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Abstract
We investigate contextual online learning with nonparametric (Lipschitz) comparison classes

under different assumptions on losses and feedback information. For full information feedback and
Lipschitz losses, we design the first explicit algorithm achieving the minimax regret rate (up to log
factors). In a partial feedback model motivated by second-price auctions, we obtain algorithms
for Lipschitz and semi-Lipschitz losses with regret bounds improving on the known bounds for
standard bandit feedback. Our analysis combines novel results for contextual second-price auctions
with a novel algorithmic approach based on chaining. When the context space is Euclidean, our
chaining approach is efficient and delivers an even better regret bound.
Keywords: online learning, nonparametric, chaining, bandits.

1. Introduction

In online learning (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2011; Hazan, 2015) an agent
(or learner) interacts with an unknown and arbitrary environment in a sequence of rounds. At each
round, the learner chooses an action from a given action space and incurs the loss associated with the
chosen action. The loss functions, which are different in each round, are fixed by the environment
at the beginning of the interaction. After choosing an action, the learner observes some feedback,
which can be used to reduce his loss in subsequent rounds. A variety of different feedback models
are discussed in the literature. The most common feedback model is full information, also known as
prediction with expert advice, where the learner gets access to the entire loss function at the end of
each round. Another common feedback model is bandit information, where the learner just observes
the loss assigned to the action chosen in the current round. Feedback models in between full and
bandit information are also possible, and can be used to describe many interesting online learning
applications —see e.g., (Alon et al., 2014, 2015). The performance of an online learner is measured
using a notion of regret, which is typically defined as the amount by which the learner’s cumulative
loss exceeds the cumulative loss of the best fixed action in hindsight.
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Online contextual learning is a generalization of online learning where the loss functions gen-
erated by the environment are paired with contexts from a given context space. On each round,
before choosing an action, the learner observes the current context. In the presence of contextual
information, the learner’s regret is no longer defined against the best action in hindsight, but rather
against the best policy (i.e., mapping from the context space to the action space) in a given refer-
ence class of policies. In agreement with the online learning framework, online contextual learning
is nonstochastic. Namely, regret bounds must hold for arbitrary sequences of contexts and losses.

In order to capture complex environments, the reference class of policies should be as large as
possible. In this work, we focus on nonparametric classes of policies, such as classes containing
policies that are Lipschitz with respect to metrics defined on the context and action spaces. The
best possible (minimax) growth rate of the regret, as a function of the number T of rounds, is
then determined by the interplay among the richness of the policy class, the constraints on the loss
functions (e.g., Lipschitz, convex, etc.), and the type of feedback information (full, bandit, or in
between). Whereas most of the previous works study online nonparametric learning with convex
losses, in this paper we investigate nonparametric regret rates for general Lipschitz losses (in fact,
some of our results apply to an even larger class of loss functions).

In the full information setting, a very general yet simple algorithmic approach to online non-
parametric learning with convex and Lipschitz losses was introduced by Hazan and Megiddo (2007).
For any reference class of Lipschitz policies, they proved a Õ

(
T (d+1)/(d+2)

)
upper bound1 on the

regret for any context space of metric dimension d, where the Õ notation hides logarithmic factors
in T . In the same work, they also proved a Ω

(
T (d−1)/d) lower bound. The gap between the upper

and lower bound was closed by Rakhlin et al. (2015) for arbitrary Lipschitz (not necessarily con-
vex) losses, showing that T (d−1)/d is indeed the minimax rate for full information. Yet, since their
approach is nonconstructive, they did not give an explicit algorithm achieving this bound.

As noted elsewhere —see, e.g., (Slivkins, 2014)— the approach of Hazan and Megiddo (2007)
can be also adapted to prove a Õ

(
T (d+p+1)/(d+p+2)

)
upper bound on the regret against any class

of Lipschitz policies in the bandit information setting with Lipschitz losses, where p is the metric
dimension of the action space. The lower bound Ω

(
T (p+1)/(p+2)

)
proven for d = 0 (Bubeck et al.,

2011a; Kleinberg et al., 2008) rules out the possibility of improving the dependence on p in the
upper bound.

Our contributions. In the full information model, we show the first explicit algorithm achieving
the minimax regret rate Õ

(
T (d−1)/d) for Lipschitz policies and Lipschitz losses (excluding loga-

rithmic factors in T and polynomial factors in the metric dimension of the action space). When
the context space is [0, 1]d, our algorithm can be implemented efficiently (i.e., with a running time
polynomial in T ).

Motivated by a problem in online advertising where the action space is the [0, 1] interval, we
also study a “one-sided” full information model in which the loss of each action greater than or
equal to the chosen action is available to the learner after each round. For this feedback model,
which lies between full and bandit information, we prove a regret bound for Lipschitz policies and
Lipschitz losses of order Õ

(
T d/(d+1)

)
, which is larger than the minimax regret for full information

but smaller than the upper bound for bandit information when p = 1. For the special case when the

1. This bound has a polynomial dependence on the metric dimension of the action space, which is absorbed by the
asymptotic notation.
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context space is [0, 1]d, we use a specialized approach offering the double advantage of an improved
Õ
(
T (d−1/3)/(d+2/3)

)
regret bound which is also attained by a time-efficient algorithm.

We then study a concrete application for minimizing the seller’s regret in contextual second-
price auctions with reserve price, a setting where the loss function is not Lipschitz but only semi-
Lipschitz. When the feedback after each auction is the seller’s revenue together with the highest bid
for the current auction, we prove a Õ

(
T (d+1)/(d+2)

)
regret bound against Lipschitz policies (in this

setting, a policy maps contexts to reserve prices for the seller). As a by-product, we show the first
Õ
(√
T
)

regret bound on the seller’s revenue in context-free second-price auctions under the same
feedback model as above. Table 1 summarizes our results.

Feedback model Loss functions Upper bound

Bandit Lipschitz T
d+2
d+3 (Theorem 1)

Convex T
d+1
d+2 (Corollary 2)

One-sided full information Semi-Lipschitz T
d+1
d+2 (Theorem 3)

Lipschitz T
d−1/3
d+2/3 (Theorem 6)

Full information Lipschitz T
d−1
d (Theorem 7)

Table 1: Some regret bounds obtained in this paper. The rates are up to logarithmic factors for
Lipschitz policies f : [0, 1]d → [0, 1] with d > 2. All upper bounds are constructive
(i.e., achieved by explict algorithms). The only matching lower bound is the one for full
information feedback due to Hazan and Megiddo (2007).

In order to prove our results, we approximate the action space using a finite covering (finite
coverability is a necessary condition for our results to hold). This allows us to use the many existing
algorithms for experts (full information feedback) and bandits when the action space is finite, such
as Hedge (Freund and Schapire, 1997) and Exp3/Exp4 (Auer et al., 2002). The simplest of our
algorithms, adapted from Hazan and Megiddo (2007), incrementally covers the context space with
balls of fixed radius. Each ball hosts an instance of an online learning algorithm which predicts in
all rounds when the context falls into the ball. New balls are adaptively created when new contexts
are observed which fall outside the existing balls (see Algorithm 1 for an example). We use this
simple construction to prove the regret bound for contextual second-price auctions, a setting where
losses are not Lipschitz. In order to exploit the additional structure provided by Lipschitz losses,
we resort to more sophisticated constructions based on chaining (Dudley, 1967). In particular,
inspired by previous works in this area (especially the work of Gaillard and Gerchinovitz, 2015),
we design a chaining-inspired algorithm applied to a hierarchical covering of the policy space.
Despite we are not the first ones to use chaining algorithmically in online learning, our idea of
constructing a hierarchy of online learners, where each node uses its children as experts, is novel in
this context as far as we know. Finally, the time-efficient algorithm achieving the improved regret
bound is derived from a different (and more involved) chaining algorithm based on wavelet-like
approximation techniques.

Setting and main definitions. We assume the context space X is a metric space (X , ρX ) of finite
metric dimension d and the action space Y is a metric space (Y, ρY) of finite metric dimension p.
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Hence, there exist CX , CY > 0 such that, for all 0 < ε 6 1, X and Y can be covered, respectively,
with at most CX ε−d and at most CYε−p balls of radius ε. For any 0 < ε 6 1, we use Yε to denote
any ε-covering of Y of size Kε 6 CYε

−p. Finally, we assume that Y has diameter bounded by 1
with respect to metric ρY .

We consider the following online learning protocol with oblivious adversary and loss functions
`t : Y → [0, 1]. Given an unknown sequence (x1, `1), (x2, `2), . . . of contexts xt ∈ X and loss
functions `t : Y → [0, 1], for every round t = 1, 2, . . . :

1. The environment reveals context xt ∈ X ;
2. The learner selects an action ŷt ∈ Y and incurs loss `t

(
ŷt
)
;

3. The learner obtains feedback from the environment.
Loss functions `t satisfy the 1-Lipschitz2 condition

∣∣`t(y) − `t(y′)
∣∣ 6 ρY(y, y′) for all y, y′ ∈ Y .

However, we occasionally consider losses satisfying a weaker semi-Lipschitz condition.
We study three different types of feedback: bandit feedback (the learner only observes the loss

`t(ŷt) of the selected action ŷt), full information feedback (the learner can compute `t(y) for any
y ∈ Y), and one-sided full information feedback (Y ≡ [0, 1], and the learner can compute `t(y) if
and only if y > ŷt). Given a reference class F ⊆ YX of policies, the learner’s goal is to minimize
the regret against the best policy in the class,

RegT (F) , E

[
T∑
t=1

`t
(
ŷt
)]
− inf
f∈F

T∑
t=1

`t
(
f(xt)

)
,

where the expectation is with respect to the learner’s internal randomization. We derive regret
bounds for the competitor class F made up of all bounded functions f : X → Y that are 1-
Lipschitz3 w.r.t. ρX and ρY . Namely, ρY

(
f(x), f(x′)

)
6 ρX (x, x′) for all f ∈ F and all x, x′ ∈ X .

We occasionally use the dot product notation pt · `t to indicate the expectation of `t according to
law pt. Finally, the set of all probability distributions over a finite set of K elements is denoted by
∆(K).

Organization of the paper. The rest of the paper is organized as follows. In Section 2, we give
an overview of the related literature. Then, starting from the subsequent section, our results are
presented in the order dictated by the amount of feedback available to the learner, from bandit
feedback (Section 3) to one-sided full information feedback (Section 4) to full information feedback
(Section 5).

2. Related Work

Contextual online learning generalizes online convex optimization (Hazan, 2015) to nonconvex
losses, nonparametric policies, and partial feedback. Papers about nonparametric online learning
in full information include (Vovk, 2007; Gaillard and Gerchinovitz, 2015) for the square loss, and
(Hazan and Megiddo, 2007; Rakhlin and Sridharan, 2015) for general convex losses. In the bandit
feedback model, earlier work on context-free bandits on metric spaces includes (Kleinberg, 2004;

2. Assuming a unit Lipschitz constant is without loss of generality because our algorithms are oblivious to it.
3. Almost all our algorithms are oblivious to the Lipschitz constant Lf of f and yield similar regret bounds (as a

function of T ) whatever Lf . Our algorithm HierExp4? of Section 4.3 is only guaranteed to work when Lf = 1, but
a similar regret bound can be achieved for an arbitrary known Lf via a simple modification. See also (Bubeck et al.,
2011b) when Lf is unknown (with regret bounds optimized in Lf ) in a stochastic and context-free bandit setting.
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Kleinberg et al., 2008). The paper (Auer et al., 2002) introduces the Exp4 algorithm for nonstochas-
tic contextual bandits when both the action space and the policy space are finite, and policies are
maps from contexts to distributions over actions. Moreover, rather than observing the current con-
text, the learner sees the output of each policy for that context. In the contextual bandit model of
Maillard and Munos (2011), context space and action space are finite, and the learner observes the
current context while competing against the best policy among all functions mapping contexts to
actions. Finally, a nonparametric bandit setting related to ours was studied by Slivkins (2014). We
refer the reader to the discussion after Theorem 1 for connections with our results.

Chaining (Dudley, 1967) is a powerful technique to obtain tail bounds on the suprema of
stochastic processes. In nonparametric online learning with full information feedback, chaining
was used constructively by Cesa-Bianchi and Lugosi (1999) to design an algorithm for linear losses,
and nonconstructively by Rakhlin et al. (2015) to derive minimax rates for Lipschitz losses. Other
notable examples of chaining are the stochastic bandit algorithms of Contal et al. (2015) and Con-
tal and Vayatis (2016). The constructive algorithmic chaining technique developed in this work
is inspired by the nonparametric analysis of the full information setting of Gaillard and Gerchi-
novitz (2015). However, their multi-variable EG algorithm heavily relies on convexity of losses
and requires access to loss gradients. In order to cope with nonconvex losses and lack of gradient
information, we develop a novel chaining approach based on a tree of hierarchical coverings of the
policy class, where each internal tree node hosts a bandit algorithm.

In our nonstochastic online setting, chaining yields improved rates when the regret is decom-
posed into a sum of local regrets, each one scaling with the range of the local losses. However,
deriving regret bounds that scale with the effective range of the losses is not always possible, as
shown by Gerchinovitz and Lattimore (2016) in the nonstochastic K-armed bandit setting. This re-
sult suggests that chaining might not be useful in online nonparametric learning when the feedback
is bandit. However, as we show in this paper, algorithmic chaining does help improving the regret
when the feedback is one-sided full information or full information. In full information, chaining-
based algorithms deliver regret bounds that match (up to log factors) the nonconstructive bounds
of (Rakhlin et al., 2015).

In a different but interesting research thread on contextual bandits, the learner is confronted with
the best within a finite (but large) class of policies over finitely-many actions, and is assumed to have
access to this policy class through an optimization oracle for the offline full information problem.
Relevant references include (Agarwal et al., 2014; Rakhlin and Sridharan, 2016; Syrgkanis et al.,
2016). The main concern is to devise (oracle-based) algorithms with small regret and requiring as
few calls to the optimization oracle as possible.

3. Warmup: Nonparametric Bandits

As a simple warmup exercise, we prove a known result —see e.g., (Slivkins, 2014). Namely, a
regret bound for contextual bandits with Lipschitz policies and Lipschitz losses. ContextualExp3
(Algorithm 1) is a bandit version of the algorithm by Hazan and Megiddo (2007) and maintains
a set of balls of fixed radius ε in the context space, where each ball hosts an instance of the Exp3
algorithm of Auer et al. (2002).4 At each round t, if a new incoming context xt ∈ X is not contained

4. Instead of Exp3 we could use INF (Audibert and Bubeck, 2010), which enjoys a minimax optimal regret bound up to
constant factors. This would avoid a polylog factor in T in the bound. Since we do not optimize for polylog factors
anyway, we opted for the better known algorithm.
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in any existing ball, then a new ball centered at xt is created, and a fresh instance of Exp3 is allocated
to handle xt. Otherwise, the Exp3 instance associated with the closest context so far w.r.t. ρX is
used to handle xt. Each allocated Exp3 instance operates on the discretized action space Yε whose
size Kε is at most CY ε−p. The proof of the following theorem is provided in (Cesa-Bianchi et al.,

Algorithm 1: ContextualExp3 (for bandit feedback)
Input: Ball radius ε > 0, ε-covering Yε of Y such that |Yε| ≤ CY ε−p.
for t = 1, 2, . . . do

1. Get context xt ∈ X ;
2. If xt does not belong to any existing ball, then create a new ball of radius ε centered on xt,

and allocate a fresh instance of Exp3;
3. Let the active Exp3 instance be the instance allocated to the existing ball whose center xs is

closest to xt;
4. Draw an action ŷt using the active Exp3 instance;
5. Get `t

(
ŷt
)

and use it to update the active Exp3 instance.

end

2017).

Theorem 1 Fix any any sequence (x1, `1), (x2, `2), . . . of contexts xt ∈ X and 1-Lipschitz loss
functions `t : Y → [0, 1]. If ContextualExp3 is run in the bandit feedback model with parameter5

ε = (lnT )
2

p+d+2 T
− 1

p+d+2 , then its regret RegT (F) with respect to the setF of 1-Lipschitz functions

f : X → Y satisfies RegT (F) = Õ
(
T

p+d+1
p+d+2

)
, where the Õ notation hides factors polynomial in

CX and CY , and lnT factors.

A lower bound matching up to log factors the upper bound of Theorem 1 is contained in (Slivkins,
2014) —see also (Lu et al., 2010) for earlier results in the same setting. However, our setting
and his are subtly different: the adversary of Slivkins (2014) uses more general Lipschitz losses
which, translated into our context, imply that the Lipschitz assumption is required to hold only for
the composite function `t(f(·)), rather than the two functions `t and f separately. Hence, being the
adversary less constrained (and the comparison class wider), the lower bound contained in (Slivkins,
2014) does not seem to apply to our setting.

While we are unaware of a lower bound matching the upper bound in Theorem 1 when F
is the class of (global) Lipschitz functions and d > 1, in the noncontextual case (d = 0), the
lower bound Ω

(
T (p+1)/(p+2)

)
proven by Bubeck et al. (2011a); Kleinberg et al. (2008) shows that

improvements on the dependence on p are generally impossible. Yet, the dependence on p in the
bound of Theorem 1 can be greatly improved in the special case when the Lipschitz losses are also
convex. Assume Y is a convex and compact subset of Rp. Then we use the same approach as in
Theorem 1, where the Exp3 algorithm hosted at each ball is replaced by an instance of the algorithm
by Bubeck et al. (2016), run on the non-discretized action space Y . The regret of the algorithm that
replaces Exp3 is bounded by poly(p, lnT )

√
T . This immediately gives the following corollary.

Corollary 2 Fix any any sequence (x1, `1), (x2, `2), . . . of contexts xt ∈ X and convex loss func-
tions `t : Y → [0, 1], where Y is a convex and compact subset of Rp. Then there exists an algorithm

5. Here and throughout, T is assumed to be large enough so as to ensure ε 6 1.
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for the bandit feedback model whose regret with respect to the setF of 1-Lipschitz functions satisfies
RegT (F) 6 poly(p, lnT )T (d+1)/(d+2), where poly is a polynomial function of its arguments.

4. One-Sided Full Information Feedback

In this section we show that better nonparametric rates can be achieved in the one-sided full in-
formation setting, where the feedback is larger than the standard bandit feedback but smaller than
the full information feedback. More precisely, we consider the same setting as in Section 3 in the
special case when the action space Y is [0, 1]. We further assume that, after each play ŷt ∈ Y , the
learner can compute the loss `t(y) of any number of actions y > ŷt. This in contrast to observing
only `t

(
ŷt
)
, as in the standard bandit setting. We start with an important special case: maximiz-

ing the seller’s revenue in a sequence of repeated second-price auctions. In Section 4.2, we use
the chaining technique to design a general algorithm for arbitrary Lipschitz losses in the one-sided
full information model. An efficient variant of this algorithm is obtained using a more involved
construction in Section 4.3.

4.1. Nonparametric second-price auctions

In online advertising, publishers sell their online ad space to advertisers through second-price auc-
tions managed by ad exchanges. For each impression (ad display) created on the publisher’s web-
site, the ad exchange runs an auction on the fly. Empirical evidence (Ostrovsky and Schwarz, 2011)
shows that an informed choice of the seller’s reserve price, disqualifying any bid below it, can in-
deed have a significant impact on the revenue of the seller. Regret minimization in second-price
auctions was studied by Cesa-Bianchi et al. (2015) in a non-contextual setting. They showed that,
when buyers draw their bids i.i.d. from the same unknown distribution on [0, 1], there exists an ef-
ficient strategy for setting reserve prices such that the seller’s regret is bounded by Õ

(√
T
)

with
high probability with respect to the bid distribution. Here we extend those results to a nonstochastic
and nonparametric contextual setting with nonstochastic bids, and prove a regret bound of order
T (d+1)/(d+2) where d is the context space dimension. This improves on the bound T (d+2)/(d+3) of
Theorem 1 when p = 1. As a byproduct, taking d = 0, this proves the first Õ

(√
T
)

regret bound
for the seller in nonstochastic and noncontextual second-price auctions —see also (Cesa-Bianchi
et al., 2017, Theorem 3). Unlike (Cesa-Bianchi et al., 2015), where the feedback after each auction
was “strictly bandit” (i.e., just the seller’s revenue), here we assume the seller is also observing the
highest bid together with the revenue. This richer feedback, which is key to proving our results, is
made available by some ad exchanges such as AppNexus.

The seller’s revenue in a second-price auction is computed as follows: if the reserve price ŷ
is not larger than the second-highest bid b(2), then the item is sold to the highest bidder and the
seller’s revenue is b(2). If ŷ is between b(2) and the highest bid b(1), then the item is sold to the
highest bidder but the seller’s revenue is the reserve price. Finally, if ŷ is bigger than b(1), then the
item is not sold and the seller’s revenue is zero. Formally, the seller’s revenue is g

(
ŷ, b(1), b(2)

)
=

max
{
ŷ, b(2)

}
Iŷ≤b(1). Note that the revenue only depends on the reserve price ŷ and on the two

highest bids b(1) ≥ b(2), which —by assumption— belong all to the unit interval [0, 1].
In the online contextual version of the problem, unknown sequences of contexts x1, x2, . . . ∈

X and bids are fixed beforehand (in the case of online advertising, the context could be public
information about the targeted customers). At the beginning of each auction t = 1, 2, . . . , the seller
observes context xt and computes a reserve price ŷt ∈ [0, 1]. Then, bids bt(1), bt(2) are collected
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by the auctioneer, and the seller (which is not the same as the auctioneer) observes his revenue
gt
(
ŷt
)

= g
(
ŷt, bt(1), bt(2)

)
, together with the highest bid bt(1). Crucially, knowing gt(ŷt) and bt(1)

allows to compute gt(y) for all y > ŷt. For technical reasons, we use losses `t
(
ŷt
)

= 1 − gt
(
ŷt
)

instead of revenues, see Figure 1 for a pictorial representation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bt(2) bt(1)

1− bt(2)

1− bt(1)

Figure 1: The loss function `t(ŷt) = 1−max{ŷt, bt(2)}Iŷt≤bt(1) when bt(1) = 0.7 and bt(2) = 0.5.

Remarkably, the loss functions `t are not Lipschitz and not even continuous, and so this problem
falls outside the scope of standard results for contextual bandits. Instead, the losses only satisfy the
semi-Lipschitz property `t(y + δ) ≥ `t(y) − δ for all 0 6 y 6 y + δ 6 1. We now state a bound
on the regret RegT (F) with respect to any class F of Lipschitz functions f : X → [0, 1]. The
algorithm that achieves this bound is ContextualRTB (where RTB stands for Real Time Bidding —
see Algorithm Exp3-RTB in (Cesa-Bianchi et al., 2017)) , a variant of ContextualExp3 (Algorithm
1), where each ball hosts an instance of Exp3-RTB, instead of Exp3. The proof is given in the full
version of the paper, (Cesa-Bianchi et al., 2017).

Theorem 3 Fix any sequence of contexts xt ∈ X and bid pairs 0 6 bt(2) 6 bt(1) 6 1 for
t > 1. If ContextualRTB is run with parameter ε = T−

1
d+2 and Exp3-RTB is tuned with parameter

γ = ε, then the regret with respect to any class of 1-Lipschitz functions f : X → [0, 1] satisfies
RegT (F) = Õ

(
T

d+1
d+2
)
, where d is the dimension of X and the Õ notation hides constants and lnT

factors.

ContextualRTB and ContextualExp3 of Section 3 can be modified so to avoid knowing the horizon
T and so that the dimension d of the context space is replaced in the bound by the (unknown,
and possibly much smaller) dimension of the set of contexts actually occurring in the sequence
chosen by the adversary. This modification involves using a time-varying radius ε and a doubling
trick to check when the current guess for the dimension is violated by the current number of balls.
The omitted proof of this statement goes along the lines of the proof in (De Rosa et al., 2015,
Theorem 1).

4.2. Chaining the bandits

We now show that whenever the richer feedback structure —i.e., the learner can compute the loss
`t(y) of any number of actions y > ŷt— is combined with Lipschitz losses (rather than just semi-
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Lipschitz), then an improved regret bound T d/(d+1) can be derived. The key technical idea enabling
this improvement is the application of the chaining technique to a hierarchical covering of the policy
space (as opposed to the flat covering of the context space used in both Section 3 and Section 4.1).
We start with a computationally inefficient algorithm that works for arbitrary policy classes F (not
only Lipschitz) and is easier to understand. In Section 4.3 we derive an efficient variant for F that
are Lipschitz. In this case we obtain even better regret bounds via a penalization trick.

A way of understanding the chaining approach is to view the hierarchical covering of the policy
class F as a tree whose nodes are functions in F , and where the nodes at each depth m define a
(2−m)-covering of F . The tree represents any function f∗ ∈ F (e.g., the function with the smallest
cumulative loss) by a unique path (or chain) f0 → f1 → · · · → fM → f∗, where f0 is the root and
fM is the function best approximating f∗ in the cover at the largest available depth M . By relying
on this representation, we control the regret against any function in F by running an instance of an
online bandit algorithm A on each node of the tree. The instance Af at node f uses the predictions
of the instances running on the nodes that are children of f as expert advice. The action drawn
by instance A0 running on the root node is the output of the tree. For any given sequence of pairs
(xt, `t) of contexts and losses, the regret against f∗ with path f0 → f1 → · · · → fM → f∗ can
then be written (ignoring some constants) as

T∑
t=1

(
E
[
`t
(
A0(xt)

)]
− `t

(
f∗(xt)

))
6

M−1∑
m=0

E

[
T∑
t=1

(
`t
(
Am(xt)

)
− `t

(
Am+1(xt)

))]
+ 2−MT

where Am is the instance running on node fm for m = 0, . . . ,M − 1 and AM ≡ fM . The last
term 2−MT accounts for the cost of approximating f∗ with the closest function fM in a (2−M )-
cover of F under suitable Lipschitz assumptions. The outer sum in the right-hand side of the above
display can be viewed as a sum of M regrets, where the m-th term in the sum is the regret of Am
against the instances running on the children of the node hosting Am. Since we face an expert
learning problem in a partial information setting, the Exp4 algorithm of Auer et al. (2002) is a
natural choice for the learner A. However, a first issue to consider is that we are using A0 to draw
actions in the bandit problem, and so the other Exp4 instances receive loss estimates that are based
on the distribution used by A0 rather than being based on their own distributions. A second issue
is that our regret decomposition crucially relies on the fact that each instance Am only competes
(in the sense of regret) against functions f at the leaves of the subtree rooted at the node where
Am runs. By construction, these functions at the leaves are roughly (2−m)-close to each other
and —by Lipschitzness— so are their losses. As a consequence, the regret of Am should scale
with the true loss range 2−m. Via an appropriate modification of the original Exp4 algorithm, we
manage to address both these issues. In particular, in order to make the regret dependent on the loss
range, we heavily rely on the one-sided full information model assumed in this section. Finally,
the hierarchical covering requires that losses be Lipschitz, rather than just semi-Lipschitz as in the
application of Subsection 4.1, which uses a simpler flat covering.

Fix any class F of functions f : X → [0, 1]. Let us introduce the sup norm

‖f − g‖∞ = sup
x∈X

∣∣f(x)− g(x)
∣∣ . (1)

We denote by N∞
(
F , ε

)
the cardinality of the smallest ε-cover of F w.r.t. the sup norm. Through-

out this section, our only assumption on F is that N∞
(
F , ε

)
< +∞ for all ε > 0 (this property is

9
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known as total boundedness). In Section 4.3 we will focus on the special case F =
{
f : [0, 1]d →

[0, 1] : f is 1-Lipschitz
}

to derive an efficient version of our algorithm.
We now define a tree TF of depth M , whose nodes are labeled by functions in the class F ,

so that functions corresponding to nodes with a close common ancestor are close to one another
according to the sup norm (1). For all m = 0, 1, . . . ,M , let Fm be a (2−m)-covering of F in sup
norm with minimal cardinality Nm = N∞(F , 2−m). Since the diameter of (F , ‖·‖∞) is bounded
by 1, we have N0 = 1 and F0 = {f0} for some f0 ∈ F . For each m = 0, 1, . . . ,M and for every
fv ∈ Fm we have a node v in TF at depth m. The parent of a node w at depth m+ 1 is some node
v at depth m such that

v ∈ arg min
v′ : depth(v′)=m

‖fv′ − fw‖∞ (ties broken arbitrarily)

and we say that w is a child of v. Let L be the set of all the leaves of TF , Lv be the set of all the
leaves under v ∈ TF (i.e., the leaves of the subtree rooted at v), and Cv be the set of children of
v ∈ TF .

u

v

w

. . .

.... . ..... . .

. . . . . . . . .

Exp4

Exp4 Exp4

Leaves under v = Lv

Level m  2−m covering of F

Level m+ 1  2−(m+1) covering

Level M (=leaves L) 2−M covering

Figure 2: Hierarchical covering of the function space (used in Algorithm 2).

Our new bandit algorithm HierExp4 (Algorithm 2 below) is a hierarchical composition of
instances of Exp4 on the tree TF constructed above (see Figure 2). Let K = 2M and K =
{y1, . . . , yK}, where yk = 2−M (k − 1) for k = 1, . . . , 2M , be our discretization of the action
space Y = [0, 1]. At every round t, after observing context xt ∈ X , each leaf v ∈ L recommends
the best approximation of fv(xt) in K, it(v) ∈ arg mini=1,...,K

∣∣yi − fv(xt)∣∣. Therefore, the leaves
v ∈ L correspond to deterministic strategies t 7→ it(v), and we will find it convenient to view a set
of leaves L as the set of actions played by those leaves at time t. Each internal node v ∈ TF \L runs
an instance of Exp4 using the children of v as experts. More precisely, we use a variant of Exp4
(see Cesa-Bianchi et al. (2017)) which adapts to the effective range of the losses. Let Exp4v be
the instance of the Exp4 variant run on node v. At each time t, this instance updates a distribution
qt(v, ·) ∈ ∆(|Cv|) over experts in Cv and a distribution pt(v, ·) ∈ ∆(K) over actions in K defined
by pt(v, i) =

∑
w∈Cv qt(v, w)pt(w, i).

Let v0 be the root of TF . The prediction of HierExp4 at time t is ŷt = yIt ∈ K, where It is
drawn according to a mixture of pt(v0, ·) and a unit mass on the minimal action y1 ∈ K.

For each v ∈ TF \ L, let Kt(v) = {i : (∃w ∈ Cv) pt(w, i) > 0} and jt(v) = maxKt(v).
Note that ̂̀t(v, i) in (2) has to be explicitly computed only for those actions i such that i > It and
i ∈ Kt(v). This is because ̂̀t(v, i) is needed for the computation of ˜̀t(v, w) only when pt(w, i) > 0.

10
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Therefore, whenever ̂̀t(v, i) has to be computed for some i, then It 6 i 6 maxKt(v) = jt(v), so
that `t

(
yjt(v)

)
is observed and ̂̀t(v, i) is well defined.

Algorithm 2: HierExp4 (for one-sided full information feedback)
Input : Tree TF with root v0 and leaves L, exploration parameter γ ∈ (0, 1), learning rate

sequences η1(v) > η2(v) > · · · > 0 for v ∈ TF \ L.
Initialization: Set q1(v, ·) to the uniform distribution in ∆(|Cv|) for every v ∈ TF \ L.
for t = 1, 2, . . . do

1. Get context xt ∈ X ;
2. Set pt(v, i) = Ii=it(v) for all i ∈ K and for all v ∈ L;
3. Set pt(v, i) = qt(v, ·) · pt(·, i) for all i ∈ K and for all v ∈ TF \ L;
4. Draw It ∼ p∗t and play ŷt = yIt , where p∗t (i) = (1− γ)pt(v0, i) + γIi=1 for all i ∈ K;
5. Observe `t(y) for all y > yIt ;
6. For every v ∈ TF \ L and for every i ∈ Kt(v) compute

̂̀
t(v, i) =

`t(yi)− `t
(
yjt(v)

)∑i
k=1 p

∗
t (k)

IIt6i , (2)

where Kt(v) = {i : (∃w ∈ Cv) pt(w, i) > 0} and jt(v) = maxKt(v).
7. For each v ∈ TF \ L and for each w ∈ Cv compute the expert loss˜̀

t(v, w) = pt(w, ·) · ̂̀t(v, ·) and perform the update

qt+1(v, w) =
exp
(
−ηt+1(v)

∑t
s=1

˜̀
s(v, w)

)
∑

w′∈Cv exp
(
−ηt+1(v)

∑t
s=1

˜̀
s(v, w′)

) (3)

end

Next, we show that the regret of HierExp4 is at most of the order of T d/(d+1), which improves
on the rate T (d+1)/(d+2) obtained in Section 4.1 without using chaining. The required proofs are
contained in the full version of the paper (Cesa-Bianchi et al., 2017).

Theorem 4 Fix any class F of functions f : X → [0, 1] and any sequence (x1, `1), (x2, `2), . . .
of contexts xt ∈ X and 1-Lipschitz loss functions `t : [0, 1] → [0, 1]. Assume the HierExp4 (Algo-
rithm 2) is run with one-sided full information feedback using tree TF of depth M = bln2(1/γ)c.
Moreover, the learning rate ηt(v) used at each node v at depth m = 0, . . . ,M − 1 is given by

ηt(v) = min

{
γ2m−4,

√
2
(√

2− 1
)

ln |Cv|
(e− 2)Ṽt−1(v)

}
, (4)

where Ṽt−1(v) is the cumulative variance of ˜̀s(v, ·) according to qs(v, ·) up to time s = t−1. Then
for all T > 1 the regret satisfies

RegT (F) 6 5γT + 27
∫ 1/2

γ/2

(√
T

γ
lnN∞(F , ε) +

1

γ

(
lnN∞(F , ε) + 1

))
dε .

11
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In particular, if X ≡ [0, 1]d is endowed with the sup norm ρX (x, x′) = ‖x − x′‖∞, then the set F
of all 1-Lipschitz functions from X to [0, 1] satisfies lnN∞(F , ε) . ε−d. Theorem 4 thus entails
the following corollary.

Corollary 5 Under the assumptions of Theorem 4, if F is the set of all 1-Lipschitz functions
f : [0, 1]d → [0, 1], then the regret of HierExp4 satisfies

RegT (F) =


O
(
T 2/3

)
if d = 1

O
(
T 2/3(lnT )2/3

)
if d = 2

O
(
T d/(d+1)

)
if d > 3

where the last inequality is obtained by optimizing the choice of γ for the different choices of d.

Sketch of proof (of Theorem 4) As we said earlier, the key contribution of chaining is that it allows
us to sum up local regret bounds scaling with the range of the local losses. We divide our proof into
four parts, and sketch the main arguments below.
Part 1: small local ranges. By construction of the tree TF , the losses associated with neighboring
nodes are close to one another —see (Cesa-Bianchi et al., 2017, Lemma 13). This implies that, if
v ∈ TF is a node at level m > 0, then the losses associated to its children w,w′ ∈ Cv are close:
|pt(w, ·) · `t − pt(w′, ·) · `t| 6 2−m+3 .

Part 2: apply a version of Exp4 that scales with the loss range. Now, by definition, each node
v ∈ TF runs a version of Exp4 with |Cv| 6 Nm+1 experts (its children), whose losses belong to a
range of size Em+1 := 2−m+3. In full generality Exp4 cannot scale with the range Em+1, but here
this is possible because of the richer feedback structure induced by the total order on the actions
—see (Cesa-Bianchi et al., 2017, Theorem 10). We get the following regret bound for node v with
respect to its children w:

max
w∈Cv

E

[
T∑
t=1

pt(v, ·) · `t −
T∑
t=1

pt(w, ·) · `t

]
. Em+1

√
T lnNm+1

γ
+
�������
Em+1

lnNm+1

γ
,

where γ > 0 is the exploration parameter. For simplicity, . denotes an inequality up to constant
factors; we also ignore the last additive term in this sketch.
Part 3: sum over a path to get the regret of the root. Now consider the path v0 → v1 → · · · →
vM = w from the root v0 to some leaf vM = w. Recalling that pt(w, i) = Ii=it(w) for any leaf w,
we get

E

[
T∑
t=1

pt(v0, ·) · `t

]
−

T∑
t=1

`t(yit(w)) =

M−1∑
m=0

E

[
T∑
t=1

pt(vm, ·) · `t −
T∑
t=1

pt(vm+1, ·) · `t

]

.
M−1∑
m=0

2−m

√
T lnNm+1

γ
. (5)

Part 4: Comparing our prediction to that of the root v0 and approximating F with L. Relating our
prediction ŷt with the root v0, we have E[`t(ŷt)] = E

[
(1− γ)pt(v0, ·) · `t + γ `t(y1)

]
, which entails

E

[
T∑
t=1

`t(ŷt)

]
6 E

[
T∑
t=1

pt(v0, ·) · `t

]
+ γT . (6)

12
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Moreover, because L is a (2−M )-covering of F and K is a (2−M )-covering of [0, 1], for any f ∈ F
there exists w ∈ L such that

∣∣`t(yit(w)) − `t(f(xt)
)∣∣ 6 ∣∣yit(w) − f(xt)

∣∣ 6 21−M for all t (by
definition of it(w)). Plugging the approximation `t

(
yit(w)

)
6 `t

(
f(xt)

)
+ 21−M into (5), and

combining with (6), we finally get

RegT (F) := E

[
T∑
t=1

`t(ŷt)

]
− inf
f∈F

T∑
t=1

`t
(
f(xt)

)
. (2−M + γ)T +

M−1∑
m=0

2−m

√
T lnNm+1

γ
.

The proof is concluded by using M = bln2(1/γ)c, Nm+1 = N∞(F , 2−(m+1)), and approximating
the last sum by an integral.

4.3. Efficient chaining

Though very general, HierExp4 (Algorithm 2) may be very inefficient. For example, when F is the
set of all 1-Lipschitz functions from [0, 1]d to [0, 1], a direct implementation of HierExp4 would re-
quire exp

(
poly(T )

)
weight updates at every round. In this section we tackle the special case when

F is the class of all 1-Lipschitz functions f : [0, 1]d → [0, 1] w.r.t. the sup norm on [0, 1]d (for sim-
plicity). We construct an ad-hoc hierarchical covering of F and define a variant of HierExp4 whose
running time at every round is polynomial in T . We rely on a well-known wavelet-like approxima-
tion technique which was used earlier —see, e.g., (Gaillard and Gerchinovitz, 2015)— for online
nonparametric regression with full information feedback. However, we replace their multi-variable
Exponentiated Gradient algorithm, which requires convex losses and gradient information, with a
more involved chaining algorithm that still enjoys a polynomial running time. The definitions of
our covering tree T ?F and of our algorithm HierExp4?, as well as the proof of the following regret
bound, can be found in the full version of the paper (Cesa-Bianchi et al., 2017). The exact value of
cT (depending at most logarithmically on T ) is also provided there.
Theorem 6 Let F be the set of all 1-Lipschitz functions f : [0, 1]d → [0, 1] w.r.t. the sup norm
on [0, 1]d. Consider T > 3 and any sequence (x1, `1), . . . , (xT , `T ) of contexts xt ∈ [0, 1]d and
1-Lipschitz loss functions `t : [0, 1] → [0, 1]. Assume HierExp4? (Cesa-Bianchi et al., 2017) is
run with one-sided full information feedback using tree T ?F of depth M = dln2(1/γ)e, exploration
parameter γ = T−1/2(lnT )−1Id=1 + T−1/(d+2/3)Id>1, learning rate ηm = cT 2m( d

4
+1)γ

1
2T−

1
4 ,

and penalization αm =
∑M

j=m+1 24−2jηj for m = 0, . . . ,M − 1. Then the regret satisfies

RegT (F) =

{
O
(√
T lnT

)
if d = 1,

O
(
T

d−1/3
d+2/3 (lnT )3/2

)
if d > 2.

Moreover, the running time at every round is O
(
T a
)

with a = (1 + ln2 3)/(d+ 2/3).

The above result improves on Corollary 5 in two ways. First, as we said, the running time is now
polynomial in T , contrary to what could be obtained via a direct implementation of HierExp4.
Second, when d > 2, the regret bound is of order T (d−1/3)/(d+2/3), improving on the rate T d/(d+1)

from Corollary 5. Remarkably, Theorem 6 also yields a regret of Õ(
√
T ) for nonparametric bandits

with one-sided full information feedback in dimension d = 1. The improvement on the rates
compared to HierExp4 is possible because we use a variant of Exp4 with penalized loss estimates.

13
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This allows for a careful hierarchical control of the variance terms inspired by the analysis of Exp3-
RTB in (Cesa-Bianchi et al., 2017).

Note that the time complexity decreases as the dimension d increases. Indeed, when d increases
the regret gets worse but, at the same time, the size of the discretized action space and the number
of layers in our wavelet-like approximation can be both set to smaller values.

5. A Tight Bound for Full Information through an Explicit Algorithm

In this section we apply the machinery developed in Section 4.2 to the full information setting,
where after each round t the learner can compute the loss `t(y) of any number of actions y ∈ Y .
We obtain the first explicit algorithm achieving, up to logarithmic factors, the minimax regret rate
T (d−1)/d for all classes of Lipschitz functions, where d is the dimension of the context space. This
achieves the same upper bound as the one proven by Rakhlin et al. (2015) in a nonconstructive
manner, and matches the lower bound of Hazan and Megiddo (2007). Our approach generalizes the
approach of Gaillard and Gerchinovitz (2015) to nonconvex Lipschitz losses. We consider a full
information variant of HierExp4 (Algorithm 2, Section 4.2), where —using the same notation as in
Section 4.2— the Exp4 instances running on the nodes of the tree TF are replaced by instances of
Hedge —e.g., (Bubeck and Cesa-Bianchi, 2012). Note that, due to the full information assumption,
the new algorithm, called HierHedge, observes losses at all leaves v ∈ L. As a consequence, no
exploration is needed and so we can set γ = 0. For the same reason, the estimated loss vectors
defined in (2) can be replaced with the true loss vectors, `t. See (Cesa-Bianchi et al., 2017) for a
definition of HierHedge. The latter also contains a proof of the next result.

Theorem 7 Fix any class F of functions f : X → Y and any sequence (x1, `1), (x2, `2), . . .
of contexts xt ∈ X and 1-Lipschitz loss functions `t : Y → [0, 1]. Assume HierHedge (Cesa-
Bianchi et al., 2017) is run with full information feedback on the tree TF of depth M = bln2(1/ε)c
with action set Yε for ε > 0. Moreover, the learning rate ηt(v) used at each node v at depth
m = 0, . . . ,M − 1 is given by (4). Then for all T > 1 the regret satisfies

RegT (F) 6 5εT + 27
∫ 1/2

ε/2

(
2
√
T lnN∞(F , x) + lnN∞(F , x)

)
dx .

In particular, if d > 3 andF is the set of 1-Lipschitz functions f : [0, 1]d → [0, 1]p, where [0, 1]d and
[0, 1]p are endowed with their sup norms, the choice ε = (p/T )1/d yields RegT (F) = Õ

(
T (d−1)/d),

while for 1 6 d 6 2 the regret is of order
√
pT , ignoring logarithmic factors.

When using the sup norms, the dimension p of the action space only appears as a multiplicative fac-
tor p1/d in the regret bound for Lipschitz functions. Note also that an efficient version of HierHedge
for Lipschitz functions can be derived along the same lines as the construction in Section 4.3.
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