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Abstract
This work initiates a systematic investigation of testing high-dimensional structured distributions
by focusing on testing Bayesian networks – the prototypical family of directed graphical models.
A Bayesian network is defined by a directed acyclic graph, where we associate a random variable
with each node. The value at any particular node is conditionally independent of all the other non-
descendant nodes once its parents are fixed. Specifically, we study the properties of identity testing
and closeness testing of Bayesian networks. Our main contribution is the first non-trivial efficient
testing algorithms for these problems and corresponding information-theoretic lower bounds. For a
wide range of parameter settings, our testing algorithms have sample complexity sublinear in the
dimension and are sample-optimal, up to constant factors.
Keywords: distribution testing, property testing, Bayesian networks, graphical models

1. Introduction

1.1. Background

Distribution testing has its roots in statistical hypothesis testing Neyman and Pearson (1933);
Lehmann and Romano (2005) and was initiated in Goldreich and Ron (2000); Batu et al. (2000). The
paradigmatic problem in this area is the following: given sample access to an arbitrary distribution
P over a domain of size N , determine whether P has some global property or is “far” from any
distribution having the property. A natural way to solve this problem would be to learn the distribution
in question to good accuracy, and then check if the corresponding hypothesis is close to one with
the desired property. However, this testing-via-learning approach requires Ω(N) samples and is
typically suboptimal. The main goal in this area is to obtain sample-optimal testers – ideally, testers
that draw o(N) samples from the underlying distribution. During the past two decades, a wide
range of properties have been studied, and we now have sample-optimal testers for many of these
properties Paninski (2008); Chan et al. (2014c); Valiant and Valiant (2014); Diakonikolas and Kane
(2016); Diakonikolas et al. (2016a).

We remark that even for the simplest properties, e.g., identity testing, at least Ω(
√
N) many

samples are required for arbitrary distributions over N atoms. While this is an improvement over
the Ω(N) samples required to learn the distribution, a sample upper bound of O(

√
N) is still
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impractical if N is very large. For example, suppose that the unknown distribution is supported on
{0, 1}n. For this high-dimensional setting, a sample complexity bound of Θ(2n/2) quickly becomes
prohibitive, when the dimension increases. Notably, the aforementioned Ω(

√
N) sample lower bound

characterizes worst-case instances, which in many cases are unlikely to arise in real-world data.
This observation motivates the study of testing structured distribution families, where significantly
improved testers may be possible. Hence, the following natural question arises: Can we exploit the
structure of the data to perform the desired testing task more efficiently?

A natural formalization of this question involves viewing the data as samples from a probabilistic
model – a model that we believe represents the random process generating the samples. The usual
assumption is that there exists a known family of probabilistic models – describing a set of probability
distributions – and that the data are random samples drawn from an unknown distribution in the
family. In this context, the distribution testing problem is the following: Let C be a family of
probabilistic models. The testing algorithm has access to independent samples from an unknown
P ∈ C, and its goal is to output “yes” if P has some property P , and output “no” if the total variation
distance, dTV (P,Q)

def
= (1/2)‖P −Q‖1, where ‖ · ‖1 denotes the L1-norm, is at least ε to every

Q ∈ C that has property P . The sample complexity of this structured testing problem depends on the
underlying family C, and we are interested in obtaining efficient algorithms that are sample optimal
for C.

More than a decade ago, Batu, Kumar, and Rubinfeld Batu et al. (2004) considered a specific
instantiation of this broad question – testing the equivalence between two unknown discrete monotone
distributions – and obtained a tester whose sample complexity is poly-logarithmic in the domain size.
A recent sequence of works Daskalakis et al. (2013b); Diakonikolas et al. (2015a,b) developed a
framework to obtain sample-optimal estimators for testing the identity of structured distributions
over total orders (e.g., univariate multi-modal or log-concave distributions). The main lesson of
these works is that, under reasonable structural assumptions, the sample complexity of testing may
dramatically improve – becoming sub-logarithmic or even independent of the support size. Moreover,
in all studied cases, one obtains testers with sub-learning sample complexity.

1.2. This Work: Testing High-Dimensional Structured Distributions

This paper initiates a systematic investigation of testing properties of high-dimensional structured
distributions. One of the most general formalisms to succinctly represent such distributions is
provided by probabilistic graphical models Wainwright and Jordan (2008); Koller and Friedman
(2009). Graphical models compactly encode joint probability distributions in high dimensions.
Formally, a graphical model is a graph where we associate a random variable with each node. The
key property is that the edge-structure of the graph determines the dependence relation between the
nodes.

The general problem of inference in graphical models is of fundamental importance and arises
in many applications across several scientific disciplines, see Wainwright and Jordan (2008) and
references therein. In particular, the task of learning graphical models has been extensively stud-
ied Neapolitan (2003); Daly et al. (2011). A range of information-theoretic and algorithmic results
have been developed during the past five decades in various settings, see, e.g., Chow and Liu (1968);
Dasgupta (1997); Friedman and Yakhini (1996); Friedman et al. (1997, 2000); Cheng et al. (2002);
Chickering (2002); Margaritis (2003); Abbeel et al. (2006); Wainwright et al. (2006); Anandkumar
et al. (2012); Santhanam and Wainwright (2012); Loh and Wainwright (2012); Diakonikolas et al.
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(2016c) for a few references. In contrast, the general question of testing graphical models has
received less attention. We propose the following broad set of questions:

Question 1.1 Let C be a family of high-dimensional graphical models and P be a property of C.
What is the sample complexity of testing whether an unknown P ∈ C has property P? Can we
develop testers for P with sub-learning sample complexity? Can we design sample-optimal and
computationally efficient testers?

We believe that Question 1.1 points to a fundamental research direction that warrants study for its
own sake. Moreover, as we explain in the following paragraphs, such estimation tasks arise directly
in various practical applications across the data sciences, where sample efficiency is of critical
importance. Hence, improved estimators for these tasks may have implications for the analysis of
datasets in these areas.

For concreteness, Question 1.1 refers to a single unknown distribution that we have sample
access to. We are also naturally interested in the broader setting of testing properties for collections
of distributions in C. Before we proceed to describe our contributions, a few comments are in order:
As previously mentioned, for all global properties of interest (e.g., identity, independence, etc.),
the sample complexity of testing the property is bounded from above by the sample complexity of
learning an arbitrary distribution from C. Hence, the overarching goal is to obtain testers that use
fewer samples than are required to actually learn the model – or to prove that this is impossible. On a
related note, in the well-studied setting of testing arbitrary discrete distributions, the main challenge
has been to devise sample-optimal testers; the algorithmic aspects are typically straightforward.
This is no longer the case in the high-dimensional setting, where the combinatorial structure of the
underlying model may pose non-trivial algorithmic challenges.

In this work, we start this line of inquiry by focusing on testing Bayesian networks Pearl (1988)
(Bayes nets or BN for brevity), the prototypical family of directed graphical models. Bayesian
networks are used for modeling beliefs in many fields including robotics, computer vision, com-
putational biology, natural language processing, and medicine Jensen and Nielsen (2007); Koller
and Friedman (2009). Formally, a Bayesian network is defined by a directed acyclic graph (DAG)
S = (V,E), where we associate a random variable with each node. Moreover, the value at any
particular node is conditionally independent of all the other non-descendant nodes once its parents
are fixed. Hence, for a fixed topology, it suffices to specify the conditional distribution for each node
for each configuration of values for its parents.

The main problems that we study in this setting are the related tasks of testing identity and
closeness: In identity testing, we are given samples from an unknown Bayes net P and we want
to distinguish between the case that it is equal to versus significantly different from an explicitly
given Bayes net Q. In closeness testing, we want to test whether two unknown Bayes nets P,Q are
identical versus significantly different. We believe that our techniques can be naturally adapted to
test other related properties (e.g., independence), but we have not pursued this direction in the current
paper. A related testing problem that we consider is that of structure testing: given samples from an
unknown Bayes net P , we want to test whether it can be represented with a given graph structure S
or is far from any Bayes net with this structure.

In the prior work on testing unstructured discrete distributions, the natural complexity measure
was the domain size of the unknown distributions. For the case of Bayes nets, the natural complexity
measures are the number of variables (nodes of the DAG) – denoted by n – the maximum in-degree
of the DAG – denoted by d – and the alphabet size of the discrete distributions on the nodes. To
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avoid clutter in the expressions, we focus on the natural setting that the random variables associated
with each node are Bernoulli’s, i.e., the domain of the underlying distributions is {0, 1}n. (As we
will point out, our bounds straightforwardly extend to the case of general alphabets with a necessary
polynomial dependence on the alphabet size.)

We note that Bayes nets are a universal representation scheme: Any distribution over {0, 1}n
can be presented as a BN, if the maximum in-degree d of the graph is unbounded. (Indeed, for
d = n − 1, one can encode all distributions over {0, 1}n.) In fact, as we will see, the sample
complexity of testing scales exponentially with d. Therefore, an upper bound on the maximum
in-degree is necessary to obtain non-trivial upper bounds. Indeed, the most interesting regime is the
settting where the number of nodes n is large and the degree d is small. In applications of interest,
this assumption will be automatically satisfied. In fact, as we explain in the following subsection, in
many relevant applications the maximum in-degree is either 1 (i.e., the graph is a tree) or bounded by
a small constant.

1.3. Related Work

We partition the related work intro three groups corresponding to research efforts by different
communities.

Computer Science. A large body of work in computer science has focused on designing statisti-
cally and computationally efficient algorithms for learning structured distributions in both low and
high dimensions Dasgupta (1999); Freund and Mansour (1999); Arora and Kannan (2001); Vempala
and Wang (2002); Cryan et al. (2002); Mossel and Roch (2005); Moitra and Valiant (2010); Belkin
and Sinha (2010); Daskalakis et al. (2012a,b); Chan et al. (2013); Daskalakis et al. (2013a); Chan
et al. (2014a,b); Hardt and Price (2015); Acharya et al. (2015b); De et al. (2015); Daskalakis et al.
(2016a); Diakonikolas et al. (2015c, 2016b). On the other hand, the vast majority of the literature in
distribution property testing during the past two decades focused on arbitrary discrete distributions,
where the main complexity measure was the domain size. See Batu et al. (2000, 2001); Batu (2001);
Batu et al. (2002, 2004); Paninski (2008); Valiant and Valiant (2011); Daskalakis et al. (2013b);
Acharya et al. (2011); Levi et al. (2011); Indyk et al. (2012); Chan et al. (2014c); Valiant and Valiant
(2014); Acharya et al. (2015a); Canonne et al. (2016); Diakonikolas and Kane (2016) for a sample of
works, or Rubinfeld (2012); Canonne (2015) for surveys.

A line of work Batu et al. (2004); Daskalakis et al. (2013b); Diakonikolas et al. (2015a,b) studied
properties of one-dimensional structured distribution families under various “shape restrictions” on
the underlying density. In the high-dimensional setting, Rubinfeld and Servedio Rubinfeld and
Servedio (2005) studied the identity testing problem for monotone distributions over {0, 1}n. It was
shown in Rubinfeld and Servedio (2005) that poly(n) samples suffice for the case of uniformity
testing, but the more general problems of identity testing and independence testing require 2Ω(n)

samples. Subsequently, Adamaszek, Cjumaj, and Sohler Adamaszek et al. (2010) generalized these
results to continuous monotone distributions over [0, 1]n. A related, yet distinct, line of work studied
the problem of testing whether a probability distribution has a certain structure Batu et al. (2004);
Bhattacharyya et al. (2011); Acharya et al. (2015a); Canonne et al. (2016). The sample complexity
bounds in these works scale exponentially with the dimension. Finally, concurrent work of Daskalakis
et al. (2016b) considers the questions of testing identity and independence of Ising models.1

1. Ising models constitute another type of graphical model, roughly speaking where the underlying graph is undirected.
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Statistics. The area of hypothesis testing for high-dimensional models has a long history in statis-
tics and is currently an active topic of study. A sequence of early and recent works, starting with Weiss
(1960); Bickel (1969); Liu and Singh (1993), has studied the problem of testing the equivalence be-
tween two nonparametric high-dimensional distributions in the asymptotic regime. In the parametric
setting, Hotelling’s T-squared statistic Hotelling (1931) is the classical test for the equivalence of
two high-dimensional Gaussians (with known and identical covariance). However, Hotelling’s test
has the serious defect that it fails when the sample size is smaller than the dimension of the data Bai
and Saranadasa (1996). Recent work has obtained testers that, under a high-dimensional Gaussian
model (with known covariance), succeed in the sub-linear regime for testing identity Srivastava and
Du (2008) and closeness Chen and Qin (2010). A number of more recent works study properties
of covariance matrices Cai and Ma (2013), regression Javanmard and Montanari (2014), and linear
independence testing Ramdas et al. (2016).

Applications. The problems of testing identity and closeness of Bayesian networks arise in a
number of applications where sample efficiency is critical Friedman et al. (2000); Gonen et al. (2003);
Sobel and Kushnir (2003); Almudevar (2010); Nguyen et al. (2011); Rahmatallah et al. (2014);
Städler and Mukherjee (2015); Yin et al. (2015). In bioinformatics applications (e.g., gene set
analysis), each sample corresponds to an experiment that may be costly or ethically questionable Yin
et al. (2015). Specifically, Yin et al. (2015) emphasizes the need of making accurate inferences on
tree structured Bayesian networks, using an extremely small sample size – significantly smaller
than the number of variables (nodes). Almudevar (2010) studies the problem of testing closeness
between two unknown Bayesian network models in the context of a biology application, where Bayes
nets are used to model gene expression data. The motivation in Almudevar (2010) comes from the
need to compare network models for a common set of genes under varying phenotypes, which can
be formulated as the problem of testing closeness between two unknown Bayes nets. As argued
in Almudevar (2010), due to the small sample size available, it is not feasible to directly learn each
BN separately.

Basic Notation and Definitions. Consider a directed acyclic graph (DAG), S , with n vertices that
are topologically sorted, i.e., labelled from the set [n]

def
= {1, 2, . . . , n} so that all directed edges of

S point from vertices with smaller label to vertices with larger label. A probability distribution P
over {0, 1}n is defined to be a Bayesian network (or Bayes net) with dependency graph S if for each
i ∈ [n], we have that PrX∼P [Xi = 1 | X1, . . . , Xi−1] depends only on the values Xj , where j is a
parent of i in S. Such a distribution P can be specified by its conditional probability table, i.e., the
vector of conditional probabilities of Xi = 1 conditioned on every possible combination of values to
the coordinates of X at the parents of i.

To formalize the above description, we use the following terminology. We will denote by
Parents(i) the set of parents of node i in S. For a vector X = (X1, . . . , Xn) and a subset A ⊆ [n],
we use XA to denote the vector (Xi)i∈A. We can now give the following definition:

Definition 1 Let S be the set {(i, a) : i ∈ [n], a ∈ {0, 1}|Parents(i)|} and m = |S|. For (i, a) ∈ S,
the parental configuration Πi,a is defined to be the event that XParents(i) = a. Once S is fixed,
we may associate to a Bayesian network P the conditional probability table p ∈ [0, 1]S given by
pi,a = PrX∼P [Xi = 1 | Πi,a], for (i, a) ∈ S. We note that the distribution P is determined by p.

We will frequently index p as a vector. That is, we will use the notation pk, for 1 ≤ k ≤ m, and
the associated events Πk, where each k stands for an (i, a) ∈ S lexicographically ordered.
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2. Testing Identity of Product Distributions

Before considering the general case of testing properties of Bayesian nets and discussing our results
in Section 3, we first provide in this section both a sample-optimal efficient algorithm and a matching
information-theoretic lower bound for the related, but simpler question of testing identity of product
distributions over {0, 1}n. Our results for this setting can be viewed as discrete analogues of testing
identity and closeness of high-dimensional spherical Gaussians, that have been studied in the statistics
literature Hotelling (1931); Bai and Saranadasa (1996); Srivastava and Du (2008); Chen and Qin
(2010). We note that the Gaussian setting is simpler since the total variation distance can be bounded
by the Euclidean distance between the mean vectors, instead of the chi-squared distance.

The structure of this section is as follows: In Section 2.1, we give an identity testing algorithm
for n-dimensional binary product distributions with sample complexity O(

√
n/ε2). In Section 2.2,

we show that this sample bound is information-theoretically optimal.

2.1. Identity Testing Algorithm

As mentioned above, here we are concerned with the problem of testing the identity of an unknown
product P with mean vector p against an explicit product distribution Q with mean vector q. Our
tester relies on a statistic providing an unbiased estimator of

∑
i(pi − qi)2/(qi(1− qi)). Essentially,

every draw from P gives us an independent sample from each of the coordinate random variables. In
order to relate our tester more easily to the analogous testers for unstructured distributions over finite
domains, we consider Poi(m) samples from each of these coordinate distributions. From there, we
construct a random variable Z that provides an unbiased estimator of our chi-squared statistic, and a
careful analysis of the variance of Z shows that with O(

√
n/ε2) samples we can distinguish between

P = Q and P being ε-far from Q; leading to the following theorem:

Theorem 2 There exists a computationally efficient algorithm which, given an explicit product
distribution Q (via its mean vector), and sample access to an unknown product distribution P over
{0, 1}n, has the following guarantees: For any ε > 0, the algorithm takes O

(√
n/ε2

)
samples from

P , and distinguishes with probability 2/3 between the cases that P = Q versus ‖P −Q‖1 > ε.

Proof Let Q = Q1⊗ · · ·⊗Qn be a known product distribution over {0, 1}n with mean vector q, and
P = P1 ⊗ · · · ⊗ Pn be an unknown product distribution on {0, 1}n with unknown mean vector p.
The goal is to distinguish, given independent samples from P , between P = Q, and ‖P −Q‖1 > ε.

Let 0 < γ < 1/2. We say that a product distribution P over {0, 1}n is γ-balanced if its mean
vector p satisfies pi ∈ [γ, 1− γ] for all i ∈ [n]. To prove Theorem 2, we can assume without loss

of generality that P,Q are γ0-balanced for γ0
def
= ε

16n . Indeed, given sample access to a product
distribution P , we can simulate access to the γ0-balanced product distribution P ′ by re-randomizing
independently each coordinate with probability 2γ0, choosing it then to be uniform in {0, 1}. The
resulting product distribution P ′ is γ0-balanced, and satisfies ‖P − P ′‖1 ≤ n · γ0 ≤ ε

4 . Therefore,
to test the identity of a product distribution P against a product distribution Q with parameter ε, it is
sufficient to test the identity of the γ0-balanced product distributions P ′, Q′ (with parameter ε

2 ).

Preprocessing. We also note that by flipping the coordinates i such that qi > 1/2, we can assume
that qi ∈ [γ0, 1/2] for all i ∈ [n]. This can be done without loss of generality, as q is explicitly given.
For any i such that qi > 1

2 , we replace qi by 1− qi and work with the corresponding distribution Q′
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Input Error tolerance ε, dimension n, balancedness parameter γ ≥ ε
16n , mean vector q =

(q1, . . . , qn) ∈ [γ, 1/2]n of an explicit product distribution Q over {0, 1}n, and sampling
access to a product distribution P over {0, 1}n.

- Set τ ← 1
4ε

2, m←
⌈

2716
√
n

ε2

⌉
.

- Draw M1, . . . ,Mn ∼ Poi(m) independently, and let M ← maxi∈[n]Mi.

If M > 2m set W = τm2

Else Take M samples X(1), . . . , X(M) from P , and define

W =

n∑
i=1

(Wi −mqi)2 −Wi

qi(1− qi)

where Wi ←
∑Mi

j=1X
(j)
i for i ∈ [n].

If W ≥ τm2 return reject.

Otherwise return accept.

Figure 1: Identity testing: unknown product distribution P against given product distribution Q.

instead. By flipping the i-th bit of all samples we receive from P , it only remains to test identity of
the resulting distribution P ′ to Q′, as all distances are preserved.

Proof of Correctness. Let m ≥ 2716
√
n
ε2

, and let M1, . . . ,Mn be i.i.d. Poi(m) random variables.
We set M = maxi∈[n]Mi and note that M ≤ 2m with probability 1 − e−Ω(m) (by a union
bound). We condition hereafter on M ≤ 2m (our tester will reject otherwise) and take M samples
X(1), . . . , X(M) drawn from P . We define the following statistic:

W =

n∑
i=1

(Wi −mqi)2 −Wi

qi(1− qi)
,

where we write Wi
def
=
∑Mi

j=1X
(j)
i for all i ∈ [n]. We note that the Wi’s are independent, as P is

a product distribution and the Mi’s are independent. The pseudocode for our algorithm is given in
Figure 1. Our identity tester is reminiscent of the “chi-squared type” testers that have been designed
for the unstructured univariate discrete setting Chan et al. (2014c); Diakonikolas et al. (2015a);
Acharya et al. (2015a).

We start with a simple formula for the expected value of our statistic:

Lemma 3 E[W ] = m2
∑n

i=1
(pi−qi)2

qi(1−qi) .

Proof Since Wi ∼ Poi(mpi) for all i, we can write

E
[
(Wi −mqi)2

]
= E

[
W 2
i

]
− 2mqiE[Wi] +m2q2

i = mpi +m2(pi − qi)2 ,
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and therefore E[W ] =
∑n

i=1

E[(Wi−mqi)2]−E[Wi]

qi(1−qi) = m2
∑n

i=1
(pi−qi)2

qi(1−qi) .

As a corollary we obtain:

Claim 4 If P = Q then E[W ] = 0. Moreover, whenever ‖P −Q‖1 > ε we have E[W ] > 1
2m

2ε2.

Proof The first part is immediate from the expression of E[W ]. The second follows from Corollary 27,
as m2‖P −Q‖21 ≤ 2m2

∑n
i=1

(pi−qi)2

qi(1−qi) = 2E[W ].

We now proceed to bound from above the variance of our statistic. The completeness case is quite
simple:

Claim 5 If P = Q, then Var[W ] ≤ 8m2n.

Proof Suppose thatP = Q, i.e., p = q. By independence, we get Var[W ] =
∑n

i=1
Var[(Wi−mqi)2−Wi]

q2
i (1−qi)2 .

Then, using the fact that E
[
(Wi −mqi)2 −Wi

]
= 0, we obtain that

Var[(Wi −mqi)2 −Wi] = E
[
((Wi −mqi)2 −Wi)

2
]

= 2m2q2
i ,

where the last equality follows from standard computations involving the moments of a Poisson
random variable. From there, recalling that qi ∈ (0, 1/2] for all i ∈ [n], we obtain Var[W ] =
2m2

∑n
i=1

1
(1−qi)2 ≤ 8m2n.

For the soundness case, the following lemma bounds the variance of our statistic from above. We
note that the upper bound depends on the balancedness parameter γ.

Lemma 6 We have that Var[W ] ≤ 16nm2 +
(

32
γ + 16

√
2nm

)
E[W ] + 32√

γE[W ]3/2.

Proof For general p, q, we have that

Var[(Wi −mqi)2 −Wi] = E
[
((Wi −mqi)2 −Wi)

2
]
−m4(pi − qi)4 = 2m2p2

i + 4m3pi(pi − qi)2 ,

where as before the last equality follows from standard computations involving the moments of a
Poisson random variable. This leads to

Var[W ] = 2m2
n∑
i=1

p2
i

q2
i (1− qi)2

+ 4m3
n∑
i=1

pi(pi − qi)2

q2
i (1− qi)2

≤ 8m2
n∑
i=1

p2
i

q2
i

+ 16m3
n∑
i=1

pi(pi − qi)2

q2
i

.

We handle the two terms separately, in a fashion similar to (Acharya et al., 2015a, Lemma 2). For
the first term, we can write:

n∑
i=1

p2
i

q2
i

=

n∑
i=1

(pi − qi)2

q2
i

+

n∑
i=1

2piqi − q2
i

q2
i

=

n∑
i=1

(pi − qi)2

q2
i

+

n∑
i=1

2qi(pi − qi) + q2
i

q2
i

= n+

n∑
i=1

(pi − qi)2

q2
i

+

n∑
i=1

2(pi − qi)
qi

= n+

n∑
i=1

(pi − qi)2

q2
i

+

n∑
i=1

2(pi − qi)
qi

≤
(AM-GM)

n+

n∑
i=1

(pi − qi)2

q2
i

+

n∑
i=1

(
1 +

(pi − qi)2

q2
i

)
= 2n+ 2

n∑
i=1

(pi − qi)2

q2
i

≤ 2n+
2

γ

n∑
i=1

(pi − qi)2

qi
≤ 2n+

4

m2γ
E[W ] .
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We bound the second term from above as follows:

n∑
i=1

pi(pi − qi)2

q2
i

≤
n∑
i=1

pi
qi
· pi(pi − qi)

2

qi
≤

√√√√ n∑
i=1

p2
i

q2
i

√√√√ n∑
i=1

(pi − qi)4

q2
i

(Cauchy–Schwarz)

≤
(√

2n+
2

m
√
γ

√
E[W ]

) n∑
i=1

(pi − qi)2

qi
(monotonicity of `p-norms)

=
1

m2

(√
2n+

2

m
√
γ

√
E[W ]

)
· E[W ] .

Overall, we obtain

Var[W ] ≤ 16nm2 +
32

γ
E[W ] + 16m

(√
2n+

2

m
√
γ

√
E[W ]

)
· E[W ]

= 16nm2 +

(
32

γ
+ 16

√
2nm

)
E[W ] +

32
√
γ
E[W ]3/2 .

We are now ready to prove correctness.

Lemma 7 Set τ def
= ε2

4 . Then we have the following:

• If ‖P −Q‖1 = 0, then Pr
[
W ≥ τm2

]
≤ 1

3 .

• If ‖P −Q‖1 > ε, then Pr
[
W < τm2

]
≤ 1

3 .

Proof We start with the soundness case, i.e., assuming ‖P −Q‖1 > ε. In this case, Claim 4 implies
E[W ] > 2τm2. Since γ ≥ ε

16n and for m ≥ 16
ε

√
2n, Lemma 6 implies that

Var[W ] ≤ 16nm2 + 32
√

2nmE[W ] + 32 · 4
√
n

ε
E[W ]3/2 .

By Chebyshev’s inequality, we have that

Pr
[
W < τm2

]
≤ Pr

[
E[W ]−W >

1

2
E[W ]

]
≤ 4 Var[W ]

E[W ]2
≤ 64nm2

E[W ]2
+

128
√

2nm

E[W ]
+

512
√

n
ε

E[W ]1/2

≤ 4 · 64n

m2ε4
+

2 · 128
√

2n

mε2
+

4
√

2 · 128
√
n

mε3/2
≤ 128

(
2

C2
+

5
√

2

C

)
,

which is at most 1/3 as long as C ≥ 2716, that is m ≥ 2716
√
n
ε2

.
Turning to the completeness, we suppose ‖P −Q‖1 = 0. Then, again by Chebyshev’s inequality

and Claim 5 we have that

Pr
[
W ≥ τm2

]
= Pr

[
W ≥ E[W ] + τm2

]
≤ Var[W ]

τ2m4
≤ 128n

ε4m2
,

which is no more than 1/3 as long as m ≥ 8
√

6
√
n
ε2

.

9
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Remark 8 We observe that the aforementioned analysis – specifically Claim 4 and Lemma 7 – can
be adapted to provide some tolerance guarantees in the completeness case, that is it implies a tester
that distinguishes between ‖P −Q‖1 ≤ ε′ and ‖P −Q‖1 > ε, where ε′ = O(ε2). This extension,
however, requires the assumption thatQ be balanced: indeed, the exact dependence between ε′ and ε2

will depend on this balancedness parameter, leading to a tradeoff between tolerance and balancedness.
Further, as shown in Section 5.3, this tradeoff is in fact necessary, as tolerant testing of arbitrary
product distributions requires Ω(n/ log n) samples.

2.2. Sample Complexity Lower Bound for Identity Testing

In this section, we prove our matching information-theoretic lower bound for identity testing. In The-
orem 9, we give a lower bound for uniformity testing of a product distribution, while Theorem 13
shows a quantitatively similar lower bound for identity testing against the product distribution with
mean vector q = (1/n, . . . , 1/n). To establish these lower bounds, we use the information-theoretic
technique from Diakonikolas and Kane (2016): Given a candidate hard instance, we proceed by
bounding from above the mutual information between appropriate random variables. More specifi-
cally, we construct an appropriate family of hard instances (distributions) and show that a set of k
samples taken from a distribution from the chosen family has small shared information with whether
or not the distributions are the same.

Theorem 9 There exists an absolute constant ε0 > 0 such that, for any 0 < ε ≤ ε0, the following
holds: Any algorithm that has sample access to an unknown product distribution P over {0, 1}n
and distinguishes between the cases that P = U and ‖P − U‖1 > ε with probability 2/3 requires
Ω(
√
n/ε2) samples.

Proof As previously mentioned, we first define two distributions over product distributions Y,N :

• Y is the distribution that puts probability mass 1 on the uniform distribution,U = Bern(1/2)⊗n;

• N is the uniform distribution over the set
n⊗
j=1

Bern

(
1

2
+ (−1)bj

ε√
n

)
: (b1, . . . , bn) ∈ {0, 1}n

 .

Lemma 10 N is supported on distributions that are Ω(ε)-far from U .

Proof The proof, deferred to Appendix B, proceeds by considering directly the quantity ‖P − U‖1
in order to obtain a lower bound, where P def

=
⊗n

j=1 Bern
(

1
2 + ε√

n

)
; specifically, by focusing on

the contribution to the distance from the points in the “middle layers” of the Boolean hypercube.
(We note that an argument relying on the more convenient properties of the Hellinger distance with
regard to product distributions, while much simpler, would only give a lower bound of Ω(ε2) – losing
a quadratic factor.)

We will make a further simplification, namely that instead of drawing k samples from P =
P1 ⊗ · · · ⊗ Pn, the algorithm is given ki samples from each Pi, where k1, . . . , kn are independent

10
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Poi(k) random variables. This does not affect the lower bound, as this implies a lower bound on

algorithms taking k∗ def
= max(k1, . . . , kn) samples from P (where the ki’s are as above), and k∗ ≥ k

2

with probability 1− 2−Ω(n). We now consider the following process: letting X ∼ Bern(1/2) be a
uniformly random bit, we choose a distribution P over {0, 1}n by

• Drawing P ∼ Y if X = 0, and;

• Drawing P ∼ N if X = 1;

• Drawing k1, . . . , kn ∼ Poi(k), and returning k1 samples from P1, . . . , kn samples from Pn.

For i ∈ [n], we write Ni for the number of 1’s among the ki samples drawn from Pi, and let
N = (N1, . . . , Nn) ∈ Nn. We will invoke this standard fact, as stated in Diakonikolas and Kane
(2016):

Fact 11 Let X be a uniform random bit and Y a random variable taking value in some set S. If
there exists a function f : S → {0, 1} such that Pr[ f(Y ) = X ] ≥ 0.51, then I (X;Y ) = Ω(1).

Proof By Fano’s inequality, letting q = Pr[ f(Y ) 6= X ], we have h(q) = h(q)+q log(|{0, 1}|−1) ≥
H (X | Y ). This implies I (X;Y ) = H (X) − H (X | Y ) = 1 − H (X | Y ) ≥ 1 − h(q) ≥
1− h(0.49) ≥ 2 · 10−4.

The next step is then to bound from above I (X;N), in order to conclude that it will be o(1) unless
k is taken big enough and invoke Fact 11. By the foregoing discussion and the relaxation on the ki’s,
we have that the conditioned on X the Ni are independent (with Ni ∼ Poi(kpi)). Recall now that if
X,Y1, Y2 are random variables such that Y1 and Y2 are independent conditioned on X , by the chain
rule we have that

H ((Y1, Y2) | X) = H (Y1 | X) +H (Y2 | X,Y1) = H (Y1 | X) +H (Y2 | X) ,

where the second equality follows from conditional independence, and therefore

I (X; (Y1, Y2)) = H ((Y1, Y2))−H ((Y1, Y2) | X)

= H (Y1) +H (Y1 | Y2)− (H (Y1 | X) +H (Y2 | X))

≤ H (Y1) +H (Y1)− (H (Y1 | X) +H (Y2 | X))

= (H (Y1)−H (Y1 | X)) + (H (Y2)−H (Y2 | X))

= I (X;Y1) + I (X;Y2) .

This implies that

I (X;N) ≤
n∑
i=1

I (X;Ni) , (1)

so that it suffices to bound each I (X;Ni) separately.

Lemma 12 Fix any i ∈ [n], and let X,Ni be as above. Then I (X;Ni) = O(k2ε4/n2).

11
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Proof The proof of this rather technical result can be found in Appendix B, and broadly pro-
ceeds as follows. The first step is to upper bound I (X;Ni) by a more manageable quantity,∑∞

a=0 Pr[Ni = a ]
(

1− Pr[Ni=a | X=1 ]
Pr[Ni=a | X=0 ]

)2
. After this, giving an upper bound on each summand

can be done by performing a Taylor series expansion (in ε/
√
n), relying on the expression of the

moment-generating function of the Poisson distribution to obtain cancellations of many low-order
terms.

This lemma, along with Eq. (1), gives the desired result, that is

I (X;N) ≤
n∑
i=1

O

(
ε4k2

n2

)
= O

(
ε4k2

n

)
, (2)

which is o(1) unless k = Ω(
√
n/ε2).

Theorem 13 There exists an absolute constant ε0 > 0 such that, for any ε ∈ (0, ε0), distinguishing

P = P ∗ and ‖P − P ∗‖1 > ε with probability 2/3 requires Ω(
√
n/ε2) samples, where P ∗ def

=
Bern(1/n)⊗n.

Proof The proof will follow the same outline as that of Theorem 9 first defining two distributions
over product distributions Y,N :

• Y is the distribution that puts probability mass 1 on P ∗;

• N is the uniform distribution over the set
n⊗
j=1

Bern

(
1

n

(
1 + (−1)bj ε

))
: (b1, . . . , bn) ∈ {0, 1}n

 .

Lemma 14 With probability 1− 2−Ω(n), N is supported on distributions Ω(ε)-far from P ∗.

Proof [Proof of Lemma 14] As for Lemma 10, using Hellinger distance as a proxy would only result
in an Ω(ε2) lower bound on the distance, so we will compute it explicitly instead. The proof can be
found in Appendix B.

The only ingredient missing to conclude the proof is the analogue of Lemma 12:

Lemma 15 Suppose kε2

n ≤ 1. Fix any i ∈ [n], and let X,Ni be as above. Then I (X;Ni) =
O(k2ε4/n2).

Proof The proof is similar as that of (Diakonikolas and Kane, 2016, Lemma 3.3), replacing (their)
mn by (our) n. For completeness, we provide an alternative proof in Appendix D.

3. Our Results and Techniques

The structure of this section is as follows: In Section 3.1, we provide the statements of our main
results in tandem with a brief explanation of their context and the relations between them. techniques.
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3.1. Main Results

The focus of this paper is on the properties of identity testing and closeness testing of Bayes nets. We
give the first non-trivial efficient testing algorithms and matching information-theoretic lower bounds
for these problems. For a wide range of parameter settings, our algorithms achieve sub-learning
sample complexity and are sample-optimal (up to constant factors).

For concreteness, we consider Bayes nets over Bernoulli random variables. We note that our
upper bounds straightforwardly extend to general alphabets with a polynomial dependence on the
alphabet size (see Remark 55). Let BN n,d denote the family of Bernoulli Bayes nets on n variables
such that the corresponding DAG has maximum in-degree at most d. For most of our results, we will
think of the dimension n as being large and the maximum degree d as being comparably small (say,
bounded from above by a constant or at most logarithmic in n).

For the inference problems of learning and testing Bayes nets, there are two versions of the
problem: The first version corresponds to the setting where the structure of the graph is fixed (and
known a priori to the algorithm). In the second version, both the graph and the parameters are
unknown to the algorithm. We note that both versions of the problem are interesting, based on
the application. The unknown structure setting is clearly at least as hard, and typically includes an
algorithm for the fixed structure case plus additional algorithmic ingredients.

Before we give the statements of our main testing results, we record a nearly tight bound on the
sample complexity of learning BN n,d. This bound will be used as a baseline to compare against our
efficient testers:

Fact 16 The sample complexity of learning BN n,d, within total variation distance ε, with confidence
probability 9/10, is: (i) Θ̃(2d · n/ε2), for all d ≤ n/2, in the fixed structure setting, and (ii)
Θ̃(2d · n/ε2) in the unknown structure setting.

We give a proof of this fact in Appendix A. Fact 16 characterizes the sample complexity of
learning Bayes nets (up to logarithmic factors). We remark that our information-theoretic upper bound
for the fixed structure case also yields a simple computationally efficient algorithm. The unknown
structure regime is much more challenging computationally. For this setting, we provide a nearly
tight information-theoretic upper bound that is non-constructive. (The corresponding algorithm runs
in exponential time.) In fact, we note that no sample-optimal computationally efficient algorithm is
known for unknown structure Bayes nets.

Our first main result concerns the fixed structure regime. For technical reasons, we focus on
Bayes nets that satisfy a natural balancedness condition. Roughly speaking, our balancedness
condition ensures that the conditional probabilities are bounded away from 0 and 1, and that each
parental configuration happens with some minimum probability. Formally, we have:

Definition 17 A Bayes net P over {0, 1}n with structure S is called (c, C)-balanced if, for all k,
we have that (i) pk ∈ [c, 1− c], and (ii) PrP [ Πk ] ≥ C.

Under a mild condition on the balancedness, we give sample-optimal and computationally
efficient algorithms for testing identity and closeness of Bayes nets. Specifically, for the problem of
identity testing against an explicit distribution, we require that the explicit distribution be balanced
(no assumption is needed for the unknown Bayes net). For the problem of closeness testing, we
require that one of the two unknown distributions be balanced. We are now ready to state our first
main theorem:
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Theorem 18 (Testing Identity and Closeness of Fixed–Structure Bayes Nets) For testing iden-
tity and closeness of fixed structure Bayes nets P,Q with n nodes and maximum in-degree d, there is
an efficient algorithm that uses O

(
2d/2
√
n/ε2

)
samples and, assuming that one of P,Q is (c, C)-

balanced with c = Ω̃ (1/
√
n) and C = Ω̃

(
dε2/
√
n
)
, correctly distinguishes between the cases

that P = Q versus ‖P −Q‖1 > ε, with probability at least 2/3. Moreover, this sample size is
information-theoretically optimal, up to constant factors, for all d < n/2, even for the case of
uniformity testing.

The conceptual message of Theorem 18 is that, for the case of fixed structure, testing is information-
theoretically easier than learning. Specifically, our result establishes a quadratic gap between
learning and identity testing, reminiscent of the analogous gap in the setting of unstructured discrete
distributions. We remark here that the information-theoretic lower bounds of Fact 16 (i) hold even
for Bayes nets with constant balancedness.

We now turn our attention to the case of unknown structure. Motivated by Theorem 18, it would
be tempting to conjecture that one can obtain testers with sub-learning sample complexity in this
setting as well. Our first main result for unknown structure testing is an information-theoretic lower
bound, showing that this is not the case. Specifically, even for the most basic case of tree-structured
Bays Nets (d = 1) with unknown structure, uniformity testing requires Ω(n/ε2) samples. It should
be noted that our lower bound applies even for Bayes nets with constant balancedness. Formally, we
have:

Theorem 19 (Sample Lower Bound for Uniformity Testing of Unknown Tree-Structured BN)
Any algorithm that, given sample access to a balanced tree-structured Bayes net P over {0, 1}n, dis-
tinguishes between the cases P = U and ‖P − U‖1 > ε (where U denotes the uniform distribution
over {0, 1}n), with probability 2/3, requires Ω(n/ε2) samples from P .

At the conceptual level, our above lower bound implies that in the unknown topology case – even
for the simplest non-trivial case of degree-1 Bayes nets – identity testing is information-theoretically
essentially as hard as learning. That is, in some cases, no tester with sub-learning sample complexity
exists. We view this fact as an interesting phenomenon that is absent from the previously studied
setting of testing unstructured discrete distributions.

Theorem 19 shows that testing Bayes nets can be as hard as learning. However, it is still possible
that testing is easier than learning in most natural situations. For the sake of intuition, let us examine
our aforementioned lower bound more carefully. We note that the difficulty of the problem originates
from the fact that the explicit distribution is the uniform distribution, which can be thought of
as having any of a large number of possible structures. We claim that this impediment can be
circumvented if the explicit distribution satisfies some non-degeneracy conditions. Intuitively, we
want these conditions to ensure robust identifiability of the structure: that is, that any (unknown)
Bayes net sufficiently close to a non-degenerate Bayes net Q must also share the same structure.

For tree structures, there is a very simple non-degeneracy condition. Namely, that for each
node, the two conditional probabilities for that node (depending on the value of its parent) are
non-trivially far from each other. For Bayes nets of degree more than one, our non-degeneracy
condition is somewhat more complicated to state, but the intuition is still simple: By definition, non-
equivalent Bayesian network structures satisfy different conditional independence constraints. Our
non-degeneracy condition rules out some of these possible new conditional independence constraints,
as far from being satisfied by the non-degenerate Bayesian network. Let γ > 0 be a parameter
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quantifying non-degeneracy. Under our non-degeneracy condition, we can design a structure tester
with the following performance guarantee:

Theorem 20 (Structure Testing for Non-Degenerate Bayes Nets) Let S be a structure of degree
at most d and P be a degree at most d Bayes net over {0, 1}n with structure S ′ whose underlying
undirected graph has no more edges than S . There is an algorithm that uses O

(
(2d + d log n)/γ2

)
samples from P , runs in time O

(
nd+3/γ2

)
, and distinguishes between the following two cases with

probability at least 2/3: (i) P can be expressed as a degree-d Bayes net with structure S that is
γ-non-degenerate; or (ii) P cannot be expressed as a Bayes net with structure S.

By invoking the structure test of the above theorem, we can reduce the identity testing with
unknown structure to the case of known structure, obtaining the following:

Theorem 21 (Testing Identity of Non-Degenerate Unknown Structure Bayes Nets) There exists
an algorithm with the following guarantees. Given the description of a degree-d Bayes net Q over
{0, 1}n, which is (c, C) balanced and γ-non-degenerate for c = Ω̃ (1/

√
n) and C = Ω̃

(
dε2/
√
n
)
,

ε > 0, and sample access to a distribution P , promised to be a degree-d Bayes net with no more
edges than Q, the algorithm takes O

(
2d/2
√
n/ε2 + (2d + d log n)/γ2

)
samples from P , runs in

time O (n)d+3(1/γ2 + 1/ε2), and distinguishes with probability at least 2/3 between (i) P = Q and
(ii) ‖P −Q‖1 > ε.

We remark that we can obtain an analogous result for the problem of testing closeness. See Section 9.
We have shown that, without any assumptions, testing is almost as hard as learning for the case

of trees. An interesting question is whether this holds for high degrees as well. We show that for
the case of high degree sub-learning sample complexity is possible. We give an identity testing
algorithm for degree-d Bayes nets with unknown structure, without balancedness or degeneracy
assumptions. While the dependence on the number of nodes n of this tester is suboptimal, it does
essentially achieve the “right” dependence on the degree d, that is 2d/2:

Theorem 22 (Sample Complexity Upper Bound of Identity Testing) Given the description of a
degree-d Bayes net Q over {0, 1}n, ε > 0, and sample access to a degree-d Bayes net P , we can
distinguish between the cases that P = Q and ‖P −Q‖1 > ε, with probability at least 2/3, using
2d/2poly(n, 1/ε) samples from P .

(See Theorem 80 for a more detailed statement handling closeness testing as well.) The message
of this result is that when the degree d increases, specifically for d = Ω(log n), the sample complexity
of testing becomes lower than the sample complexity of learning. We also show an analogue
of Theorem 22 for closeness testing of two unknown Bayes nets, under the additional assumption
that we know the topological ordering of the unknown DAGs.

3.2. Organization

This paper is organized as follows: In Section 4, we give the necessary definitions and tools we
will require. Section 5 gives our matching upper and lower bounds for closeness testing of product
distributions (recall that Section 2 was concerned with the simpler question of identity testing of
product distributions). Section 6 then provides an overview of what is required to generalize these
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techniques from product distributions to Bayes nets, discussing at a high-level the following sections.
In Section 7 we study the identity testing for Bayes nets with known structure: We give an identity
tester that works under a mild balancedness condition on the explicit Bayes net distribution, and also
show that the sample complexity of our algorithm is optimal, up to constant factors. In Section 8,
we study the identity testing for unknown structure Bayes nets: We start by proving a sample
complexity lower bound showing that, for the unknown structure regime, uniformity testing is
information-theoretically as hard as learning – even for the case of trees. We then show that this
lower bound can be circumvented under a natural non-degeneracy condition on the explicit Bayes
net distribution. Specifically, we give an identity tester with sub-learning sample complexity for all
low-degree non-degenerate Bayes nets. Our identity tester for unknown structure non-degenerate
Bayes nets relies on a novel structure tester that may be of interest in its own right. Section 9
studies the corresponding closeness testing problems for both known and unknown structure Bayes
nets. Finally, in Section 10 we consider the case of high-degree Bayes nets and obtain testers for
identity and closeness of unknown-structure Bayes nets. Our testers in this section have optimal
(and sub-learning) sample complexity as a function of the maximum in-degree d and polynomial
dependence in the dimension n.

3.3. Concurrent and Independent Work

Contemporaneous work by Daskalakis and Pan (2016) studies the identity testing problem for Bayes
nets with the same known graph structure. Using different arguments, they obtain a tester with sample
complexity Õ(2(3/4)d · n/ε2) and running time Oε(nd+1) for this problem. This sample bound is
comparable to that of our Theorem 80 (that works without assumptions on the parameters), having
the right dependence on n, 1/ε (as follows from our Theorem 19 and Fact 16) and a sub-optimal
dependence on the degree d. As previously mentioned, a sample complexity of Ω(n/ε2) is relevant
for high-degree Bayes nets. For the case of low-degree (which is the main focus of our paper),
one can straightforwardly obtain the same sample bound just by learning the distribution (Fact 16).
Daskalakis and Pan (2016) also obtain an O(n1/2/ε2) upper bound for testing identity against a
known product, matching our Theorem 2. (This sample bound is optimal by our Theorem 9.)

4. Preliminaries

In this section, we record the basic definitions and technical tools we shall use throughout this paper.
Basic Notation and Definitions. The L1-distance between two discrete probability distributions
P,Q supported on a set A is defined as ‖P −Q‖1 =

∑
x∈A|P (x) − Q(x)|. Our arguments

will make essential use of related distance measures, specifically the KL-divergence, defined as
D(P‖Q) =

∑
x∈A P (x) log P (x)

Q(x) , and the Hellinger distance, defined as dH(P,Q) = (1/
√

2) ·√∑
x∈A(

√
P (x)−

√
Q(x))2.

We write log and ln for the binary and natural logarithms, respectively, and by H(X) the
(Shannon) entropy of a discrete random variable X (as well as, by extension, H(P ) for the entropy
of a discrete distribution P ). We denote by I (X;Y ) the mutual information between two random
variables X and Y , defined as I (X;Y ) =

∑
x,y Pr[ (X,Y ) = (x, y) ] log Pr[ (X,Y )=(x,y) ]

Pr[X=x ] Pr[Y=y ] . For a
probability distribution P , we write X ∼ P to indicate that X is distributed according to P . For
probability distributions P,Q, we will use P ⊗Q to denote the product distribution with marginals
P and Q.
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Identity and Closeness Testing. We now formally define the testing problems that we study.

Definition 23 (Identity testing) An identity testing algorithm of distributions belonging to a class
C is a randomized algorithm which satisfies the following. Given a parameter 0 < ε < 1 and the
explicit description of a reference distribution Q ∈ C, as well as access to independent samples
from an unknown distribution P ∈ C, the algorithm outputs either accept or reject such that the
following holds:

• (Completeness) if P = Q, then the algorithm outputs accept with probability at least 2/3;

• (Soundness) if ‖P −Q‖1 ≥ ε, then the algorithm outputs reject with probability at least 2/3.

Note that by the above definition the algorithm is allowed to answer arbitrarily if neither the
completeness nor the soundness cases hold. The closeness testing problem is similar, except that
now both P,Q are unknown and are only available through independent samples.

Definition 24 (Closeness testing) A closeness testing algorithm of distributions belonging to a class
C is a randomized algorithm which satisfies the following. Given a parameter 0 < ε < 1 and access
to independent samples from two unknown distributions P,Q ∈ C, the algorithm outputs either
accept or reject such that the following holds:

• (Completeness) if P = Q, then the algorithm outputs accept with probability at least 2/3;

• (Soundness) if ‖P −Q‖1 ≥ ε, then the algorithm outputs reject with probability at least 2/3.

Finally, we also consider a third related question, that of structure testing:

Definition 25 (Structure testing) Let C be a family of Bayes nets. A structure testing algorithm of
Bayes nets belonging to C is a randomized algorithm which satisfies the following. Given a parameter
0 < ε < 1 and the explicit description of a DAG S, as well as access to independent samples from
an unknown P ∈ C, the algorithm outputs either accept or reject such that the following holds:

• (Completeness) if P can be expressed as a Bayes net with structure S, then the algorithm
outputs accept with probability at least 2/3;

• (Soundness) if ‖P −Q‖1 > ε for every Q ∈ C with structure S, then the algorithm outputs
reject with probability at least 2/3.

In all cases the two relevant complexity measures are the sample complexity, i.e., the number of
samples drawn by the algorithm, and the time complexity of the algorithm. The golden standard is to
achieve sample complexity that is information-theoretically optimal and time-complexity linear in
the sample complexity.

In this work, the family C will correspond to the family of Bayes nets over {0, 1}n, where we
will impose an upper bound d on the maximum in-degree of each node. For d = 0, i.e., when the
underlying graph has no edges, we obtain the family of product distributions over {0, 1}n.
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Relations between Distances. We will require a number of inequalities relating the L1-distance,
the KL-divergence, and the Hellinger distance between distributions. We state a number of inequali-
ties relating these quantities that we will use extensively in our arguments. The simple proofs are
deferred to Appendix C.

Recall that a binary product distribution is a distribution over {0, 1}n whose coordinates are
independent; and that such a distribution is determined by its mean vector. We have the following:

Lemma 26 Let P,Q be binary product distributions with mean vectors p, q ∈ (0, 1)n. We have that

2
n∑
i=1

(pi − qi)2 ≤ D(P‖Q) ≤
n∑
i=1

(pi − qi)2

qi(1− qi)
. (3)

In particular, if there exists α > 0 such that q ∈ [α, 1− α]n, we obtain

2‖p− q‖22 ≤ D(P‖Q) ≤ 1

α(1− α)
‖p− q‖22 . (4)

Recall that for any pair of distributions P,Q, Pinsker’s inequality states that ‖P −Q‖21 ≤ 2 D(P‖Q).
This directly implies the following:

Corollary 27 Let P,Q be binary product distributions with mean vectors p, q ∈ (0, 1)n. We have
that

‖P −Q‖21 ≤ 2

n∑
i=1

(pi − qi)2

qi(1− qi)
.

The following lemma states an incomparable and symmetric upper bound on the L1-distance, as well
as a lower bound.

Lemma 28 Let P,Q be binary product distributions with mean vectors p, q ∈ (0, 1)n. Then it holds
that

min
(
c, ‖p− q‖42

)
≤ ‖P −Q‖21 ≤ 8

n∑
i=1

(pi − qi)2

(pi + qi)(2− pi − qi)
.

for some absolute constant c ∈ (0, 1). (Moreover, one can take c = 4(1− e−3/2) ' 3.11.)

While the above is specific to product distributions, we will require analogous inequalities for Bayes
nets. We start with the following simple lemma:

Lemma 29 Let P and Q be Bayes nets with the same dependency graph. In terms of the conditional
probability tables p and q of P and Q, we have:

2
m∑
k=1

Pr
P

[ Πk ] (pk − qk)2 ≤ D(P‖Q) ≤
m∑
k=1

Pr
P

[ Πk ]
(pk − qk)2

qk(1− qk)
.

Finally, we state an alternative bound, expressed with respect to the Hellinger distance between two
Bayes nets:

Lemma 30 ((Diakonikolas et al., 2016c, Lemma 4)) Let P and Q be Bayes nets with the same
dependency graph. In terms of the conditional probability tables p and q of P and Q, we have:

dH(P,Q)2 ≤ 2
m∑
k=1

√
Pr
P

[ Πk ] Pr
Q

[ Πk ]
(pk − qk)2

(pk + qk)(2− pk − qk)
.
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5. Testing Closeness of Product Distributions

Our first set of results involves sample-optimal testers and matching information-theoretic lower
bounds for testing closeness of product distributions over {0, 1}n (recall that in Section 2, we settled
the related question of identity testing of such product distributions). Specifically, in Section 5.1, we
give a closeness testing algorithm for n-dimensional binary product distributions with sample com-
plexity O(

√
n/ε2); then, we show in Section 5.2 that this sample bound is information-theoretically

optimal.

5.1. Closeness Testing Algorithm

Compared to identity, testing closeness between two unknown product distributions is somewhat
more complicated and requires additional ideas. As is the case when comparing unknown discrete
distributions on [n], we have the difficulty that we do not know how to scale our approximations to
the (pi − qi)2 terms. We are forced to end up rescaling using the total number of samples drawn with
xi = 1 as a proxy for 1/(qi). This leaves us with a statistic reminiscent of that used in Chan et al.
(2014c), which can be shown to work with a related but more subtle analysis. First, in our setting, it
is no longer the case that the sum of the qi’s is O(1), and this ends up affecting the analysis, making
our sample complexity depend on n3/4 instead of n2/3 as in the unstructured case. Second, to obtain
the optimal sample complexity as a function of both n and ε, we need to partition the coordinates
into two groups based on the value of their marginals and apply a different statistic to each group. It
turns out that the sample complexity of our closeness testing algorithm is O(max(n1/2/ε2, n3/4/ε)):

Theorem 31 There exists an efficient algorithm which, given sample access to two unknown product
distributions P,Q over {0, 1}n, has the following guarantees. For any ε ∈ (0, 1), the algorithm takes
O
(
max

(√
n/ε2, n3/4/ε

))
samples from P and Q, and distinguishes with probability 2/3 between

(i) ‖P −Q‖1 = 0 and (ii) ‖P −Q‖1 > ε.

The rest of this section is devoted to the proof of the above theorem.
Proof Let P,Q be two product distributions on {0, 1}n with mean vectors p, q ∈ [0, 1]n. For S ⊆ [n],
we denote by PS and QS the product distributions on {0, 1}|S| obtained by restricting P and Q to
the coordinates in S. Similarly, we write pS , qS ∈ [0, 1]|S| for the vectors obtained by restricting p, q
to the coordinates in S, so that PS has mean vector pS .

High-level Idea. The basic idea of the algorithm is to divide the coordinates in two bins U, V : one
containing the indices where both distributions have marginals very close to 0 (specifically, at most
1/m, where m is our eventual sample complexity), and one containing the remaining indices, on
which at least one of the two distributions is roughly balanced. Since P and Q can only be far from
each other if at least one of ‖PU −QU‖1, ‖PV −QV ‖1 is big, we will test separately each case.
Specifically, we will apply two different testers: one “χ2-based tester” (with sample complexity
O
(√
n/ε2

)
) to the “heavy bin” U – which relies on the fact that the marginals of P,Q on U are

balanced by construction – and one “`2-tester” (with sample complexity O
(
n3/4/ε

)
) to the “light

bin” V – relying on the fact that ‖pV ‖2, ‖qV ‖2 are small. The pseudocode of our algorithm is given
in Figure 2.
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Sample Complexity. Hereafter, we let

m
def
= C max

(√
n

ε2
,
n3/4

ε

)
,

for some absolute constant C > 0 to be determined in the course of the analysis. We let M1, . . . ,Mn

and M ′1, . . . ,M
′
n be i.i.d. Poi(m) random variables, set M = maxi∈[n]Mi, M ′ = maxi∈[n]M

′
i ;

and note that M,M ′ ≤ 2m with probability 1 − e−Ω(m) (by a union bound). We will condition
hereafter on the event that M,M ′ ≤ 2m and our tester will reject otherwise.
Without loss of generality, as in the previous sections, we will assume that ε

16n ≤ pi, qi ≤
3
4 for every

i ∈ [n]. Indeed, this can be ensured by the simple preprocessing step below.

Preprocessing. Using O(log n) samples from P and Q, we can ensure without loss of generality
that all pi, qi are at most 3/4 (with probability 9/10). Namely, we estimate every pi, qi to an additive
1/64, and proceed as follows:

• If the estimate of qi is not within an additive ± 1
32 of that of pi, we output reject and stop;

• If the estimate of pi is more than 43/64, mark i as “swapped” and replace Xi by 1−Xi (for
P ) and Yi by 1− Yi (for Q) in all future samples.

Assuming correctness of the estimates (which holds with probability at least 9/10), if we pass
this step then |pi − qi| < 1

16 for all i. Moreover, if i was not swapped, then it means that we had
pi ≤ 43/64+1/64 < 3/4, and therefore qi < 43/64+1/64+1/16 = 3/4. Now, if we had qi > 3/4,
then pi > 3/4− 1/16 and the estimate of pi would be more than 3/4− 1/16− 1/64 = 43/64.

Proof of Correctness. Form as above, defineU, V ⊆ [n] by V def
=
{
i ∈ [n] : max(pi, qi) <

1
m

}
and U def

= [n] \ V . We start with the following simple claim:

Claim 32 Assume ‖P −Q‖1 > ε. Then, at least one of the following must hold: (i) ‖pV − qV ‖22 >
ε2

16n , or (ii)
∑

i∈U
(pi−qi)2

pi+qi
> ε2

64 .

Proof Since ε < ‖P −Q‖1 ≤ ‖PU −QU‖1 + ‖PV −QV ‖1, at least one of the two terms
in the RHS must exceed ε

2 . We now recall that, by Lemma 28, it holds that ‖PU −QU‖21 ≤
8
∑

i∈U
(pi−qi)2

(pi+qi)(2−pi−qi) and from the further assumption that pi, qi ≤ 3
4 that ‖PU −QU‖21 ≤

16
∑

i∈U
(pi−qi)2

pi+qi
.

Using subadditivity and the Cauchy–Schwartz inequality, we also have

‖PV −QV ‖1 ≤
∑
i∈V
‖Pi −Qi‖1 = 2

∑
i∈V
|pi − qi| = 2‖pV − qV ‖1

≤ 2
√
|V |‖pV − qV ‖2 ≤ 2

√
n‖pV − qV ‖2 ,

from where we derive that ‖pV − qV ‖22 ≥
1

4n‖PV −QV ‖
2
1. This completes the proof.

We now define U ′, V ′ ⊆ [n] (our “proxies” for U, V ) as follows: Taking m samples from both P
and Q, we let V ′ be the set of indices which were never seen set to one in any sample, and U ′ be its
complement. We have the following:

20



TESTING BAYESIAN NETWORKS

Input Error tolerance ε ∈ (0, 1), dimension n, and sampling access to two product distributions
P,Q over {0, 1}n.

- Preprocess P,Q so that qi ≤ 3
4 for all i ∈ [n], return reject if a discrepancy appears.

- Set m def
= C max

(√
n
ε2
, n

3/4

ε

)
.

- Define M,M ′ as follows: Draw M1, . . . ,Mn, M ′1, . . . ,M
′
n i.i.d. Poi(m) random variables,

and set M = maxi∈[n]Mi, M ′ = maxi∈[n]M
′
i .

- Takem samples from both P andQ, and let U ′, V ′ ⊆ [n] be respectively the set of coordinates
i such that Xi = 1 for at least one sample, and its complement.

If max(M,M ′) > 2m, return reject.

- Take M (resp. M ′) samples X(1), . . . , X(M) from PU ′ (resp. Y (1), . . . , Y (M ′) from QU ′),
and define

Wheavy =
∑
i∈U ′

(Wi − Vi)2 − (Wi + Vi)

Wi + Vi
,

for Vi,Wi defined as Wi =
∑Mi

j=1X
(j)
i and Vi =

∑M ′i
j=1 Y

(j)
i for all i ∈ U ′.

If Wheavy ≥ mε2

12000 return reject.

- Take M (resp. M ′) samples X
′(1), . . . , X

′(M) from PV ′ (resp. Y
′(1), . . . , Y

′(M ′) from QV ′),
and define

Wlight =
∑
i∈V ′

(
(W ′i − V ′i )2 − (W ′i + V ′i )

)
,

for V ′i ,W
′
i defined as W ′i =

∑Mi
j=1X

′(j)
i , V ′i =

∑M ′i
j=1 Y

′(j)
i for all i ∈ V ′.

If Wlight ≥ ε2

600n return reject.

return accept.

Figure 2: Closeness testing between two unknown product distributions P,Q over {0, 1}n.

Claim 33 Assume ‖P −Q‖1 > ε. Then, at least one of the following two cases must hold:

(i) E
[
‖pV ′ − qV ′‖22

]
> ε2

150n , or (ii) E
[∑

i∈U ′∩U
(pi−qi)2

pi+qi

]
> ε2

128 .
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Proof By definition, any fixed i belongs to V ′ with probability (1− pi)m(1− qi)m, and so

E
[
‖pV ′ − qV ′‖22

]
=

n∑
i=1

(pi − qi)2 · (1− pi)m(1− qi)m ≥
∑
i∈V

(pi − qi)2 · (1− pi)m(1− qi)m

≥
(

1− 1

m

)2m∑
i∈V

(pi − qi)2 =

(
1− 1

m

)2m

‖pV − qV ‖22 ≥
1

9
‖pV − qV ‖22 ,

for m ≥ 10. Similarly,

E

[ ∑
i∈U ′∩U

(pi − qi)2

pi + qi

]
=
∑
i∈U

(pi − qi)2

pi + qi
· (1− (1− pi)m(1− qi)m)

≥

(
1−

(
1− 1

m

)2m
)∑
i∈U

(pi − qi)2

pi + qi
≥ 1

2

∑
i∈U

(pi − qi)2

pi + qi
,

and in both cases the proof follows by Claim 32.

We will require the following implication:

Claim 34 Assume ‖P −Q‖1 > ε. Then, at least one of the following must hold with probability at
least 4/5 (over the choice of U ′, V ′): (i) ‖pV ′ − qV ′‖22 >

ε2

300n , or (ii)
∑

i∈U ′∩U
(pi−qi)2

pi+qi
> ε2

2000 .

Proof First, assume that ‖pV − qV ‖22 > ε2

16n , and let V ′′ denote the random variable V ′ ∩ V .

By (the proof of) Claim 33, we have E
[
‖pV ′′ − qV ′′‖22

]
≥ 1

9‖pV − qV ‖
2
2 > ε2

150n . Writing

m2‖pV ′′ − qV ′′‖22 =
∑n

i=1m
2(pi − qi)21i∈V ′′ (note that each summand is in [0, 1]), we then get by

a Chernoff bound that

Pr

[
‖pV ′′ − qV ′′‖22 <

ε2

300n

]
< e−

1
8
m2ε2

150n < e−
C

1200
1
ε2 <

1

5
,

using our setting of m (for an appropriate choice of the constant C > 0).
Suppose now that

∑
i∈U

(pi−qi)2

pi+qi
> ε2

64 . We divide the proof in two cases.

• Case 1: there exists i∗ ∈ U such that (pi−qi)2

pi+qi
> ε2

2000 . Then Pr
[∑

i∈U ′∩U
(pi−qi)2

pi+qi
> ε2

2000

]
≥

Pr[ i∗ ∈ U ′ ] ≥ 1−
(
1− 1

m

)2m
> 4

5 .

• Case 2: (pi−qi)2

pi+qi
≤ ε2

2000 for all i ∈ U . Then, writing Xi
def
= 2000

ε2
(pi−qi)2

pi+qi
1i∈U ′∩U ∈ [0, 1] for

all i ∈ [n], we have E[
∑n

i=1Xi] ≥ 2000
128 by Claim 33, and a multiplicative Chernoff bound

ensures that

Pr

[ ∑
i∈U ′∩U

(pi − qi)2

pi + qi
<

ε2

2000

]
≤ Pr

[
n∑
i=1

Xi < 1

]
≤ e−

2000
8·128 <

1

5
,
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concluding the proof.

Finally, we will need to bound the expected `2-norm of pV ′ and qV ′ .

Claim 35 For U ′, V ′ defined as above, we have E
[
‖pV ′‖22

]
,E
[
‖qV ′‖22

]
≤ n

m2 .

Proof By symmetry, it is sufficient to bound E
[
‖pV ′‖22

]
. We have

E
[
‖p2
V ′‖2

]
=

n∑
i=1

p2
i · (1− pi)m(1− qi)m ≤

n∑
i=1

p2
i · (1− pi)m.

Studying the auxiliary function f : x ∈ [0, 1] 7→ x2(1− x)m, we see that it achieves a maximum at
2

m+2 . We can then bound

E
[
‖p2
V ′‖2

]
≤ n · f

(
2

m+ 2

)
∼m→∞

4n

e2m2
,

and so E
[
‖p2
V ′‖2

]
≤ n

m2 for m large enough (and this actually holds for any m ≥ 1).

In what follows, we analyze our statistics Wheavy and Wlight, conditioning on U ′, V ′.

Case 1: discrepancy in U ′. We assume that Algorithm 2 reached the line where Wheavy is
computed, and show the following:

Lemma 36 If P = Q, then with probability at least 9/10 we have Wheavy ≤ mε2

12000 . Conversely, if∑
i∈U∩U ′

(pi−qi)2

pi+qi
> ε2

2000 , then Wheavy ≥ mε2

12000 with probability at least 9/10.

Proof Recall that the Wi’s are independent, as P is a product distribution and the Mi’s are indepen-
dent. Similarly for the Vi’s. We have:

Claim 37 IfP = Q, then E[Wheavy] = 0. Moreover, if
∑

i∈U∩U ′
(pi−qi)2

pi+qi
> ε2

2000 , then E[Wheavy] >
mε2

6000 .

Proof Note that Wi ∼ Poi(mpi) and Vi ∼ Poi(mqi) for all i ∈ U ′. From there, we can compute (as
in Chan et al. (2014c))

E
[

(Wi − Vi)2 − (Wi + Vi)

Wi + Vi

]
= m

(pi − qi)2

pi + qi

(
1− 1− e−m(pi+qi)

m(pi + qi)

)
,

by first conditioning on Wi+Vi. This immediately gives the first part of the claim. As for the second,
observing that 1− 1−e−x

x ≥ 1
3 min(1, x) for x ≥ 0, and that pi + qi ≥ 1

m for all i ∈ U , by definition
we get

E[Wheavy] = m
∑
i∈U ′

(pi − qi)2

pi + qi

(
1− 1− e−m(pi+qi)

m(pi + qi)

)
≥ 1

3
m

∑
i∈U∩U ′

(pi − qi)2

pi + qi
≥ mε2

6000
.

We can now bound the variance of our estimator:
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Claim 38 Var[Wheavy] ≤ 2n + 5m
∑

i∈U ′
(pi−qi)2

pi+qi
≤ 7n + 3

5E[Wheavy]. In particular, if P = Q
then Var[Wheavy] ≤ 2n.

Proof The proof of the first inequality is similar to that in (Chan et al., 2014c, Lemma 5), with
a difference in the final bound due to the fact that the pi’s and qi’s no longer sum to one. For
completeness, we give the proof below.
First, as by independence of the Vi, Wi’s we have Var[Wheavy] =

∑
i∈U ′ Var

[
(Wi−Vi)2−(Wi+Vi)

Wi+Vi

]
, it

is sufficient to bound each summand individually. In order to do so, we split the variance calculation
into two parts: the variance conditioned on Wi + Vi = j, and the component of the variance due to
the variation in j. Writing for convenience

f(Wi, Vi)
def
=

(Wi − Vi)2 −Wi − Vi
Wi + Vi

,

we have that

Var[f(X,Y )] ≤ max
j

(Var[f(X,Y ) | X + Y = j]) + Var[E[f(X,Y ) | X + Y = j]] .

We now bound the first term. Since (Wi − Vi)2 = (j − 2Vi)
2, and Vi is distributed as Bin(j, α)

(where for conciseness we let α def
= qi

pi+qi
), we can compute the variance of (j − 2Vi)

2 from standard
expressions for the moments of the Binomial distribution as Var[(j − 2Vi)

2] = 16j(j − 1)α(1 −
α)
(
(j − 3

2)(1− 2α)2 + 1
2

)
. Since α(1 − α) ≤ 1

4 and j − 3
2 < j − 1 < j, this in turn is at most

j2(2 + 4j(1− 2α)2). Because the denominator is Wi +Vi which equals j, we must divide this by j2,
make it 0 when j = 0, and take its expectation as j is distributed as Poi(m(pi + qi)). This leads to

Var[f(Wi, Vi) |Wi + Vi = j] ≤ 2(1− e−m(pi+qi)) + 4m
(pi − qi)2

pi + qi
.

We now consider the second component of the variance–the contribution to the variance due to the
variation in the sum Wi + Vi. Since for fixed j, as noted above, we have Vi distributed as Bin(j, α),
we have

E[(Wi−Vi)2] = E[j2−4jVi+4V 2
i ] = j2−4j2α+4(jα−jα2+j2α2) = j2(1−2α)2+4jα(1−α) .

We finally subtract Wi + Vi = j and divide by j to yield (j − 1)(1− 2α)2, except with a value of 0
when j = 0 by definition. However, note that replacing the value at j = 0 with 0 can only lower the
variance. Since the sum j = Wi+Vi is drawn from a Poisson distribution with parameter m(pi+ qi),
we thus have:

Var [E[f(Wi, Vi)|Wi + Vi = j]] ≤ m(pi + qi)(1− 2α)4 ≤ m(pi + qi)(1− 2α)2 = m
(pi − qi)2

pi + qi
.

Summing the final expressions of the previous two paragraphs yields a bound on the variance of
f(WiVi) of

2(1− e−m(pi+qi)) + 5m
(pi − qi)2

pi + qi
≤ 2 + 5m

(pi − qi)2

pi + qi
,
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as 1− e−x ≤ 1 for all x. This shows that

Var[Wheavy] ≤ 2n+ 5m
∑
i∈U ′

(pi − qi)2

pi + qi
= 2n+ 5m

∑
i∈U ′∩U

(pi − qi)2

pi + qi
+ 5m

∑
i∈U ′∩V

(pi − qi)2

pi + qi

≤ 2n+
3

5
E[Wheavy] + 5m

∑
i∈U ′∩V

(pi − qi)2

pi + qi
,

so it only remains to bound the last term. But by definition, i ∈ V implies 0 ≤ pi, qi <
1
m , from

which

5m
∑

i∈U ′∩V

(pi − qi)2

pi + qi
≤ 5

∑
i∈U ′∩V

|pi − qi|
pi + qi

≤ 5|U ′ ∩ V | ≤ 5n .

This completes the proof.

With these two claims in hand, we are ready to conclude the proof of Lemma 36. We start with
the soundness case, i.e. assuming

∑
i∈U∩U ′

(pi−qi)2

pi+qi
> ε2

2000 . Then, by Chebyshev’s inequality
and Claim 37 we have that

Pr

[
Wheavy <

mε2

12000

]
≤ Pr

[
E[Wheavy]−Wheavy >

1

2
E[Wheavy]

]
≤

4 Var[Wheavy]

E[Wheavy]2

≤ 28n

E[Wheavy]2
+

12

5E[Wheavy]
(by Claim 38)

≤ 9 · 20002 · 28n

m2ε4
+

36 · 2000

5ε2m
= O

(
n

m2ε4
+

1

ε2m

)
. (5)

We want to bound this quantity by 1/10, for which it suffices to have m > C
√
n
ε2

for an appropriate
choice of the absolute constant C > 0 in our setting of m.

Turning to the completeness, assume that ‖P −Q‖1 = 0. Then, by Chebyshev’s inequality, and
invoking Claim 38 we have:

Pr

[
W ≥ mε2

12000

]
= Pr

[
W ≥ E[W ] +

mε2

12000

]
≤ 36 · 20002 Var[W ]

ε4m2
= O

( n

ε4m2

)
,

which is no more than 1/10 for the same choice of m.

Case 2: discrepancy in V ′. We now assume that Algorithm 2 reached the line where Wlight is
computed, and show the following:

Lemma 39 If P = Q, then with probability at least 9/10 we have Wlight ≤ ε2

600n . Conversely, if
‖pV ′ − qV ′‖22 >

ε2

300n , then Wlight ≥ ε2

600n with probability at least 9/10.

Proof We condition on ‖p′V ‖
2
2, ‖q

′
V ‖

2
2 ≤

20n
m2 , which by Claim 35, a union bound, and Markov’s

inequality happens with probability at least 19/20. The analysis is similar to (Chan et al., 2014c,
Section 3), observing that the (V ′i )i∈V ′ , (W

′
i )i∈V ′’s are mutually independent Poisson random

variables, V ′i (resp. W ′i ) having mean mpi (resp. mqi). Namely, following their analysis, the statistic
Wlight is an unbiased estimator for m2‖pV ′ − qV ′‖22 with variance

Var[Wlight] ≤ 8m3
√
b‖pV ′ − qV ′‖22 + 8m2b ,

25



CANONNE DIAKONIKOLAS KANE STEWART

where b def
= 20n

m2 is our upper bound on ‖p′V ‖
2
2, ‖q

′
V ‖

2
2. From there, setting ε′ def

= ε√
n

and applying
Chebyshev’s inequality, we get that there exists an absolute constant C ′ > 0 such the completeness
and soundness guarantees from the lemma holds with probability at least 19/20, provided that
m > C ′

√
b

ε′2
, i.e.,

m > C ′
n

ε2
·
√

20n

m2
=
√

20C ′
n3/2

mε2
.

Solving for m shows that choosing m ≥ C n3/4

ε for some absolute constant C > 0 is enough. A
union bound then allows us to conclude the proof of the lemma, guaranteeing correctness with
probability at least 1− 1

20 −
1
20 = 9

10 .

5.2. Sample Complexity Lower Bound for Closeness Testing

In this section, we prove a matching information-theoretic lower bound for testing closeness of two
unknown arbitrary product distributions; showing that, perhaps surprisingly, the sample complexity
of Theorem 31 is in fact optimal, up to constant factors:

Theorem 40 There exists an absolute constant ε0 > 0 such that, for any 0 < ε ≤ ε0, the fol-
lowing holds: Any algorithm that has sample access to two unknown product distribution P,Q
over {0, 1}n and distinguishes between the cases that P = Q and ‖P −Q‖1 > ε requires
Ω(max(

√
n/ε2, n3/4/ε)) samples.

Before delving into the proof, we give some intuition for the n3/4 term of the lower bound lower
bound. Recall that the hard family of instances for distinguishing discrete distributions over [n] had
(a) many “light” bins (domain elements) of probability mass approximately 1/n, where either pi = qi
on each bin or pi = qi(1± ε) in each bin, and (b) a number of “heavy” bins where pi = qi ≈ 1/k
(where k was the number of samples taken). The goal of the heavy bins was to “add noise” and hide
the signal from the light bins. In the case of discrete distributions over [n], we could only have k such
heavy bins. In the case of product distributions, there is no such restriction, and we can have n/2
of them in our hard instance. The added noise leads to an increased sample complexity of testing
closeness in the high-dimensional setting.
Proof The first part of the lower bound, Ω(

√
n/ε2), follows from Theorem 9; we focus here on the

second term, Ω(n3/4/ε), and consequently assume hereafter that
√
n/ε2 < n3/4/ε. Let k ≥ 1 be

fixed, and suppose we have a tester that takes k = o(n3/4/ε) samples: we will show that it can only
be correct with vanishing probability. We will again follow the information-theoretic framework
of Diakonikolas and Kane (2016) for proving distribution testing lower bounds, first defining two
distributions over pairs of product distributions Y,N :

• Y: for every i ∈ [n], independently choose (pi, qi) to be either pi = qi = 1
k with probability

1/2, and pi = qi = 1
n otherwise; and set P def

=
⊗n

j=1 Bern(pi), Q def
=
⊗n

j=1 Bern(qi).
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• N : for every i ∈ [n], independently choose (pi, qi) to be either pi = qi = 1
k with prob-

ability 1/2, and (1+ε
n , 1−ε

n ) or (1−ε
n , 1+ε

n ) uniformly at random otherwise; and set P def
=⊗n

j=1 Bern(pi), Q def
=
⊗n

j=1 Bern(qi).

Note that in both Y and N , with overwhelming probability the pairs (P,Q) have roughly n/2
marginals with (equal) parameter 1/k, and roughly n/2 marginals with parameter Θ (1)/n.

Lemma 41 With probability 1−2−Ω(n), a uniformly chosen pair (P,Q) ∼ N satisfies ‖P −Q‖1 =
Ω(ε).

Proof Similar to that of Lemma 14.

We will as before make a further simplification, namely that instead of drawing k samples from
P = P1 ⊗ · · · ⊗ Pn and Q = Q1 ⊗ · · · ⊗ Qn, the algorithm is given ki samples from each Pi
(resp. k′i from Qi), where k1, . . . , kn, k

′
1, . . . , k

′
n are independent Poi(k) random variables. We now

consider the following process: letting X ∼ Bern(1/2) be a uniformly random bit, we choose a pair
of distributions (P,Q) (both P and Q being probability distributions over {0, 1}n) by

• Drawing (P,Q) ∼ Y if X = 0, and;

• Drawing (P,Q) ∼ N if X = 1;

• Drawing k1, k
′
1, . . . , kn, k

′
n ∼ Poi(k), and returning ki samples from each Pi and k′i samples

from each Qi

For i ∈ [n], we let Ni and Mi denote respectively the number of 1’s among the ki samples drawn
from Pi and k′i samples drawn from Qi, and write N = (N1, . . . , Nn) ∈ Nn (and M ∈ Nn for Q).
The next step is then to upperbound I (X; (N,M)), in order to conclude that it will be o(1) unless k
is taken big enough and invoke Fact 11. By the foregoing discussion and the relaxation on the ki’s,
we have that the conditioned on X the Ni’s (and Mi’s) are independent (with Ni ∼ Poi(kpi) and
Mi ∼ Poi(kqi)). This implies that

I (X; (N,M)) ≤
n∑
i=1

I (X; (Ni,Mi)) (6)

so that it suffices to bound each I (X; (Ni,Mi)) separately.

Lemma 42 Fix any i ∈ [n], and let X,Ni,Mi be as above. Then I (X; (Ni,Mi)) = O(k4ε4/n4).

Proof By symmetry it is enough to consider only the case of i = 1, so that we let (A,B) = (N1,M1).

Since A ∼ Poi(kp1) and B ∼ Poi(kq1) with (p1, q1) = (1/k, 1/k) or (p1, q1) = (1/n, 1/n)
uniformly if X = 0, and

(p1, q1) =


( 1
k ,

1
k ) w.p. 1

2

(1+ε
n , 1−ε

n ) w.p. 1
4

(1−ε
n , 1+ε

n ) w.p. 1
4
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if X = 1, a computation similar as that of (Diakonikolas and Kane, 2016, Proposition 3.8) yields
that, for any i, j ∈ N

Pr[ (A,B) = (i, j) | X = 0 ] =
1

2i!j!

(
e−2k/k

(
k

k

)i+j
+ e−2k/n

(
k

n

)i+j)

=
1

2i!j!

(
e−2 + e−2k/n

(
k

n

)i+j)

Pr[ (A,B) = (i, j) | X = 1 ] =
1

2i!j!

(
e−2k/k

(
k

k

)i+j
+ e−2k/n

(
k

n

)i+j ((1 + ε)i(1− ε)j + (1− ε)i(1 + ε)j

2

))
=

1

2i!j!

(
e−2 + e−2 k

n

(k
n

)i+j((1 + ε)i(1− ε)j + (1− ε)i(1 + ε)j

2

))
.

Note in particular that for 0 ≤ i + j ≤ 1, this implies that Pr[ (A,B) = (i, j) | X = 0 ] =
Pr[ (A,B) = (i, j) | X = 1 ]. From the above, we obtain

I (X; (A,B)) = O(1) ·
∑
i,j≥0

(Pr[ (A,B) = (i, j) | X = 0 ]− Pr[ (A,B) = (i, j) | X = 1 ])2

Pr[ (A,B) = (i, j) | X = 0 ] + Pr[ (A,B) = (i, j) | X = 1 ]

= O(1) ·
∑
i+j≥2

(Pr[ (A,B) = (i, j) | X = 0 ]− Pr[ (A,B) = (i, j) | X = 1 ])2

Pr[ (A,B) = (i, j) | X = 0 ] + Pr[ (A,B) = (i, j) | X = 1 ]

= O(1) ·
∑
i+j≥2

e−
4k
n

(
k
n

)2(i+j)

2i!j!

(1− 1
2((1 + ε)i(1− ε)j + (1− ε)i(1 + ε)j))2

2e−2 + o(1)

= O
(

(kε/n)4
)

where the second-to-last inequality holds for k = o(n). (Which is the case, as
√
n/ε2 < n3/4/ε

implies that n3/4/ε < n, and we assumed k = o(n3/4/ε).)

This lemma, along with Eq. (6), immediately implies the result:

I (X; (N,M)) ≤
n∑
i=1

O

((
kε

n

)4
)

= O

(
k4ε4

n3

)
(7)

which is o(1) unless k = Ω(n3/4/ε).

5.3. Ruling Out Tolerant Testing Without Balancedness

In this section, we show that any tolerant identity testing algorithm for product distributions must
have sample complexity near-linear in n if the explicitly given distribution is very biased.
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Theorem 43 There exists an absolute constant ε0 < 1 such that the following holds. Any algorithm
that, given a parameter ε ∈ (0, ε0] and sample access to product distributions P,Q over {0, 1}n,
distinguishes between ‖P −Q‖1 < ε/2 and ‖P −Q‖1 > ε with probability at least 2/3 requires
Ω (n/ log n) samples. Moreover, the lower bound still holds in the case where Q is known, and
provided as an explicit parameter.

Proof The basic idea will be to reduce to the case of tolerant testing of two arbitrary distributions p
and q over [n]. In order to do this, we define the following function from distributions of one type to
distributions of the other:

If p is a distribution over [n], define Fδ(p) to be the distribution over {0, 1}n obtained by taking
Poi(δ) samples from p and returning the vector x where xi = 1 if and only if i was one of these
samples drawn. Note that, because of the Poissonization, Fδ(p) is a product distribution. We have
the following simple claim:

Claim 44 For any δ ∈ (0, 1] and distributions p, q on [n], dTV (Fδ(p), Fδ(q)) = (δ+O(δ2))dTV (p, q).

Proof In one direction, we can take correlated samples from Fδ(p) and Fδ(q) by sampling a from
Poi(δ) and then taking a samples from each of p and q, using these to generate our samples from
Fδ(p), Fδ(q). For fixed a, the variation distance between Fδ(p) and Fδ(q) conditioned on that value
of a is clearly at most adTV (p, q). Therefore, dTV (Fδ(p), Fδ(q)) ≤ E[a]dTV (p, q) = δdTV (p, q).

In the other direction, note that Fδ(p) and Fδ(q) each have probability δ +O(δ2) of returning
a vector of weight 1. This is because Poi(δ) = 1 with probability δe−δ = δ + O(δ2) and since
Poi(δ) > 1 with probability O(δ2). Let G(p) and G(q) denote the distributions Fδ(p) and Fδ(q)
conditioned on returning a vector of weight 1. By the above, we have that dTV (Fδ(p), Fδ(q)) ≥
(δ + O(δ2))dTV (G(p), G(q)). Letting pi (resp. qi) be the probability that p (resp. q) assigns to
i ∈ [n], we get that for any fixed i ∈ [n] the probability that Fδ(p) returns ei is

(1− e−δpi)
∏
j 6=i

e−δpj = (eδpi − 1)
n∏
j=1

e−δpj .

Therefore G(p) puts on ei probability proportional to (eδpi − 1) = (δ + O(δ2))pi. Similarly, the
probability that G(q) puts on ei is proportional to (δ +O(δ2))qi (where in both cases, the constant
of proportionality is (δ +O(δ2))−1). Therefore,

dTV (G(p), G(q)) = δ−1(1 +O(δ))
n∑
i=1

|(δ +O(δ2))pi − (δ +O(δ2))qi|

= δ−1(1 +O(δ))
n∑
i=1

(δ|pi − qi|+O(δ2)(pi + qi))

= δ−1(1 +O(δ))(δdTV (p, q) +O(δ2))

= dTV (p, q) +O(δ) .

Thus, dTV (Fδ(p), Fδ(q)) ≥ (δ +O(δ2))dTV (p, q). This completes the proof.

The above claim guarantees the existence of some constant δ0 ∈ (0, 1] such that dTV (Fδ0(p), Fδ0(q)) ∈
[0.9δ0dTV (p, q), 1.1dTV (p, q)]. However, it is known Valiant and Valiant (2011) that for any suffi-
ciently small ε > 0 there exist distributions p and q over [n] such that one must take at least c n

logn
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samples (where c > 0 is an absolute constant) to distinguish between dTV (p, q) ≤ ε/(2 · 0.9δ0) and
dTV (p, q) ≥ ε/(1.1δ0). Given q samples from p and q we can with high probability simulate c′q
samples from P = Fδ0(p) and Q = Fδ0(q) (where c′ = c′(δ0) > 0 is another absolute constant).
Therefore, we cannot distinguish between the cases dTV (P,Q) ≤ ε/2 and dTV (P,Q) ≥ ε in fewer
than c′ · c n

logn , as doing so would enable us to distinguish between p and q with less than c n
logn

samples – yielding a contradiction. Moreover, the above still holds when q is explicitly known,
specifically even when q is taken to be the uniform distribution on [n].

6. From Product Distributions to Bayes nets: an Overview

In the following paragraphs, we describe how to generalize our previous results for product distribu-
tions to testing general Bayes nets. The case of known structure turns out to be manageable, and
at a technical level a generalization of our testers for product distributions. The case of unknown
structure poses various complications and requires a number of non-trivial new ideas.

Testing Identity and Closeness of Fixed Structure Bayes Nets. Our testers and matching lower
bounds for the fixed structure regime are given in Sections 7 and 9.1.

For concreteness, let us consider the case of testing identity of a tree-structured (d = 1) Bayes net
P against an explicit tree-structured Bayes net Q with the same structure. Recall that we are using
as a proxy for the distance ‖P −Q‖1 an appropriate chi-squared-like quantity. A major difficulty
in generalizing our identity tester for products is that the chi-squared statistic depends not on the
probabilities of the various coordinates, but on the conditional probabilities of these coordinates
based on all possible parental configurations. This fact produces a major wrinkle in our analysis
for the following reason: while in the product distribution case each sample provides information
about each coordinate probability, in the Bayes net case a sample only provides information about
conditional probabilities for parental configurations that actually occurred in that sample.

This issue can be especially problematic to handle if there are uncommon parental configurations
about which we will have difficulty gathering much information (with a small sized sample). For-
tunately, the probabilities conditioned on such parental configurations will have a correspondingly
smaller effect on the final distribution and thus, we will not need to know them to quite the same
accuracy. So while this issue can be essentially avoided, we will require some technical assumptions
about balancedness to let us know that none of the parental configurations are too rare. Using these
ideas, we develop an identity tester for tree-structured Bayes nets that uses an optimal Θ(

√
n/ε2)

samples. For known structure Bayes nets of degree d > 1, the sample complexity will also depend
exponentially on the degree d. Specifically, each coordinate will have as many as 2d parental config-
urations. Thus, instead of having only n coordinate probabilities to worry about, we will need to
keep track of 2dn conditional probabilities. This will require that our sample complexity also scale
like 2d/2. The final complexity of our identity and closeness testers will thus be O(2d/2

√
n/ε2).

We now briefly comment on our matching lower bounds. Our sample complexity lower bound
of Ω(

√
n/ε2) for the product case can be generalized in a black-box manner to yield a tight lower

bound Ω(2d/2
√
n/ε2) for testing uniformity of degree-d Bayes nets. The basic idea is to consider

degree-d Bayes nets with the following structure: The first d nodes are all independent (with marginal
probability 1/2 each), and will form in some sense a “pointer” to one of 2d arbitrary product
distributions. The remaining n − d nodes will each depend on all of the first d. The resulting
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distribution is now an (evenly weighted) disjoint mixture of 2d product distributions on the (n− d)-
dimensional hypercube. In other words, there are 2d product distributions p1, . . . , p2d , and our
distribution returns a random i (encoded in binary) followed by a random sample form pi. By using
the fact that the pi’s can be arbitrary product distributions, we obtain our desired sample complexity
lower bound.

Testing Identity and Closeness of Unknown Structure Bayes Nets. As we show in Sections 8
and 9.2, this situation changes substantially when we do not know the underlying structure of the
nets involved. In particular, we show that even for Bayes nets of degree-1 uniformity testing requires
Ω(n/ε2) samples.

The lower bound construction for this case is actually quite simple: The adversarial distribution
P will be developed by taking a random matching of the vertices and making each matched pair
of vertices randomly 1 ± ε/

√
n correlated. If the matching were known by the algorithm, the

testing procedure could proceed by approximating these n/2 correlations. However, not knowing
the structure, our algorithm would be forced to consider all

(
n
2

)
pairwise correlations, substantially

increasing the amount of noise involved. To actually prove this lower bound, we consider the
distributionX obtained by taking k samples from a randomly chosen P and Y from taking k samples
from the uniform distribution. Roughly speaking, we wish to show that χ2(X,Y ) is approximately 1.
This amounts to showing that for a randomly chosen pair of distributions P and P ′ from this family,
we have that E[P k(x)P ′k(x)] is approximately 1. Intuitively, we show that this expectation is only
large if P and P ′ share many edges in common. In fact, this expectation can be computed exactly in
terms of the lengths of the cycles formed by the graph obtained taking the union of the edges from P
and P ′. Noting that P and P ′ typically share only about 1 edge, this allows us to prove our desired
lower bound.

However, the hardness of the situation described above is not generic and can be avoided if
the explicit distribution Q satisfies some non-degeneracy assumptions. Morally, a Bayes nets Q is
non-degenerate if it is not close in variational distance to any other Bayes net of no greater complexity
and non-equivalent underlying structure. For tree structures, our condition is that for each node the
two conditional probabilities for that node (depending on the value of its parent) are far from each
other.2

If this is the case, even knowing approximately what the pairwise distributions of coordinates
are will suffice to determine the structure. One way to see this is the following: the analysis of
the Chow-Liu algorithm Chow and Liu (1968) shows that the tree-structure for P is the maximum
spanning tree of the graph whose edge weights are given by the shared information of the nodes
involved. This tree will have the property that each edge, e, has higher weight than any other edge
connecting the two halves of the tree. We show that our non-degeneracy assumption implies that this
edge has higher weight by a noticeable margin, and thus that it is possible to verify that we have the
correct tree with only rough approximations to the pairwise shared information of variables.

2. One may wonder how this non-degeneracy condition compares to the “faithfulness” notion from the statistics literature.
Broadly speaking, faithfulness asks that the set of conditional independence relations satisfied by the distribution are
exactly those implied by the structure; under this assumption, there exist algorithms able to learn the structure of the
Bayes net, given enough samples. However, since we need here to get guarantees with a finite number of samples, to be
sure that our samples came from a distribution with this specific structure we must enforce that additional conditional
independence assumptions (that may be associated with different structures) to be far from satisfied. Non-degeneracy
is exactly the condition that any such conditional independence assumptions relating nodes that are close in the graph
are far from holding. Finally, faithfulness also requires that we do not have certain conditional independence conditions
for distant nodes, yet we would expect them to be close to independent.
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For Bayes nets of higher degree, the analysis is somewhat more difficult. We need a slightly
more complicated notion of non-degeneracy, essentially boiling down to a sizeable number of not-
approximately-conditionally-independent assumptions. For example, a pair of nodes can be positively
identified as having an edge between them in the underlying graph if they are not conditionally
independent upon any set of d other nodes. By requiring that for each edge the relevant coordinate
variables are not close to being conditionally independent, we can verify the identity of the edges
of S with relatively few samples. Unfortunately, this is not quite enough, as with higher degree
Bayesian networks, simply knowing the underlying undirected graph is not sufficient to determine its
structure. We must also be able to correctly identify the so-called ∨-structures. To do this, we will
need to impose more not-close-to-conditionally-independent assumptions that allow us to robustly
determine these as well.

Assuming that Q satisfies such a non-degeneracy condition, testing identity to it is actually quite
easy. First one verifies that the distribution P has all of its pairwise (or (d+ 2)-wise) probabilities
close to the corresponding probabilities for Q. By non-degeneracy, this will imply that P must
have the same (or at least an equivalent) structure as Q. Once this has been established, the testing
algorithms for the known structure can be employed.

Sample Complexity of Testing High-Degree Bayes Nets. One further direction of research is
that of understanding the dependence on degree of the sample complexity of testing identity and
closeness for degree-d Bayes nets without additional assumptions. For d = 1, we showed that these
problems can be as hard as learning the distribution. For the general case, we give an algorithm
with sample complexity 2d/2poly(n, 1/ε) for identity testing (and 22d/3poly(n, 1/ε) for closeness
testing). The conceptual message of this result is that, when the degree increases, testing becomes
easier than learning information-theoretically. It is a plausible conjecture that the correct answer for
identity testing is Θ(2d/2n/ε2) and for closeness testing is Θ(22d/3n/ε2). We suspect that our lower
bound techniques can be generalized to match these quantities, but the constructions will likely be
substantially more intricate.

The basic idea of our 2d/2poly(n, 1/ε) sample upper bound for identity testing is this: We
enumerate over all possible structures for P , running a different tester for each of them by comparing
the relevant conditional probabilities. Unfortunately, in this domain, our simple formula for the
KL-Divergence between the two distributions will no longer hold. However, we can show that using
the old formula will be sufficient by showing that if there are large discrepancies when computing the
KL-divergence, then there must be large gap between the entropies H(P ) and H(Q) in a particular
direction. As the gap cannot exist both ways, this suffices for our purposes.

7. Testing Identity of Fixed Structure Bayes Nets

In this section, we prove our matching upper and lower bounds for testing the identity of Bayes
nets with known graph structure. In Section 7.1, we describe an identity testing algorithm that uses
O
(
2d/2
√
n/ε2

)
samples, where d is the maximum in-degree and n the number of nodes (dimension).

In Section 7.2, we show that this sample upper bound is tight, up to constant factors, even for
uniformity testing.
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7.1. Identity Testing Algorithm

In this section, we establish the upper bound part of Theorem 18 for identity, namely testing identity
to a fixed Bayes net given sample access to an unknown Bayes net with the same underlying structure.
In order to state our results, we recall the definition of balancedness of a Bayes net:

Definition 45 A Bayes net P over {0, 1}n with structure S is said to be (c, C)-balanced if, for all k,
it is the case that (i) pk ∈ [c, 1− c] and (ii) PrP [ Πk ] ≥ C.

Roughly speaking, the above conditions ensure that the conditional probabilities of the Bayes net
are bounded away from 0 and 1, and that each parental configuration occurs with some minimum
probability. With this definition in hand, we are ready to state and prove the main theorem of this
section:

Theorem 46 There exists a computationally efficient algorithm with the following guarantees.
Given as input (i) a DAG S with n nodes and maximum in-degree d and a known (c, C)-balanced
Bayes net Q with structure S, where c = Ω̃ (1/

√
n) and C = Ω̃

(
dε2/
√
n
)
; (ii) a parameter

ε > 0, and (iii) sample access to an unknown Bayes net P with structure S, the algorithm takes
O
(
2d/2
√
n/ε2

)
samples from P , and distinguishes with probability at least 2/3 between the cases

P = Q and ‖P −Q‖1 > ε.

We choose m ≥ α2d/2
√
n

ε2
, where α > 0 is an absolute constant to be determined in the course

of the analysis. Let S and Q be as in the statement of the theorem, for c ≥ β logn√
n
≥ β logn

m and

C ≥ β d+logn
m , for an appropriate absolute constant β > 0.

Recall that S denotes the set {(i, a) : i ∈ [n], a ∈ {0, 1}|Parents(i)|}. By assumption, we have
that |Parents(i)| ≤ d for all i ∈ [n]. For each (i, a) ∈ S, corresponding to the parental configuration

Πi,a = {XParents(i) = a}, we define the value Ni,a
def
= mPrQ [ Πi,a ] /

√
2. Intuitively, Ni,a is equal

to a small constant factor times the number of samples satisfying Πi,a one would expect to see among
m independent samples, if the unknown distribution P were equal to Q. We will also use the notation
pi,a

def
= Pr

[
Xi = 1

∣∣ XParents(i)=a

]
, where X ∼ P , and qi,a

def
= Pr

[
Xi = 1

∣∣ XParents(i)=a

]
,

where X ∼ Q.
Given m independent samples X(1), . . . , X(m) from a Bayes net P with structure S, we define

the estimators Zi,a, Yi,a for every i ∈ [n], a ∈ {0, 1}|Parents(i)| as follows. For every (i, a) such that
the number of samples X(j) satisfying the configuration Πi,a is between Ni,a and 2Ni,a (that is,
neither too few nor too many), we look only at the first Ni,a such samples X(j1), . . . , X

(jNi,a ), and
let

Zi,a
def
=

Ni,a∑
j=1

1{
X

(j`)

i =1
}

Yi,a
def
=

Ni,a∑
j=1

1{
X

(j`)

i =0
} .

We note that Zi,a + Yi,a = Ni,a by construction. We then define the quantity Wi,a as

((1− qi,a)Zi,a − qi,aYi,a)2 + (2qi,a − 1)Zi,a − q2
i,a(Zi,a + Yi,a)

Ni,a(Ni,a − 1)
1Ni,a>1 + (pi,a − qi,a)21Ni,a≤1.
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On the other hand, for every (i, a) such that the number of samples X(j) satisfying the configuration
Πi,a is less than Ni,a or more than 2Ni,a, we continue as a thought experiment and keep on getting
samples until we see Ni,a samples with the right configuration, and act as above (although the actual
algorithm will stop and output reject whenever this happens). From there, we finally consider the
statistic W :

W
def
=

n∑
i=1

∑
a∈{0,1}|Parents(i)|

PrQ [ Πi,a ]

qi,a(1− qi,a)
Wi,a (8)

Observe that the algorithm will output reject as soon as at least one parental configuration Πi,a was
not seen enough times, or seen too many times, among the m samples.

The pseudocode of our algorithm is given in the following figure.

Input Error tolerance ε ∈ (0, 1), dimension n, description S of a DAG with maximum in-
degree d and of a (c, C)-balanced Bayes net Q with structure S (where c ≥ β logn

m and
C ≥ β d+logn

m ), and sampling access to a distribution P over {0, 1}n with structure S .

- Preprocess Q so that qi,a ≤ 1
2 for all (i, a) ∈ [n]×{0, 1}d (and apply the same transformation

to all samples taken from P )

- Set m← dα
√
n
ε2
e, and take m samples X(1), . . . , X(m) from P .

- Let Ni,a ← mPrQ [ Πi,a ]/
√

2 for all (i, a) ∈ [n]× {0, 1}d.

- Define Zi,a, Yi,a,Wi,a as above, and W def
=
∑n

i=1

∑
a∈{0,1}|Parents(i)| PrQ [ Πi,a ]

Wi,a

qi,a(1−qi,a) .

(At this point, if any configuration Πi,a was satisfied by less than Ni,a or more than 2Ni,a of
the m samples, then the algorithm has rejected already.)

If W ≥ ε2

32 return reject.

Otherwise return accept.

Figure 3: Testing identity against a known-structure balanced Bayes net.

Preprocessing. We will henceforth assume that qi,a ≤ 1
2 for all (i, a) ∈ [n]× {0, 1}d. This can be

done without loss of generality, as Q is explicitly known. For any i such that qi,a > 1
2 , we replace qi,a

by 1− qi,a and work with the corresponding distribution Q′ instead. By flipping the corresponding
bit of all samples we receive from P , it only remains to test identity of the resulting distribution P ′

to Q′, as all distances are preserved.

First Observation. If P = Q, then we want to argue that with probability at least 9/10 none of
the Wi,a’s will be such that too few samples satisfied Πi,a (as this will immediately cause rejection).
To see why this is the case, observe that as long as mPrQ [ Πi,a ] ≥ β(d+ log n) (for an appropriate
choice of absolute constant β > 0), the numbermi,a of samples satisfying Πi,a among themwe draw
will, by a Chernoff bound, such thatmi,a ≥ mPrQ [ Πi,a ] ≥ Ni,a with probability at least 1− 1

2dn
· 1

10 .
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A union bound over the at most 2dn possible parental configurations will yield the desired conclusion.
But the fact that P = Q is (c, C)-balanced indeed implies that PrQ [ Πi,a ] ≥ C ≥ β d+logn

m , the last
inequality by our choice of C.

Therefore, it will be sufficient to continue our analysis, assuming that none of the Wi,a’s caused
rejection because of an insufficient number of samples satisfying Πi,a. As we argued above, this
came at the cost of only 1/10 of probability of success in the completeness case, and can only
increase the probability of rejection, i.e., success, in the soundness case.

Moreover, in the analysis of the expectation and variance of W , we assume that for every
(i, a) ∈ S, we have PrP [ Πi,a ] ≤ 4 PrQ [ Πi,a ]. This is justified by the following two lemmas,
which ensure respectively that if it is not the case, then we will have rejected with high probability
(this time because too many samples satisfied Πi,a); and that we still have not rejected (with high
probability) if P = Q.

Lemma 47 Let P be as in the statement of Theorem 46, and suppose there exists a parental
configuration (i∗, a∗) ∈ S such that PrP [ Πi∗,a∗ ] > 4 PrQ [ Πi∗,a∗ ]. Then, with probability at least
9/10, the number of samples mi∗,a∗ satisfying Πi∗,a∗ among the m samples taken will be more than
2Ni∗,a∗ .

Proof This follows easily from a Chernoff bound, as

Pr

[
mi,a < 2mPr

Q
[ Πi∗,a∗ ]

]
< Pr

[
mi,a <

1

2
mPr

P
[ Πi∗,a∗ ]

]
= Pr

[
mi,a <

1

2
E[mi,a]

]
,

and E[mi,a] > β(d+ log n).

Lemma 48 Suppose P = Q. Then, with probability at least 9/10, for every parental configuration
(i, a) ∈ S the number of samples mi,a satisfying Πi,a among the m samples taken will be at most
2Ni,a.

Proof This again follows from a Chernoff bound and a union bound over all 2dn configurations, as
we have Pr[mi,a > 2mPrQ [ Πi,a ] ] = Pr[mi,a > 2E[mi,a] ], and E[mi,a] > β(d+ log n).

Expectation and Variance Analysis. We start with a simple closed form formula for the expecta-
tion of our statistic:

Lemma 49 We have that E[W ] =
∑

i,a PrQ [ Πi,a ]
(pi,a−qi,a)2

qi,a(1−qi,a) . (In particular, if P = Q then
E[W ] = 0.)

Proof Fix any (i, a) ∈ S. Since Zi,a follows a Bin(Ni,a, pi,a) distribution, we get

E[Wi,a]

= E
[
(Zi,a − qi,aNi,a)

2 + (2qi,a − 1)Zi,a − q2
i,aNi,a

] 1Ni,a>1

Ni,a(Ni,a − 1)
+ E

[
(pi,a − qi,a)2

]
1Ni,a≤1

= (pi,a − qi,a)21Ni,a>1 + (pi,a − qi,a)21Ni,a≤1 = (pi,a − qi,a)2 ,
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giving the result by linearity of expectation. The last part follows from the fact that pi,a = qi,a for all
(i, a) if P = Q.

As a simple corollary, we obtain:

Claim 50 If ‖P −Q‖1 ≥ ε, then E[W ] ≥ ε2

16 .

Proof The claim follows from Pinsker’s inequality and Lemma 29, along with our assumption that
PrP [ Πi,a ] ≤ 4 · PrQ [ Πi,a ] for every (i, a):

‖P −Q‖21 ≤ 2 D(P‖Q) ≤ 2
∑
(i,a)

Pr
P

[ Πi,a ]
(pi,a − qi,a)2

qi,a(1− qi,a)
≤ 8

∑
(i,a)

Pr
Q

[ Πi,a ]
(pi,a − qi,a)2

qi,a(1− qi,a)
.

We now turn to bounding from above the variance of our statistic. This will be done by controlling
the covariances and variances of the summands individually, and specifically showing that the former
are zero. We have the following:

Claim 51 If (i, a) 6= (j, b), then Cov(Wi,a,Wi,b) = 0; and the variance satisfies

Var
[

PrQ [ Πi,a ]

qi,a(1− qi,a)
Wi,a

]
≤ 4

m
Pr
Q

[ Πi,a ]
pi,a(1− pi,a)
q2
i,a(1− qi,a)2

(pi,a−qi,a)2 +
4

m2

p2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1 .

(Moreover, if P = Q then Var
[

PrQ[ Πi,a ]
qi,a(1−qi,a)Wi,a

]
≤ 4

m2 .)

Proof The key point is to observe that, because of the way we defined the Zi,a’s and Yi,a’s (only
considering the Ni,a first samples satisfying the desired parental configuration), we have that Wi,a

and Wj,b are independent whenever (i, a) 6= (j, b). This directly implies the first part of the claim,
i.e.,

Cov(Wi,a,Wi,b) = E[(Wi,a − E[Wi,a]) (Wj,b − E[Wj,b])] = 0 ,

when (i, a) 6= (j, b).
We then consider Var

[
PrQ[ Πi,a ]
qi,a(1−qi,a)Wi,a

]
. Note that

E
[
W 2
i,a

]
= E

[
((Zi,a − qi,aNi,a)

2 + (2qi,a − 1)Zi,a − q2
i,aNi,a)

2
] 1Ni,a>1

N2
i,a(Ni,a − 1)2

+ (pi,a − qi,a)41Ni,a≤1 ,
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so that, writing p, q,N,Z for pi,a, qi,a, Ni,a, Zi,a respectively (for readability):

Var
[

PrQ [ Πi,a ]

q(1− q)
Wi,a

]
=

(
PrQ [ Πi,a ]

q(1− q)

)2 (
E
[
W 2
i,a

]
− E[Wi,a]

2
)

=

(
PrQ [ Πi,a ]

q(1− q)

)2 (
E
[
W 2
i,a

]
− (p− q)4

)
= E

[
((Z − qN)2 + (2q − 1)Z − q2N)2 −N2(N − 1)2(p− q)4

] PrQ [ Πi,a ]2 1N>1

N2(N − 1)2q2(1− q)2

=
1

m2
E
[
((Z − qN)2 + (2q − 1)Z − q2N)2 −N2(N − 1)2(p− q)4

] 1N>1

(N − 1)2q2(1− q)2

=
1

m2

2N

N − 1

p(1− p)
q2(1− q)2

1N>1

(
(2N − 3)p2 + 2(N − 1)q2 − 4(N − 1)pq + p

)
.

If p = q, then this becomes Var
[

PrQ[ Πi,a ]
q(1−q) Wi,a

]
= 1

m2
2N
N−11Ni,a>1 ≤ 4

m2 , providing the second
part of the claim. In the general case, we can bound the variance as follows:

Var
[

PrQ [ Πi,a ]

q(1− q)
Wi,a

]
=

1

m2

2N

N − 1

p(1− p)
q2(1− q)2

1N>1

(
2(N − 1)(p2 + q2 − 2pq)− p2 + p

)
=

1

m2

2N

N − 1

p(1− p)
q2(1− q)2

1N>1

(
2(N − 1)(p− q)2 + p(1− p)

)
=

4N

m2

p(1− p)
q2(1− q)2

(p− q)21N>1 +
1

m2

2N

N − 1

p2(1− p)2

q2(1− q)2
1N>1

≤ 4N

m2

p(1− p)
q2(1− q)2

(p− q)2 +
4

m2

p2(1− p)2

q2(1− q)2
1N>1

=
4

m
Pr
Q

[ Πi,a ]
pi,a(1− pi,a)
q2
i,a(1− qi,a)2

(pi,a − qi,a)2 +
4

m2

p2
i,a(1− pi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1

≤ 4

m
Pr
Q

[ Πi,a ]
pi,a(1− pi,a)
q2
i,a(1− qi,a)2

(pi,a − qi,a)2 +
4

m2

p2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1.

This completes the proof.

Using this claim, we now state the upper bound it allows us to obtain:

Lemma 52 We have that Var[W ] ≤ 242dn
m2 + 26E[W ]

cm . (Moreover, if P = Q we have Var[W ] ≤
42dn
m2 .)

Proof This will follow from Claim 51, which guarantees that if P = Q, Var[W ] ≤ 2dn · 4
m2 = 42dn

m2 .
Moreover, in the general case,

Var[W ] ≤ 4

m

∑
(i,a)

Pr
Q

[ Πi,a ]
pi,a(1− pi,a)
q2
i,a(1− qi,a)2

(pi,a − qi,a)2 +
4

m2

∑
(i,a)

p2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1 .
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We deal with the two terms separately, as follows:

• For the second term, we will show that

4

m2

∑
(i,a)

p2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1 ≤ 24
2dn

m2
+

24E[W ]

cm
.

This follows from the following sequence of (in-)equalities:

∑
(i,a)

p2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1

=
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1 +
∑
(i,a)

2pi,aqi,a − q2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1

=
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1 +
∑
(i,a)

2qi,a(pi,a − qi,a) + q2
i,a

q2
i,a(1− qi,a)2

1Ni,a>1

≤ 4 · 2dn+
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1 +
∑
(i,a)

2(pi,a − qi,a)
qi,a(1− qi,a)2

1Ni,a>11Ni,a>1

≤ 4 · 2dn+
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1 + 4
∑
(i,a)

pi,a − qi,a
qi,a(1− qi,a)

1Ni,a>1

≤
(AM-GM)

4 · 2dn+
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1 + 2
∑
(i,a)

(
1 +

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

)
1Ni,a>1

≤ 6 · 2dn+ 3
∑
(i,a)

(pi,a − qi,a)2

q2
i,a(1− qi,a)2

1Ni,a>1

≤ 6 · 2dn+
6

c

∑
(i,a)

(pi,a − qi,a)2

qi,a(1− qi,a)
1Ni,a>1

≤ 6 · 2dn+
6m

c

∑
(i,a)

Ni,a

m

(pi,a − qi,a)2

qi,a(1− qi,a)
1Ni,a>1

= 6 · 2dn+
6m

c

∑
(i,a)

Pr
Q

[ Πi,a ]
(pi,a − qi,a)2

qi,a(1− qi,a)
1Ni,a>1 ≤ 6 · 2dn+

6m

c
E[W ] ,

using our assumption that qi,a ≤ 1
2 for all (i, a).

• For the first term, we will show that

4

m

∑
(i,a)

Pr
Q

[ Πi,a ]
pi,a(1− pi,a)
q2
i,a(1− qi,a)2

(pi,a − qi,a)2 ≤ 2

cm
E[W ] .
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This is shown as follows:∑
(i,a)

Pr
Q

[ Πi,a ]
pi,a(1− pi,a)(pi,a − qi,a)2

q2
i,a(1− qi,a)2

≤ 1

4

∑
(i,a)

1

qi,a(1− qi,a)
· Pr
Q

[ Πi,a ]
(pi,a − qi,a)2

qi,a(1− qi,a)

≤ 1

2c

∑
(i,a)

Pr
Q

[ Πi,a ]
(pi,a − qi,a)2

qi,a(1− qi,a)

=
1

2c
E[W ] .

Combining the above, we conclude that Var[W ] ≤ 242dn
m2 + 26E[W ]

cm .

We now have all the tools we require to establish the completeness and soundness of the tester.

Lemma 53 (Completeness) If P = Q, then the algorithm outputs accept with probability at least
2/3.

Proof We first note that, as per the foregoing discussion and Lemma 48, with probability at least
8/10 we have between Ni,a and 2Ni,a samples for every parental configuration (i, a) ∈ S, and
therefore have not outputted reject. By Chebyshev’s inequality and Lemma 52,

Pr

[
W ≥ ε2

32

]
≤ 4096

2dn

m2ε4
≤ 4

30

for a suitable choice of α > 0. Therefore, by a union bound the algorithm will output reject with
probability at most 4

30 + 2
10 = 1

3 .

Lemma 54 (Soundness) If ‖P −Q‖1 ≥ ε, then the algorithm outputs reject with probability at
least 2/3.

Proof As noted before, it is sufficient to show that, conditioned on having between Ni,a and 2Ni,a

samples for every parental configuration and PrP [ Πi∗,a∗ ] ≤ 4 PrQ [ Πi∗,a∗ ] for all (i, a), the
algorithm rejects with probability at least 2/3 + 1/10 = 23/30. Indeed, whenever too few or too
many samples from a given parental configuration are seen the algorithm rejects automatically, and
by Lemma 47 this happens with probability at least 9/10 if some parental configuration is such that
PrP [ Πi∗,a∗ ] > 4 PrQ [ Πi∗,a∗ ]. Conditioning on this case, by Chebyshev’s inequality,

Pr

[
W ≤ ε2

32

]
≤ Pr

[
|W − E[W ]| ≥ 1

2
E[W ]

]
≤ 4 Var[W ]

E[W ]2
≤ 96

2dn

m2E[W ]2
+ 104

1

cmE[W ]
,

from Lemma 52. Since E[W ] ≥ ε2

16 by Claim 50, we then get Pr
[
W ≤ ε2

32

]
= O

(
2dn
m2ε4

+ 1
cmε2

)
≤

17
30 , again for a suitable choice of α > 0 and β > 0 (recalling that c ≥ β logn√

n
).
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Remark 55 We note that we can reduce the problem of testing degree-d Bayes nets over alphabet
Σ, to testing degree (d + 1)dlog2(|Σ|)e − 1 and alphabet of size 2. First consider the case where
|Σ| = 2b. Then it suffices to have nb bits in n clusters of size b. Each cluster of b will represent a
single variable in the initial model with each of the 2b possibilities denoting a single letter. Then each
bit will need to potentially be dependent on each other bit in its cluster and on each bit in each cluster
that its cluster is dependent on. Therefore, we need degree (d+ 1)b− 1. Note that this operation
preserves balancedness.

Now if |Σ| is not a power of 2, we need to pad the alphabet. The obvious way to do this is to
create a set of unused letters until the alphabet size is a power of 2. Unfortunately, this creates an
unbalanced model. To create a balanced one, we proceed as follows: we split a number of the letters
in Σ in two. So, instead of having alphabet a, b, c, . . ., we have a1, a2, b1, b2, c, . . .. We make it so
that when a word would have an a in a certain position, we map this to a new word that has either a1

or a2 in that position, each with equal probability. We note that this operation preserves L1 distance,
and maintains the balancedness properties.

7.2. Sample Complexity Lower Bound

Here we prove a matching information-theoretic lower bound:

Theorem 56 There exists an absolute constant ε0 > 0 such that, for any 0 < ε ≤ ε0, the following
holds: Any algorithm that has sample access to an unknown Bayes net P over {0, 1}n with known
structure S of maximum in-degree at most d < n/2, and distinguishes between the cases that P = U
and ‖P − U‖1 > ε requires Ω(2d/2n1/2/ε2) samples.

Proof
Our lower bound will be derived from families of Bayes nets with the following structure: The

first d nodes are all independent (and will in fact have marginal probability 1/2 each), and will form
in some sense a “pointer” to one of 2d arbitrary product distributions. The remaining n− d nodes
will each depend on all of the first d. The resulting distribution is now an (evenly weighted) disjoint
mixture of 2d product distributions on the (n − d)-dimensional hypercube. In other words, there
are 2d product distributions p1, . . . , p2d , and our distribution returns a random i (encoded in binary)
followed by a random sample form pi. Note that the pi can be arbitrary product distributions.

The unknown distribution P to test is obtained as follows: let X be a Bernoulli random variable
with parameter 1/2. If X = 0, P is the uniform distribution on {0, 1}n, i.e., each of the 2d

distributions pi is uniform on {0, 1}n−d. Otherwise, if X = 1, then every pi is a product distribution
on {0, 1}n−d with, for each coordinate, a parameter chosen uniformly and independently to be either
1
2 + ε√

n
or 1

2 −
ε√
n

.

We will show that the shared information between a sample of size o(2d/2n1/2/ε2) and X is
small. In view of this, let σi (for 1 ≤ i ≤ n− d) be the set of indices of the samples that were drawn
from pi. Note that since X is uncorrelated with the σi’s, and as the σi are a function of the samples,
I (X;S) = I (X;S | σi). This is because I (X;S)) = H(X)−H(X | S) = H(X | σi)−H(X |
S, σi) = I (X;S | σi).

Now, for fixed σi, the samples we draw from pi are mutually independent of X . Let Si denote
the tuple of these |σi| samples. Thus, we have that I (X;S | σi) ≤

∑
i I (X;Si | σi). By the same

40



TESTING BAYESIAN NETWORKS

analysis as in the proof of Theorem 9, this latter term is O(
(|σi|

2

)
ε4

n ). Therefore,

I (X;S | σi) ≤ E

[∑
i

(
|σi|
2

)]
O

(
ε4

n

)
= O

(
m2ε4

n2d

)
,

where we used the fact that |σi| is Bin
(
m, 1/2d

)
distributed. Note that the above RHS is o(1) unless

m = Ω(2d/2n1/2/ε2), which completes the proof.

8. Testing Identity of Unknown Structure Bayes Nets

In this section, we give our algorithms and lower bounds for testing the identity of low-degree
Bayes nets with unknown structure. In Section 8.1, we start by showing that – even for the case
of trees – uniformity testing of n-node Bayes nets requires Ω(n/ε2) samples. In Sections 8.2, we
design efficient identity testers with sample complexity sublinear in the dimension n, under some
non-degeneracy assumptions on the explicit Bayes net.

8.1. Sample Complexity Lower Bound

In this section, we establish a tight lower bound on identity testing of Bayes nets in the unknown
structure case. Our lower bound holds even for balanced Bayes nets with a tree structure. In order to
state our theorem, we first give a specialized definition of balancedness for the case of trees. We say
that a Bayes net with tree structure is c-balanced if it satisfies pk ∈ [c, 1− c] for all k (note that this
immediately implies it is (c, C)-balanced).

Theorem 57 There exists absolute constants c > 0 and ε0 > 0 such that, for any ε ∈ (0, ε0) and
given samples from an unknown c-balanced Bayes net P over {0, 1}n with unknown tree structure,
distinguishing between the cases P = U and ‖P − U‖1 > ε (where U is the uniform distribution
over {0, 1}n) with probability 2/3 requires Ω(n/ε2) samples. (Moreover, one can take c = 1/3.)

Hence, without any assumptions about the explicit distribution, identity testing is information-
theoretically as hard as learning. This section is devoted to the proof of Theorem 57.

Fix any integer m ≥ 1. We will define a family of no-instances consisting of distributions {Pλ}λ
over {0, 1}n such that:

1. every Pλ is ε-far from the uniform distribution U on {0, 1}n: ‖Pλ − U‖1 = Ω (ε);

2. every Pλ is a Bayes net with a tree structure;

3. unless m = Ω
(
n
ε2

)
, no algorithm taking m samples can distinguish with probability 2/3

between a uniformly chosen distribution from {Pλ}λ and u; or, equivalently, no algorithm
taking one sample can distinguish with probability 2/3 between P⊗mλ and U⊗m, when Pλ is
chosen uniformly at random from {Pλ}λ.

The family is defined as follows. We let δ def
= ε√

n
, and let a matching-orientation parameter

λ consist of (i) a matching λ(1) of [n] (partition of [n] in n
2 disjoint pairs (i, j) with i < j) and (ii)

a vector λ(2) of n
2 bits. The distribution Pλ is then defined as the distribution over {0, 1}n with

uniform marginals, and tree structure with edges corresponding to the pairs λ(1); and such that for
every λ(1)

k = (i, j) ∈ λ(1), cov(Xi, Xj) = (−1)λ
(2)
k δ.
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Notations. For λ = (λ(1), λ(2)) as above and x ∈ {0, 1}n, we define the agreement count of x
for λ, c(λ, x), as the number of pairs (i, j) in λ(1) such that (xi, xj) “agrees” with the correlation
suggested by λ(2). Specifically:

c(λ, x)
def
= |
{

(i, j) ∈ [n]2 : ∃` ∈ [n/2], λ
(1)
` = (i, j) and (−1)xi+xj = (−1)λ

(2)
`

}
|.

Moreover, for λ, µ two matching-orientation parameters, we define the sets A = Aλ,µ, B =
Bλ,µ, C = Cλ,µ as

A
def
=
{

(s, t) ∈ [n/2]2 : λ(1)
s = µ

(1)
t , λ(2)

s = µ
(2)
t

}
(common pairs with same orientations)

B
def
=
{

(s, t) ∈ [n/2]2 : λ(1)
s = µ

(1)
t , λ(2)

s 6= µ
(2)
t

}
(common pairs with different orientations)

C
def
= (λ(1) ∪ µ(1)) \ (A ∪B) (pairs unique to λ or µ)

so that 2(|A|+ |B|) + |C| = n.

Proof of Item 1. Fix any matching-orientation parameter λ. We have

‖Pλ − U‖1 =
∑

x∈{0,1}n
|Pλ(x)− U(x)| =

∑
x∈{0,1}n

|U(x)(1 + 2δ)c(λ,x)(1− 2δ)
n
2
−c(λ,x) − U(x)|

=
1

2n

∑
x∈{0,1}n

|(1 + 2δ)c(λ,x)(1− 2δ)
n
2
−c(λ,x) − 1|

=
1

2n

n
2∑

k=0

∑
x : c(λ,x)=k

|(1 + 2δ)k(1− 2δ)
n
2
−k − 1|

=
1

2n

n
2∑

k=0

2
n
2

(n
2

k

)
|(1 + 2δ)k(1− 2δ)

n
2
−k − 1|

=

n
2∑

k=0

(n
2

k

)
|
(

1 + 2δ

2

)k (1− 2δ

2

)n
2
−k
− 1

2
n
2

|

= 2dTV

(
Bin

(
n

2
,
1

2

)
,Bin

(
n

2
,
1

2
+ δ

))
= Ω (ε) ,

where the last equality follows from Lemma 10.

Proof of Item 3. Let the distribution Q over ({0, 1}n)m be the uniform mixture

Q
def
= Eλ[P⊗mλ ] ,

where Pλ is the distribution on {0, 1}n corresponding to the matching-orientation parameter λ. In
particular, for any x ∈ {0, 1}n we have

Pλ(x) = U(x)(1 + 2δ)c(λ,x)(1− 2δ)
n
2
−c(λ,x)
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with U being the uniform distribution on {0, 1}n and c(λ, x), the agreement count of x for λ, defined
as before. Now, this leads to

dPλ
du

(x) = 1 +G(λ, x) ,

whereG(λ, x)
def
= (1−2δ)

n
2

(
1+2δ
1−2δ

)c(λ,x)
−1. For two matching-orientation parameters λ, µ, we can

define the covariance τ(λ, µ)
def
= Ex∼U [G(λ, x)G(µ, x)]. By the minimax approach (as in (Pollard,

2003, Chapter 3)), it is sufficient to bound the L1-distance between Q and U⊗m by a small constant.
Moreover, we have

‖Q− U⊗m‖1 ≤ Eλ,µ [(1 + τ(λ, µ))m]− 1 (9)

and to show the lower bound it is sufficient to prove that the RHS is less than 1
10 unless m = Ω

(
n
ε2

)
.

Setting z def
= 1+2δ

1−2δ , we can derive, by expanding the definition

τ(λ, µ) = 1 + (1− 2δ)nEx∼U [zc(λ,x)+c(µ,x)]− 2(1− 2δ)
n
2 Ex∼U [zc(λ,x)].

Since, when x is uniformly drawn in {0, 1}n, c(λ, x) follows a Bin
(
n
2 ,

1
2

)
distribution, we can

compute the last term as

2(1− 2δ)
n
2 Ex∼U [zc(λ,x)] = 2(1− 2δ)

n
2

(
1 + z

2

)n
2

= 2(1− 2δ)
n
2

1

(1− 2δ)
n
2

= 2 ,

where we used the expression of the probability-generating function of a Binomial. This leads to

1 + τ(λ, µ) = (1− 2δ)nEx∼U [zc(λ,x)+c(µ,x)]

= (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]
∏

σ cycle : |σ|≥4

Eα∼Bλ,µ(σ)[z
α] ,

where “cycle” and the probability distribution Bλ,µ(σ) are defined as follows. Recall that λ and µ
define a weighted multigraph over n vertices, where each vertex has degree exactly 2, the edges are
from the pairs λ(1)

i ’s and µ(1)
i ’s, and the weights are in {0, 1} according to the λ(2)

i ’s and µ(2)
i ’s. That

multigraph Gλ,µ is better seen as the disjoint union of cycles (and indeed, A ∪B corresponds to the
cycles of length 2, while C corresponds to cycles of length at least 4).

For such a cycle σ in Gλ,µ, we let Bλ,µ(σ) be the distribution below. If the number of negative
covariances – the number of edges with label λ(2)

` = 1 or µ(2)
` = 1 – along σ is even (resp. odd),

then Bλ,µ(σ) is a Bin
(
|σ|, 1

2

)
conditioned on being even (resp. odd).
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Instead of the above, we first consider the related quantity with the conditioning removed (indeed,
as we will see in Claim 58, this new quantity is within an 1 +O(ε2) factor of the actual one):

1 + τ̃(λ, µ) = (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]
∏

σ cycle : |σ|≥4

Eα∼Bin(|σ|, 12)[zα]

= (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]Eα∼Bin(
∑
σ : |σ|≥4|σ|,

1
2)[zα]

= (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]Eα∼Bin(|C|, 12)[zα]

= (1− 2δ)nz|B|
(

1 + z2

2

)|A|(
1 + z

2

)|C|
=
(
(1− 2δ)2z

)|B|(
(1− 2δ)2 1 + z2

2

)|A|(
(1− 2δ)

1 + z

2

)
︸ ︷︷ ︸

=1

|C|

(2|A|+ 2|B|+ |C| = n)

=
(
1− 4δ2

)|B| (
1 + 4δ2

)|A|
.

Thus, we need to compute

Eλ,µ [(1 + τ̃(λ, µ))m] = Eλ,µ
[(

1 + 4δ2
)m|A| (

1− 4δ2
)m|B|]

= Eλ,µ
[
a|A|b|B|

]
(where a def

=
(
1 + 4δ2

)m, b def
=
(
1− 4δ2

)m)

= Eλ,µ
[
E
[
a|A|b|B|

∣∣∣ |A|+ |B| ]] = Eλ,µ
[
b|A|+|B|E

[(a
b

)|A| ∣∣∣∣ |A|+ |B| ]]
= Eλ,µ

[
b|A|+|B|

(
1 + a

b

2

)|A|+|B|]
( |A| ∼ Bin

(
|A|+ |B|, 1

2

)
)

= Eλ,µ

[(
a+ b

2

)|A|+|B|]
= Eλ,µ

((1 + 4δ2
)m

+
(
1− 4δ2

)m
2

)|A|+|B| .
In particular, consider the following upper bound on f(k), the probability that |A|+ |B| ≥ k:

setting s def
= n

2 , for 0 ≤ k ≤ s,

f(k) = Pr[ |A|+ |B| ≥ k ] ≤ s!2s

(2s)!
·
(
s

k

)
(2s− 2k)!

(s− k)!2s−k
=

2kk!

(2k)!

(
s
k

)2(
2s
2k

) =
2k

k!

(2(s−k)
s−k

)(
2s
s

)
=

2k

k!

∏k−1
j=0(s− j)2∏2k−1
j=0 (2s− j)

=
1

k!

∏k−1
j=0(s− j)∏k−1

j=0(2s− 2j − 1)
≤ 1

k!
.
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Therefore, for any z > 1, we have

Eλ,µ
[
z|A|+|B|

]
=

∫ ∞
0

Pr
[
z|A|+|B| ≥ t

]
dt =

∫ ∞
0

Pr

[
|A|+ |B| ≥ ln t

ln z

]
dt

= 1 +

∫ ∞
1

Pr

[
|A|+ |B| ≥ ln t

ln z

]
dt ≤ 1 +

∫ ∞
1

Pr

[
|A|+ |B| ≥

⌊
ln t

ln z

⌋ ]
dt

≤ 1 +

∫ ∞
1

dt⌊
ln t
ln z

⌋
!
≤ 1 +

∫ ∞
1

dt

Γ
(

ln t
ln z

) (from our upper bound on f(k))

= 1 +

∫ ∞
1

eudu

Γ
(
u

ln z

) .
Assuming now that 1 < z ≤ 1 + γ for some γ ∈ (0, 1), from ln z < γ and monotonicity of the
Gamma function we obtain

Eλ,µ
[
z|A|+|B|

]
= 1 +

∫ ∞
1

eudu

Γ
(
u
γ

) = 1 + γ

∫ ∞
1/γ

eγvdv

Γ(v)
≤ 1 + γ

∫ ∞
0

evdv

Γ(v)
≤ 1 + 42γ.

Suppose now m ≤ c n
ε2

= 4c
δ2 , for some constant c > 0 to be determined later. Then, by

monotonicity

z
def
=

(
1 + 4δ2

)m
+
(
1− 4δ2

)m
2

≤
(
1 + 4δ2

) 4c
δ2 +

(
1− 4δ2

) 4c
δ2

2
≤ e16c + e−16c

2
< 1 +

1

42 · 20︸ ︷︷ ︸
def
= γ

for c < 3
1000 . Therefore,

Eλ,µ [(1 + τ̃(λ, µ))m]− 1 = Eλ,µ
[
z|A|+|B|

]
− 1 <

1

20
,

as desired.

To conclude, we bound Eλ,µ [(1 + τ(λ, µ))m] combining the above with the following claim:

Claim 58 Let z def
= 1+2δ

1−2δ as above. Then for any two matching-orientation parameters λ, µ, we
have ∏

σ : |σ|≥4

Eα∼Bλ,µ(σ)[z
α] ≤ e

8ε4

n · Eα∼Bin(
∑
σ : |σ|≥4|σ|,

1
2)[zα] .

where Bλ,µ(σ) is the probability distribution defined earlier.

Proof Fix λ, µ as in the statement, and any cycle σ in the resulting graph. Suppose first this is an
“even” cycle:

Eα∼Bλ,µ(σ)[z
α] = Eα∼Bin(|σ|, 12)[zα | α even] =

1

1/2

|σ|/2∑
k=0

(
|σ|
2k

)
z2k =

(1 + z)|σ| + (1− z)|σ|

2|σ|
.
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Similarly, if σ is an “odd” cycle, Eα∼Bλ,µ(σ)[z
α] = (1+z)|σ|−(1−z)|σ|

2|σ|
.We then obtain Eα∼Bλ,µ(σ)[z

α] ≤
Eα∼Bin(|σ|, 12)[zα]

(
1 + |1−z1+z |

|σ|
)

, from which

∏
σ

Eα∼Bλ,µ(σ)[z
α] ≤

∏
σ

Eα∼Bin(|σ|, 12)[zα]

(
1 + |1− z

1 + z
||σ|
)

= Eα∼Bin(
∑
σ |σ|,

1
2)[zα] ·

∏
σ

(
1 + |1− z

1 + z
||σ|
)
.

We now bound the last factor: since |1−z1+z | = 2δ = 2ε√
n

we have at most n2 cycles, we get∏
σ : |σ|≥4

(
1 + |1− z

1 + z
||σ|
)

=
∏

σ : |σ|≥4

(
1 + (2δ)|σ|

)
≤
(
1 + 16δ4

)n
2 ≤ e8 ε

4

n ,

as claimed.

With this result in hand, we can get the conclusion we want: for any λ, µ,

1 + τ(λ, µ) = (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]
∏

σ cycle : |σ|≥4

Eα∼Bλ,µ(σ)[z
α]

≤ e
8ε4

n (1− 2δ)nz|B|Eα∼Bin(|A|, 12)[z2α]Eα∼Bin(
∑
σ : |σ|≥4|σ|,

1
2)[zα] (by Claim 58)

= e
8ε4

n (1 + τ̃(λ, µ)) ,

from which

Eλ,µ [(1 + τ(λ, µ))m] ≤ e
8ε4m
n Eλ,µ [(1 + τ̃(λ, µ))m] ≤ e

8ε4m
n

(
1 +

1

20

)
(for m ≤ cn

ε2
)

≤ e8cε2 21

20
< 1 +

1

10
, (as c < 3

1000 and ε ≤ 1)

concluding the proof: by (9), ‖Q− U⊗m‖1 ≤
1
10 , for any m < c n

ε2
.

8.2. Identity Testing Algorithm against Non-Degenerate Bayes Nets

We start with the case of trees and then generalize to bounded degree.

8.2.1. THE CASE OF TREES

In this section, we prove our result on testing identity of a tree structured Bayes net with unknown
topology. Recall from Section 8.1 that a Bayes net with tree structure is said to be c-balanced if it
satisfies pk ∈ [c, 1− c] for all k. We will require the following definition of non-degeneracy of a tree,
which will be a simpler case of the definition we shall have for general Bayes nets (Theorem 66):

Definition 59 For any γ ∈ (0, 1], we say a tree Bayes net P over {0, 1}n is γ-non-degenerate if for
all i ∈ [n],

|Pr
[
Xi = 1

∣∣ XParents(i) = 1
]
− Pr

[
Xi = 1

∣∣ XParents(i) = 0
]
| ≥ γ

where X ∼ P .
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Roughly speaking, this definition states that the choice of the value of its parent has a significant
influence on the probability of any node. With these definitions, we are ready to state and prove our
result:

Theorem 60 There exists an efficient algorithm with the following guarantees. Given as input (i)
a tree S over n nodes and an explicit c-balanced, γ-non-degenerate Bayes net Q with structure S,
where c, γ = Ω (1/na) for some absolute constant a > 0; (ii) parameter ε > 0, and (iii) sample
access to a Bayes net P with unknown tree structure, the algorithm takes O

(√
n/ε2

)
samples from

P , and distinguishes with probability at least 2/3 between P = Q and ‖P −Q‖1 > ε.

The algorithm follows a natural idea: (1) check that the unknown distribution P indeed has, as it
should, the same tree structure as the (known) distribution Q; (2) if so, invoke the algorithm of the
previous section, which works under the assumption that P and Q have the same structure.

Therefore, to establish the theorem it is sufficient to show that (1) can be performed efficiently.
Specifically, we will prove the following:

Theorem 61 There exists an algorithm with the following guarantees. For γ ∈ (0, 1), c ∈ (0, 1/2),
it takes as input an explicit c-balanced, γ-nondegenerate tree Bayes netQ over {0, 1}n with structure
S(Q), and

O

(
log2 1

c

c6γ4
log n

)
samples from an arbitrary tree Bayes net P over {0, 1}n with unknown structure S(P ).

• If P = Q, the algorithm returns accept with probability at least 4/5;

• If S(P ) 6= S(Q), the algorithm returns reject with probability at least 4/5.

Note that the above theorem implies the desired result as long as log2 1
c

c6γ4 = O
( √

n
ε2logn

)
.

Proof [Proof of Theorem 61] We start by stating and proving lemmas that will be crucial in stating
and analyzing the algorithm:

Fact 62 Given τ > 0 and sample access to a tree Bayes net P over {0, 1}n, one can obtain with
O( logn

τ2 ) samples estimates (µ̂i)i∈[n], (ρ̂i,j)i,j∈[n] such that, with probability at least 9/10,

max

(
max
i∈[n]
|µ̂i − E[Xi] |,max

i,∈[n]
|ρ̂i,j − E[XiXj ]|

)
≤ τ.

Proof The fact follows immediately by an application of Chernoff bounds.

Lemma 63 Let c ∈ (0, 1/2]. There exists a constant λ and a function f such that

I (Xi;Xj) = f(E[Xi] ,E[Xj ] ,E[XiXj ]) ,

for any c-balanced tree Bayes net P over {0, 1}n and X ∼ P , where f is λ-Lipschitz with respect to
the ‖·‖∞ norm on the domain Ωc ⊆ [0, 1]×[0, 1]×[0, 1]→ [0, 1] in which (E[Xi] ,E[Xj ] ,E[XiXj ])i,j
then take values. Moreover, one can take λ = 16 log 1

c .
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Proof [Proof Sketch:] Expanding the definition of mutual influence I (X;Y ) of two random vari-
ables, it is not hard to write it as a function of E[X] ,E[Y ], and E[XY ] only. This function would not
be Lipschitz on its entire domain, however. The core of the proof leverages the balancedness assump-
tion to restrict its domain to a convenient subset Ωc ⊆ [0, 1]× [0, 1]× [0, 1], on which it becomes
possible to bound the partial derivatives of f . We defer the details of the proof to Appendix D.

We now show the following crucial lemma establishing the following result: For any balanced
Bayes net, the shared information between any pair of non-adjacent vertices i, j is noticeably smaller
than the minimum shared information between any pair of neighbors along the path that connects
i, j.

Lemma 64 Let c ∈ (0, 1/2], and fix any c-balanced tree Bayes net P over {0, 1}n with structure
S(Q). Then, for any distinct i, j ∈ [n] such that i 6= Parents(j) and j 6= Parents(i), we have

I (Xi;Xj) ≤ (1− 2c2) min
{k,Parents(k)}∈path(i,j)

I
(
Xk;XParents(k)

)
,

where X ∼ P . (and path(i, j) is a path between i to j, of the form i − · · · − k − · · · − j, where
each edge is of the form (k,Parents(k) or (Parents(k), k)).

Proof By induction and the data processing inequality, it is sufficient to prove the statement for a
path of length 3, namely

Xi −Xk −Xj .

The result will follow from a version of the strong data processing inequality (see e.g., Polyanskiy
and Wu (2015), from which we borrow the notations ηKL, ηTV): since Xi → Xk → Xj forms a
chain with the Markov property, we get I (Xi;Xj) ≤ ηKL(PXj |Xk)I (Xi;Xk) from (Polyanskiy and
Wu, 2015, Equation 17). Now, by (Polyanskiy and Wu, 2015, Theorem 1), we have

ηKL(PXj |Xk) ≤ ηTV(PXj |Xk) = dTV (PXj |Xk=0, PXj |Xk=1).

If k = Parents(j) (in our Bayes net), then dTV (PXj |Xk=0, PXj |Xk=1) = |pj,0−pj,1| ≤ 1−2c from
the c-balancedness assumption. On the other hand, if j = Parents(k), then by Bayes’ rule it is easy to
check that (again, from the c-balancedness assumption) Pr

[
XParents(k) = 1

∣∣ Xk = a
]
∈ [c2, 1−c2],

and dTV (PXj |Xk=0, PXj |Xk=1) = |Pr[Xj = 1 | Xk = 0 ]− Pr[Xj = 1 | Xk = 1 ]| ≤ 1− 2c2.
Therefore, we get I (Xi;Xj) ≤ (1 − 2c2)I (Xi;Xk) as wanted; by symmetry, I (Xi;Xj) ≤

(1− 2c2)I (Xj ;Xk) holds as well.

Lemma 65 Let c ∈ (0, 1/2], γ ∈ (0, 1), and fix any c-balanced, γ-nondegenerate tree Bayes net P
over {0, 1}n, with structure S(P ). Then, there exists an absolute constant κ such that for any i ∈ [n]
one has

I
(
Xi;XParents(i)

)
≥ κ ,

where X ∼ P . (Moreover, one can take κ = cγ2

2 ln 2 .)
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Proof Fix any such i, and writeX = Xi, Y = XParents(i) for convenience; and set u def
= Pr[X = 1 ],

v
def
= Pr[Y = 1 ], a def

= Pr[X = 1 | Y = 1 ], and b def
= Pr[X = 1 | Y = 0 ]. We then have

I (X;Y ) =
∑

(x,y)∈{0,1}2
Pr[X = x, Y = y ] log

Pr[X = x, Y = y ]

Pr[X = x ] Pr[Y = y ]

=
∑

(x,y)∈{0,1}2
Pr[X = x | Y = y ] Pr[Y = y ] log

Pr[X = x | Y = y ]

Pr[X = x ]

= (1− u)(1− b) log
1− b
1− v

+ (1− u)b log
b

v
+ u(1− a) log

1− a
1− v

+ ua log
a

v

= uϕ(a, v) + (1− u)ϕ(b, v) ,

where ϕ(x, y)
def
= x log x

y + (1 − x) log 1−x
1−y ≥ 0 for x, y ∈ [0, 1] is the KL-divergence between

two Bernoulli distributions with parameters x, y. From our assumptions of c-balanced and γ-
nondegeneracy, we know that u, v, a, b satisfy

c ≤ a, b, u, v ≤ 1− c
γ ≤ |a− b| ,

which leads to, noticing that |a− b| ≥ γ implies that at least one of |a− v| ≥ γ
2 , |b− v| ≥ γ

2 holds
and that ϕ(·, v) is convex with a minimum at v:

I (X;Y ) ≥ c (ϕ(a, v) + ϕ(b, v)) ≥ cmin
(
ϕ
(
v − γ

2
, v
)
, ϕ
(
v +

γ

2
, v
))
≥ 1

2 ln 2
cγ2 ,

using the standard lower bound of ϕ(x, y) ≥ 2
ln 2(x− y)2 on the KL-divergence.

The Algorithm. With these in hand, we are ready to describe and analyze the algorithm underly-
ing Theorem 61:

Let γ ∈ (0, 1), c ∈ (0, 1/2) be fixed constants, and Q be a known c-balanced, γ-nondegenerate
tree Bayes net over {0, 1}n, with structure S(Q). Furthermore, let P be an unknown tree Bayes net
over {0, 1}n with unknown structure S(P ), to which we have sample access.

Let κ = κ(c, γ) = cγ2

2 ln 2 as in Lemma 65, c′ def
= c

2 , and λ = λ(c′) = 16 log 2
c as in Lemma 63. In

view of applying Lemma 64 later to P , set

τ
def
=

κ− (1− 2c′2)κ

4λ
=

1

64 ln 2

c3γ2

log 2
c

.

The algorithm then proceeds as follows. (Below, X denotes a random variable distributed
according to P .)

1. Take m = O
(

logn
τ2

)
samples from P , and use them to

• Estimate all n2 marginals Pr[Xi = 1 | Xj = a ], and verify that they are all in [c′, 1− c′]
(ensuring that P is c′-balanced), with probability at least 9/10. Else, return reject;
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• Estimate all
(
n
2

)
+ n values of E[Xi] and E[XiXj ] to an additive τ , with probability at

least 9/10, as in Fact 62. (Call these estimates µ̂i, ρ̂i,j .)

At the end of this step, we are guaranteed that P is c′-balanced (or else we have rejected with
probability at least 9/10).

2. Check that all µ̂i, ρ̂i,j’s are all within an additive τ of what they should be under Q. If so,
return accept, else return reject.

Clearly, the algorithm only uses O
(

log2 1
c

c6γ4 log n
)

samples from P . We now establish its correct-
ness: first, with probability at least 4/5 by a union bound, all estimates performed in the first step are
correct; we condition on that.

Completeness. If P = Q, then P is c-balanced, and thus a fortiori c′-balanced: the algorithm does
not reject in the first step. Moreover, clearly all (µ̂i)i, (ρ̂i,j)i,j are then within an additive τ of
the corresponding values of P = Q, so the algorithm returns accept.

Soundness. By contrapositive. If the algorithm returns accept, then P is c′-balanced by the first
step. Given our setting of τ , by Lemma 63 our estimates (µ̂i)i, (ρ̂i,j)i,j are such that all
corresponding quantities

Îi,j
def
= f(µ̂i, µ̂j , ρ̂i,j)

are within τλ = κ−(1−2c′2)κ
4 of the mutual informations I (Xi;Xj) for P . But then, by

Lemma 64 this implies that the relative order of all Îi,j , Îi′,j′ is the same as the relative order
of I (Xi;Xj) , I

(
Xi′ ;Xj′

)
. This itself implies that running the Chow–Liu algorithm on input

these Îi,j’s would yield the same, uniquely determined tree structure S(P ) as if running it on
the actual I (Xi;Xj)’s. To see this, we note that the Chow-Liu algorithm works by computing
a maximum-weight spanning tree (MST) with respect to the weights given by the pairwise
mutual information. The claim follows from the fact that the MST only depends on the relative
ordering of the edge-weights.

But since the (µ̂i)i, (ρ̂i,j)i,j are also within an additive τ of the corresponding quantities for
Q (per our check in the second step), the same argument shows that running the Chow–Liu
algorithm would result in the same, uniquely determined tree structure S(Q) as if running it
on the actual mutual informations from Q. Therefore, S(P ) = S(Q), concluding the proof.

8.2.2. THE CASE OF BOUNDED DEGREE

In this section, we show how to test identity of unknown structure Bayesian networks with maximum
in-degree d under some non-degeneracy conditions. Intuitively, we want these conditions to ensure
identifiability of the structure: that is, that any (unknown) Bayes net close to a non-degenerate
Bayes net Q must also share the same structure. To capture this notion, observe that, by definition,
non-equivalent Bayes net structures satisfy different conditional independence constraints: our
non-degeneracy condition is then to rule out some of these possible new conditional independence
constraints, as far from being satisfied by the non-degenerate Bayes net. Formally, we have the
following definition:
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Definition 66 (Non-degeneracy) For nodes Xi, Xj , set of nodes S, and a distribution P over
{0, 1}n, we say that Xi and Xj are γ-far from independent conditioned on XS if for all distributions
Q over {0, 1}n such that dTV (P,Q) < γ, it holds that Xi and Xj are not independent conditioned
on XS .

A Bayes net P is then called γ-non-degenerate with respect to structure S and degree d if for any
nodes Xi, Xj and set of nodes S of size |S| ≤ d not containing i or j satisfying one of the following:

(i) Xi is a parent of Xj ,

(ii) S contains a node Xk that is a child of both Xj and Xj ,

(iii) Xi is a grandparent of Xj and there is a child of Xi and parent of Xj , Xk, that is not in S,

(iv) Xi and Xj have a common parent Xk that is not in S

we have that Xi and Xj are γ-far from independent conditioned on XS (where all relations are
under structure S).

Xj

Xi

Xk

Xi Xj

Xj

Xk

Xi

Xk

Xi Xj

Figure 4: The four possible conditions of Theorem 66, from left (i) to right (iv). The black nodes are
the ones in S, the red ones (besides Xi, Xj) are not in S.

We shall also require some terminology: namely, the definition of the skeleton of a Bayesian
network as the underlying undirected graph of its structure. We can now state the main result of this
section:

Theorem 67 There exists an algorithm with the following guarantees. Given the full description of
a Bayes net Q of degree at most d which is (c, C) balanced and γ-non-degenerate for c = Ω̃ (1/

√
n)

and C = Ω̃
(
dε2/
√
n
)
, parameter ε ∈ (0, 1], and sample access to a distribution P , promised to be

a Bayes net of degree at most d whose skeleton has no more edges than Q’s, the algorithm takes
O
(
2d/2
√
n/ε2 + (2d + d log n)/γ2

)
samples from P , runs in time O (n)d+3(1/γ2 + 1/ε2), and

distinguishes with probability at least 2/3 between (i) P = Q and (ii) ‖P −Q‖1 > ε.

In Lemma 71, we show that these non-degeneracy conditions are enough to ensure identifiability
of the structure, up to equivalence. In Theorem 73, we give a test for conditional independence
specialized to Bernoulli random variables. In the last part, we provide a test for showing whether a
non-degenerate Bayes net has a given structure using this conditional independence test, establish-
ing Theorem 68. We then can combine this structure test with our test for Bayes nets with known
structure to obtain Theorem 67. This structure tester, which may be of independent interest, has the
following guarantees,
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Theorem 68 Let S be a structure of degree at most d and P be a Bayesian network with structure
S ′ that also has degree at most d and whose skeleton has no more edges than S. Suppose that P
either (i) can be expressed as a Bayesian network with structure S that is γ-non-degenerate with
degree d; or (ii) cannot be expressed as a Bayesian network with structure S. Then there is an
algorithm which can decide which case holds with probability 99/100, given S , γ, and sample access
to P . The algorithm takes O

(
(2d + d log n)/γ2

)
samples and runs in time O

(
nd+3/γ2

)
.

Using the above theorem, we can prove the main result of this section:
Proof [Proof of Theorem 67] We first invoke the structure test given in Fig. 6. If it accepts, we run
the known structure test given in Theorem 46. We accept only if both accept.

The correctness and sample complexity now both follow from Theorem 68 and Theorem 46.
Specifically, if the structure test accepts, then with high probability, we have that Q can be expressed
as a Bayes net with the same structure as P , and thus we have the pre-conditions for the known
structure test. If either test rejects, then P 6= Q.

Non-degeneracy and Equivalent Structures. The motivation behind the γ-non-degeneracy con-
dition is the following: if Q is γ-non-degenerate, then for any Bayesian network P with degree at
most d that has dTV (P,Q) < γ we will argue that P can be described using the same structure S as
we are given for Q. Indeed, the structure S ′ of P will have the property that S and S ′ both can be
used to describe the same Bayesian networks, a property known as I-equivalence. It will then remain
to make this algorithmic, that is to describe how to decide whether P can be described with the same
structure as Q or whether dTV (P,Q) ≥ γ. Assuming we have this decision procedure, then if the
former case happens to hold we can invoke our existing known-structure tester (or reject if the latter
case holds).

We will require for our proofs the following definition:

Definition 69 (∨-structure) For a structure S, a triple (i, j, k) is a ∨-structure (also known as an
immorality) if i and j are parents of k but neither i nor j is a parent of the other.

The following result, due to Verma and Pearl Verma and Pearl (1991), will play a key role:

Lemma 70 Two structures S and S ′ are I-equivalent if and only if they have the same skeleton and
the same ∨-structures.

Note that, for general structures S, S ′, it may be possible to represent all Bayesian networks
with structure S as ones with structure S ′, but not vice versa. Indeed, this can easily be achieved
by adding edges to S to any node (if any) with less than d parents. This is the rationale for the
assumption in Theorem 68 that S ′ has no more edges than S: as this assumption is then required for
S and S ′ to be I-equivalent unless dTV (P,Q) ≥ γ.

We now prove that any Bayesian network Q satisfiying the conditions of Theorem 68 and being
non-degenerate with respect to a structure can in fact be expressed as having that structure.

Lemma 71 Fix γ > 0. If Q is a Bayesian network with structure S ′ of degree at most d that is
γ-non-degenerate with respect to a structure S with degree at most d and S ′ has no more edges than
S, then S and S ′ are I-equivalent.

52



TESTING BAYESIAN NETWORKS

Note that Q being γ-non-degenerate for some γ > 0 is equivalent to a set of conditional
independence conditions all being false, since if Xi and Xj are not conditionally independent with
respect to XS , then there is a configuration a such that PrQ[XS = a] > 0 and I(Xi;Xj | XS =
a) ≥ 0.
Proof We first show that S and S ′ have the same skeleton and then that they have the same ∨-
structures. We need the following:

Claim 72 Let S be the set of parents of Xi in a Bayesian network Q with structure S . Let Xj be a
node that is neither in S nor a descendant of Xi. Then Xi and Xj are independent conditioned on
XS .

Proof Firstly, we note that there is a numbering of the nodes which is consistent with the DAG of S
such that any j ∈ S has j < i. Explicitly, we can move Xi and all its descendants to the end of the
list of nodes to obtain this numbering.

Letting D def
= {1, . . . , i− 1}, we have that, from the definition of Bayesian networks, PrQ[Xi =

1 | XD = b] = PrQ[Xi = 1 | XS = bS ] for all configurations b of D. Then for any configuration a

of S′ def
= S ∪ {j}, we have

Pr
P

[Xj = 1 | XS′ = a] =
∑
b:bS=a

Pr
P

[Xj = 1 | XD = b] Pr
P

[XD = b | XS′ = a]

= Pr
P

[Xj = 1 | XS = aS ]
∑
b:bS=a

Pr
P

[XD = b | XS′ = a]

= Pr
P

[Xj = 1 | XS = aS ]

concluding the proof.

Suppose for a contradiction that (i, j) is an edge in the skeleton of S but not in S ′. Without loss
of generality, we may assume that Xj is not a descendant of Xi in S ′ (since otherwise we can swap
the roles of i and j in the argument). Then as Xi is not in S, the set of parents of Xj in S ′, either,
by Claim 72 Xi and Xj are independent conditioned on XS . However since one of Xi and Xj is
a parent of the other in S, condition (i) of γ-non-degeneracy gives that Xi and Xj are γ-far from
independent conditioned on XS . This is a contradiction, so all edges in the skeleton of S must be
edges of S ′. But by assumption S ′ has no more edges than S, and so they have the same skeleton.

Next we show that i and j have the same ∨-structures. Assume by contradiction that (i, j, k) is a
∨-structure in S but not S ′. Since S and S ′ have the same skeleton, this cannot be because Xi is
the parent of Xj or vice versa. Therefore, must be that at least one of Xi or Xj is the child of Xk

rather than its parent in S ′. As before, without loss of generality we may assume that Xj is not a
descendant of Xi in S ′. This implies that Xk cannot be a child of Xi, since then Xj must be a child
of Xk and so a descendant of Xi. Thus S, the set of parents of Xi in S ′, contains Xk but not Xj ;
and Claim 72 then implies that Xi and Xj are independent conditioned on XS . However, in S Xk is
the child of both Xi and Xj and so by condition (ii) of γ-non-degeneracy, we have that Xi and Xj

are γ-far from independent conditioned on XS . This contradiction shows that all ∨-structures in S
are ∨-structures in S ′ as well.

Finally, we assume for the sake of contradiction that (i, j, k) is a ∨-structure in S ′ but not S.
Again without loss of generality, we assume that Xj is not a descendant of Xi in S ′; and let S be the
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parents of Xi in S ′. Note that neither Xk nor Xj is in S since this is a ∨-structure. Now by Claim 72,
Xi and Xj are independent conditioned on XS . In S , however, (i, j, k) is not a ∨-structure yet (i, k),
(j, k) (but not (i, j)) are in the skeleton of S. Thus at least one of Xi, Xj is a child of Xk. If only
one is a child, then the other must be Xk’s parent. In the case of two children, we apply condition
(iv) and in the case of a parent and a child, we apply condition (iii) of γ-non-degeneracy. Either way,
we obtain that, since Xk is not in S, Xi and Xj are γ-far from independent conditioned on XS . This
contradiction shows that all ∨-structures in S ′ are also ∨-structures in S.

We thus have all the conditions for Lemma 70 to apply and conclude that S and S ′ are I-
equivalent.

Conditional Independence Tester. We now turn to establishing the following proposition:

Proposition 73 There exists an algorithm that, given parameters γ, τ > 0, set of coordinates S ⊆
[n] and coordinates i, j ∈ [n] \ S, as well as sample access to a distribution P over {0, 1}n, satisfies
the following. With probability at least 1−τ , the algorithm accepts when Xi and Xj are independent
conditioned on XS and rejects when no distribution Q with dTV (P,Q) < γ has this property (and
may do either if neither cases holds). Further, the algorithm takes O((2d + log(1/τ))/γ2) samples
from P and runs in time O((2d + log(1/τ))/γ2).

Input γ, τ > 0, i, j ∈ {0, 1}n, S ⊆ {0, 1}n with i, j /∈ S, and sample access to a distribution
P on {0, 1}n.

- Take O((2d + log(1/τ))/γ2) samples from P . Let P̃ be the resulting empirical distribution.

For each configuration a ∈ {0, 1}|S| of S,

- Compute the empirical conditional means µi,a = EX∼P̃ [Xi | XS = a] and µj,a =
EX∼P̃ [Xj | XS = a].

- Compute the conditional covariance CovP̃ [Xi, Xj | XS = a] = EX∼P̃ [(Xi −
µi,a)(Xj − µj,a) | XS = a].

Compute the expected absolute value of the conditional covariance β = EY∼P̃ [|CovP̃ [Xi, Xj |
XS = YS ]|].

If β ≤ γ/3, return accept

Else return reject.

Figure 5: Testing whether Xi and Xj are independent conditioned on S or are γ-far from being so.

Proof The algorithm is given in Fig. 5. Its sample complexity is immediate, and that the algorithm
takes linear time in the number of samples is not hard to see. It remains to prove correctness.

To do so, define D def
= S ∪ {i, j}. Let PD, P̃D be the distributions of XS for X distributed as

P, P̃ respectively. Since PD is a discrete distribution with support size 2d+2, by standard results the
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empirical P̃D obtained from our O((2d+2 + log 1/τ)/γ2) samples is such that dTV (PD, P̃ ) ≤ γ/10
with probability at least 1− τ . We hereafter assume that this holds.

Note that the distribution PD determines whether P is such that Xi and Xj are independent
conditioned on S or is δ-far from being so for any δ. Thus if these two nodes are γ-far from being
conditionally independent in P , then they are γ-far in PD and therefore are 9γ/10-far in P̃D. We now
need to show that the expected absolute value of the conditional covariance is a good approximation
of the distance from conditional independence, which is our next claim:

Claim 74 For a distribution Q on {0, 1}n, let γ be the minimum γ > 0 such that Xi and Xj are
γ-far from independent conditioned on XS in Q. Let β = EY∼Q[|CovQ[Xi, Xj | XS = YS ]|]. Then
we have β/3 ≤ γ ≤ 2β.

Proof For simplicity, we assume that |D| = n and that we have only coordinates i, j and S.
Firstly, we show that β ≤ γ. By assumption, there is a distribution R with dTV (Q,R) = γ

which has that Xi and Xj are independent conditioned on XS . Thus R has |CovR[Xi, Xj | XS =
a]| = 0 for all configurations a. Since 0 ≤ |CovQ[Xi, Xj | XS = a]| ≤ 1, it follows that
|β−EY∼R[|CovQ[Xi, Xj | XS = YS ]|]| ≤ 3dTV (Q,R) as CovQ[Xi, Xj | XS = YS ] = E[XiXj |
XS = YS ]− E[Xi | XS = YS ]E[Xj | XS = YS ] and so β ≤ 3γ.

Next we need to show that β ≤ 2γ. To show this, we construct a distribution S on {0, 1}n
with dTV (Q,S) = 2β in which Xi and Xj are independent conditioned on XS . Explicitly, for a
configuration a of S and b, c ∈ {0, 1}, we set

Pr
S

[XS = a,Xi = b,Xj = c]

def
= Pr

Q
[XS = a,Xi = b,Xj = c] + (−1)b+cCovQ[Xi, Xj | XS = a] Pr

Q
[XS = a] .

For each configuration a, this increases two probabilities by |CovQ[Xi, Xj | XS = a]|PrQ[XS = a]
and decrease two probabilities by the same amount. Thus, provided that all probabilities are still
non-negative (which we show below), S is a distribution with dTV (Q,S) =

∑
a 2|CovQ[Xi, Xj |

XS = a]|PrQ[XS = a] = 2β.

Now consider the conditional joint distribution of Xi, Xjfor a given a. Let pb,c
def
= PrQ[Xi =

b,Xj = c | XS = a]. Then the conditional covariance CovQ[Xi, Xj | XS = a], which we denote
by α for simplicity here, is

α = E[XiXj | XS = a]− E[Xi | XS = a]E[Xj | XS = a]

= p1,1 − (p1,0 + p1,1)(p0,1 + p1,1)

= p1,1(1− p1,0 − p0,1 − p1,1)− p1,0p0,1

= p1,1p0,0 − p1,0p0,1 .

In S, these probabilities change by α. p1,1 and p0,0 are increased by α and p0,1 and p1,0 are decreased
by it. Note that if α > 0, p1,1 and p0,0 are at least p1,1p0,0 ≥ α and when α < 0, p0,1 and p1,0 are at
least p1,0p0,1 ≥ −α. Thus all probabilities in S are in [0, 1], as claimed.

A similar expression for the conditional covaraince in S to that for α above yields

CovS [Xi, Xj | XS = a] = (p1,1 − α)(p0,0 − α)− (p1,0 + α)(p0,1 + α)

= 0α2 − (p0,0 + p1,1 + p0,1 + p1,0)α+ p1,1p0,0 − p1,0p0,1

= p1,1p0,0 − p1,0p0,1 − α = 0 .
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Since Xi and Xj are Bernoulli random variables, the conditional covariance being zero implies that
they are conditionally independent.

Completeness. Suppose by contrapositive that the algorithm rejects. Claim 74 implies that in P̃ , Xi

and Xj are γ/9-far from independent conditioned on XS . Thus they are γ/9 far in P̃D and,
since dTV (PD, P̃D) ≤ γ/10, this implies that they are not conditionally independent in PD.
Thus, in P , Xi and Xj are not independent conditioned on XS .

Soundness. Now suppose that Xi and Xj are γ-far from independent conditioned on XS in P .
Per the foregoing discussion, this implies that they are (9γ/10)-far from being so in P̃D.
Now Claim 74 guarantees that EY∼P̃ [|CovP̃ [Xi, Xj |XS = YS ]|] ≤ 9γ/20 > γ/3, and
therefore the algorithm rejects in this case. This completes the proof of correctness.

Structure Tester. Finally, we turn to the proof of Theorem 68, analyzing the structure testing
algorithm described in Fig. 6.

Input γ > 0, a structure S and a Bayesian network P

- Draw O((2d + d log n)/γ2) samples from P . Call this set of samples S.

For each nodes Xi, Xj and set S of nodes with |S| ≤ d and i, j 6= S

If one of the following conditions holds in structure S
(i) Xi is the parent of Xj ,

(ii) S contains a node Xk that is a child of both Xj and Xj ,
(iii) Xi is a grandparent of Xj and there is a child of Xi and parent of Xj , Xk that

is not in S,
(iv) Xi and Xj have a common parent Xk that is not in S

Then run the conditional independence tester of Theorem 73 (Fig. 5) using the set of
samples S to test whether Xi and Xj are independent conditioned on XS .

If the conditional indpendence tester accepts, return reject.

Otherwise return accept.

Figure 6: Testing whether P has structure as S

Proof [Proof of Theorem 68] We first show correctness. There are at most nd+2 possible choices
of Xi, Xj and |S| and thus we run the conditional independence tester at most nd+2 times. With
O((2d + d log n)/γ2) samples, each test gives an incorrect answer with probability no more than
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τ = n−Ω(d). With appropriate choice of constants we therefore have that all conditional independence
tests are correct with probability 99/100. We henceforth condition on this, i.e., that all such tests are
correct.

Completeness. If P is γ-non-degenerate with respect to structure S and degree d, then by the
definition of non-degeneracy, for any Xi, Xj and S that satisfy one of conditions (i)–(iv) we
have that Xi and Xj are γ-far from independent conditioned on XS . Thus every conditional
independence test rejects and the algorithm accepts.

Soundness. Now suppose by contrapositive that the algorithm accepts. For any Xi, Xj , and S that
satisfy one of conditions (i)–(iv), the conditional independence test must have rejected, that is
any such Xi and Xj are not independent conditioned on such an XS . Let γ′ be the mimuimum
over all Xi, Xj , and S that satisfy one of conditions (i)–(iv) and distributions Q over {0, 1}
such that Xi and Xj are independent conditioned on XS in Q, of the total variation distance
between P and Q. Since there are only finitely many such combinations of Xi, Xj , and S, this
γ′ is positive. Thus P is γ′-non-degenerate with respect to S and d. Since we assumed that P
has a structure S ′ with degree at most d and whose skeleton has no more edges than that of S ,
we can apply Lemma 71, which yields that S and S ′ are I-equivalent. Thus P can indeed be
expressed as a Bayesian network with structure S. This completes the proof of correctness.

To conclude, observe that we run the loop at most nd+2 times, each using time at most
O((2d + d log n)/γ2). The total running time is thus O(nd+3/γ2).

9. Testing Closeness of Bayes Nets

9.1. Fixed Structure Bayes Nets

We now establish the upper bound part of Theorem 18 for closeness, namely testing closeness
between two unknown Bayes nets with the same (known) underlying structure.

Theorem 75 There exists a computationally efficient algorithm with the following guarantees.
Given as input (i) a DAG S with n nodes and maximum in-degree d, (ii) a parameter ε > 0,
and (iii) sample access to two unknown (c, C)-balanced Bayes nets P,Q with structure S, where
c = Ω̃ (1/

√
n) and C = Ω̃

(
dε2/
√
n
)
; the algorithm takes O

(
2d/2
√
n/ε2

)
samples from P and Q,

and distinguishes with probability at least 2/3 between the cases P = Q and ‖P −Q‖1 > ε.

Proof We choose m ≥ α2d/2
√
n

ε2
, where α > 0 is an absolute constant to be determined in the course

of the analysis. Let S and P,Q be as in the statement of the theorem, for c ≥ β logn√
n
≥ β logn

m and

C ≥ β d+logn
m , for some other absolute constant β > 0.

The algorithm proceeds as follows: first, taking m samples from both P and Q, it computes
for each parental configuration (i, a) ∈ [n] × {0, 1}d the number of times N̂i,a and M̂i,a this
configuration was observed among the samples, for respectively P and Q. If for any (i, a) it is the
case that N̂i,a and M̂i,a are not within a factor 4 of each other, the algorithm returns reject. (Using
the same number of samples, it also estimates pi,a and qi,a within an additive 1/3, and applies the
same standard transformation as before so that we can hereafter assume pi,a, qi,a ≤ 2/3 for all (i, a).)
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Note that E
[
N̂i,a

]
= mPrP [ Πi,a ] and E

[
M̂i,a

]
= mPrQ [ Πi,a ]; given the C-balancedness

assumption and by Chernoff and union bounds, with probability at least 9/10 we have that N̂i,a and
M̂i,a are within a factor 2 of their expectation simultaneously for all n2d parental configurations. We
hereafter condition on this (and observe that this implies that if P = Q, then the algorithm rejects in
the step above with probability at most 1/10).

The algorithm now draws independently n2d values (Mi,a)(i,a), where Mi,a ∼ Poi
(
N̂i,a

)
; and

takes fresh samples from P,Q until it obtains Mi,a samples for each parental configuration Πi,a (for
each of the two distributions). If at any point the algorithm takes more than 10m samples, it stops
and returns reject.
(Again, note that by concentration (this time of Poisson random variables)3, our assumption that
N̂i,a ≥ mPrP [ Πi,a ] /2 ≥ mC/2 = β(d+ log n) and a union bound, the algorithm will reject at
this stage with probability at most 1/10.)

Conditioning on not having rejected, we define for each parental configuration Πi,a the quantity
Ui,a (resp. Vi,a) as the number of samples from P (resp. Q) among the first Mi,a satisfying Πi,a for

which Xi = 1. In particular, this implies that Ui,a ∼ Poi
(
pi,aN̂i,a

)
, Vi,a ∼ Poi

(
qi,aN̂i,a

)
(and are

independent), and that the random variables Wi,a defined below:

Wi,a
def
=

(Ui,a − Vi,a)2 − (Ui,a + Vi,a)

Ui,a + Vi,a

are independent. We then consider the statistic W :

W
def
=

n∑
i=1

∑
a∈{0,1}d

Wi,a.

Claim 76 If P = Q, then E[W ] = 0. Moreover, if ‖P −Q‖1 > ε then E[W ] > mε2

144 .

Proof We start by analyzing the expectation of Wi,a, for any fixed (i, a) ∈ [n]× {0, 1}d. The same
argument as Claim 76 leads to conclude that E[Wi,a] = 0 if P = Q (proving the first part of the
claim), and that otherwise we have

E[Wi,a] ≥
min(1,mc)

3
N̂i,a

(pi,a − qi,a)2

pi,a + qi,a
=

1

3
N̂i,a

(pi,a − qi,a)2

pi,a + qi,a

≥ 2

9
N̂i,a

(pi,a − qi,a)2

(pi,a + qi,a)(2− pi,a − qi,a)
(10)

(since mc ≥ β log n � 1 and 0 < pi,a, qi,a ≤ 2/3). Summing over all (i, a)’s and recalling that
N̂i,a ≥ mPrP [ Πi,a ] /2, N̂i,a ≥ mPrQ [ Πi,a ] /2 yields the bound:

E[W ] ≥ m

9

∑
(i,a)

√
Pr
P

[ Πi,a ] Pr
Q

[ Πi,a ]
(pi,a − qi,a)2

(pi,a + qi,a)(2− pi,a − qi,a)
≥ m

18
dH(P,Q)2

≥ m

18

(
1−

√
1− 1

4
‖P −Q‖21

)
3. Specifically, if X ∼ Poi(λ) then we have Pr[ |X − λ| > λ/2 ] = e−Ω(λ).
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(where we relied on Lemma 30 for the second-to-last inequality). This gives the last part of the claim,
as the RHS is at least mε

2

144 whenever ‖P −Q‖21 > ε2.

We now bound the variance of our estimator:

Claim 77 Var[W ] ≤ n2d+1 + 5
∑

(i,a) N̂i,a
(pi,a−qi,a)2

pi,a+qi,a
= O(n2d +E[W ]). In particular, if P = Q

then Var[W ] ≤ n2d+1.

Proof We follow the proof of Claim 38 to analyze the variance of Wi,a, obtaining a bound of

Var[Wi,a] ≤ 2 + 5N̂i,a
(pi,a−qi,a)2

pi,a+qi,a
. Invoking Eq. (10) and summing over all (i, a) ∈ [n] × {0, 1}d

then lead to the desired conclusion.

The correctness of our algorithm will then follow for the two claims above:

Lemma 78 Set τ def
= ε2

288 . Then we have the following:

• If ‖P −Q‖1 = 0, then Pr[W ≥ τam ] ≤ 1
10 .

• If ‖P −Q‖1 > ε, then Pr[W < τm ] ≤ 1
10 .

Proof We start with the soundness case,i.e. assuming ‖P −Q‖1 > ε, which by Claim 76 implies
E[W ] > 2τ . Then, by Chebyshev’s inequality,

Pr[W < τm ] ≤ Pr

[
E[W ]−W >

1

2
E[W ]

]
≤ 4 Var[W ]

E[W ]2

≤ 8n2d

E[W ]2
+

12

5E[W ]
(Claim 77)

= O

(
n2d

ε4m2
+

1

mε2

)
.

We want to bound this quantity by 1/10, for which it is enough to have n2d

ε4m2 � 1 and 1
mε2
� 1,

which both hold for an appropriate choice of the absolute constant α > 0 in our setting of m.
Turning to the completeness, we suppose ‖P −Q‖1 = 0. Then, by Chebyshev’s inequality, and

invoking Claim 77,

Pr[W ≥ τm ] = Pr[W ≥ E[W ] + τm ] ≤ Var[W ]

τ2m2
= O

(
n2d

ε4m2

)
which is no more than 1/10 for the same choice of m.

Combining all the elements above concludes the proof, as by a union bound the algorithm is correct
with probability at least 1− ( 1

10 + 1
10 + 1

10) > 2
3 .
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9.2. Unknown Structure Bayes Nets

As for the case identity testing, we give a closeness tester for balanced non-degenerate Bayes Nets.
An additional assumption that we require is that the ordering of the nodes in the corresponding DAGs
is known to the algorithm. Formally, we show:

Theorem 79 There exists a computationally efficient algorithm with the following guarantees.
Given as input (i) a parameter ε > 0, (ii) an ordering of nodes π, and (ii) sample access to
unknown γ-non-degenerate, (c, C)-balanced Bayes nets P,Q such the structures of P and Q give
the same ordering π to nodes, where c = Ω̃ (1/

√
n) and C = Ω̃

(
dε2/
√
n
)
; the algorithm takes

N = O(2d/2
√
n/ε2 + 2d/γ2 + d log(n)/γ2) samples from P and Q, runs in time ndpoly(N), and

distinguishes with probability at least 2/3 between the cases P = Q and ‖P −Q‖1 > ε.

Proof The argument’s idea is the following: we first test that P and Q have the same skeleton. Since
they have the same ordering, that suffices to show that they have the same structure. If this is the
case, then we use our known-structure tester.

In more detail, given the γ-non-degeneracy assumption, for each pair of coordinates i, j and set
of coordinates S with |S| ≤ d, we can, using the conditional independence tester from Theorem 73
to test whether each of P and Q has Xi and Xj conditionally independent on XS or γ-far from
it with n−d−2/100 probability of error in O((2d + d log(n))/γ2) samples. Running tests on the
same samples for all nd+2 combinations of i, j, S, we can with probability at least 99/100 correctly
classify which of the two cases holds, for all i, j, S that are either conditionally independent or γ-far.
We note that by non-degeneracy, there is an edge between i and j in the structure defining P only if
Xi and Xj are γ-far from independent conditioned on XS for all S (i.e., if there is no edge then there
must exist a S such that Xi and Xj are conditionally independent on XS). Therefore, assuming our
conditional independence testers all answered as they should, we can use this to successfully identify
the set of edges in the structure of P (and thus, since we know the ordering, the entire structure).

Having determined the underlying structures of P and Q, our tester rejects if these structures
differ (as using Lemma 71, γ-non-degeneracy implies that neither can equal a Bayes net with non-
equivalent structure and fewer edges). Otherwise, we run the tester from Theorem 75 (since we
satisfy its assumptions) and return the result.

10. Identity and Closeness Testing for High-Degree Bayes Nets

Finally, in this section we give testing algorithms for identity and closeness of degree-d Bayes nets
with unknown structure, without balancedness assumptions. Compared to the testing algorithm
of Theorem 21 and Theorem 79 (which work under such assumptions) the dependence on the
number of nodes n the testers in this section are suboptimal, they achieve the “right” dependence
on the degree d (specifically, 2d/2 for identity and 22d/3 for closeness). Hence, these testers achieve
sub-learning sample complexity for the case that d = Ω(log n).

Theorem 80 There exists two algorithms with the following guarantees:

• (Identity) Given the full description of a Bayes net Q of degree at most d, parameter ε ∈ (0, 1],
and sample access to a distribution P promised to be a Bayes net (i) of degree at most
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d and (ii) such that the structures of P and Q give the same ordering to nodes, the first
takes N = 2d/2poly(n/ε) samples from P , runs in time ndpoly(N), and distinguishes with
probability at least 2/3 between (i) P = Q and (ii) ‖P −Q‖1 > ε.

• (Closeness) Given parameter ε ∈ (0, 1], and sample access to two distributions P,Q promised
to be Bayes nets (i) of degree at most d and (ii) such that the structures of P and Q give the
same ordering to nodes, the second takes N = 22d/3poly(n/ε) samples from P and Q, runs
in time ndpoly(N), and distinguishes with probability at least 2/3 between (i) P = Q and (ii)
‖P −Q‖1 > ε.

Proof We first establish the first part of the theorem, namely the existence of an identity testing
algorithm with optimal dependence on the degree d. The algorithm is quite simple: it goes over
each set S ⊆ [n] of at most d + 1 coordinates, and checks that for each of them it holds that the
conditional distributions P, S,QS are equal (versus ‖PS −QS‖1 > poly( εn)).

Since PS and QS are supported on sets of size O(2d), and as there are only O(nd+1) such sets
to consider, the claimed sample complexity suffices to run all tests correctly with probability 9/10
overall (by a union bound).

The more difficult part is to argue correctness, that is to show that if the test accepts then one
must have ‖P −Q‖1 < ε. To do so, assume (without loss of generality) that H(P ) ≤ H(Q): we
will show that D(P‖Q) is small, which implies that the L1 distance is as well.

Let the ordering of P be coordinates 1, 2, 3, . . . . We note that D(P‖Q) =
∑

i D(Pi‖Qi |
P1, . . . , Pi−1) (i.e. the expectation over P1, . . . , Pi−1 of the KL-divergence of the conditional
distributions of Pi and Qi, conditioned on these (i− 1) coordinates). It thus suffices to show that
each of these terms is small.

Let Si be the set of parents of node i under P . We have that:

D(Pi‖Qi | P1, . . . , Pi−1) = D(Pi‖Qi | PSi) + EP1,...,Pi−1 [D(Qi | PSi‖Qi | P1, . . . , Pi−1)] .

Further, note that the fact that the tester accepted implies that D(Pi‖Qi | PSi) is small. Now, we
have that

H(P ) =
∑
i

H(Pi | P1, . . . , Pi−1) =
∑
i

H(Pi | PSi) ,

H(Q) =
∑
i

H(Qi | Q1, . . . , Qi−1) =
∑
i

H(Qi | QSi)− I (Qi;Q1, . . . , Qi−1 | QSi) .

But since the (d+ 1)-wise probabilities are close, we have that H(Pi | PSi) is close to H(Qi | QSi)
(up to an additive poly(ε/n)). Therefore, for each i, we have that I (Qi;Q1, . . . , Qi−1 | QSi) =
poly(ε/n). In order to conclude, let us compare I (Qi;Q1, . . . , Qi−1 | QSi) and EP1,...,Pi−1 [D(Qi |
PSi‖Qi | P1, . . . , Pi−1)]. The former is the sum, over assignments y ∈ {0, 1}i−1 consistent with an
assignment x ∈ {0, 1}Si , of

Pr[QSi = x ]H(Qi | QSi = x) + Pr[Q1,...,i−1 = y ]H(Qi | Q1,...,i−1 = y).

The latter is the sum over the same y’s of

Pr[PSi = x ]H(Qi | QSi = x) + Pr[P1,...,i−1 = y ]H(Qi | Q1,...,i−1 = y) .

61



CANONNE DIAKONIKOLAS KANE STEWART

But because of the d-way probability similarities, the terms Pr[PSi = x ] and Pr[QSi = x ] terms
are very close, within an additive poly(ε/n).

(Here we use the extra assumption that P and Q use the same ordering.) Denote by Ti the
parents of i under the topology of Q. Then H(Qi | Q1,...,i−1 = y) depends only on the values of the
coordinates in Ti. Thus the last part of the sum is a sum over z of Pr[QTi = z ]H(Qi | QTi = z)
and Pr[PTi = z ]H(Qi | QTi = z), which are also close by a similar argument. Thus,

EP1,...,Pi−1 [D(Qi | PSi‖Qi | P1, . . . , Pi−1)] = I (Qi;Q1, . . . , Qi−1 | QSi)+poly
( ε
n

)
= poly

( ε
n

)
.

This implies that P,Q are close in KL divergence, and therefore in L1.

The second part of the theorem, asserting the existence of a closeness testing algorithm with
optimal dependence on d, will be very similar. Indeed, by the proof above it suffices to check that
the restrictions of P and Q to any set of (d + 3)-coordinates are poly(ε/n)-close. Using known
results Chan et al. (2014c), this can be done for any specific collection of d+ 3 coordinates with N
samples in poly(N) time, and high probability of success, implying the second part of the theorem.
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APPENDIX

Appendix A. Sample Complexity of Learning Bayesian Networks

In this section, we derive tight bounds on the sample complexity of learning Bayes nets. Recall
that n will denote the number of nodes and d the maximum in-degree; before stating the results and
providing their proofs, we outline the high-level idea of the argument.

If the structure is known, there is a very simple learning algorithm involving finding the empirical
values for the relevant conditional probabilities and constructing the Bayes net using those terms. By
computing the expected KL-Divergence between this hypothesis and the truth, we can show that it
is possible to learn an ε-aproximation in Õ

(
2dn/ε2

)
samples. Learning a Bayes net with unknown

structure seems substantially more challenging, but at least the sample complexity is no greater. In
particular, we can simply go over all possible topologies and come up with one hypothesis for each,
and use a standard tournament to pick out the correct one. Appendix A.1 contains the details of both.

We also prove in Appendix A.2 a matching lower bound (up to logarithmic factors). For this
we can even consider Bayesian networks of fixed topology. In particular, we consider the topology
where each of the last (n− d)-coordinates depend on all of the first d (which we can assume to be
uniform and independent). The distribution we end up with is what we call a disjoint mixture of 2d

product distributions. In particular for each of the 2d possible combinations of the first d coordinates,
we have a (potentially different) product distribution over the remaining coordinates. In order to
learn our final distribution we must learn at least half of these product distributions to O(ε) error.
This requires that we obtain at least Ω((n− d)/ε2) samples from Ω(2d) of the parts of our mixture.
Thus, learning will require Ω(2d(n− d)/ε2)) total samples.

A.1. Sample Complexity Upper Bound

Known Structure. The algorithm will return a Bayes net Q with the same (known) structure as
the unknown P . Define pi,a as the probability (under P ) that the i-th coordinate is 1, conditioned on
the parental configuration for i being equal to a (denoted Πi,a); and qi,a the corresponding parameter
for our hypothesis Q.

Given this, the algorithm is simple. First, by a standard argument we can assume that all pi,a
are in [0, 2/3] (as one can detect whether it is the case by taking O(log n) samples, and swap the
corresponding coordinate of each sample if it is not the case).

We set m = O(2dn
ε2

log(2dn)), and consider separately two sets of configurations (i, a):

• the light ones, for which pi,a PrP [ Πi,a ] ≤ ε
2n2d

;

• the heavy ones, for which pi,a PrP [ Πi,a ] > ε
2n2d

.

We take m samples from P , and let qi,a be the empirical conditional probabilities. For any

(i, a) for which we see less than τ def
= O((log n)/ε) samples, we set qi,a = 0. Note that with

high probability, for the right choice of constant in the definition of τ , for all heavy configurations
simultaneously the estimate qi,a will (i) not be set to zero; and (ii) be within a factor 2 of the real
value pi,a. Conversely, each light configuration will either have qi,a be zero, or within a factor 2 of
pi,a.

Conditioned on this happening, we can analyze the error. Note first that by our definition of light
configuration and the triangle inequality, the sum of L1 error over all light configurations will be at
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most ε/2. We now bound the contribution to the error of the heavy configurations. (In what follows,
we implicitly restrict ourselves to these.)

By Pinsker’s inequality, ‖P −Q‖21 ≤ 2 D(P‖Q) ≤
∑

(i,a) PrP [ Πi,a ]
(pi,a−qi,a)2

qi,a(1−qi,a) . It only
remains to bound the expected KL divergence via the above bound. For each pair (i, a), on expectation
we see mPrP [ Πi,a ] samples satisfying the parental configuration. The expected squared error
(pi,a − qi,a)

2 between pi,a and our estimate qi,a is then O(
pi,a

mPrP [ Πi,a ]) by a standard variance
argument. This implies that the expected KL-divergence is bounded as

E[D(P‖Q)] =
1

m

∑
(i,a)

O

(
E
[
pi,a(1− pi,a)
qi,a(1− qi,a)

])

and it will be sufficient to argue that pi,a(1−pi,a)
qi,a(1−qi,a) = O(1) with high probability (as then the RHS will

be bounded as O
(

2dn
m

)
, and thus taking m = O(2dn/ε2) will be sufficient). Since pi,a ∈ [0, 2/3], it

is enough to show that, with high probability, qi,a ≥ pi,a/2 simultaneously for all (i, a); but this is
exactly the guarantee we had due to the “heaviness” of the configuration. Therefore, the contribution
to the squared L1 error from the heavy configuration is O

(
2dn
m

)
= O

(
ε2

d+logn

)
� ε2. Gathering

the two sources of error, we get an L1-error at most ε with high probability, as claimed.

Unknown Structure. For this upper bound, we reduce to the previous case of known structure.
Indeed, there are only N = nO(dn) possible max-degree-d candidate structures: one can therefore
run the above algorithm (with probability of failure 9/10) for each candidate structure on a common
sample from P of size O(2dn/ε2), before running a tournament (cf. Daskalakis et al. (2012b); De
et al. (2015)) to select a hypothesis with error O(ε) (which is guaranteed to exist as, with probability
at least 9/10, the “right” candidate structure will generate a good hypothesis with error at most ε).
The total sample complexity will then be

O

(
2dn

ε2
+

logN

ε2

)
= O

(
2dn

ε2
+
dn log n

ε2

)
,

which is O
(
2dn/ε2

)
for d = Ω(log n).

A.2. Sample Complexity Lower Bound

Our lower bound will be derived from families of Bayes nets with the following structure: The first
d nodes are all independent (and will in fact have marginal probability 1/2 each), and will form in
some sense a “pointer” to one of 2d arbitrary product distributions. The remaining n− d nodes will
each depend on all of the first d. The resulting distribution is now an (evenly weighted) disjoint
mixture of 2d product distributions on the (n − d)-dimensional hypercube. In other words, there
are 2d product distributions p1, . . . , p2d , and our distribution returns a random i (encoded in binary)
followed by a random sample form pi. Note that the pi can be arbitrary product distributions.

We show a lower bound of Ω(2dn/ε2) lower bound for learning, whenever d < (1− Ω(1))n.
Let Cε be a family of product distributions over {0, 1}n−d which is hard to learn, i.e., such that

any algorithm learning Cε to accuracy 4ε which succeeds with probability greater than 1/2 must have
sample complexity Ω(n/ε2). We will choose each pi independently and uniformly at random from
Cε.
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Assume for the sake of contradiction that there exists an algorithm A to learn the resulting
disjoint mixture of pi’s to error ε with o(2d(n − d)/ε2) samples. Without loss of generality, this
algorithm can be thought of returning as hypothesis a disjoint union of some other distributions
q1, . . . , q2d , in which case the error incurred is ‖p− q‖1 = 1

2d

∑n−d
i=1 ‖pi − qi‖1.

By assumption on its sample complexity, for at least half of the indices 1 ≤ i ≤ n − d the
algorithm obtains o(n/ε2) samples from pi. This implies that in expectation, by the fact that Cε was
chosen hard to learn, for at least half of these indices it will be the case that ‖pi − qi‖1 > 16ε (as
each of these i’s is such that ‖pi − qi‖1 > 16ε with probability at least 1/2). This in turn shows that
in expectation, ‖p− q‖1 = 1

2d

∑n−d
i=1 ‖pi − qi‖1 >

4ε
4 = ε, leading to a contradiction.

Appendix B. Omitted Proofs from Section 2.2

We give in this section the proofs of the corresponding lemmas from Section 2.2.
Proof [Proof of Lemma 10] By symmetry, it is sufficient to consider the distribution P

def
=⊗n

j=1 Bern
(

1
2 + ε√

n

)
. We explicitly bound from below the expression of ‖P − U‖1:

‖P − U‖1 =
∑

x∈{0,1}n

∣∣∣∣∣
(

1

2
+

ε√
n

)|x|(1

2
− ε√

n

)n−|x|
− 1

2n

∣∣∣∣∣
=

1

2n

n∑
k=0

(
n

k

) ∣∣∣∣∣
(

1 +
2ε√
n

)k (
1− 2ε√

n

)n−k
− 1

∣∣∣∣∣
≥ 1

2n

n
2

+2
√
n∑

k=n
2

+
√
n

(
n

k

) ∣∣∣∣∣
(

1 +
2ε√
n

)k (
1− 2ε√

n

)n−k
− 1

∣∣∣∣∣
≥ C√

n

n
2

+2
√
n∑

k=n
2

+
√
n

∣∣∣∣∣
(

1 +
2ε√
n

)k (
1− 2ε√

n

)n−k
− 1

∣∣∣∣∣ ,
where C > 0 is an absolute constant. We bound from below each summand separately: fixing k, and
writing ` = k − n

2 ∈ [
√
n, 2
√
n],

(
1 +

2ε√
n

)k (
1− 2ε√

n

)n−k
=

(
1− 4ε2

n

)n/2(1 + 2ε√
n

1− 2ε√
n

)`
≥
(

1− 4ε2

n

)n/2(1 + 2ε√
n

1− 2ε√
n

)√n
−−−→
n→∞

e4ε−2ε2 ,

so that each summand is bounded by a quantity that converges (when n → ∞) to e4ε−2ε2 − 1 >
4ε− 2ε2 > 2ε, implying that each is Ω(ε). Combining the above gives

‖P − U‖1 ≥
C√
n

n
2

+2
√
n∑

k=n
2

+
√
n

Ω(ε) = Ω(ε)

as claimed.
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Proof [Proof of Lemma 12] By symmetry it suffices to consider only the case of i = 1, so that we let
A = N1. The first step is to bound from above I (X;A) by a more manageable quantity:

Fact 81 We have that

I (X;A) ≤
∞∑
a=0

Pr[A = a ]

(
1− Pr[A = a | X = 1 ]

Pr[A = a | X = 0 ]

)2

. (11)

The proof of this fact is given in Appendix D. It will then be sufficient to bound the RHS, which we
do next. Since A ∼ Poi(kp1) with p1 = 1/2 if X = 0 and uniformly 1

2 ±
ε√
n

if X = 1, a simple
computation yields that

Pr[A = ` | X = 0 ] = e−k/2
(k/2)`

`!

Pr[A = ` | X = 1 ] =

(
e−k/2

(k/2)`

`!

)e−kε/√n(1 + 2 ε√
n

)` + ekε/
√
n(1− 2 ε√

n
)`

2

 .

Writing out ϕ(ε, `) = Pr[A=` | X=1 ]
Pr[A=` | X=0 ] as a function of ε/

√
n, we see that it is even. Thus, expanding it

as a Taylor series in α def
= ε/

√
n, the odd degree terms will cancel. Moreover, we can write

∞∑
`=0

Pr[A = ` ] (1− ϕ(ε, A))2 = EA
[
(1− ϕ(ε, A))2

]
=

1

2
EA∼Poi(k/2)

[
(1− ϕ(ε, A))2

]
+

1

4
EA∼Poi(k(1/2+α))

[
(1− ϕ(ε, A))2

]
+

1

4
EA∼Poi(k(1/2−α))

[
(1− ϕ(ε, A))2

]
.

Now, we can rewrite

(1− ϕ(ε, A))2 =

(
1− e−kα(1 + 2α)` + ekα(1− 2α)`

2

)2

= 1−
(
e−kα(1 + 2α)` + ekα(1− 2α)`

)
+
e−2kα(1 + 2α)2` + 2(1− 4α2)` + e2kα(1− 2α)2`

4
.

For b ∈ {−1, 0, 1}, we have EA∼Poi(k(1/2+bα)) [1] = 1 (!), and (from the MGF of a Poisson
distribution)

e−kαEA∼Poi(k(1/2+bα))

[
(1 + 2α)A

]
= e−kαek(1/2+bα)·2α = eb·2α

2k

ekαEA∼Poi(k(1/2+bα))

[
(1− 2α)A

]
= ekαek(1/2+bα)·−2α = e−b·2α

2k ,
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as well as

e−2kαEA∼Poi(k(1/2+bα))

[
(1 + 2α)2A

]
= e−2kαek(1/2+bα)·(4α+4α2) = e2kα2(1+2b+2bα)

e2kαEA∼Poi(k(1/2+bα))

[
(1− 2α)2A

]
= e2kαek(1/2+bα)·(−4α+4α2) = e2kα2(1−2b+2bα)

2EA∼Poi(k(1/2+bα))

[
(1− 4α2)A

]
= 2ek(1/2+bα)·−4α2

= 2e−2kα2−4kbα3
.

Gathering the terms, we get

EA
[
(1− ϕ(ε, A))2

]
=

1

4

(
2

(
1− 2 +

e2kα2
+ e−2kα2

2

)

+

(
1− (e2kα2

+ e−2kα2
) +

e2kα2(3+2α) + e2kα2(−1+2α) + 2e−2kα2−4kα3

4

)

+

(
1− (e−2kα2

+ e2kα2
) +

e−2kα2(1+2α) + e2kα2(3−2α) + 2e−2kα2+4kα3

4

))
=

1

16

(
− 4(e2kα2

+ e−2kα2
) + e2kα2(3+2α) + e2kα2(−1+2α) + 2e−2kα2−4kα3

+ e−2kα2(1+2α) + e2kα2(3−2α) + 2e−2kα2+4kα3
)

= O(k2α4) , (Taylor series expansion in α)

giving that indeed
∑∞

`=0 Pr[A = ` ] (1− ϕ(ε, A))2 = O
(
ε4k2

n2

)
. This completes the proof.

Proof [Proof of Lemma 14] Using Hellinger distance as a proxy will only result in an Ω(ε2)
lower bound on the distance, so we compute it explicitly instead: in what follows, e(j) ∈ {0, 1}n

denotes the basis vector with e(j)
i = 1{i=j}. Fix any vector b = (b1, . . . , bn) ∈ {0, 1}n such that

|b| ∈ [n/3, 2n/3], and let P be the corresponding distribution from the support of N .

‖P − P ∗‖1 ≥
n∑
j=1

|P (e(j))− P ∗(e(j))|

=

n∑
j=1

∣∣∣∣∣∣1 + (−1)bj ε

n

∏
i 6=j

(
1− 1 + (−1)biε

n

)
− 1

n

(
1− 1

n

)n−1
∣∣∣∣∣∣

=
1

n

(
1− 1

n

)n−1 n∑
j=1

∣∣∣∣∣∣(1 + (−1)bj ε)
∏
i 6=j

(
1− (−1)biε

n− 1

)
− 1

∣∣∣∣∣∣ .
Each summand can be bounded from above as follows:(

1− ε

n− 1

)2n/3

≤
∏
i 6=j

(
1− (−1)biε

n− 1

)
≤
(

1 +
ε

n− 1

)2n/3

,

where the last inequality follows from our assumption on |b|. In turn, this gives that
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• If bj = 0,

(1 + (−1)bj ε)
∏
i 6=j

(
1− (−1)biε

n− 1

)
− 1 ≥ (1 + ε)

(
1− ε

n− 1

)2n/3

− 1 = Ω (ε) .

• If bj = 1,

1− (1 + (−1)bj ε)
∏
i 6=j

(
1− (−1)biε

n− 1

)
≥ 1− (1− ε)

(
1 +

ε

n− 1

)2n/3

= Ω (ε) .

Since 1
n

(
1− 1

n

)n−1
= e−1+o(1)

n , we get ‖P − P ∗‖1 = Ω(ε). The lemma now follows from the fact
that a uniformly random b ∈ {0, 1}n satisfies |b| ∈ [n/3, 2n/3] with probability 1− 2−Ω(n).

Appendix C. Omitted Proofs from Section 4

We provide in this section the proofs of the inequalities stated in the preliminaries (Section 4).
Proof [Proof of Lemma 26] Using properties of the KL-divergence:

D(P‖Q) = D(P1 ⊗ · · · ⊗ Pn‖Q1 ⊗ · · · ⊗Qn) =

n∑
i=1

D(Pi‖Qi)

so it suffices to show that 2(pi − qi)2 ≤ D(Pi‖Qi) ≤ (pi−qi)2

qi(1−qi) for all i ∈ [n]. Since Pi = Bern(pi)

and Qi = Bern(qi), we can write

D(Pi‖Qi) = pi ln
pi
qi

+ (1− pi) ln
1− pi
1− qi

Defining f : (0, 1)2 → R as f(x, y)
def
= x ln x

y+(1−x) ln 1−x
1−y , we thus have to show that 2(x−y)2 ≤

f(x, y) ≤ (x−y)2

y(1−y) for all x, y ∈ (0, 1).

We begin by the upper bound: fixing any x, y ∈ (0, 1) and setting δ def
= x− y, we have

f(x, y) = x ln

(
1 +

δ

y

)
+ (1− x) ln

(
1− δ

1− y

)
≤ x

y
δ − 1− x

1− y
δ =

δ2

y(1− y)

from ln(1 + u) ≤ u for all u ∈ (−1,∞).
Turning to the lower bound, we fix any y ∈ (0, 1) and consider the auxiliary function hy : (0, 1)→

R defined by hy(x) = f(x, y)− 2(x− y)2. From h′′y(x) = (1−2x)2

x(1−x) ≥ 0, we get that hy is convex,

i.e. h′y is non-decreasing. Since h′y(x) = ln x(1−y)
(1−x)y − 4(x− y), we have h′y(y) = 0, and in turn we

get that hy is non-increasing on (0, y] and non-decreasing on [y, 1). Since hy(y) = 0, this leads to
hy(x) ≥ 0 for all x ∈ (0, 1), i.e. f(x, y) ≥ 2(x− y)2.
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Proof [Proof of Lemma 28] Recall that for any pair of distributions, we have that dH(P,Q)2 ≤
1
2‖P −Q‖1 ≤

√
2 dH(P,Q), where dH(P,Q) denotes the Hellinger distance between P,Q. There-

fore, it is enough to show that

min

(
c′,

1

4

n∑
i=1

(pi − qi)2

)
≤ dH(P,Q)2 ≤

n∑
i=1

(pi − qi)2

qi(1− qi)
(12)

for some absolute constant c′ > 0. (We will show c′ = 1− e−3/2 ' 0.78.)
Since P,Q are product measures,

dH(P,Q)2 = 1−
n∏
i=1

(1− dH(Pi, Qi)
2) = 1−

n∏
i=1

(
√
piqi +

√
(1− pi)(1− qi)) .

We start with the lower bound. Noting that for any x, y ∈ (0, 1) it holds that

√
xy +

√
(1− x)(1− y) ≤ 1− 1

2
(x− y)2

(e.g., by observing that the function x ∈ (0, 1) 7→ 1− 1
2(x− y)2 − (

√
xy +

√
(1− x)(1− y)) is

minimized at y, where it takes value 0), we get

dH(P,Q)2 ≥ 1−
n∏
i=1

(
1− 1

2
(pi − qi)2

)
≥ min(1− e−3/2,

1

4

n∑
i=1

(pi − qi)2)

≥ min(1− e−3/2,
1

4
‖p− q‖22)

where we relied on the inequality 1−
∏n
i=1(1− xi) ≥ 1

2

∑n
i=1 xi for (x1, . . . , xn) ∈ [0, 1]:

1−
n∏
i=1

(1− xi) = 1− e
∑n
i=1 ln(1−xi) ≥ 1− e−

∑n
i=1 xi ≥ 1−

(
1− 1

2

n∑
i=1

xi

)
.

(the last inequality being true for
∑n

i=1 xi ≤
3
2 , i.e. ‖p− q‖22 ≤ 3).

Turning to the upper bound, the elementary inequality 2
√
xy = x+ y − (

√
x−√y)2, x, y > 0,

gives that
√
piqi +

√
(1− pi)(1− qi) ≥ 1− (pi − qi)2

(pi + qi)(2− pi − qi)
= 1− zi .

Therefore,

dH(P,Q)2 ≤ (1−
n∏
i=1

(1− zi)) ≤
n∑
i=1

zi =

n∑
i=1

(pi − qi)2

(pi + qi)(2− pi − qi)
≤

n∑
i=1

(pi − qi)2

qi(1− qi)
, (13)

where the third-to-last inequality follows from the union bound, and the last from the simple fact that
(pi + qi)(2− pi − qi) ≥ qi(1− qi).
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Proof [Proof of Lemma 29] Let A and B be two distributions on {0, 1}d. Then we have:

D(A‖B) =
∑

x∈{0,1}d
Pr
A

[x] ln
PrA[x]

PrB[x]
; . (14)

For a fixed i ∈ [d], the events Πi,a form a partition of {0, 1}d. Dividing the sum above into this
partition, we obtain

D(A‖B) =
∑
a

∑
x∈Πi,a

Pr
A

[x] ln
PrA[x]

PrB[x]

=
∑
a

Pr
A

[Πi,a]
∑

x∈{0,1}d
Pr

A|Πi,a
[x]

(
ln

PrA[Πi,a]

PrB[Πi,a]
+ ln

PrA|Πi,a [x]

PrB|Πi,a [x]

)

=
∑
a

Pr
A

[Πi,a](ln
PrA[Πi,a]

PrB[Πi,a]
+ D(A | Πi,a‖B | Πi,a) .

Let P≤i be the distribution over the first i coordinates of P and define Q≤i similarly for Q. Let
Pi and Qi be the distribution of the i-th coordinate of P and Q respectively. We will apply the above
to P≤i−1 and P≤i. First note that the i-th coordinate of P≤i | Πi,a and Q≤i | Πi,a is independent of
the others, thus we have (which likely follows from standard results):

D(P≤i | Πi,a‖Q≤i | Πi,a)

=
∑

x∈{0,1}i
Pr

P≤i|Πi,a
[x] ln

PrP≤i|Πi,a [x]

PrQ≤i|Πi,a [x]

=
∑

x∈{0,1}i
Pr

P≤i−1|Πi,a
[x≤i−1] Pr

Pi|Πi,a
[xi]

(
ln

PrP≤i−1|Πi,a [x≤i−1]

PrQ≤i−1|Πi,a [x≤i−1]
+ ln

PrPi|Πi,a [xi]

PrQ≤i|Πi,a [xi]

)

=
∑

x∈{0,1}i−1

Pr
P≤i−1|Πi,a

[x] ln
PrP≤i−1|Πi,a [x]

PrQ≤i−1|Πi,a [x]
+

∑
y∈{0,1}

Pr
Pi|Πi,a

[y] ln
PrPi|Πi,a [y]

PrQ≤i|Πi,a [y]

= D(P≤i−1 | Πi,a‖Q≤i−1 | Πi,a) + D(Pi | Πi,a‖Qi | Πi,a)

Thus, we have:

D(P≤i‖Q≤i)

=
∑
a

Pr
P≤i

[Πi,a](ln
PrP≤i [Πi,a]

PrQ≤i [Πi,a]
+ D(P≤i | Πi,a‖Q≤i | Πi,a)

=
∑
a

Pr
P≤i

[Πi,a]

(
ln

PrP≤i [Πi,a]

PrQ≤i [Πi,a]
+ D(P≤i−1 | Πi,a‖Q≤i−1 | Πi,a) + D(Pi | Πi,a‖Qi | Πi,a)

)
= D(P≤i−1‖Q≤i−1) +

∑
a

Pr
P

[Πi,a] D(Pi | Πi,a‖Qi | Πi,a)

By induction on i, we get

D(P‖Q) =
∑

(i,a)∈S

Pr
P

[Πi,a] D(Pi | Πi,a‖Qi | Πi,a).
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Now the distributions Pi | Πi,a and Qi | Πi,a are Bernoulli random variables with means pi,a and
qi,a. For p, q ∈ [0, 1], we have:

D(Bern(p) ‖Bern(q)) = p ln
p

q
+ (1− p) ln

1− p
1− q

≤ (p− q)2

q(1− q)

as in the proof of Claim 4. On the other hand, studying for instance the function fq : (0, 1) → R

defined by fq(p) =
p ln p

q
+(1−p) ln 1−p

1−q
(p−q)2 (extended by continuity at q), we get

fq(p) ≥ fq(1− q) ≥ 2

for all p, q ∈ (0, 1)2. This shows the lower bound.

Appendix D. Omitted Proofs from Sections 2.2 and 8.2

Fact [Fact 81]

I (X;A) ≤
∞∑
a=0

Pr[A = a ]

(
1− Pr[A = a | X = 1 ]

Pr[A = a | X = 0 ]

)2

. (15)

Proof For a ∈ N, we write pa = Pr[X = 0 | A = a ] and qa = Pr[X = 1 | A = a ], so that
pa + qa = 1. By definition,

I (X;A) =
∞∑
a=0

Pr[A = a ]
∑

x∈{0,1}

Pr[X = x | A = a ] log
Pr[X = x | A = a ]

Pr[X = x ]

=
∞∑
a=0

Pr[A = a ]

(
pa log

pa
Pr[X = 1 ]

+ qa log
qa

Pr[X = 0 ]

)

=

∞∑
a=0

Pr[A = a ] (pa log (2pa) + qa log (2qa))

=
∞∑
a=0

Pr[A = a ] ((1− qa) log (1− qa) + qa log (qa) + 1)

≤
∞∑
a=0

Pr[A = a ]

(
1− qa

1− qa

)2

=

∞∑
a=0

Pr[A = a ]

(
1− qa

pa

)2

where for the last inequality we rely on the fact that the binary entropy satisfies h(x) ≥ 1 −(
1− x

1−x

)2
for all x ∈ [0, 1).

Proof [Alternative proof of Lemma 15] We proceed as in the proof of Lemma 12, first writing

I (X;A) =
∞∑
`=0

Pr[A = a ]

(
1− Pr[A = a | X = 1 ]

Pr[A = a | X = 0 ]

)2

= EA

[(
1− Pr[A = a | X = 1 ]

Pr[A = a | X = 0 ]

)2
]
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and noticing that za
def
= Pr[A=a | X=1 ]

Pr[A=a | X=0 ] = e−kε/n(1+ε)a+ekε/n(1−ε)a
2 . This leads to

4(1−za)2 = 4−4
(
e−

k
n
ε(1 + ε)a + e

k
n
ε(1− ε)a

)
+
(
e−2 k

n
ε(1 + ε)2a + e2 k

n
ε(1− ε)2a + 2(1− ε2)a

)
(16)

We also have, by definition of A, that for any z ∈ R

EA[zA] =
1

2
EA∼Poi( kn)[zA] +

1

4
EA∼Poi( kn (1+ε))[zA] +

1

4
EA∼Poi( kn (1−ε))[zA]

=
1

2
e
k
n

(z−1) +
1

4
e
k
n

(1+ε)(z−1) +
1

4
e
k
n

(1−ε)(z−1) (17)

from the expression of the probability generating function of a Poisson random variable. For any
β ∈ {−1, 1}, we therefore have

4e−
k
n
βεEA[(1 + βε)A] = 2e

k
n
βεe−

k
n
βε + e

k
n

(1+ε)βεe−
k
n
βε + e

k
n

(1−ε)βεe−
k
n
βε

= 2 + e
k
n
βε2 + e−

k
n
βε2

4e−2 k
n
βεEA[(1 + βε)2A] = 2e

k
n

(2βε+ε2)e−2 k
n
βε + e

k
n

(1+ε)(2βε+ε2)e−2 k
n
βε + e

k
n

(1−ε)(2βε+ε2)e−2 k
n
βε

= 2e
k
n
ε2 + e

k
n

((1+2β)ε2+ε3) + e
k
n

((1−2β)ε2−ε3)

4 · 2EA[(1− ε2)A] = 4e
k
n
ε2 + 2e

k
n

(1+ε)ε2 + 2e
k
n

(1−ε)ε2 = 4e
k
n
ε2 + 2e

k
n

(ε2+ε3) + 2e
k
n

(ε2−ε3)

Combining Eq. (16) and the above, we obtain

16EA
[
(1− zA)2

]
= 16− 4

(
4e−

k
n
εEA[(1 + ε)A] + 4e

k
n
εEA[(1− ε)A]

)
+
(

4e−2 k
n
εEA[(1 + ε)2A] + 4e2 k

n
εEA[(1− ε)2A] + 8EA[(1− ε2)A]

)
= 16− 8

(
2 + e

k
n
ε2 + e−

k
n
ε2
)

+
(

4e
k
n
ε2 + e

k
n

(3ε2+ε3) + e
k
n

(−ε2−ε3)

+ e
k
n

(−ε2+ε3) + e
k
n

(3ε2−ε3) + 4e
k
n
ε2 + 2e

k
n

(ε2+ε3) + 2e
k
n

(ε2−ε3)
)

= 8− 8
(
e
k
n
ε2 + e−

k
n
ε2
)

+
(
e
k
n

3ε2 + e−
k
n
ε2 + 2e

k
n
ε2
)(

e
k
n
ε3 + e−

k
n
ε3
)
.

A Taylor expansion of this expression (in kε2

n for the first two parentheses, and kε3

n for the last) shows
that

EA
[
(1− zA)2

]
= O

(
k2ε4

n2

)
as claimed.

Proof [Proof of Lemma 63] From the definition of

I (X;Y ) =
∑

(x,y)∈{0,1}

Pr[X = x, Y = y ] log
Pr[X = x, Y = y ]

Pr[X = x ] Pr[Y = y ]
,
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it is straightforward to check that for X,Y taking values in {0, 1}

I (X;Y ) = E[XY ] log
E[XY ]

E[X]E[Y ]

+ (E[X]− E[XY ]) log
E[X]− E[XY ]

E[X] (1− E[Y ])

+ (E[Y ]− E[XY ]) log
E[Y ]− E[XY ]

(1− E[X])E[Y ]

+ (1− E[X]− E[Y ] + E[XY ]) log
1− E[X]− E[Y ] + E[XY ]

(1− E[X])(1− E[Y ])

= f(E[X] ,E[Y ] ,E[XY ])

for f defined by f(x, y, z)
def
= z log z

xy + (x − z) log x−z
x(1−y) + (y − z) log y−z

(1−x)y + (1 − x − y +

z) log 1−x−y+z
(1−x)(1−y) .

The domain of definition of f is the subset Ω ⊆ [0, 1]3 defined by (recalling that x, y, z correspond
to E[X] ,E[Y ] ,E[XY ] for X,Y ∈ {0, 1})

0 ≤ x, y ≤ 1

0 ≤ z ≤ min(x, y)

0 ≤ z ≤ √xy (Cauchy–Schwarz)

0 ≤ 1 + z − x− y

Given the c-balancedness assumption on P , Ωc ⊆ Ω satisfies the further following constraints:

c ≤ x, y ≤ 1− c

c2 ≤ z

x
,
z

y
≤ 1− c2

c2 ≤ 1 + z − x− y
1− x

,
1 + z − x− y

1− y
≤ 1− c2

by Baye’s rule and recalling that 1 + z − x− y corresponds to

Pr[X = 0, Y = 0 ] = Pr[X = 0 | Y = 0 ] Pr[Y = 0 ] = Pr[Y = 0 | X = 0 ] Pr[X = 0 ]

while 1− x, 1− y correspond to Pr[X = 0 ] ,Pr[Y = 0 ] respectively.
One can then check that

∂f

∂x
(x, y, z) = log

(1− x)(x− z)
x(1 + z − x− y)

,

∂f

∂y
(x, y, z) = log

(1− y)(y − z)
y(1 + z − x− y)

,

∂f

∂z
(x, y, z) = log

z(1 + z − x− y)

(x− z)(y − z)

and therefore, on Ωc, that

‖∂f
∂x
‖
∞

= ‖∂f
∂y
‖
∞
≤ sup

(x,y,z)∈Ωc

|log
x− z
x
|+ |log

1 + z − x− y
1− x

| ≤ 2 log
1

c2
= 4 log

1

c
.
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Similarly,

‖∂f
∂z
‖
∞
≤ sup

(x,y,z)∈Ωc

|log
(x− z)(y − z)

z
|+ |log(1 + z − x− y)|

≤ sup
(x,y,z)∈Ωc

|log
(1− c2)y

c4xy
|+ |log

1

c2x
|

≤ log
1

c5
+ log

1

c3
= 8 log

1

c
.

So overall, f is λ-Lipschitz (with regard to the ‖·‖∞ norm) on Ωc, for λ = ‖∂f∂x‖∞ + ‖∂f∂y ‖∞ +

‖∂f∂z ‖∞ ≤ 16 log 1
c .
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