related to the hardness of the planted clique problem (Berthet and Rigollet, 2013b). Next, we
consider the performance of our method, in estimating a sparse covariance matrix.

Corollary 3.2 (Robust Sparse Gaussian Covariance Estimation) Consider the model introduced

2
in Equation (6). There are universal constants C1, Co such that if the sample size n > C <%§d/ﬂ>

then there is an algorithm that runs in time polynomial in (d,n) and produces an estimate ) that

Y 2
with probability at least 1 — T satisfies: H‘Q - QH‘F < Cy (H\Q|||I2g ?log! %) .

We note that once again, the result is applicable even when n < d, that the statistical estimation rate
is optimal up to a factor of k and that the contamination dependence is optimal up to logarithmic
factors. Lastly, we apply our estimator to the various generalized linear models introduced earlier.

Corollary 3.3 (Robust Sparse Generalized Linear Models) Consider the models in Equations (9),(10),
and (11). If the target parameter (3 satisfies, ||3||2 < p, then there exist universal constants C1,Co

2
such that if n > C} (%Q(d/ﬂ), then there exists an algorithm that runs in time polynomial in

(d,n, p) and produces an estimate 3 such that with probability at least 1 — T

1. Linear and Generalized Linear Models: ||B— Bl13 < Cy ((HBH% + 1) e?log! %) .

2. Logistic-type Models: HB— Bl3 < Oy ((HﬂHg + 1) €2 log? %) )

By exploiting the natural boundedness of the logistic-type models, we are able to obtain slightly
stronger guarantees than in the regression setting.

3.3. The spiked covariance model for sparse PCA

We now turn our attention to the problems of robust detection and estimation in the spiked co-
variance model. Recall in this model, samples are generated according to the model in Eqn. (7).
Observe that if we simply apply Corollary 3.2, then since vv” is k? sparse, we obtain a rate of
O(k*log d/€?) for recovery—which is off by a factor of k% from the optimal rate. We develop a
tailored approach for the sparse PCA setting which yields a faster (near-optimal) rate. Focusing first
on the detection problem, we fix d,e¢ > 0 and for a sufficiently small universal constant ¢ > 0 we

min(d,k?)+log (zg ) +log1/8
n

define the critical radius as: periy = c\/ . We obtain the following result:

Theorem 3.2 (Robust sparse PCA detection) Suppose that, e\/log(1/e) = O(perit), and con-
sider the hypothesis testing problem in Eqn. (8). Then Algorithm 3 has detection risk at most 6.

We then modify our algorithm to give an analogous rate for recovery:

Theorem 3.3 (Robust sparse PCA recovery) Fix e, p > 0, and consider the sparse PCA estima-
min(d,k?)+1log ({3 )-+log 1/5)
2 I

p
then there is an efficient algorithm, which with probability at least 1 — § outputs a vector v such that

(14 p)e log(l/e)> |

tion problem. There is a universal constant C > 0 such that if n > C <

uam:o< .
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Algorithm 1 Robust Sparse Functional Estimation

1: Input: {1‘17 e ,l’n}, Tprunes k, Tsep

2: Run a naive pruning algorithm, with input ({z1,..., 25}, Tprune) and output {z1, ..., 2 }.

3: Run the ellipsoid algorithm using the separation oracle described in Algorithm 2 with input
({z1,--.,2m}, 8, Tsep) and output {w1, ..., wm} .

4: Output: 0 = Py (37 wig (2)).

4. A Unified Algorithm for Robust Sparse Functional Estimation

Broadly, our main algorithm follows the template of the convex programming approach for Gaussian
mean estimation in Diakonikolas et al. (2016a), described in Algorithm 1. The algorithm proceeds
in two steps, first a naive pruning step is applied to remove clear outliers in order to ensure that var-
ious quantities remain bounded by a radius that is polynomial in (n, d, 1/¢). In the sequel, we use
{z1,...,2m} to denote the pruned sample. We generalize a similar pruning step from prior works
(Diakonikolas et al., 2016a; Lai et al., 2016) to deal with the generalized linear model settings.
This in turn further ensures that the subsequent use of the ellipsoid algorithm, terminates in polyno-
mial time. At a high-level the ellipsoid algorithm is used to exploit the covariance structure of the
functional in order to obtain a weighting of the sample that appropriately down-weighs detrimental
samples from the contamination distribution ().

Separation oracle via sparse PCA: Our first main technical contribution, is a new separation or-
acle, appropriate for the high-dimensional setting. The separation oracle in the work of Diakonikolas
et al. (2016a) is based on the operator norm deviation between the weighted empirical covariance
from its known or anticipated form. In the high-dimensional setting when n < d, even in the ab-
sence of outliers the covariance function cannot be estimated well in the operator norm. Exploiting
the sparsity of the underlying functional we show that it suffices instead to ensure that the weighted
empirical covariance is close to its anticipated form only on k-sparse subsets of the coordinates.
However, this leads to the next technical hurdle: we need to be able to detect the deviation of the
weighted empirical covariance on sparse subsets. This is the sparse PCA problem and is known to
be NP-hard in a strong sense (Tillmann and Pfetsch, 2014). We consider instead using a convex
relaxation for sparse PCA (d’Aspremont et al., 2007), and show upto a loss of a factor of £ in the
sample complexity, this convex relaxation suffices to construct our separation oracle.

Hard-thresholding with redundancy: Even in the absence of outliers, the natural estimator
for a functional — its empirical counterpart — is inconsistent when n < d, at least in an /5 sense.
However, the empirical estimator remains adequate both in an ¢, sense, and over sparse subsets. In
order to exploit this insight when the true functional is sparse we use a careful truncation at various
points in order to establish appropriate error control. A key aspect of this truncation is to ensure
a certain redundancy by retaining roughly twice as many entries at each step, which allows us to
adequately control the possible bias induced by truncation.

General forms for the covariance: A final conceptual contribution that we highlight is general-
izing the basic insight of the work of Diakonikolas et al. (2016a). At a high-level, a key observation
of their work is that in cases where the covariance structure is either known or in some sense related
to the mean structure, this fact can be exploited in order to identify good weightings of the samples.
We generalize this insight, identifying a set of smoothness conditions on the covariance map (see

10
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Algorithm 2 Separation Oracle for Robust Sparse Estimation

1: Input: Weights from the previous iteration {ws, ..., wy,}, pruned samples {z1, ..., zp}, tol-
erance parameter Tgep, sparsity level .

2: Compute § = Pay (o wig (zi)) and E = Y7 w; (g (z:) — 5) ® (g (z) — 5) — F(6).
3: Solve the following convex program :
max tr (EH) subjectto H =0 |HI,, <k tr(H)=1 (20)

Let H* be the solution and A* be the optimal value.

4: if \* < 7gp then

5:  Return: “Yes”.

6: else

7:  Return: The separating hyperplane:
m

((w') = tr([<2w§(g (zi) — @ ® (g (2) — @} — F(@)[ﬁ) —\*

i=1

8: end if

Equations (3) and (4)) that allow us to tractably exploit the covariance structure. Concretely, deriv-
ing the covariance structure for mean and covariance estimation, GLMs and logistic-type models
and showing that they satisfy these conditions enables a unified treatment.

5. Algorithms for Robust Sparse PCA

We first describe our techniques at a high level. Our main idea is to treat the SDP for sparse PCA as
a norm, and then to write convex optimization problems over the set S, . directly using that norm.
Formally, for any convex set S C R4 let || M||§ = supacg |tr(AM)| denote the dual norm
induced by S. In particular, observe that if we let

Xe={H:H*=0, [Hll,, <k, tr(H) = 1},

then [|M ||y, is exactly the absolute value of the solution to (20), the SDP relaxation for sparse PCA.
This allows us to write down optimization of ||-||s as an SDP which can be solved efficiently.

We now concretely describe how this can be used in robust sparse PCA . For detection, we show
that, as before, if we can find weights on the samples so that the empirical covariance with these
samples has minimal dual norm, then the value of the dual norm gives us a distinguisher between the
spiked and non-spiked case. To find such a set of weights, we observe that norms are convex, and
thus our objective is convex. Thus, as before, to optimize over this set it suffices to give a separation
oracle, which the SDP for sparse PCA provides us.

We now turn our attention to the recovery problem. Here, the setup is very similar, except now
we simultaneously find a set of weights and an “explainer” matrix A so that the empirical covariance
with these weights is “maximally explained” by A, in a norm very similar to the one induced by
the sparse PCA SDP. Utilizing that norms are convex, we show that this can be done via a convex
program using the types of techniques described above, and that the top eigenvector of the optimal

11
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A gives us the desired solution. While the convex program would be quite difficult to write down in
one shot, it is quite easily expressible using the abstraction of dual norms.

5.1. The detection problem

In this section, we give an efficient algorithm for detecting a spiked covariance matrix in the pres-
ence of adversarial noise. Our algorithm is fairly straightforward: we ask for the set of weights
w € Sy, so that the empirical second moment with these weights has minimal deviation from the
identity in the dual X} norm. We may write this as a convex program. Then, we check the value of
the optimal solution of this convex program. If this value is large, then we reject the null hypothesis,
i.e. return the value 1 and otherwise we return the value 0. The formal description of this algorithm
is given in Algorithm 3. From this description it is not immediately clear that this algorithm can be
implemented efficiently. In Appendix G.1 we show this is not an issue. At the heart of the matter
is that [|-[| y, can be computed efficiently, and that the specific A € X}, which achieves the maxima
can also be found efficiently.

Algorithm 3 Robust detection of a rank 1 spike
1: Input: samples x1, . .., x,, error parameter ¢, failure parameter 9, signal to noise ratio p
2: Let v be the value of the solution

*

min
weSn,e

2y

n
Z wi(zizl — 1)
i=1

Xk

3. if v > p/2 then reject the null hypothesis (return 1), else accept (return 0).

5.2. The recovery problem

We now describe how to solve the robust recovery problem. An initial attempt would be to simply
run the same SDP in (21), and hope that the dual norm maximizer gives you enough information to
recover the hidden spike. This would more or less correspond to the simplest modification SDP of
the sparse PCA in the non-robust setting that one could hope gives non-trivial information in this
setting. However, this cannot work, for the following straightforward reason: the value of the SDP is
always at least O(p), as we argue in Section G.2. Therefore, the noise can pretend to be some other
sparse vector u orthogonal to v, so that the covariance with noise looks like w9 (I+pvv? ) +w9 puu®,
so that the value of the SDP can be minimized with the uniform set of weights. Then it is easily
verified that both vo! and wu?® are dual norm maximizers, and so the dual norm maximizer does
not uniquely determine v.

To circumvent this, we simply add a slack variable to the SDP, which is an additional matrix in
X}, which we use to try to maximally explain away the rank-one part of I + pvv”. This forces the
value of the SDP to be small, which allows us to show that the slack variable actually captures v.

Our algorithms and analyses will make crucial use of the following convex set, which is a
relaxation of AX;:

We = {X e R tr(X) < 1, || X110 < &, X = 0}.
Our algorithm, given in Algorithm 4, is the following. We solve a convex program which simulta-
neously chooses a weights in S, . and a matrix A € WV, to minimize the W, distance between the
sample covariance with these weights, and A. Our output is the top eigenvector of A.

12
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Algorithm 4 Robust estimation of the top principal component
1: Imput: samples x1, . .., x,, error rate ¢, failure probability ¢, signal to noise ratio p
2: Let w*, A* be the solution to

n *

sz(xleT —1I)—pA

i=1

(22)

argmily,eg, . Aex)

Wak

3: Let u be the top eigenector of A*
4: return Py (v)

6. Conclusion and Future Directions

In this paper we propose a computationally tractable robust algorithm for sparse high-dimensional
statistical estimation problems. We develop a general result, which we then specialize to obtain
corollaries for sparse mean/covariance estimation, sparse linear regression and sparse generalized
linear models. In each of these problems, we obtain near optimal dependency on the contamination
parameter, and sample complexities that depend only logarithmically on the ambient dimension.

Future directions of research include developing faster alternatives to the ellipsoid algorithm, to
further relax the assumptions in various settings, and finally to close the gap in sample complexity
to statistically optimal, albeit computationally intractable procedures (Chen et al., 2015, 2016).
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Appendix A. Proofs from Section 4
We first give a high-level descriptions of key steps in our algorithm and corresponding lemmas.

Hard Thresholding: The idea of using hard thresholding in sparse estimation problems in order
to ensure that the overall estimation error is well controlled, has been explored recently in iterative
hard thresholding algorithms (see for instance Bhatia et al. (2015); Jain et al. (2014)). The key
result we need, relates the k-sparse subset error of the original estimator to the full ¢5 error of the
hard-thresholded estimator. Recalling the definitions of the error of the original estimator A and the
error of the thresholded estimator A we show the following result:

Lemma A.1 Suppose 0, is k-sparse, then we have the following result:
1, ~ ~ ~
I8l <[P (B)], < 418

Intuitively, this result lets us pass from the high-dimensional feasible error control on subsets to the
more desirable ¢5 error control.

Good Weights and Approximation of the Covariance: The utility of the ellipsoid algorithm is
in finding an appropriate set of weights, such that the weighted empirical estimate of the functional
is sufficiently accurate. In more details, we consider weights such that the weighted covariance is
close to the true one on every sparse subset of coordinates. Defining, 0 = Py, (OO0 wig (z)):

Definition A.1 [Good Weights] Let Cs be the subset of Sy, ¢ such that for any w € Cs we have

m

> wi(g (z0) = 0) (9(21) = 0) " = cov (6, (P))

=1

< (L% + Lcov) d.
k,op

The parameter § in the above definition is an accuracy parameter that will be chosen as a function of
only e differently for each model. The central role of this set of weights is captured by the following
result, whose proof follows along similar lines to that of Lemma 4.19 of Diakonikolas et al. (2016a).

Lemma A.2 Let w € S, and suppose that for a universal constant Cy we have,

1B| < 2en,

1P B )2 < O ((Lr+ Vo) 5).

y”g(wg)”’k,op <G ((L% + LCOV) 5) ’

P (B(w))|, > Cs (Lr + VEr) 6

for some sufficiently large constant Cs, then for sufficiently small € we have that,

where § > Cse for some sufficiently large constant Co. If ‘

|2 (B,

2
4e '

m

> wi(g (z) = 0) (g (1) = 0) " — cov (6,(P))

=1

>

k,op
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Roughly, this lemma guarantees that if the weighting scheme is such that the error ASis large (in £2)
then the weights cannot belong to the set of good weights defined above. We note that an essentially
identical result can be proved if we replace the true covariance by a plug-in estimate, provided the
covariance map is sufficiently smooth (see Lemma A.6). This results in an important reduction, in
order to obtain an accurate estimate it suffices to find a weight vector that belongs to the set of good
weights. We accomplish this via the ellipsoid algorithm.

Convex Relaxation of Sparse PCA: In order to use the previous lemma in the ellipsoid algo-
rithm, we need to be able to design a separation oracle for the set of good weights. The main
technical hurdle is that we need to compute, for a given set of weights, the sparse operator norm
which is an intractable problem in general (Magdon-Ismail, 2015).

We replace the sparse PCA algorithm by a standard tractable convex relaxation (d’ Aspremont
et al., 2007). The following result shows that the optimal value of this program is sandwiched by
the optimal value of the intractable sparse PCA program.

Lemma A.3 For a fixed w, the optimal value \* (w) of Eqn. (20) satisfies

~ ~

X (w) 2 |3 i (20) = 0 (w)) (9 (21) ~ B(w)) " ~ F (B(w))

k,op

Furthermore, the solution H*(w) satisfies that there is a universal constant C' such that for any
/
w' € Spe

2

< (slle@)l + B} + (Le+ s[5 )

RIS

Concretely, the above lemma provides two guarantees. First that the optimal value of the relaxation
is never too small, so that the ellipsoid algorithm does not falsely accept a bad weighting scheme,
and finally, that the separating hyperplane is sufficiently accurate when appropriate control can be
established on the various stochastic fluctuations. We combine these two facts to complete the
analysis of the ellipsoid algorithm and to establish Theorem 3.1 in the Appendix.

2

A.1. Proof of Hard Thresholding

Lemma A.4 (Lemma A.1) Suppose 0, is k-sparse, then we have the following result:
1, ~ ~ ~
I8l < |7 (B)], < 418

Proof We denote S* to be the support for § and S be indices for the selected 2k entries. We first
prove % H£H2 < HPk (5) H2 LetT = HPk (ﬁ) H2 We have

ol < -5 5 -

NSeN(S*)¢ Sen(S*)¢
2+H9 (87 _ (5™

) .
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Now we bound the three terms in the right hand side separately. The first term is bounded by 27 by
our assumption. The third term is 0 by definition of S and S*. For the second term, note

Hgscm(s*) _ 9560(5*)

. < Hgscm(s*) _ chm(s*)

i Hgscm(s*) _ §Sen(sY)
2

2
_ Hgsm(s*) _ 95%(3*)

4 HgSCm(s*)
2

) .

SCm(S*)H

We have Hgsm(s*) — 0y ) < 7 by assumption. Assume “5‘960(3*)“ > 2. Since |S| = 2k,

> 27. However,
2

) < 27. Adding all these terms

then there exists S’ C S, |S’| = k such that S*NS’ = () with Hg‘SIH
|

up, we have H@— 99H2 < 4r.

> Hgscms*

2
gsen(s*)

= Hﬁsl H < 7 by our assumption. Therefore,
2 2

For the other direction, let y = Hﬁ”z For any S’ C [d], |S’| < k, we have

|3

<[],
2 2

-~ Q/ c
’ +HA3ms
2

2
_ H&s’ms

2
<+ H&S'msc

2

where the last inequality is by our assumption. Now applying triangle inequality on Hﬁs 'nse ’

, We
2
have

H ASNSe

< H ASNSNS*
2

I Hﬁsmsm(s*)e
2

.
For the first term, observe that

H ASNSeNs®

< H ASens*
2

2
_ Hgsms* _ pSens®
g

2

7S°ns* S°NS*
< [, + s

2

By definition of Py, there exists S” C S with |S”| = s and #5” = 0 and HaSNHQ > Hgsms*

,
< #. Lastly, note again
2

Therefore, ’5(3)603* ‘2 < 7. Next, notice Hggm&
IS N (S) N (S*)°| < s, 50

_ HASCHS*
2

H&s'msm(s*)c gS'nSen(s*)°

2 2

S 58//

2
-~ QI
AS

2
-~ 1
AS

,
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Therefore AS' < 4~. Because S’ is arbitrary, our proof is complete.

A.2. Proofs of Good Weights and Approximation of the Covariance

Lemma A.5 (Lemma A.2) Let w € Sy, . and suppose that for a universal constant Cy we have,

|B| < 2en,

IP(A(w))]l2 < € ((LF + VL) ).

€Wk op < Cr ((LE + Leov) 6)

where § > Cse for some sufficiently large constant Cs. If‘ P ( ) H > Cs LF + +/ COV)

for some sufficiently large constant Cs, then for sufficiently small € we have that,

G

4e

m

S wilg () = 0) (9 (1) = 0) " — cov (6)

=1

k,op

Proof Let S = argmaxg (q),s|<k HAS/ H2 Assumptions in the lemma imply that

Zwl (z) — 03

ieB

Z wl 98)

i€g 2

:ﬁ<LF+\/E)5—c(LF+\/E)5
(C;—c) (LF‘F\/E)(S

where we have used Lemma A.1. Now consider the covariance. We have

50U ) = 05) (0 ()~ ) = (2 (0% G- ) ) (2 5 ) - )

w w w
i€B b b b

2

because of the non-negativity of variance. Therefore, because |B| < 2en, we have

3" (65 (z) = 65) (95 (=) — 65) "

€8
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Now using our assumption on the covariance, we have

> wi(g® (z0) = 67) (° (1) — 6)
i=1 op
> |13 wi (6 20) — 05) (6 (20) - 05) || -
icB op
ng (9% (2:) — 63) (9° (=) — 9‘;)T —wgeov (67)|| = [lwpcov (Hf)Hop
€ op
xS 2
— 26” —c(L +LCOV)5 2¢Lcov
s
3e

where in the last inequality we have used the assumption that € is sufficiently small. Lastly, we use
the expression

i wj (gs (z:) — g‘s) (gs (z) — gs)T — cov (9‘;)
= (65 () — 65) (0 (z) — 65) " —cov (65) ~ A5 (%) ~ A5 (B%) + A5 (&%)
to obtain

w; (gs (z) — §S> (gs (z) — gs)T — cov (05)

NE

1

<.
Il

op

w; (9% () — 05) (% () — 05) " = cov (65)

R

s
Il
—

([2;)

op

>
_9
o

\
W
™

Lemma A.6 Using the same notations and assuming the same conditions as Lemma A.2, we have

| Em)], o),

k,op
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Proof With the same notations in the proof of Lemma A.1, we know

S (6% () =) (4 (20— 5%) = cov (65)

i=1

op

By our assumptions on F', we have

=@ -2 @), <2e 3], + ]3],

k,op
—~ ~ 2
<5Lp HASH2 +5C HA5H2 .

Since § = 2 (€), € is larger than any absolute constant, applying triangle inequality to previous two
inequalities, we obtain the desired result. |

A.3. Proofs of Convex Relaxation of Sparse PCA
Theorem A.1 (Theorem A.3) For a fixed w, the optimal value \* (w) of Eqn. (20) satisfies

m
-~ ~ ~

S wilg () = 0 (w)) (9 (2) — 0(w)) " — F(B(w))

=1

A (w) >

k,op

Furthermore, the solution H*(w) satisfies that there is a universal constant C' such that for any
/
w' € Spe

<C <k‘ HS(w')HOO + Hﬁ (w)Hz + (LF +s HE (w")

swl,).

Proof Because this is a convex relaxation of sparse PCA, the lower bound is naturally satisfied. For
the upper bound, again we use the decomposition

St (a) ~9) (s —0) - 7 (3)

=1

=& () - AW)Aw) " —Aw)A W) +Aw)Aw)" +cov(g) - F (é(w)) .
First applying Holder inequality on trace we have

tr (& (w') H* (w)) < [|€ (w')[| o o 1 (w)lly, < k[|€ ()]

00,00 °

Similarly, we have

tr (& (w) A w)" +Aw)A (W) ") H* (v))

a5 0] [0,
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Note H* (w) belongs to the Fantope F' (Overton and Womersley, 1992; Vu et al., 2013), so

o< (B,

~

tr (A (w) A (w)T H” (w)) < H& (w) A (w)7

Using this property again we have
tr ([cov (9)— F (g(w))} H* (w)) < Hcov (9)— F (67(11)))

< o3, o310

op
Putting these together we obtain the desired result. |

A 4. Proofs of Ellipsoid Algorithm

We begin with proving the correctness of the separation oracle.

Theorem A.2 (Separation Oracle) Let w* denote the weights which are uniform on the uncor-
rupted points. Suppose Eqn. (15)-Egn. (16) hold, then there exists a sufficiently large absolute
constant Cyooq that if we set Tsep = €0 ((L% + LCOV) 6), Algorithm 2 satisfies

1. (Completeness) If w = w*, the algorithm outputs “Yes”.

2. (Soundness) If w ¢ chood (L2t Leov )5 the algorithm outputs a hyperplane ( (-) such that
£ (w) > 0. Moreover, if the algorithm ever outputs a hyperplane (¢, then { (w*) < 0.

Remark: The conditions of this separation oracle is slightly weaker than the traditional ones.
However, note that outside CCgood( 124 Lo )5 the separation oracle acts exactly as a separation
oracle for w*.

Proof First, for the completeness, plugging Eqn. (17) and Eqn. (19) into Theorem A.3 and then

using Lemma A.1, we directly obtain the desired result. If w ¢ Cquod( 12+ Leoy)s» WE CAN apply
the lower bound in Theorem A.3 and use Lemma A.6. See Lemma A.7 for the full proof. When
the algorithm outputs a hyperplane, ¢ (w) > 0 follows directly by the optimality of the convex
program. Lastly, we use the upper bound of Theorem A.3 to argue ¢ (w*) < 0 whenever we outputs

a hyperplane (Lemma A.8). |

Lemma A.7 Ifw ¢ C,,

oot (L2t Lo ) then X = Q ((LE: + Leov) 0).

Proof Applying the lower bound of Theorem A.3, we have

tr (H* (w) G (w))

S i (9(z) ) (o) - B(w)) ~ F (9)

=1

>

k,op
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Now if H£H2 > 5Ch (LF + \/Lcov) 0 where (1 is defined in Lemma A.2, by Lemma A.6 and

Lemma A.1, we have

k,op

On the other hand if | A < 5C1 (L + vZeor) 0, by Lemma A.1, by definition of Cpy 1311, )5

we have
tr (H™ (w) M (w)
>Cyood (LE + Leov) & — mF <§> H k,op

)
)
>Cyood (LE + Leov) 6 — FHAHQ_CHAHE
=Q ((L% + Leov) 9)

where the last step we use the fact that Cy,,4 is large enough.

Lemma A.8 For any hyperplane ¢, ¢ (w*) < 0.

Proof We apply the upper bound of Theorem A.3 with w’ = w™*. Therefore, we only need to upper

bound

~ 2 ~
@) <k 1€ (w) Hoo,oo + HA (w)”2 + <LF +s HA (w'

Plugging in our assumptions on w*, we just need to show

& (2 + 2an) 5+ (20 4 VEar) 4 22) [B )], + [Bw][) -

23
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for some absolute constant C5. If Hﬁ (w) H2 > 5C4 (LF + \/LCOV) ¢ for C' defined in Lemma A.2,

~12
A
using the argument in Lemma A.7, we know \* (w) = Q <|€H2> Therefore, we have

2

3w,

((w") < Cy ((L% +Leo) 6+ (L VEeor) 0+ L) B )], + HBW)HE) B

€

< Cy ((L% + Leov) 0 + <<LF + \/LTV) 5+LF) Hﬁ H ) H H

cunpio] —a 1B

<0

where the second equality we used Hﬁ (w) H2 > 5C, (L F+Vv LCOV) ¢ and the third we used the fact

that 0 = Q (e). If Hﬁ (w)H2 <5C; (LF + \/LCOV) 9, since \* (w) > Tgep > C3 (LQF + LCOV) o for
Cs sufficiently large, we have

f(w*)scz((L%+LCOV)5+((LF+M)5+LF) |3 @), +]3 @ H) Cs (L3 + Leov) 6
= —Q ((L% + Leov) 8) < 0.

Thus, whenever we output a hyperplane ¢, ¢ (w*) < 0. [ |

Now, by classical convex programming result, after polynomial iterations we can obtain w such

6( \% LCOV+LF)
nD

that there exists w’ € C . Lemma A.9 shows this w is

C1good (L%‘J’_LCOV)(S’
good enough to make 6, (w) a good estimate. This finishes the proof of Theorem 3.1.

w = leoo <

LCOV L
Lemma A.9 Given w, ifthere exists w' € chood(L%Jer)é such that ||w — leoo < 6(7 vaJrF)’

then ||A (w)|| | = O (VTeor + Lr) 8)
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Algorithm 5 Naive Pruning for Gaussian Mean

1: Input: {z1,--- ,2,}
2: Fori,j=1,---,n,letd; = ||z; — xj|,.
3: fori=1,---,jdo

4 LetAi:{j€1,~',nzéij:Q\/dlog(n/T)}
s: if |A;| > 2en then
6 remove x; from the set.
7 end if
8: end for

Proof By the assumptions, we have
|8, <57 (Bs ),

P, <z (W) + 3 (wi — wf) (g () - eg>)
=1

=5

2

<5 P (A (W) ||y + D |wi — wi| llg (21) — 04l
=1

0 ((\/EJrLF) 5) + (\/EJFLF) ¢
=0 ((VEeov + Lr) 0).

Appendix B. Technical Details of Sparse Mean Estimation

In this section we prove Theorem 3.1. Since F' (g) = I, a constant function, we know Lo, = 1 and
Lr = 0. We adopt Algorithm 1 in (Diakonikolas et al., 2016a) to achieve the boundedness condition
in Theorem 3.1. The pseudocodes are listed in Algorithm 5 for completeness. Maximal inequality
of Gaussian random variables shows with probability 1 — 7, this procedure does not remove any
example sampled from P.

2
Now we prove the concentration inequalities in Theorem 3.1. Note when n = () (%)

Eqn. (15) - (16) can be proved through classical Bernoulli and Gaussian concentration inequalities.
For the remaining two, we use the following lemma.
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LemmaB.1 Fix0 < ¢ < 1/2and 7 < 1. There isa 6 = O(e«/log(l/e)) such that if
X1, &y ~ N (u,I)andn = Q (k”logd—;ilgog(l/ﬂ> then for any w € Sy, ¢ the followings hold:

T T
Szt | wi (2 — ) (@i — )" — 1) 0| <6 (23)
ol <k lvll,<1 (; (zi — p) (i — ) )
ScldlS|<k ;w (aF = 1) - (24)

Proof The proof is similar to Lemma 4.5 of (Diakonikolas et al., 2016a). We prove the concen-
tration result for Eqn. (23), Eqn, (24) follows similarly by replacing the classical concentration
inequality of covariance by that of mean. Without loss of generality, we assume p = 0. For any

J C [n], |[J| = (1 —2€)n, we let w’ be the vector which is given by w; = ﬁ for i € J and
w;] = 0 otherwise. By convexity, it suffices to show that
= T
P|VJ Cn]:|J|=(1—-2¢)nand max wlz$ () — 1| >6| <7
[ Scld,|s|<k ; o (a7) )

We first fix 7/, S C [d] with |S| < k and J C [n]. Using triangle inequality we have

n
T
Z w;]xf (iL';S) -1
i=1

op

I o PR B
= (1—2e)n;$i (#7) (1—26)71[

+
op

1 S ST_ 2e
(1—2e)n§$i (@) — 15!

op

The first term is small than g with probability at least 1 — %’ ifn =20 (%W) . Similarly, the

€(k+10g(1/7’))>
52

second term is smaller than ¢ /2 with probability at least 1 — %/ ifn=0Q ( . Now by

union bound over all subset S C [d] with |S| < k we have if n = Q (%W)

1 - T 1 0
S (.8
b SsesyTo L <0
‘(1—26)n;x’ (#7) 1-29n || —2
- op
Similarly, if n = Q (e(kbg df;;g(l/“))) we have
1 S S\ T 2¢ )
NS @) - 1l <2
‘(1—26)712% (@) 15| =3
i¢J op

n
(1—2€
n in the theorem we have

-1
Now choosing 7/ = ( ) n) 7 and taking union bounds over all .J, by our choice of § and

IN

1 S ST_ 2¢
(1—26)nz$i (@) — 5!

i¢J op
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Algorithm 6 Pruning for Sparse Covariance Estimation

1: Input: {z1,--- ,2,}
2: fori=1,--- ,ndo
3 if ||z, = Q (d\/log (n/r)) then
4: remove x; from the set.
5:  end if
6: end for
Our proof is complete. |

We accompany our upper bound with the following minimax lower bound.

Theorem B.1 (Lower Bound of Sparse Gaussian Mean Estimation) There are some constants C, ¢
such that

inf sup sup P [HM - MH% >C <30g() v 62)] =¢
BoamoN (1), |ullg<s @ b

Proof First, the minimax lower bound for no adversary is =< %. Further we know there exist y;

and pp with a1y, llally < k and TV (N (1, 1), N (2, T)) < 125 such that |y — p]|3 > Ce
(just consider two vectors each has only one non-zero entry). Now apply Theorem 4.1 of (Chen
etal., 2015). |

Appendix C. Technical Details of Sparse Covariance Estimation

In this section we prove Theorem 3.2. By Theorem 4.15 of (Diakonikolas et al., 2016a) we have the
following formula for the cov (2)

F(Q)=Q®Q+ vec(Q) @ vec ().

Now observe that tr (X) = d so for 21, -+ ,x, ~ N (0, X), using maximal inequality of Gaussian
random variables, we have

P |max o, > 2 (/B (V7)< 7

Therefore we can apply Algorithm 6 to achieve the boundedness assumption in Theorem 3.1. Lastly,
for the concentration bounds, note that Eqn. (15), Eqn. (16) and Eqn. (18) can be proved by polyno-
mial of Gaussian random variables and Eqn. (17) and Eqn. (19) are simple corollaries of Theorem
4.17 of Diakonikolas et al. (2016a) with a union bound over subsets of [d] with cardinality .

Appendix D. Technical Details of Sparse Linear Regression

In this section we study the sparse linear regression problem. We begin by investigating the basic
properties of our model.
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Theorem D.1 If
x~N(0,I),y=2af+&where{ ~ N (0,1),

then we have

Elyz] =5
covya] = (11615 +1) 1+ 887
Proof We first look at the expectation.
Elyz] =E |2 (87a +¢)]
=E [227| 8+ E[]E[]
= B.

For the covariance note
cov[yz] = E [nya:T] — 87, (25)
We expand the first term.
E|y%ea| B[z (278 +¢) (8To+€)a]
—E [mxTﬂﬁTxxT} +E [g%c:ﬂ
—F [mTﬁﬁTmT} s

where we have used the independence of x and & to cancel out the cross terms. Now consider a
single coordinate of E [:c:vT B BTxxT] , using Isserlis’s theorem we have

E eiTxxTﬁﬁTa:xTej} =2E {e?meﬁ] E [BTxxTej} +E [e?mxTej} E [,BT:U:UTB}
_ {2@2 +IBl;  ifi=
288 if § # .
Note this implies
E [chB/BTxa:T] = BI3T +288".
Therefore, we have

cov [ya] = (1813 +1) I+ 88T,

|
With these expressions at hand, it is easy to upper bound Ly and Ly
Corollary D.1 Under the same assumptions as Theorem D. 1, we have
2
HCOV (yx)Hop <2 ”BHZ + 1.
Further, if we define F (5) = (H,BH% + 1) I+ BBT, then it satisfies
- ~ 12
|F@ —F ()], <218l -3, +2|)s - 3], 6)
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Algorithm 7 Pruning for Sparse Linear Regression

: Input: {(ylvxl) » T (ymxn)}
cfori=1,--- ,ndo
if |2, = Q (d\/log (n/7)> or |y;| = Q ((,02 +1) /log (n/T)) then
remove (y;, ;) from the set.
end if
end for

SAN A e

Proof For the operator norm, of the covariance, using triangle inequality, we have

leov (), = || (11813 +1) 1+ 887
<2|BJ3 + 1.

op

Now for F', note we can express it as sum of terms involves difference of 5 and B .
F(3)~F ()
T R T N T 112 R T
287 (8-B)1+8(8-B) +(8-B)8 —|s-8|.1-(s-3)(8-8) -
Therefore, using triangle inequality on the operator norm, we have

- ()], < 1013~ 25~

op
|

Now to obtain the boundedness assumption, we can use the procedure in Algorithm 7. Again,
maximal inequality of Gaussian random variables shows with probability 1 — 7, this procedure does
not remove any example sampled from P.

It remains to prove the concentration bounds. When n = () (M), Eqn. (15), Eqn. (16)
and Eqn. (18) can be proved through classical Bernoulli and Gaussian concentration inequalities.
For the remaining two, the following lemma suffices.

Lemma D.1 (Concentration bounds for Sparse Linear Regression) Suppose fori =1,--- | n,
let

Then ifn = Q (%&dﬁ)), then there isa d = O (e log? (1/6)) that with probability at least 1 — T,

we have for any subset S C [d], |S| < k and any w € Sy, ., the followings hold

> wiiad -S| <518l +1)
i=1 2
> wi (i = 8%) (wiad = %) = (1+1813) L. — 8% (8%) | <o (1813 +1).
i=1 op
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Proof We will prove the covariance the concentration for the covariance. The mean is very similar.
note that

Zwi (vix? = 8°) (yiaf — 58)T - (1 + |’5H§> I, — Bs (Bs)"

—‘221% )T 687w (@) = (U813 7 + 265 (85) ") 27)
‘+2§:zw&mfﬁTxi@f)T (28)
+285(8%)7 szﬁ% 2 (65)7 (29)
P
+ an wietaf («F)' — 1 (30)
=

We prove the concentration of Eqn. (27), the Eqn. (28) and Eqn. (30) can be proved using similar
arguments. Since [3 is k-sparse, it is sufficient to prove that for any S’ C [d], |S'| < k,§ = S’ US*
where S&* is the support of /3, the following holds

)" B (8%) " af ()" - (18131 +26% (8%)") | < oU8I3-

op

Now fix v € RISl with ||v||, = 1. Define the polynomial p, (z) = v' z° (z )T 3S. By the same
argument in the proof of Theorem 4.17 of Diakonikolas et al. (2016a), under our assumption on ¢ if

n=~. (log(e%ﬁ/)), for any w € S,, ., with probability 1 — 7/

2 (@) —E[p; ()] | < 8118113

Now take union bound over %—net of the surface of unit ball of dimension |.S| and then take union

bound over S € [d], we obtain our desired result. Note when ||3]|3 > 1, the error in Eqn. (27) will
dominate the other two. On the other hand, if ||,6’||2 < 1, Eqn. (30) will dominate. Therefore our
bound has a (HB 12 + ) factor. [ |

Appendix E. Technical Details of Generalized Linear Models

In this section we consider the generalized linear model (GLM). Our derivation heavily depends on
the following seminal result from Stein.

Theorem E.1 (Stein’s identity (Stein, 1971)) Let x ~ N (0,1) and G a function satisfying some
regularity conditions, then

E[G (2)- 1] = E[V.G (z)].
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Algorithm 8 Pruning for Generalized Linear Models

: Input: {(ylvxl) » T (ymxn)}
cfori=1,--- ,ndo
if |2, = Q (d\/log (n/r)) or |y;| = Q (u (0) + (p* +1) /log (n/r)) then
Remove (y;, z;) from the set.
end if
end for

SAN A e

We first investigate the basics properties of GLM.

Theorem E.2 Ifz ~ N (0,1) and y = u (xf3) + & where { ~ N (0, I), then we have
Elyz] = E [Vou (2')] - B,

E (e ~Elya]) (yo ~Elya)"| =B [(1+ 2 (@) T+ (2u () v2 u (@) + o ()*) BE7 ]

where ' = .

Proof For the first moment, choose G (z) = u (x3) we directly have the result. For the covariance,
note it is suffice to prove the second moment:

E (o) (g2)" | =E[(1+u? (&) T+2 (u (@) 72 u (@) + vou ()*) 887]
Write y = u (2') + &, since E [€2z2 | = I, we just need to prove
E[(u(@)e) (u(@)e) | =E [ () 1+2 (u () V2 u (@) + vou ())*) 857
Choose G (x) = u? (2') - z in Stein’s identity, we have
E|(u(@)2) (u(@)a)" | =E[g* (@)] T+ 2B [u (@) v u (@) 2] 7.

Not surprisingly, we can define G (z) = u (2')/u (2') 2 and apply Stein’s identity again to obtain
the desired result. u

Remark: The expression for linear regression can be derived similarly using Stein’s identity.
By this expression, we can define

(1 EpE) E[2u(z)V2u(') + (Vu(@))?]\ . 7
F(m(@muu')n?)”( E[V,u()? >5 -

as the formula for the covariance. This expression implies that it has the same L and L, as linear
regression up to constant factors.

By maximal inequality of Gaussian and Lipschitz condition of u, it is easy to show Algorithm 8
will not remove any sample from P with probability at least 1 — 7. now it remains to prove con-
centrations for yx and y2:1313T. When n = Q (M) Eqn. (15), Eqn. (16) and Eqn. (18) can
be proved through classical Bernoulli concentration inequality and Lipschitz function of Gaussian
variable concentration inequality. Now we prove the remaining two concentration inequalities. The
technique we used is very similar to the proof of Theorem 4.17 of (Diakonikolas et al., 2016a).
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Lemma E.1 Supposefori=1,--- n,
zi ~ N(0,1),y; = u(wiB) + & where § ~ N (0,1) .

with ||B|l, < s and w is a known link function with u(0) = O (1) and 1-Lipschitz. If n =
Q (MLWT)> then there is a 6 = O (e log? (l)) that with probability at least 1 — T we have

for any subset S C [d], |S| < k and for any w € Sy, ¢, we have

iwiyﬂf—ﬁ[wﬂ =5 (IBll, +1).
sz yia§ —E [y2%]) (vsod — B [yo"))" B [(s° ~E [5°]) (0" —E [3o5)) ]| <5 (1813 +1)

where x' = x5.

Proof We will prove the covariance concentration because the mean concentration is quite similar.
Similar to Theorem 3.3, we can divide the expression into 5 parts

Z wi (yaof —E [y2°]) (yia® ~E[y2°]) " ~E |(y2° ~E [3]) (3° — E [°]) "]

—sz @8) ~u(0)7 5 (28)" ~E[((@s) - u(0)*a" (=) ] G

Again we will prove the concentration for Eqn. (31), the remaining terms can be bounded similarly.
Now fix &’ C [d] and let S = S’ U S* where S* is the support of 3. For a fixed v € RI®l |||, = 1,
define

po (@) = (u (2%8) —u(0) (072°). (32)

For some fixed large enough constant ¢, by basic Gaussian concentration inequalities we have
T.5)* 1
P (vx) >clog [ = )| =0 (e).
€
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Similarly, using Lipschitz condition we have
1
P [(u (258) —u(0))> > velog }
€

1
<e [lo9P > vetog T 191
=0 (e)
Therefore, we have

P |1 (o) 2 ctog? LIE] =0 0.

Now applying Hoeffding inequality we have if n = (2 (1053(5#) , with probability 1 — 7:

1

n

< 2e.

) 1
{1292 @) 2 clog? L1813
Now define a distribution D that for A; ~ D, A; = p? (z;) if p*(z;) < ¢ ||B||§log2% and 0

otherwise. Let o/ be the expectation of mean of D. By Hoeffding inequality we can show if
n > (%) we have with probability 1 — 7,

1 n
— E AZ'—O/
n -

=1

Now let @ = E [p2 (z)] = O (ngg). We have

v

=0 (e).

’o/ — a’ =E,<n(0,1) [pg (z) 1p%($)2(010g2 %)}

= /\/1 (P[P (x) > 7] dt
clog ¢

> 2 S\2(,S.\2 < ;2
= tIP’[(:nB) (ZL'U) Zt}dt
Velog L
1
=0 <clog2 - ||ﬁ||§) :
1
Therefore we have if n = (2 <10€ggf ) with probability 1 — 7

1< 1
—ZAi—a :O<610g2>.
n €

Now condition on the followings :

1 . 1
(i 2 o L oI} | <2

lZ:Ai—a :O<elog21>.
n = €

n
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Define J* the largest 2en indices of p? (z;)s and J; = {z :p2 () > clog? 1 ||ﬁ|]g} By the
conditions, we known J;* C J* and

l 200 — ol = 2} 2
LY R ) a0 (ctog L 13).

igJr

For any index set I with |I| = (1 — 2¢) n, divide [n]\I = J*UJ~ where J* = {i € I : p2 (z;) > a}
and J~ = {i € I : p? (z;) < a}. First we prove the upper bound

1

Tmagn 0 =)
1 1
Swie%;ﬁ (P?; (zi) — ) — (1_26)”2; (p?, (z:) — @)
1 n 5
Sm ;pg (xz) ol + m ZEZJ (p?] (1‘1) — Oé)
~0 (cl181) + ;e
=0 (<13

where in the fourth line we used concentration inequality of Lipschitz function of Gaussian random
variables. For the lower bound

(1_126)712 (P} (2:) — ) > (1_126)71 Z (Py (i) — )

i¢Jr

2 1 2
> 0 (ctog? L813).
Note this holds for any I and by convexity for any w € S,, . we can conclude that Eqn. (31) holds
for fixed S and v. Now take union bounds over %—net of the surface of unit ball of dimension |S]|
and subsets of [d] with cardinality 2s, we obtain the desired result.

Similar to sparse linear regression, the final bound depends on whether || 3|3 is larger than 1 or
not, which leads to the form of our bound. |

Appendix F. Technical Details of Logistic-type Models
In this section we consider the generalized linear model for binomial label.

Theorem F.1 Suppose x ~ N (0,1) andy = u (z3) +& (x3) where g is a known link function and

fuls)  wp 1-u(ed
“ﬁ)—{l_u(w) wp ulaf)
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Algorithm 9 Pruning for Logistic-type Models

1: Input: {(y1,21), -, (Yn,xn)}

2: fori=1,--- ,ndo

3 if |yilly, = ©Q (|IE (7w (2)]] /dTog (n/7)>. then
4: Remove (y;, z;) from the set.

5:  end if

6: end for

then we have

E [(yw —E[yz]) (yz —E [yx]ﬂ =E [u(2")] I+ (E [2u (2')] - B [Vau (x’)]Q) - BBT
where ' = x3.

Proof This is a simple application of Stein’s identity. The derivation is similar to sparse generalized
linear model. |

To achieve the boundedness condition, we resort to Algorithm 9. Finally, the concentration bounds
can be proved using the exactly same arguments in Sec. E. Notice that the function p,, defined in
Eqn. (32) has a better concentration property:

P i@ 2 ctoe (1)] =000

because of the boundedness of u (-). This fact leads to a slightly stronger bound than that of gener-
alized linear models.

Appendix G. Technical Details for Sparse PCA

G.1. Implementing DETECTROBUSTSPCA

We first show that the algorithm presented above can be efficiently implemented. Indeed, one can
show that by taking the dual of the SDP defining the ||-[| ;, norm, this problem can be re-written
as an SDP with (up to constant factor blowups) the same number of constraints and variables, and
therefore we may solve it using traditional SDP solver techniques.

Alternatively, one may observe that to optimize Algorithm 4 via ellipsoid or cutting plane meth-
ods, it suffices to, given w € S, ., produce a separating hyperplane for the constraint (21). This
is precisely what dual norm maximization allows us to do efficiently. It is straightforward to show
that the volume of S, . X A}, is at most exponential in the relevant parameters. Therefore, by the
classical theory of convex optimization, (see e.g. Grotschel et al. (2012)), for any £, we may find a
solution w’ and 4’ so that ||w’ — w*|| < & and 4/ so that |y — +'| < £ for some exact minimizer
w*, where ~ is the true value of the solution, in time poly(d,n, 1/¢,1og 1/¢),

Neither approach will in general give exact solutions, however, both can achieve inverse poly-
nomial accuracy in the parameters in polynomial time. It should be evident from the analysis that
these errors will not affect the correctness of our algorithm, and thus we will ignore these issues of
numerical precision throughout the remainder of this section, and assume we work with exact v.
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Observe that in general it may be problematic that we don’t have exact access to the minimizer
w*, since some of the X; may be unboundedly large (in particular, if it’s corrupted) in norm. How-
ever, we only use information about ~y. Since  lives within a bounded range, and our analysis is
robust to small changes to -y, these numerical issues do not change anything in the analysis.

G.2. Proof of Theorem 3.2

For simplicity of notation, we will say that z1, . . ., x,, is an e-corrupted set of samples from N (0, 32)
if they are distributed as in (6). We also let w9 = |G|/n and w® = |B|/n.

We now show that Algorithm 4 provides the guarantees required for Theorem 3.2. We first show
that if we are in Case 1, then -y is small:

Lemma G.1 Let p,d > 0. Let €, be as in Theorem 3.2. Let 1, ..., x, be an e-corrupted set of
samples from N (0, I) of size n, where n is as in Theorem 3.2. Then, with probability 1 — §, we have

v < p/2.

Proof Let w be the uniform weights over the uncorrupted points. Then it follows from Theorem
A3 that || 32,6 wi(XXT = D], < O(n) with probability 1 — 6. Since w € Sy, this immedi-
ately implies that v < O(p). By setting constants appropriately, we obtain the desired guarantee. ll

We now show that if we are in Case 2, then v must be large. We first require the following
concentration bounds:

Theorem G.1 Fixe,§ > 0. Let x1, ...z, ~ N(0,I), where

0 <min(d, k2) + log (%) +log 1 /5)
n = .

€2

Then

*
<e€.
Xk

n
1
— g zixl — T
n

i=1

Let us first introduce the following definition.

Definition 1 A symmetric sparsity pattern is a set S of indices (i, j) € [d] x [d] so that if (i,j) € S
then (j,1) € S. We say that a symmetric matrix M € R4 respects a symmetric sparsity pattern S
if supp(M) = S.

With this definition, we now show:

. 2 42
Lemma2 Letn = O (mm(d’k )+10;g2(’“2)+10g 1/5>. Then, with probability 1 — 0, the following

holds:

ltr((E = 1) X)| < O(e), for all symmetric X with || X ||o = k2 and | X ||r < 1. (33)
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Proof Fix any symmetric sparsity pattern S so that |S| < k2. By classical arguments one can
show that there is a (1/3)-net over all symmetric matrices X with || X ||z = 1 respecting S of
. : 2 .

size at most 99(min(d:k%)) "By a basic net argument, we know that for any &, we know that except

with probability 1 — ¢’, if we take n = O (M) samples, then for all symmetric X

respecting S so that || X||p < 1, we have |tr((S — I)X)| < e. The claim then follows by further
union bounding over all O ((gz)) symmetric sparsity patterns S with |S| < k2. [ |

We will also require the following structural lemma.
Lemma 3 Any PSD matrix X so that tr(X) = 1 and | X||1 < k can be written as

O(n?/k?)

X= > v,
=1

. . O(n?/k?) . 19
where eachY; is symmetric, have ), |Yillr < 4, and each Y; is k=*-sparse.

Proof Observe that since X is PSD, then || X ||z < tr(X) = 1. For simplicity of exposition, let
us ignore that the Y; must be symmetric for this proof. We will briefly mention how to in addition
ensure that the Y; are symmetric at the end of the proof. Sort the entries of X in order of decreasing
|X;j|. Let Y; be the matrix whose nonzeroes are the ik? + 1 through (i + 1)k? largest entries of
X, in the same positions as they appear in X. Then we clearly have that Y Y; = X, and each Y;
is exactly k2-sparse.® Thus it suffices to show that >_ ||Y;||r < 4. We have ||Y1||r < || X|F < 1.
Additionally, we have ||Yit1]|r < 1T|%I1 which follows simply because every nonzero entry of
Y1 is at most the smallest entry of Y;, and each has exactly k? nonzeros (except potentially the
last one, but it is not hard to see this cannot affect anything). Thus, in aggregate we have

O(n2/k?) O(n2/k?) O(n2/k?) T
171v;)1 17X 1
Yilr <1 Yilr <1 S AL <2,
;:1 1Yillr <1+ ;_2 1Yillr <1+ ;_1 k +—0 <

which is stronger than claimed.

However, as written it is not clear that the Y;’s must be symmetric, and indeed they do not have
to be. The only real condition we needed was that the Y;’s (1) had disjoint support, (2) summed
to X, (3) are each @(kz2) sparse (except potentially the last one), and (4) the largest entry of Y;
is bounded by the smallest entry of Y;. It should be clear that this can be done while respecting
symmetry by doubling the number of Y;, which also at most doubles the bound in the sum of the
Frobenius norms. We omit the details for simplicity. |

Proof [Proof of Theorem G. 1] Let us condition on the event that (33) holds. We claim then that for
all X € X, we must have |tr((X —1)X)| < O(e), as claimed. Indeed, by Lemma 3, forall X € X,

we have that
O(d2/k?)

X= > v,
=1

3. Technically the last Y; may not be k2 sparse but this is easily dealt with, and we will ignore this case here
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2 2
where each Y; is symmetric, have Z?:(f /k%) |Y;||F < 4, and each Y is k%-sparse. Thus,

O(d?/k?)

tr(E-DX) < >
=1
O(d?/k?)

= 3 Vil

(X - 1Y)
=1

a Y;
tr{ (X —1
( Nrmu)‘
a) O(d?/k?)

< Y Wle-00)

=1

(®)
< 0(e) ,

where (a) follows since each Y;/||Y;||r satisfies the conditions in (33), and (b) follows from the
bound on the sum of the Frobenius norms of the Y;. |

We now need concentration over all choices of weights. This follows from Theorem ?? and the
same technique as in the proof of Lemma B.1, so we omit the proof.

Theorem G.2 Fixe < 1/2and § < 1, and fix k < d. There is an = O(ey/log1/€) so that if

T1,..., Ty ~ N(0,1) andn = Q (min(d’k2)+lofg(zz)+log 1/6), then we have
Lo *
Pr |3w e S, : Hn;wwlwz’ -1 . >n| <9.
Lemma G.2 Let p,d > 0. Let €,1,n be as in Theorem 3.2. Let x1, ..., T, be an e-corrupted set

of samples from N (0, 1) of size n. Then, with probability 1 — 0, we have v > (1 — €)p — (2 + p)n.
In particular, for € sufficiently small, and n = O(p), we have that v > p/2.

Proof Let Y = I + pvv”, and let Y; = ©=/2g;, so that if Y; is uncorrupted, then Y; ~ N (0, I).
Let w* be the optimal solution to (21). By Theorem G.2, we have that with probability 1 —J, we can
write Y, wiY;Y;l = wI(I + N) + B, where [N|%, <mand B=3, 5 w;Y;Y.". Therefore,
we have 37 | w* X; X = w9(X + XV2NE/2) + £1/2B%:1/2 | By definition, we have

n *

> wi(X X[ - 1)

=1

> (w9(X 4+ BV2NEY?) 4 512Bsl/2 — 1 pT)

Xk
> wI((Z 4+ ZV2NSY2) Ty —1
= wI(1 + p) + wIvTSVENEY2y —1
>(1—ep+(1—e'SV2NDV2y — ¢,

It thus suffices to show that [T X/2N¥1/2y| < (1 + p)n. Since v is an eigenvector for ¥ with
eigenvalue 1 + p, we have that »/2y = vp+ 1-v and thus

VISYENEY 2y = (14 p)o" Nv = (1+ p)(N,v0T) < (1 + )| N5, < 1+ p)n-
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Lemmas G.1 and G.2 together imply the correctness of DETECTROBUSTSPCA and Theorem
3.2.

G.3. More concentration bounds

Before we can prove correctness of our algorithm for robust recovery, we require a couple of con-
centration inequalities for the set Wj.

Lemma G.3 Fixe, 0 > 0. Let x1,...,2, ~ N(0,I), where n is as in Theorem 3.3. Then with

probability 1 — §
1 n
— Z zixl — 1
n -
=1

Proof Let 3 denote the empirical covariance. Observe that Wy, C |52 27 Xyit1),. Moreover, for
any ¢, by Theorem G.1, if we take

< O(e) .
Wi

min(d, (215)?) + 10g ((yify2) +log 1/6
(277€)?

e (min(al7 k%) + log (gz) + 2% log 1/5)
= : ,
€

S
Il

then |(M, )| < € for all M € 27 Xyi11;, with probability 1 — §/2. In particular, if we take

(min(d, k2) + log (&) + log 1/5)
n = 5
€

samples, then for any i, we have |(M, f])| < efor all M € 271 X,i11, with probability at least
1— 62" /2. By a union bound over all these events, since > .~ 52" < 26, we conclude that if we
take n to be as above, then | (M, i)\ < eforall M € |J;2,2 " Xyi+1), with probability 1 — 4. Since
Wi is contained in this set, this implies that ||& — X[[y, < O(e) with probability at least 1 — 4, as
claimed. u

By the same techniques as in the proofs of Theorem G.2, we can show the following bound.
Because of this, we omit the proof for conciseness.

Corollary G.1 Fixe,d > 0. Let x1,...,x, ~ N(0,I) where n is as in Theorem G.2. Then there

isann = O(ey/log 1/€) so that
Pr |Jw € Sy : >nl <6.

Wi

n
g w,xlxlT -1
i=1
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G.4. Proof of Theorem 3.3

In the rest of this section we will condition on the following deterministic event happening:

n
Z wlxz:rZT -1
i=1
where 1 = O(elog 1/¢). By Corollary G.1, this holds if we take

Q (min(d, k%) + log (gz) + log 1/5)
n= >
2

*

Vw € Sy <n, 34)

Wag

samples.
The rest of this section is dedicated to the proof of the following theorem, which immediately
implies Theorem 3.3.

Theorem G.3 Fix ¢, 6, and let 1) be as in (34). Assume that (34) holds.
Let 0 be the output of RECOVERYROBUSTSPCA (X7, ..., Xy, €, 0, p). Then L(v,v) < O(+y/(1 + p)n/p).

Our proof proceeds in a couple of steps. Let X = I + pvv! denote the true covariance. We first
need the following, technical lemma:

Lemma G.4 Let M € Wy, Then XY/2M¥Y? € (1 + p)W.

Proof Clearly, »/2pnt/2 = 0. Moreover, since 2 = 14 V1+p— 1)UUT, we have
that the maximum value of any element of ¥'/2 is upper bounded by /I + p. Thus, we have
|=Y2M V2| < (14 p)||M]|1. We also have
tr(SV2MEY?) = tr(SM)
=tr(M) + po' Mv <14,

since || M|| < 1. Thus SY/2M¥Y2 € (1 + p)Wy, as claimed. n

Let w*, A* be the output of our algorithm. We first claim that the value of the optimal solution
is quite small:

Lemma G.5

*

<n(l+p).
Way,

n
S uilwal — 1) = pd°
=1

Proof Indeed, if we let w be the uniform set of weights over the good points, and we let A = vo?,

then by (34), we have

7

n
> wimiz] =SV + N)B?,
=1
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where || N[5, <n,and ¥ =1+ pvv™. Thus we have that

*
*

Z wi(z;z] —I) — pvol
i=1

= ||
Wak
Wak

= max
MeWy,

tr(zl/QNEWM)(

= Imax
MeWy,

by Lemma G.4. |

tr(NEl/QMEl/Q)‘

IN

We now show that this implies the following:
Lemma G.6 v" A*v >1— (2+3p)n/p.

Proof By (34), we know that we may write > -, w; (X; X! —I) = w9pvvl + B— (1 —w9)I+ N,
where B = Y, s w; X; X!, and INUyy, < (1+ p)n. Thus, by Lemma G.5 and the triangle
inequality, we have that

llw9pov™ + B~ pAll5, <+ INEy, + (1 —wd) |y, + (1 - w) oAy,
< (I+p)n+e+pe
<(1+2p)n+e.

Now, since vo! € W, the above implies that
lw9p +vT Bu — pvT A*v| < (14 2p)n+ ¢,
which by a further triangle inequality implies that
Ip(1 — vl A*) + 0T Bo| < (1 +2p)n+e+ep < (2+3p)7 .
Since 0 < v A*v < 1 (since A € X},) and B is PSD, this implies that in fact, we have
0<p(1—vlA*v) < (24 3p)7.

Hence vT A*v > 1 — (24 3p)n/p, as claimed. [

Let v = (2 4+ 3p)n/p. The lemma implies that the top eigenvalue of A* is at least 1 — .
Moreover, since A* € X, as long as v < 1/2, this implies that the top eigenvector of A* is unique
up to sign. By the constraint that » < O(min(p, 1)), for an appropriate choice of constants, we
that v < 1/10, and so this condition is satisfied. Recall that u is the top eigenvector of A*. Since

tr(A*) = 1 and A* is PSD, we may write A* = A\juu’ + Ay, where u is the top eigenvector of A*,
A1 > 1—~,and ||A;]| <. Thus, by the triangle inequality, this implies that

llo(™ = AuuT) + B[, < O(p)
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which by a further triangle inequality implies that
mp(va —uul) + Bm;% < O(py) . (35)
We now show this implies the following intermediate result:
Lemma G.7 (vT'u)? >1—0(y).

Proof By Lemma G.6, we have that v7 A*v = A\;(vTu)? + vT Ajv > 1 — +. In particular, this
implies that (vT'u)2 > (1 —27)/A\1 > 1 —3y,since ]l —y <A< 1. [ |

We now wish to control the spectrum of B. For any subsets S, 7" C [d], and for any vector = and
any matrix M, let x5 denote x restricted to S and Mg 7 denote the matrix restricted to the rows in
S and the columns in 7'. Let I be the support of u, and let .J be the support of the largest k elements
of v.

Lemma G.8 \HBM\HOP < O(py).

Proof Observe that the condition (35) immediately implies that

lo(vrvf —wpui) + B, < cpv, (36)

op —

for some ¢, since any unit vector x supported on I satisfies zz7 € Xay. Suppose that || By /| op =
Cy for some sufficiently large C'. Then (36) immediately implies that H‘p(v IU}F —u [u?)mop >

(C —¢)py. Since (viv! —upul) is clearly rank 2, and satisfies tr(viv? —ujut) = 1—|jus3 > 0,

this implies that the largest eigenvalue of v IU}F —u Iu? is positive. Let x be the top eigenvector of
vl —upu®. Then, we have 27 (vl —uu® )z + 2T Bx = (C — ¢)py + 2T Bz > (C —¢)py by
the PSD-ness of B. If C' > c, this contradicts (36), which proves the theorem. |

This implies the following corollary:
Corollary G.2 |[jus]|3 > 1 - O(y).

Proof Lemma G.8 and (36) together imply that H‘vijT —u IuﬂHop < O(7). The desired bound
then follows from a reverse triangle inequality. |

We now show this implies a bound on B j\;

< O(p).

Lemma G.9 }HBJ\LJ\[H‘OP <

Proof Suppose H‘BJ\LJ\IMOP > (C'y for some sufficiently large C'. Since u is zero on J \ I, (35)
implies that

||PUJ\IU§\I + Bl <epy s
for some universal c. By a triangle inequality, this implies that [|v 7|3 = [|v, ]U§\ = (C—=c)y.

Since v is a unit vector, this implies that ||v;||3 < 1 — (C — ¢)v, which for a sufficiently large C,
contradicts Corollary G.2. |

We now invoke the following general fact about PSD matrices:
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Lemma G.10 Suppose M is a PSD matrix, written in block form as

C D
u-(52).

§and || Ell,, < & Then | M| < O(¢).

Proof It is easy to see that [ M||,, < O(max([|Cllyp ., [Pllop s 1E]lop))- Thus it suffices to bound
the largest singular value of D. For any vectors ¢, 1) with appropriate dimension, we have that

Suppose furthermore that |C|,,, <

—1
which immediately implies that the largest singular value of D is at most (||Allo, + [|Bllop) /2.
which implies the claim. |

(¢" —wT>M< ¢ ):¢TA¢—2¢TDw+chwzo,

Therefore, Lemmas G.8 and G.9 together imply:

Corollary G.3 H‘WUJUITUJ — UjujU?UJH‘OP <O0(7) .

Proof Observe (35) immediately implies that !Hp(vluJUITUJ — uIUJu}FUJ) + BIUJ’IUJ”’OP < O(py),
since [T U J| < 2k. Moreover, Lemmas G.8 and G.9 with Lemma G.10 imply that [| Brus,ru.lop <

O(py), which immediately implies the statement by a triangle inequality. |

Finally, we show this implies ||vv? — ujul || < O(v), which is equivalent to the theorem.
Proof [Proof of Theorem G.3] We will in fact show the slightly stronger statement, that H}uuT - JU?; H|F <
O(7y). Observe that since wu® —vvT is rank 2, Corollary G.3 implies that |“UjujU?UJ - 'LL[UL]U,{UJ H‘F <
O(7y), since for rank two matrices, the spectral and Frobenius norm are off by a constant factor. We

have

H‘uuT - ’UUTH|12: = Z (uiu; — viv;)? + Z (viv;)? + Z (uiuj)® .

(i,5)eINI xINJ (4,)EIXINTIx J (4,5)ETx NI XT
We have
2
Z (wju; — ’Ui'Uj)2 + Z (Uz'uj)2 < ‘HUIUJUITUJ - UIuJU?quOp <0(),
(i,5)EINI xINJ (i,§) €T X NI I

by Corollary G.3. Moreover, we have that

>, (wwy)*<2 S (v —u) Y (uy)?
(i,5)EIXINTxJ (G,5)eIx NI xJ () eTxI\IxJ
2
<2 | Jorusvivy — UIUJU?UJH‘OP + Z (uu;)?
(4,5)EIXINIxJ
2
=2 H‘UIUJU?UJ - uIUJu?UJ‘HOp + Z (Uiuj)Q
(4,))ETx NI XTI
<O(7) .
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since J x J contains the k2 largest entries of uu” . This completes the proof.
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