
Proceedings of Machine Learning Research vol 65:1–36, 2017

Thresholding based Efficient Outlier Robust PCA

Yeshwanth Cherapanamjeri T-YECHER@MICROSOFT.COM

Prateek Jain PRATEEK@MICROSOFT.COM

Praneeth Netrapalli PRANEETH@MICROSOFT.COM

Microsoft Research, India

Abstract
We consider the problem of outlier robust PCA (OR-PCA) where the goal is to recover principal
directions despite the presence of outlier data points. That is, given a data matrix M∗, where
(1− α) fraction of the points are noisy samples from a low-dimensional subspace while α fraction
of the points can be arbitrary outliers, the goal is to recover the subspace accurately. Existing
results for OR-PCA have serious drawbacks: while some results are quite weak in the presence of
noise, other results have runtime quadratic in dimension, rendering them impractical for large scale
applications.

In this work, we provide a novel thresholding based iterative algorithm with per-iteration com-
plexity at most linear in the data size. Moreover, the fraction of outliers, α, that our method can
handle is tight up to constants while providing nearly optimal computational complexity for a gen-
eral noise setting. For the special case where the inliers are obtained from a low-dimensional sub-
space with additive Gaussian noise, we show that a modification of our thresholding based method
leads to significant improvement in recovery error (of the subspace) even in the presence of a large
fraction of outliers.

1. Introduction

Principal Component Analysis (PCA) is a critical first step for any typical data exploration/analysis
effort and is widely used in a variety of applications. A key reason for the success of PCA is that it
can be performed efficiently using Singular Value Decomposition (SVD).

However, due to various practical reasons like measurement error, presence of anomalies etc., a
large fraction of data points can be corrupted in a somewhat correlated and even adversarial manner.
Unfortunately, SVD is fragile with respect to outliers and can lead to arbitrarily inaccurate principal
directions in the presence of even a small number of outliers. So, designing an outlier robust PCA
(OR-PCA) algorithm is critical for several application domains.

Formally, the setting of OR-PCA is as follows: given a data matrix M∗ = D∗ + C∗ ∈ Rd×n
where D∗ = [x1, . . . , xn] corresponds to n clean “inlier” data points and C∗ has at most α-fraction
of non-zero columns that can corrupt the corresponding clean data points arbitrarily, the goal of
OR-PCA is to estimate the principal components of D∗ accurately, i.e., recover U∗ ∈ Rd×r, the
top-r left singular vectors of D∗.

Vanilla SVD does not do the job since the top singular vectors of M∗ can be arbitrarily far
from U∗ if the operator norm of C∗ (‖C∗‖2) is large, as can be the case when α = Ω(1

n). Any
algorithm trying to solve OR-PCA needs to exploit the column sparsity of C∗ to obtain a better
estimate of U∗. In particular, they need to find S∗ = Supp (C∗)—Supp (A) is the index of non-zero

c© 2017 Y. Cherapanamjeri, P. Jain & P. Netrapalli.

CHERAPANAMJERI JAIN NETRAPALLI

columns of A—so that U∗ can be estimated using top singular directions of M∗\S∗ , i.e., columns of
M∗ restricted to complement set of S∗.

Existing results for OR-PCA fall into two categories based on: a) Nuclear norm (Xu et al.,
2012a; Zhang et al., 2016), b) iterative PCA (Xu et al., 2013). Nuclear norm based approaches work
with exactly same setting as ours, but require O(nd2) computational time which is prohibitive for
typical applications. Iterative PCA based techniques require O(n2d) computation which in general
is significantly higher than our algorithms. Moreover, these results do not recover the exact principal
directions even if the inliers are restricted to a low-dimensional subspace and just a constant number
of outliers are present.

Our approach is based on solving the following natural optimization problem:

OR-PCA : min
D,C∈Rd×n

‖M∗ −D − C‖2F s.t. rank(D) ≤ r, |Supp (C) | ≤ αn.

Technical Challenges: The main challenges with OR-PCA are its non-convexity and combinatorial
structure which rules out standard tools from convex optimization. Furthermore, due to the column-
sparsity constraint standard SVD based techniques also do not apply. Instead, we propose a simple
iterative method that constructs an estimate of outliers C and using that, an estimate of the inliers
M∗ −C. SVD of the estimated inliers is then used to obtain an estimate of the principal directions.
Now, a significant challenge is to use these principal directions to re-estimate outliers. There are
two different scenarios here:

• Length of all the outliers is smaller than the smallest singular value of the inliers and hence
do not stand out: In this case however, the principal directions are not much affected by
outliers. So, outliers can be recognized by taking a projection on to the orthogonal space to
the estimated principal directions. As we get better estimate of principal directions, we can
be more aggressive in determining the outliers.

• Length of at least one of the outliers is larger than the small singular values of inliers: In
this case again, length based thresholding fails since the lengths of the inliers are dominated
by the larger singular values. Similarly, the above mentioned thresholding scheme also fails
as some of the estimated principal directions will be heavily biased towards those outliers. A
key and somewhat surprising algorithmic insight of our work is that: as some of the estimated
singular vectors are heavily affected by outliers, projection of such outliers on these spurious
singular vectors will be inordinately high. So, in contrast to the above thresholding operator,
we can use the length of projection of points along estimated principal directions as well to
detect and threshold outliers.

In both the scenarios, we can identify more outliers and repeat the procedure till convergence. A
key assumption we make, in order to ensure that inliers are not thresholded, is that most of the
inliers have “limited” influence on the principal directions, i.e., the data matrix is incoherent (see
Assumption 1). Such an assumption holds for various typical settings, for example when inliers are
noisy and uniform samples from a low-dimensional subspace.
Contributions: The main contribution of our work is to show that, under some regularity condi-
tions, it is indeed possible to solve OR-PCA near optimally, in essentially the same time as that
taken by vanilla PCA. In particular, we propose a thresholding based approach that iteratively esti-
mates inliers using two different thresholding operators and then use SVD to estimate the principal

2

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

directions. We also show that our method recovers U∗ nearly optimally and efficiently as long as
the fraction of corrupted data points (column-support of C∗) is less than O(1/r) where r is the
dimensionality of principal subspace U∗. More concretely, we study the problem in three settings:

1. Noiseless setting: M∗ = D∗ + C∗ where the clean data matrix D∗ is a rank-r matrix
with µ-incoherent right singular vectors (see Assumption 1) and C∗ has at most α · n non-
zero columns. For this setting, we design a novel Thresholding based Ouliter Robust PCA
algorithm (TORP) that recovers U∗ up to an error of ε in time O

(
ndr log

n‖M∗‖2
ε

)
, if

α ≤ 1
128µ2r

. Vanilla PCA, on the other hand, can be computed in time O(nd + nk2

ε2
) via

input sparsity time algorithms (See, for example, Clarkson and Woodruff (2013)) and in time
O(ndr) via orthonormal iteration (Golub and Loan (1996)). Hence, we essentially match the
running time of Vanilla PCA except in the regime where r is small where the extra r factor
doesn’t affect the run time significantly. In contrast, existing results for the same setting re-
quire O(nd

2

ε2
)1 computation to recover U∗. Note that the number of outliers our results can

handle (i.e., α ≤ 1/128µ2r) is optimal up to constant factors in the sense that if α > 1/µ2r,
then there exists a matrix M∗ which has more than one decomposition satisfying the above
conditions.

2. Arbitrary noise: In the second setting, M∗ = D∗ + C∗ where the clean data matrix D∗ can
be written as L∗ + N∗ and L∗, the rank-r projection of D∗ has µ incoherent right singular
vectors. C∗ on the other hand, again has at most α · n non-zero columns. If α ≤ 1

128µ2r
, our

proposed algorithm TORP-N guarantees recovery of U∗ (left singular vectors of L∗) up to
O (
√
r ‖N∗‖F + ε) error, inO

(
ndr log

n‖M∗‖2√
r‖N∗‖F +ε

)
time. Again this is essentially the same

as the time taken for Vanilla PCA. In contrast, existing results for this problem get stuck at
a significantly larger error of (

√
n ‖N∗‖F), with a runtime of O(nd

2

ε2
), which is slower than

ours by a factor of d.

3. Gaussian noise: In this setting, we again have M∗ = D∗ + C∗ where the clean data matrix
D∗ is a sum of low-rank matrix L∗ and a Gaussian noise matrix N∗, i.e., each element of
N∗ is sampled independently and identically (iid) from N (0, σ2). TORP-G, which is our
proposed algorithm for this special case, recovers U∗ up to an error of O

(√
r log d ‖N∗‖2

)
.

This not only improves upon the result we obtained for the arbitrary noise case above, which
is O (

√
r ‖N∗‖F), it also improves significantly upon the existing results. However, in order

to achieve this improvement in error, we require n > d2 and the algorithm has a runtime of
O
(
n2d
)
.

To summarize, our results obtain stronger guarantees in terms of both final error and runtime, while
being able to handle a large number of outliers, for three different settings of OR-PCA. Moreover,
in the first two settings, our run time essentially matches that of standard PCA. Please refer Tables 1
and 2 for comparison of our results with existing results.

Paper Outline: The paper is organized as follows. We will review related work in Section 1.1.
We then present a formal definition of the problem in Section 2 and our main results in Section 3.
We then present our algorithm for each of the three settings: a) noise-less setting, b) arbitrary data,

1. Dependence on ε is due to the standard rates of gradient descent when applied to the non-smooth non-strongly convex
optimization problem given in (1); however, using more refined RSC-style analysis, ε dependency might be improved
but we are not aware of such an existing result.

3

CHERAPANAMJERI JAIN NETRAPALLI

Run time Error (
∥∥(I − UU>)L∗

∥∥
F

)

Xu et al. (2012b) O
(
d2n
ε2

)
O (
√
n ‖N∗‖F + ε)

TORP-N O
(
dnr log

n‖M∗‖2
ε

)
O (
√
r ‖N∗‖F + ε)

Table 1: Arbitrary noise: comparison of our results and existing results for the arbitrary noise
setting. Here, M∗ = D∗ + C∗, where D∗ = L∗ + N∗ is the clean data matrix with L∗, the rank-r
projection of D∗ having µ-incoherent right singular vectors (Assumption 1) and C∗ has O(1

µ2r
)

is a column sparse matrix. The error is measured as the residual of L∗ when projected on to the
estimated space U . Note that we obtain better error and better runtime compared to existing results.
Also, the noiseless case is a special case with N∗ = 0.

Run time Error(
∥∥(I − UU>)L∗

∥∥
F

)

Xu et al. (2012b) O
(
nd2r
ε2

)
O
(
σn
√
d+ ε

)
TORP-N O

(
ndr2 log

‖M∗‖2
ε

)
O
(
σ
√
nd+ ε

)
TORP-G O

(
n2dr log

‖M∗‖2
ε

)
O
(
σ
√
n log(d) + ε

)
Table 2: Gaussian noise: comparison of existing results with ours for the Gaussian noise setting:
M∗ = D∗ + C∗, where inliers D∗ = L∗ + N∗ with L∗ being a rank-r matrix with µ-incoherent
right singular vectors (Assumption 1) and N∗ is a Gaussian matrix with variance σ2. Specializing
TORP-N for this setting already gives us faster and better results than existing ones. TORP-
G further improves the error by a factor of

√
d/ log d. The algorithm however requires extra O(n)

factor in the runtime.

c) Gaussian noise, in Section 4, 5, 6, respectively. We provide a brief overview of our proofs
in Section 7. Finally, we conclude with a few open problems and promising future directions in
Section 8.

1.1. Related Works

In this section, we will discuss related work and compare existing results with ours. Existing theo-
retical results for OR-PCA fall into two categories:

a) The first category of approaches, more in-line with our own work, are based on Outlier-Pursuit
(Xu et al. (2012a)) which optimizes a convex relaxation of the OR-PCA problem where the rank
and column sparsity constraints are replaced by the trace-norm (sum of singular values) and ‖.‖2,1
(sum of the column lengths) penalties. That is, they solve the following optimization problem:

(Outlier Pursuit): min ‖L‖∗ + λ ‖C‖2,1 s.t ‖M − L+ C‖F ≤ ‖N
∗‖F . (1)

While outlier pursuit obtains optimal recovery guarantees in absence of any noise, a main drawback
is that its computational complexity is quadratic in d, i.e., O(nd2). Moreover, in presence of noise
the bounds given in Xu et al. (2012a) areO(

√
n) worse than our result. Extensions of Outlier-Pursuit

to the partially observed setting (Chen et al. (2016)) and online setting Feng et al. (2013) have also
been proposed but share the drawback of high computational complexity. Recently, Zhang et al.
(2016) showed that Outlier Pursuit achieves recovery even with the fraction of outliers larger than

4

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

the information theoretic lower bound. However, this requires the outliers to be “well-spread” which
in practice is restrictive; our results allow the corruption matrix to be constructed in adversarial
manner although the corruptions cannot depend on the Gaussian noise in the setting (3) described
in previous section.

b) The second line of approaches based on HR-PCA (Xu et al. (2013)) iteratively prune or
reweigh data points which have a large influence on the singular vectors and select an estimate
with the Robust Variance Estimator metric. When applied to our finite sample setting, these results
cannot achieve exact recovery even in the noiseless case with a single outlier. Moreover, their
running time in this setting is O

(
n2dr

)
while ours is nearly linear in the input size. In the special

case of Gaussian noise, these results incur at least a constant errorO (σ1(L∗)) whereas our recovery
guarantee scales linearly with the standard deviation of the noise O (

√
rσ log d), achieving exact

recovery when σ = 0. Feng et al. (2012) propose a deterministic variant of HR-PCA and Yang and
Xu (2015) extend HR-PCA to PCA-like algorithms like Sparse PCA and Non-Negative PCA.

In recent work, Diakonikolas et al. (2016) study the problem of robust parameter recovery which
requires clean data to be sampled from a distribution. This assumption is more restrictive than the
one on incoherence made in this paper which allows us to solve deterministic problems as well.
In addition, our method is based on computationally efficient tools like the SVD and iterative hard
thresholding. On the other hand, the methods described in Diakonikolas et al. (2016) are based on
the use of the ellipsoid method which requireO(n3d4) time which can be prohibitive for large-scale
datasets.

There has been much recent work on the related problem of Robust PCA (Candès et al. (2011),
Netrapalli et al. (2014), Yi et al. (2016), Cherapanamjeri et al. (2016)). In contrast to the setting
considered here, the corruptions are assumed to be both row and column sparse i.e., unlike our
setting no data can be corrupted in all its dimensions. This restriction allows stronger recovery
guarantees but makes the results inapplicable to the setting of outlier robust PCA.

1.2. Notations

We use the following notations in this paper. For a vector v, ‖v‖ and ‖v‖2 denote the `2 norm
of v. For a matrix M , ‖M‖ and ‖M‖2 denote the operator norm of M while ‖M‖F denotes the
Frobenius norm of M . σk(M) denotes the kth largest singular value of M . SVD refers to singular
value decomposition of a matrix. SVDr(M) refers to the rank-r SVD of M . Given a matrix M ,
Mi denotes the ith column of M while Mi,: denotes the ith row of M . Given a matrix M ∈ Rd×n
and a set S ⊆ [n], MS is defined as

(MS)i =

{
Mi for i ∈ S,
0 otherwise.

M\S denotes M[n]\S . Supp (M) denotes column support of M , i.e., the set of indices of non-zero
columns of M .

We use two hard -thresholding operators in this paper. Given a matrix R, the first hard thresh-
olding operator,HT ρ (R) denotes the set of indices j of the top ρ fraction of largest columns (in `2
norm) in R. Given a matrix R, the second hard-thresholding operator H̃T ζ(R) is defined as,

H̃T ζ(N) = {i : s.t. ‖Ni‖2 ≥ ζ}. (2)

PU⊥ (M) denotes (I − UU>)M . For any set S ∈ Rd, we will use PS to denote the projection onto
the set S. We will also use PU to denote the projection onto the column space of U for U ∈ Rd×r.

5

CHERAPANAMJERI JAIN NETRAPALLI

2. Problem Formulation

In this section, we will formally present the setting of the paper. We are given M∗ = D∗ + C∗ ∈
Rd×n, where columns of D∗ are inliers and C∗ are outliers. Only an α fraction of the points are
outliers, i.e., only alpha fraction of the columns of C∗ are non-zero. Broadly, we consider three
scenarios:

• OR-PCA (Noiseless setting): The points inD∗ lie entirely in a low-dimensional subspace i.e.,
D∗ = L∗ is a rank-r matrix.

• OR-PCAN (Noisy setting): The points in D∗ lie approximately in a low-dimensional sub-
space i.e., D∗ = L∗ + N∗ where L∗ is the rank-r projection of D∗ and N∗ is the noise
matrix.

• OR-PCAG (Gaussian noise setting): The points inD∗ come from a low-dimensional subspace
with additive Gaussian noise i.e., D∗ = L∗ + N∗ where L∗ is a rank-r matrix and N∗ is a
Gaussian noise matrix i.e., each element of N∗ is sampled iid from N (0, σ2).

In all the above settings, the goal is to find the low dimensional subspace spanned by the columns
of L∗.

This problem is in general ill-posed. Consider for instance the case, when most of the true data
pointsL∗ are zero and only an α fraction of them are non-zero. These points can either be considered
inliers or outliers. In order to overcome this issue, standard assumption used in literature (Xu et al.,
2012a; Feng et al., 2013) is that of incoherence. Also, incoherence is satisfied in several standard
settings; for example, when the inliers are noise and uniform samples from a low-dimensional
subspace.

Assumption 1 Rank and incoherence of L∗: L∗ ∈ Rd×n is a rank-r incoherent matrix, i.e.,∥∥e>i V ∗∥∥2
≤ µ

√
r
n ∀i ∈ [n], where L∗ = U∗Σ∗(V ∗)> is the SVD of L∗.

Having already ruled out Vanilla PCA as a viable solution to the OR-PCAproblem, we will dis-
cuss the shortcomings of an intuitive sampling based solution in order to build intuition. Consider
the sampling strategy where O(µ2r) columns are randomly sampled from the matrix and the SVD
of the submatrix so obtained used as an estimate of the singular subspace of D∗. With constant
probability, this sampling scheme will avoid any corrupted points. Hence, repeating the experiment
will obtain a subspace contained in the true principal subspace. Unfortunately, some singular vec-
tors can also be completely unrepresented in such a sample and hence, a subspace which does not
contain any of the top singular vectors may be obtained. Thus, the solution obtained via this method
can be arbitrarily bad as the top singular vectors may contain most of the mass of the matrix. From
this experiment, we conclude that for any viable pruning-based solution to OR-PCA, accurate rep-
resentation of singular vectors and careful pruning of outliers are important. We incorporate and
develop these intuitions in the design and analysis of our proposed solution to the OR-PCAproblem
and its variants.

3. Our Results

In this section, we will present our results for the three settings mentioned above.

6

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

3.1. OR-PCA – Noiseless Setting

Recall that in the noiseless setting, we observe M∗ = D∗ +C∗ where D∗ is a rank-r, µ-incoherent
matrix corresponding to clean data points and the column-support of C∗ is at most αn. The follow-
ing theorem is our main result for this setting.

Theorem 1 (Noise-less Setting) Let M∗, D∗ and C∗ be as described above. If α ≤ 1
128µ2r

, then

Algorithm 1 run with parameters ρ = 1
128µ2r

and T = log 10n‖M∗‖2
ε , returns a subspace U such

that, ∥∥∥(I − UU>)D∗
∥∥∥
F
≤ ε.

Remarks:

• Note that the guarantee of Theorem 1 can be right away converted to a bound on the sub-
space distance between U and that spanned by the columns of D∗. In particular, we obtain∥∥(I − UU>)U∗

∥∥
F
≤ ε/σr(D

∗), where σr(D∗) denotes the smallest singular value of D∗

and U∗ contains the singular vectors of D∗.

• Since the most time consuming step in each iteration is computing the top-r SVD of an n× d
matrix, the total runtime of the algorithm is O

(
ndr log 10n‖M∗‖2

ε

)
.

• The above assumption on the column sparsity ofC∗ is tight up to constant factors i.e., we may
construct an incoherent matrix L∗ and column sparse matrix C∗ such that it is not possible to
recover the true column space of L∗ when the column sparsity of C∗ is larger than 1

µ2r
.

3.2. OR-PCAN – Arbitrary Noise

We now consider the noisy setting. Here we observe M∗ = D∗ + C∗, where D∗ is a near low rank
matrix i.e., D∗ = L∗ + N∗ where L∗ is the best rank r approximation to D∗ and is a µ incoherent
matrix, while N∗ is a noise matrix. C∗ is again column sparse with at most an α fraction of the
columns being non-zero.

Theorem 2 (Arbitrary Noise) Consider the setting above. If α ≤ 1
128µ2r

, then Algorithm 2 when

run with parameters ρ = 1
128µ2r

, η = 2µ
√

r
n and T = log 20‖M∗‖2·n

ε iterations, returns a subspace
U such that: ∥∥∥(I − UU>)L∗

∥∥∥
F
≤ 60

√
r ‖N∗‖F + ε.

Remarks:

• The theorem shows that up to
√
r ‖N∗‖F error, recovered directions U contains top r prin-

ciple directions of inliers. We do not optimize the constants in our proof. In fact, we obtain
a stronger result in Theorem 6 which for certain regime of noise N∗ can lead to significantly
better error bound. Note that when there is no noise i.e., N∗ = 0, we recover Theorem 1.

• The guarantee here can again be converted to a bound on subspace distance. For instance, for
any k ≤ r, we have

∥∥∥(I − UU>)U∗[k]

∥∥∥
F
≤ (60

√
r ‖N∗‖F + ε) /σk(L

∗), where U∗k denotes

the top-k left singular subspace of L∗ and σk(L∗) denotes the kth largest singular value of L∗.

7

CHERAPANAMJERI JAIN NETRAPALLI

• The total runtime of the algorithm is O
(
ndr2 log 10‖M∗‖2·n

ε

)
. However, the outer loop over

k in Algorithm 2 can be replaced by a binary search for values of k between 1 and r. This
reduces the runtime to O

(
ndr log r log 10‖M∗‖2·n

ε

)
. See Algorithm 4 for more details.

3.3. OR-PCAG– Gaussian Noise

We now consider the Gaussian noise setting. Here we observe M∗ = D∗ + C∗, where D∗ is a
near low rank matrix i.e., D∗ = L∗ + N∗ where L∗ is a rank-r, µ incoherent matrix, while N∗ is
a Gaussian matrix with each entry sampled iid from N (0, σ2). C∗ is again column sparse with at
most an α fraction of the columns being non-zero.

Theorem 3 (Gaussian Data) Consider the setting mentioned above. Suppose α ≤ 1
1024µ2r

. Then,
Algorithm 3 stops after at most T = αn iterations and returns a subspace U such that:

‖(I − UU>)L∗‖2 ≤ 4
√

log d‖N∗‖2.

with probability at least 1 − δ as long as n ≥ 16µ2r2d
c1

[
log
(

1
3δ

)
+ d log(80d)

]
for some absolute

constants c1 and c2.

Remarks:

• Data points coming from a low-dimensional subspace with additive Gaussian noise is a stan-
dard statistical model that is used to justify PCA. Though this can be seen as a special case of
arbitrary noise model, we get a much tighter bound than that obtained from Theorem 2.

• While Theorem 2 gives an asymptotic error bound of
∥∥(I − UU>)L∗

∥∥
F
≤ 60

√
r ‖N∗‖F ,

Theorem 3 gives an asymptotic error bound of
∥∥(I − UU>)L∗

∥∥
F
≤ 4
√
r log d ‖N∗‖2. Note

that the right hand sides above refer to Frobenius and operator norms respectively.

• The improvement mentioned above is obtained by carefully leveraging the fact that Gaussian
random vectors are spread uniformly in all directions and that there is a small fraction of
vectors which is correlated. However, in order to make this argument, we need n = O

(
d2
)
.

It is an open problem to get rid of this assumption.

• Note also that our result is tight in the sense that as σ → 0, we recover the result of Theorem 1.
However, the running time of the algorithm is O(n2d) which is significantly worse than that
of TORP. We leave design/analysis of a more efficient algorithm that achieves similar error
bounds as Theorem 3 as an open problem.

• We can obtain the above result even when each column in N∗ is drawn from a sub-Gaussian
distribution rather than each entry being iid N (0, σ2).

4. Outlier Robust PCA: Noiseless Setting

In this section, we present our algorithm TORP(Algorithm 1) that applies to the special case of
noise-less data, i.e., when M∗ = L∗ + C∗, L∗ is rank-r, µ-incoherent matrix. While restrictive,
this setting allows us to illustrate the main ideas behind our algorithm approach and the analysis
techniques in a relatively simpler fashion.

8

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Recall that the goal is to estimate U∗, the left singular vectors of L∗. However, SVD of M∗ can
lead to singular vectors arbitrary far from U∗, because a few column of C∗ can be so large that they
can bias entire singular vectors in their direction.

Our algorithm instead tries to exploit two key structural properties of the problem: sparsity of
C∗ and incoherence of L∗. Our algorithm maintains a column-sparse estimate C(t) of C∗. Each
iteration of the algorithm computes a low-rank approximation of an estimate of the inliers M∗ −
C(t) = L∗ + C∗ − C(t). Note that if (I − U∗(U∗)>)C∗ = (I − U∗(U∗)>)C(t), then left singular
vectors of M∗ − C(t) will be U∗.

Our next step finds residual length of each column M∗i when projected on to the orthogonal
subspace to U (t). If length of each outlier is smaller compared to the smallest singular value of L∗,
then using sparsity of C(t) and C∗, we can show that U (t) is ”close” to U∗ in all directions. So, the
residual of some of the outliers will stand out and those columns can be removed. This is achieved
by the hard-thresholding step 5, 8 of Algorithm 1.

A big challenge in this scheme is that if a column of the perturbation matrix C∗ − C(t) is
”very” long compared to smaller singular values of L∗, then they can perturb some directions of
U∗ significantly. This will lead to a failure of the above thresholding approach. However, in such
a case, some of the columns of C∗ − C(t) will be close to a few spurious singular vectors in U (t)

(our current estimate of U∗). Hence, projection of such outliers along U (t) will be inordinately
long. On the other hand, due to incoherence of L∗, inliers’ projection along U (t) can be bounded in
magnitude. So, we can safely threshold out certain outliers. Steps 6, 8 of Algorithm 1 perform this
thresholding operation.

In summary, our algorithm computes low-rank approximation of M∗ − C(t) and uses the ob-
tained singular vectors U (t) to threshold out a few columns of C(t) to obtain next estimate C(t+1)

of C∗. See Algorithm 1 for a pseudo-code of our approach.
Time Complexity: Note that the computationally most expensive operation in each iteration is

that of SVD which requiresO(ndr) time. So, the overall time complexity of the algorithm isO(ndr·
T). As we show in Section 7, as long as C∗ is column-sparse, T ≈ log 1

ε suffices to obtain an ε
approximation to U∗. So, the overall complexity of the algorithm isO(ndr · log 20‖M∗‖2

ε). Note that
typically SVD computation is approximate, while all three of our algorithms and analyses assumes
exact SVD. However, extension of our analysis to allow for small additive error is straightforward
and we ignore it in favor of simplicity and readability.

Parameters: The algorithm requires an estimate of rank r and threshold parameter ρ which in
turn depends on estimate of incoherence µ of L∗. We propose to set these parameters via cross-
validation. Note that setting rank to be any value larger than rank of L∗ will lead to recovery of U∗,
as long as C∗ is sparse enough. Similarly, if estimation of µ is larger than incoherence of L∗, then it
only effects number of corrupted columns in C∗ that can be allowed. So, a simple cross-validation
approach with appropriately chosen grid-size leads to recovery of U∗ as long asC∗ is sparse enough
(as specified in Theorem 1).

5. Outlier Robust PCA: General Noise

In this section, we introduce our algorithm for the general case of Outlier Robust PCA with arbitrary
inlier data D∗ = L∗ + N∗, i.e., the noise matrix N∗ is arbitrary. Recall that the goal is to recover
left singular vectors of L∗.

9

CHERAPANAMJERI JAIN NETRAPALLI

Algorithm 1 Thresholding based Outlier Robust PCA (TORP)

1: Input: Data M∗ ∈ Rd×n, Target rank r, Threshold fraction ρ, Number of iterations T
2: C(0) ← 0
3: for Iteration t = 0 to t = T do
4: [U (t),Σ(t), V (t)]← SVDr

(
M∗ − C(t)

)
; L(t) ← U (t)Σ(t)(V (t))> }

Projection onto
space of

low rank matrices5: R← (I − U (t)(U (t))>)M∗ /* Compute residual */
6: E ← (Σ(t))−1(U (t))>M∗/* Compute incoherence */
7: CS(t+1) ← HT ρ (R) ∪HT ρ (E)

Projection onto

space of
column sparse

matrices8: C(t+1) ←M∗CS(t+1)

/* Threshold points with high coherence or high residual*/
9: end for

10: [U,Σ, V]← SVDr
(
M∗ − C(T+1)

)
11: Return: U

Our algorithm for the general OR-PCA problem builds upon the TORP algorithm but with
added complexity due to the presence of noise matrix N∗. That is the algorithm alternately updates
estimate of the outliers C(t) and the principal direction U (t) using two thresholding operators along
with SVD. However due to noise N∗, our estimate of U (t) gets perturbed furthermore leading to
arbitrary perturbation of the singular vectors of U∗ corresponding to smaller eigenvalues of L∗ and
hence cannot be recovered. To alleviate this concern, our TORP-N algorithm proceeds via a pair of
nested loops:

Outer Iteration on k: The outer loop iterates over the rank-variable k which represents the rank
of the principal subspace we wish to estimate.

Inner Iteration on t: The inner loop iteratively revises estimates of the principal subspace and
a set of outliers until a stopping criteria is triggered.

Intuitively, as in Algorithm 1, each inner iteration of Algorithm 2 obtains a better estimate of C∗

and top-k singular components of L∗. That is, the k-th outer iteration after several of such inner
iterations estimates U∗ up to ≈ σk(L

∗). But when the noise ‖N∗‖F becomes comparable to the
kth singular value of L∗, then the algorithm terminates (Line 14, Algorithm 2) as at that point it
may not be possible to estimate the remaining singular vectors of L∗. As we don’t know ‖N∗‖F
explicitly, we detect this event based on the number of data points which have a large influence on
the estimated singular vectors (see lines 11, 12 of Algorithm 2).

Roughly, our stopping criterion allows us to make two statements regarding the termination of
the algorithm:

1. When the algorithm terminates, the outlier columns that we have not thresholded will only have
small influence on the estimated principal vectors. This is because all points with large influence
will be thresholded before the estimate is computed.

2. The algorithm will not terminate if σ∗k >> ‖N∗‖F : The bound on ‖N∗‖F ensures that not many
inlier points can have large influence on estimate of the kth singular vector.

By using the above two claims, our analysis shows that TORP-N recovers U∗ up to∼ ‖N∗‖F error.

10

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Time Complexity: Time complexity of each inner iteration of TORP-N is O(ndk). Hence,
overall time complexity is O(ndr2), as k can be as large as r. However, using a slightly more
complicated algorithm and analysis (see Algorithm 4), we can search for appropriate k using binary
search, so the time complexity of the algorithm can be improved to O(ndr log r).

Parameter Estimation: The algorithm requires 3 parameters: rank r, threshold ρ which depends
on incoherence µ of L∗ and expressivity parameter η. We can search for these parameters using a
coarse-grid search as estimates of these parameters up to constants are enough for our algorithm to
succeed albeit with a slightly stricter restriction (by constant factors) on the number of corrupted
data points.

Algorithm 2 Thresholding based Noisy Outlier Robust PCA (TORP-N)

1: Input: Corrupted matrix M∗ ∈ Rd×n, Target rank r, Expressivity parameter η, Threshold
fraction ρ, Inner iterations T

2: for k = 1 to k = r do
3: C(0) ← 0, τ ← false
4: for t = 0 to t = T do
5: [U (t),Σ(t), V (t)]← SVDk

(
M∗ − C(t)

)
, L(t) ← U (t)Σ(t)(V (t))>

} Projection onto
space of
low rank
matrices

6: E ← (Σ(t))−1(U (t))>M∗ /* Compute Incoherence */
7: R← (I − U (t)(U (t))>)M∗ /* Compute residual */

Projection onto space of
column sparse matrices

8: CS(t+1) ← HT 2ρ (M∗, E) ∪HT ρ (M∗, R)
9: C(t+1) ←M∗CS(t+1)

10: nthres ← |{i : ‖Ei‖ ≥ η}| /* Compute high incoherence points */
11: τ ← τ ∨ (nthres ≥ 2ρn) /* Check termination conditions */
12: end for
13: if τ then
14: break
15: end if
16: [U,Σ, V]← SVDk

(
M∗ − C(T+1)

)
17: end for
18: Return: U

6. Outlier Robust PCA: Gaussian Noise

In this section, we present our algorithm for the special case of the Outlier Robust PCA problem
when inlier points are generated using a standard Gaussian noise model. That is, when D∗ =
L∗ + N∗ ∈ Rd×n where each entry of the noise matrix N∗ is sampled i.i.d. from N (0, σ2). Our
result for arbitrary N∗ (Theorem 2) estimates U∗ up to ∼ ‖N∗‖F error, which is Ω(σ

√
dn) for

Gaussian noise. However, using a slight variant of Algorithm 2 and exploiting the noise structure,
Algorithm 3 is able to estimate U∗ up to σ

√
n log d error, which is better than the previous one by

a factor of O
(√

d/ log d
)

.
At a high level the philosophy of our TORP-G algorithm is similar to TORP, i.e., we iteratively

revise estimate of C∗ and the top singular vectors U∗ using SVD and thresholding. That is, we

11

CHERAPANAMJERI JAIN NETRAPALLI

Algorithm 3 Thresholding based Outlier Robust PCA with Gaussian Noise (TORP-G)

1: Input: Corrupted matrix M∗ ∈ Rd×n, Target rank r, Incoherence Parameter µ, Noise Level σ
2: M ←M∗, τ ← true

3: ζ1 ← σ

(
5
4µ
√
r + d

1
2 + 2d

1
4

√
log
(
µ2r
c2

))
, ζ2 ← σ

√
2r

(
5
4µ+ 2

√
log
(
µ2r2d
c1

))
4: C(0) ← 0, CS(0) ← {}, CS(−1) ← {0}, t← 0
5: while CS(t) 6= CS(t−1) do
6: [U (t),Σ(t), V (t)]← SVDr+1(M∗ − C(t)), L(t) ← U (t)Σ(t)(V (t))>

} Projection onto
space of

low rank matrices
7: E(t) ← {x : x = U (t)Σ(t)y for some ‖y‖ ≤ 2µ

√
r/n}

8: L̂(t) ← PE(t)(L(t)) /* Projection onto incoherent matrices */

9: I ←
{
i :
∥∥∥L(t)

i − L̂
(t)
i

∥∥∥ > ζ2

}
/* Points with large influence */

10: CS(t+1) ← CS(t) ∪ H̃T ζ1
(
L(t) − L̂(t)

)
/* Updating support of outliers */

11: if |I| ≥ 24nc1
µ2dr

then

12: CS(t+1) ← CS(t+1) ∪ H̃T ζ2
(
L(t) − L̂(t)

)

Projection onto space of
column sparse matrices

/* Update support of outliers */
13: end if
14: C(t+1) ←M∗CS(t+1)

/* Compute Sparse Projection */
15: t← t+ 1
16: end while
17: Return: U

iteratively threshold columns of M∗, that we estimate are corrupted. However, due to Gaussian
noise structure our thresholding step is significantly different than that of TORP or TORP-N.

In particular, the choice of our thresholding criteria (see lines 10, 12 of Algorithm 3) uses the
following two insights:

1. Length based thresholding (with respect to ζ1—line 10 of Algorithm 3): This thresholding
step is used to ensure that the noise in each data point is at most O

(
σ
√
d
)

. As the length

of random Gaussian vector is at mostO
(
σ
√
d
)

with high probability, only a small number
of inliers are thresholded in this step (Lemma 16).

2. Projection based thresholding (with respect to ζ2—line 12 of Algorithm 3): In this step, we
threshold points that have large projection along the estimated principal subspace. Note
that out of n columns of N∗, at most O

(
1

µ2rd

)
fraction of points have projected lengths

greater than O
(
σ
√

log(d)
)

along any direction (Lemma 19). Thus, chances of a inliers
being thresholded in this step is low. On the other hand, any outlier that heavily influences
a principal direction will be thresholded by this step.

Algorithm 3 provides a detailed pseudo-code of TORP-G. Step 6 of the algorithm computes rank-
(r + 1) SVD of the estimate of inlier matrixM∗−C∗. Step 7 defines a set of vectors, whose projec-

12

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

tion onto singular vectors of L(t) is “typical” for an inlier which is composed of a low-dimensional
point perturbed by Gaussian noise vector of length O(σ

√
d).

This set is used in step 10 to threshold outliers using the hard-thresholding operator H̃T ζ as
defined in (2). Next, the set I consists of points which have a large influence on the estimated
principal components. In the absence of outliers, the size of this set is bounded by 12nc1

µ2dr
with high

probability. A large deviation in the size of this set indicates the presence of of outliers and the
entire set is thresholded.

Note on Approximate Computation: We would like to note that the projection operator defined
in step 8 of the algorithm can be computed efficiently to arbitrary accuracy. A pseudo-code for
computing the required projection can be found in Algorithm 5. Algorithm 5 reduces the problem
to the univariate problem of finding the root of a monotonically decreasing function in a bounded
interval which can be found efficiently via binary search. For the sake of simplicity, we assume that
the projection step and the SVD are computed exactly. Our analysis can be extended to the case
where the projection and SVD are computed approximately with some added technical difficulty.

7. Proof Overview

In this section, we provide a brief overview of our analysis for the three main results.

7.1. Noiseless Setting—Theorem 1

In this section, we present the proof of Theorem 1. Recall that we are given M∗ = D∗+C∗, where
D∗ = L∗ is a rank-r, µ-incoherent matrix and C∗ has at most a fraction of ρ non-zero columns.
We can assume with out loss of generality that D∗ and C∗ have disjoint column supports as we can
rewrite M∗i , for i ∈ Supp (C∗), as M∗i = D∗i + C∗i = 0 + (C∗i + D∗i) thus absorbing D∗i in C∗i
itself.

Our proof consists of three main steps. Given any set of columns S and letting [U\S ,Σ\S , V\S]
be the top-r SVD of M∗\S , we establish the following:

Step 1: Every non-zero column of D∗ has significantly smaller residual when projected onto sub-
space orthogonal to U\S than the norm of corrupted columns of M∗\S (Lemma 4), so its
likelihood of being thresholded (Line 6, 8 of Algorithm 1) is small,

Step 2: Every non-zero column ofD∗ has small incoherence with respect to [U\S ,Σ\S , V\S] (Lem-
ma 5), i.e., its projection onto U\S cannot be “too large”. Hence, its likelihood of being
thresholded (Line 7,8 of Algorithm 1) is also small,

Step 3: Any non-zero column of C∗ which has small residual and incoherence compared to those
of a non-zero column of D∗ and hence won’t be thresholded by Algorithm 1, has small
residual when projected onto U∗ . That is, the column itself is close to subspace spanned
by U∗ and hence does not effect estimation of U∗ (Proof of Theorem 1).

That is, either a corrupted column will be thresholded or it is close toU∗ while inliers (D∗) have little
likelihood of being thresholded (step 1,2 above). We now present the formal statements and their
proofs. We start with two lemmata establishing Steps 1,2 above. Detailed proofs of the lemmata are
given in Appendix B.1 and B.2, respectively.

13

CHERAPANAMJERI JAIN NETRAPALLI

Lemma 4 Consider the setting of Theorem 1. Let S ⊂ [n] denote a subset of columns of M∗ such
that |S| ≤ 2ρn. Let M∗\S (L∗\S) be obtained from M∗ (L∗) by setting the columns corresponding to
indices specified in S to 0. Let U\SΣ\S(V\S)> (U∗\SΣ∗\S(V ∗\S)>) be the rank-r SVD of M∗\S (L∗\S),
then ∀i: ∥∥∥(I − U\S(U\S)>)L∗i

∥∥∥ ≤ 33

32
µ

√
r

n

∥∥∥(I − U∗(U∗)>)M∗\S

∥∥∥
Lemma 5 Under the setting of Lemma 4, we have for every i:∥∥∥Σ−1

\SU
>
\SL

∗
i

∥∥∥ ≤ 33

32
µ

√
r

n
.

We now present the proof of Theorem 1 where we illustrate Step 3:
Proof We will start by showing the quantity

∥∥(I − U∗(U∗)>)M (t+1)
∥∥
F

decreases at a geometric
rate, where M (t+1) = M∗ − C(t+1). Let Q(t) denote the columns of C∗ that are not thresholded in
iteration t. Also let S(t) denote the columns of L∗ that are thresholded in iteration t. Let L̃(t+1) :=
L∗\S(t) , C̃(t+1) := C∗

Q(t) , and PU⊥ (M) = (I − U(U)>)M . Then, we have:∥∥∥PU∗⊥ (M (t+1))
∥∥∥2

F
=
∥∥∥PU∗⊥ (L̃(t+1) + C̃(t+1))

∥∥∥2

F
=
∥∥∥PU∗⊥ (C̃(t+1))

∥∥∥2

F

=
∑
j∈Q(t)

∥∥∥PU∗⊥ (U (t)Σ(t)W
(t)
j +R

(t)
j)
∥∥∥2
≤ 2

∑
j∈Q(t)

∥∥∥PU∗⊥ (U (t))Σ(t)W
(t)
j

∥∥∥2
+
∥∥∥R(t)

j

∥∥∥2
, (3)

where W (t)
j = (Σ(t))−1(U (t))TC∗j and R(t)

j = PU
(t)

⊥ (C∗j), ∀j ∈ Q(t). The last inequality follows
from triangle inequality and the fact that (a+ b)2 ≤ 2(a2 + b2).

Recall, that we threshold a particular column l in iteration t based on
∥∥∥PU(t)

⊥ (M∗l)
∥∥∥ and∥∥(Σ(t))−1(U (t))>M∗l

∥∥. For a particular j ∈ Q(t) that wasn’t thresholded in iteration t, we know

that there exists a column ij such that
∥∥∥(Σ(t))−1(U (t))>L∗ij

∥∥∥ ≥ ∥∥∥(Σ(t))−1(U (t))>C∗j

∥∥∥. Similarly,

there exists a column kj such that
∥∥∥PU(t)

⊥ (L∗kj)
∥∥∥ ≥ ∥∥∥PU(t)

⊥ (C∗j)
∥∥∥. From Lemmas 5 and 4, we have:

∥∥∥W (t)
j

∥∥∥ ≤ 33

32
µ

√
r

n

∥∥∥R(t)
j

∥∥∥ ≤ 33

32
µ

√
r

n

∥∥∥PU∗⊥ (M (t))
∥∥∥ (4)

Using (3) and (4), we have:

∥∥∥PU∗⊥ (M (t+1))
∥∥∥2

F
≤ 2

∑
j∈Q(t)

(
33

32

)2

µ2 r

n

∥∥∥PU∗⊥ (U (t))Σ(t)
∥∥∥2

+

(
33

32

)2

µ2 r

n

∥∥∥PU∗⊥ (M (t))
∥∥∥2

≤ 4 · 9

8
· µ

2r

n
· ρn · ‖PU∗⊥ (M (t))‖2 ≤ 1

4

∥∥∥PU∗⊥ (M (t))
∥∥∥2
,

where second last inequality follows from |S(t)| ≤ ρn and the last inequality follows from ρ ≤ α ≤
1

128µ2r
. By recursively applying the above inequality, we obtain:∥∥∥PU∗⊥ (M (T+1))

∥∥∥
F
≤ ε

20n
. (5)

14

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Also, note that using variational characterization of SVD, we have
‖PU⊥ (M (T+1))‖F ≤

∥∥PU∗⊥ (M (T+1))
∥∥
F

. Theorem now follows from the following argument:

∥∥PU⊥ (L∗)
∥∥2

F
=
∥∥∥PU⊥ (L̃(T+1))

∥∥∥2

F
+
∑
i∈S(T)

∥∥PU⊥ (L∗i)
∥∥2

≤
∥∥∥PU⊥ (M (T+1))

∥∥∥2

F
+
∑
i∈S(T)

332

322
µ2 r

n

∥∥∥PU⊥ (L̃(T+1))
∥∥∥2

≤
∥∥∥PU⊥ (M (T+1))

∥∥∥2

F
+ 2ρn

(
33

32

)2

µ2 r

n

∥∥∥PU⊥ (M (T+1))
∥∥∥2

F
≤ ε

10n
,

where the first inequality follows from Lemma 11 and using M (T+1) = L̃(T+1) + C̃(T+1), and the
fact that L̃(T+1) and C̃(T+1) have different support. The second inequality follows from the fact
that at most 2ρ · n points can be thresholded and then using (5).

7.2. Arbitrary Noise—Theorem 2

We now briefly discuss the proof of Theorem 2. In fact, we prove a stronger result:

Theorem 6 Let M∗ = L∗ + C∗ + N∗ such that L∗ satisfies Assumption 1 and C∗ has column
sparsity α ≤ 1

128µ2r
. Furthermore, suppose that ‖N∗‖F ≤

σ∗k
16 for some k ∈ [r]. Then, Algorithm 2

run with ρ = 1
128µ2r

and η set to 2µ
√

r
n with T = log 20‖M∗‖2·n

ε , returns a subspace U such that:∥∥∥(I − UU>)L∗
∥∥∥
F
≤ 3

∥∥∥(I − U∗k (U∗k)>)L∗
∥∥∥
F

+ 9 ‖N∗‖F +
ε

10n
.

Intuitively, the proof of Theorem 6 proceeds along the same lines as that of Theorem 1 but requires
significantly more careful analysis due to presence of noise and due to the outer loop. For example,
due to the presence of noise, we cannot guarantee that Lemma 5, that was critical to proof of
Theorem 1, holds for all columns i. We show instead that the number of data points which have
a large influence on the top-k singular vectors is bounded (see Lemma 17). This ensures that the
algorithm at least reaches the kth stage of the outer iteration before terminating. Similarly, we
generalize Lemma 4 to handle N∗ (see Lemma 18). Finally, we present the key lemma that shows
that if the algorithm does not terminate in the kth outer iteration, then it would have obtained a good
approximation to the top-k principal subspace of L∗.

Lemma 7 Asume the conditions of Theorem 2. Furthermore, assume that Algorithm 2 has not
terminated during the kth outer iteration. Then, the iterate U at the end of the kth outer iteration
satisfies: ∥∥∥(I − UU>)L∗

∥∥∥
F
≤ 3

∥∥∥(I − U∗1:k(U
∗
1:k)
>)L∗

∥∥∥
F

+ 9 ‖N∗‖F +
ε

10n
,

when Algorithm 2 has been run with parameters ρ = 1
128µ2r

and η = 2µ
√

r
n .

See Appendix B.5 for a detailed proof. We can now prove Theorem 6 as follows:

15

CHERAPANAMJERI JAIN NETRAPALLI

Proof Note that by Lemma 17, the algorithm does not terminate before the completion of kth outer
iteration. Now, suppose that the algorithm terminates at some iteration k′ > k. Then, by Lemma 7,
we have:

∥∥PU⊥ (L∗)
∥∥ ≤ 3

∥∥∥∥PU∗1:k′−1

⊥ (L∗)

∥∥∥∥
F

+ 9 ‖N∗‖F +
ε

10n
≤ 3

∥∥∥PU∗1:k⊥ (L∗)
∥∥∥
F

+ 9 ‖N∗‖F +
ε

10n
.

This concludes the proof of the Theorem.

7.3. Gaussian Noise—Theorem 3

Our analysis of TORP-G show that the algorithm maintains the following critical invariant with
high probability:

Invariant 1 We assume that the following hold with respect to the two thresholding steps used in
Algorithm 3.

1. With respect to ζ1: If a column i 6∈ Supp (C∗) is thresholded, then the following condition
holds:

‖N∗i ‖ ≥ σ

(
√
d+ 2d

1
4

√
log

(
µ2r

c2

))
.

and consequently only 3nc2
2µ2r

points are removed in this step.

2. With respect to ζ2: If a thresholding step occurs due to the second thresholding step with ζ2,
then at least half the points thresholded in this step are corrupted points.

Lemma 8 Assume the conditions of Theorem 3. Then, Invariant 1 holds at any point in the running
of Algorithm 3 with probability at least 1− δ.

See Appendix B.8 for a detailed proof.
Our proof then uses the above invariant along with a careful analysis of each of the two thresh-

olding steps (Line 10, 12) to obtain the desired result. See Appendix C for a detailed proof.

8. Conclusions and Future Works

In this paper, we studied the outlier robust PCA problem. We proposed a novel thresholding based
approach that, under standard regularity conditions, can accurately recover the top principal direc-
tions of the clean data points, as long as the number of outliers is less thanO(1/r) which is informa-
tion theoretically tight up to constant factors. For noiseless or arbitrary noise case, our algorithms
are based on two thresholding operators to detect outliers and leads to better recovery compared to
existing methods in essentially the same time as that taken by vanilla PCA. For Gaussian noise, we
obtain improved recovery guarantees but at a cost of higher run time.

Though our bounds have significant improvement over existing ones, they are still weaker than
guarantees obtained by vanilla PCA (with out outliers). For instance, for arbitrary noise, our errors
are bounded in the Frobenius norm. In contrast, in absence of outliers, SVD can estimate the

16

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

principal directions in operator norm. A challenging and important open problem is if the principal
directions can be estimated in operator norm even in the presence of outliers.

Similarly, for Gaussian noise, where each entry has variance σ2, our result obtains an error
bound of O(σ

√
n) which is significantly better than the Frobenius norm bound we get for arbitrary

noise. Unfortunately, our algorithm for the Gaussian setting is nearly a factor of n slower than that
for vanilla PCA. In order for this to be practical, it is very important to design an algorithm for this
setting with nearly the same runtime as that of vanilla PCA.

References

Rajendra Bhatia. Matrix Analysis. Springer, 1997.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford university press, 2013.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
J. ACM, 58(3):11, 2011.

Yudong Chen, Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Matrix completion with
column manipulation: Near-optimal sample-robustness-rank tradeoffs. IEEE Trans. Information
Theory, 62(1):503–526, 2016. doi: 10.1109/TIT.2015.2499247. URL http://dx.doi.org/
10.1109/TIT.2015.2499247.

Yeshwanth Cherapanamjeri, Kartik Gupta, and Prateek Jain. Nearly-optimal robust matrix comple-
tion. CoRR, abs/1606.07315, 2016. URL http://arxiv.org/abs/1606.07315.

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input
sparsity time. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 81–90, 2013. doi: 10.1145/2488608.2488620. URL http://
doi.acm.org/10.1145/2488608.2488620.

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high dimensions without the computational intractability. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 655–664, 2016. doi: 10.1109/FOCS.2016.85.
URL https://doi.org/10.1109/FOCS.2016.85.

Jiashi Feng, Huan Xu, and Shuicheng Yan. Robust PCA in high-dimension: A deterministic ap-
proach. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012,
Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012. URL http://icml.cc/2012/
papers/136.pdf.

Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust PCA via stochastic optimization. In
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 404–412, 2013. URL http://papers.nips.cc/
paper/5131-online-robust-pca-via-stochastic-optimization.

17

http://dx.doi.org/10.1109/TIT.2015.2499247
http://dx.doi.org/10.1109/TIT.2015.2499247
http://arxiv.org/abs/1606.07315
http://doi.acm.org/10.1145/2488608.2488620
http://doi.acm.org/10.1145/2488608.2488620
https://doi.org/10.1109/FOCS.2016.85
http://icml.cc/2012/papers/136.pdf
http://icml.cc/2012/papers/136.pdf
http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization
http://papers.nips.cc/paper/5131-online-robust-pca-via-stochastic-optimization

CHERAPANAMJERI JAIN NETRAPALLI

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, 3rd edition, 1996.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, pages 1302–1338, 2000.

Praneeth Netrapalli, Niranjan U N, Sujay Sanghavi, Animashree Anandkumar, and Prateek Jain.
Non-convex robust pca. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
1107–1115. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5430-non-convex-robust-pca.pdf.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. CoRR, ab-
s/1011.3027, 2010. URL http://arxiv.org/abs/1011.3027.

Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via outlier pursuit. IEEE
Trans. Information Theory, 58(5):3047–3064, 2012a. doi: 10.1109/TIT.2011.2173156. URL
http://dx.doi.org/10.1109/TIT.2011.2173156.

Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust pca via outlier pursuit. IEEE
Transactions on Information Theory, 58(5):3047–3064, 2012b.

Huan Xu, Constantine Caramanis, and Shie Mannor. Outlier-robust PCA: the high-dimensional
case. IEEE Trans. Information Theory, 59(1):546–572, 2013. doi: 10.1109/TIT.2012.2212415.
URL http://dx.doi.org/10.1109/TIT.2012.2212415.

Wenzhuo Yang and Huan Xu. A unified framework for outlier-robust pca-like algorithms. In Pro-
ceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 484–493, 2015. URL http://jmlr.org/proceedings/papers/
v37/yangc15.html.

Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for ro-
bust PCA via gradient descent. In Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 4152–4160, 2016. URL http://papers.nips.cc/paper/
6445-fast-algorithms-for-robust-pca-via-gradient-descent.

Hongyang Zhang, Zhouchen Lin, and Chao Zhang. Completing low-rank matrices with corrupted
samples from few coefficients in general basis. IEEE Trans. Information Theory, 62(8):4748–
4768, 2016. doi: 10.1109/TIT.2016.2573311. URL http://dx.doi.org/10.1109/TIT.
2016.2573311.

Appendix A. Supplementary Results and Preliminaries

Here, we will state and prove a few results useful in proving our main theorems. We will start by
restating Weyl’s perturbation inequality from Bhatia (1997).

18

http://papers.nips.cc/paper/5430-non-convex-robust-pca.pdf
http://papers.nips.cc/paper/5430-non-convex-robust-pca.pdf
http://arxiv.org/abs/1011.3027
http://dx.doi.org/10.1109/TIT.2011.2173156
http://dx.doi.org/10.1109/TIT.2012.2212415
http://jmlr.org/proceedings/papers/v37/yangc15.html
http://jmlr.org/proceedings/papers/v37/yangc15.html
http://papers.nips.cc/paper/6445-fast-algorithms-for-robust-pca-via-gradient-descent
http://papers.nips.cc/paper/6445-fast-algorithms-for-robust-pca-via-gradient-descent
http://dx.doi.org/10.1109/TIT.2016.2573311
http://dx.doi.org/10.1109/TIT.2016.2573311

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Theorem 9 Let A ∈ Rd×n. Furthermore, let B = A+ E for some matrix E. Then, we have that:

|σ(A)i − σ(B)i| ≤ ‖E‖ ∀i ∈ min(d, n)

In the next lemma, we show that the singular values of the sum of two matrices with disjoint
column supports are greater than either of the two matrices individually.

Lemma 10 Let A ∈ Rd×n and B ∈ Rd×n be two matrices with disjoint column support. Then, we
have ∀i ∈ min(d, n):

max(σi(A), σi(B)) ≤ σi(A+B)

Proof Let the SVD of A and B be UAΣAV
>
A and UBΣBV

>
B respectively. The lemma holds for

i = 0 as
∥∥v>(A+B)

∥∥ ≥ max(
∥∥v>A∥∥ ,∥∥v>B∥∥). For any matrix M ,

σi(M) = min
U∈Rd×(i−1)

∥∥(I − UU>)M
∥∥ ∀i > 1. For any U , there exist v1 and v2 in Span((UA)[i])

and Span((UB)[i]) respectively and v>1 U = v>2 U = 0. This is because the rank of Span(U) is
at most (i − 1) and Span((UA)[i]) and Span((UB)[i]) are both rank-i subspaces. Now, we have∥∥v>1 (A+B)

∥∥ ≥ ∥∥v>1 A∥∥ ≥ σiA and
∥∥v>1 (A+B)

∥∥ ≥ ∥∥v>1 B∥∥ ≥ σi(B). The lemma by using
either v1 or v2 for any U .

The next lemma shows that an incoherent matrix remains incoherent even if a small number of
columns have been set to 0.

Lemma 11 Let L ∈ Rd×n be a µ-column-incoherent, rank-r matrix. Let S ⊂ [n] such that
|S| ≤ n

32µ2r
. Let [U,Σ, V] and [U\S ,Σ\S , V\S] denote the SVDs of L and L\S respectively. Then,

the following hold ∀i ∈ [n]:

Claim 1:
∥∥∥e>i V\S∥∥∥ ≤ 33

32
µ

√
r

n
Claim 2:

31

32
σi(L) ≤ σi(L\S) ≤ σi(L)

Furthermore, each column Li∀i ∈ [n] can be expressed as:

Claim 3: Li = U\SΣ\Swi with ‖wi‖ ≤
33

32
µ

√
r

n

Proof Let T be defined as the matrix V with the rows in set S set to 0. We will first begin by
proving that T is full rank. Let u ∈ Rr and ‖u‖ = 1:

1 = ‖V u‖ ≥ ‖Tu‖ =

 n∑
i=1

〈u, Vi,:〉2 −
∑
j∈S
〈u, Vj,:〉2

 1
2

≥

1−
∑
j∈S
‖Vj,:‖2

 1
2

≥
(

1− 1

32

) 1
2

where the third inequality is obtained from the bound on |S| and ‖Vj,:‖. Since T and V\S have the
same column space, there exists a matrix R ∈ Rr×r such that TR = V\S . We know that R is full
rank. We will now prove bounds on the singular values of R. For any u ∈ Rr and ‖u‖ = 1

‖Ru‖ = ‖V Ru‖ ≥ ‖TRu‖ =
∥∥V\Su∥∥ = 1 =

∥∥V\Su∥∥ = ‖TRu‖ ≥
(

1− 1

32

) 1
2

‖Ru‖

19

CHERAPANAMJERI JAIN NETRAPALLI

From this, we obtain the following inequality:

1 ≤ ‖Ru‖ ≤
(

1− 1

32

)− 1
2

From this, we have the first claim of the lemma as TR = V\S . We also know that U\SΣ\SV
>
\S =

UΣT>. Writing V\S as TR, we have U\SΣ\SR
>T> = UΣT>. Using the fact that T> is full rank,

we have U\SΣ\SR
> = UΣ. From this we have that L = UΣV > = U\SΣ\SR

>V >. Choosing
wi = (R>V >)i, the second claim of the lemma follows.

For the final claim of the lemma, note that the singular values of L\S are the same as the singular
values of UΣ(R>)−1. We know that σk+1(L\S) = min

Q∈Rd×k

∥∥(I −QQ>)UΣ(R>)−1
∥∥. The upper

bound follows from setting Q to be the first k singular vectors of L and our bound on the singular
values of R. For the lower bound, consider any Q ∈ Rd×k. Span(Q) is a subspace of rank at most
k. Therefore, there exists v ∈ Span(U1) such that ‖v‖ = 1 and v>Q = 0. We now have∥∥∥v>(I −QQ>)UΣ(R>)−1

∥∥∥ =
∥∥∥v>UΣ(R>)−1

∥∥∥ ≥ σk+1(L)

‖R‖
≥ 31

32
σk+1(M)

Where the last inequality follows from our bounds on the singular values of R and noting that the
singular values of R−1 are the inverses of the singular values of R. This proves the third claim of
the lemma.

We begin by stating a lemma used for bounding the length of Gaussian random vectors from
Laurent and Massart (2000):

Lemma 12 Let Y1, Y2, · · · , Yd be i.i.d Gaussian random variables with mean 0 and variance 1.

Let Z =
d∑
i=1

(
Y 2
i − 1

)
. Then the following inequality holds for any positive x:

P
(
Z ≥ 2

√
dx+ 2x

)
≤ exp(−x)

We will now state the famous Bernstein’s Inequality from Boucheron et al. (2013).

Theorem 13 Let X1, . . . , Xn be independent real-valued random variables. Assume that there

exist positive real numbers ν and c such that
n∑
i=1

E
[
X2
i

]
≤ ν and

n∑
i=1

E
[
(Xi)

q
+

]
≤ q!

2
νcq−2 ∀ q ≥ 3,

where x+ = max(x, 0).

If S =
n∑
i=1

(Xi − E[Xi]), then ∀t ≥ 0, we have:

P
(
S ≥

√
2νt+ ct

)
≤ exp(−t)

20

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

We will now restate a lemma for controlling the singular values of a matrix with Gaussian
random entries from Vershynin (2010).

Lemma 14 Let A ∈ Rd×n be a random matrix whose entries are independent standard normal
random variables. Then, for every t ≥ 0, with probability at least 1− 2 exp

(
−t2/2

)
, we have:

√
n−
√
d− t ≤ σmin(A) ≤ σmax(A) ≤

√
n+
√
d+ t

Corollary 15 Let A ∈ Rd×n be a random matrix whose entries are independent standard normal
random variables. For n ≥ 200

(
d+ 2 log

(
2
δ

))
, we have:

0.9
√
n ≤ σmin(A) ≤ σmax(A) ≤ 1.1

√
n

with probability at least 1− δ

Lemma 16 Let Y1, Y2, . . . , Yn be iid d-dimensional random vectors such that Yi ∼ N (0, I)∀i ∈
[n]. Then, we have for any c2 ≤ 1:

P

(∣∣∣∣∣
{
i : ‖Yi‖ ≥ d

1
2 + 2d

1
4

(
log

(
1

c2

)
+ log

(
µ2r
)) 1

2

}∣∣∣∣∣ ≥ 3c2n

2µ2r

)
≤ β

when n ≥ 16µ2r
c2

log
(

1
β

)
.

Proof Let Y1, . . . , Yn be iid random vectors such that Yi ∼ N (0, I)∀i ∈ [n]. From Lemma 12, we
have that:

P

(
‖Yi‖ ≥ d1/2 + 2d

1
4

(
log

(
1

c2

)
+ log

(
µ2r
))1/2

)
≤ c2

µ2r

Let p := P
(
‖Yi‖ ≥ d1/2 + 2d

1
4

(
log
(

1
c2

)
+ log

(
µ2r
))1/2

)
. Consider random variables Zi∀i ∈

[n] be defined such that Zi = I
[
‖Yi‖ ≥ d1/2 + 2d

1
4

(
log
(

1
c2

)
+ log

(
µ2r
))1/2

]
. Note that Zi

satisfy the conditions of Theorem 13 with ν = np and c = 1. We can now bound the probability

that
n∑
i=1

Zi is large by setting t = nc2
16µ2r

:

P

(
n∑
i=1

Zi ≤
3nc2

2µ2r

)
≤ P

(
n∑
i=1

Zi ≤
n∑
i=1

E [Zi] +
nc2

2µ2r

)

≤ P

(
n∑
i=1

Zi ≤ np+
√

2npt+ t

)
≤ exp (−t) (6)

For our choice of n, the above inequality implies the lemma.

21

CHERAPANAMJERI JAIN NETRAPALLI

Appendix B. Proof of Technical Lemmas

B.1. Proof of Lemma 4

Proof We prove the lemma through a series of inequalities:

∥∥∥(I − U\SU>\S)L∗i

∥∥∥ (ζ1)

≤ 33

32
µ

√
r

n

∥∥∥(I − U\SU>\S)L∗\S

∥∥∥ (ζ2)

≤ 33

32
µ

√
r

n

∥∥∥(I − U\S(U\S)>)M∗\S

∥∥∥
≤ 33

32
µ

√
r

n

∥∥∥(I − U∗(U∗)>)M∗\S

∥∥∥ ,
where (ζ1) holds from Lemma 11 and (ζ2) follows by using the fact that L∗\S can be obtained by
setting a few columns of M∗\S to 0. The last inequality follows from the fact that U\S contains the
top-r singular vectors of M∗\S .

B.2. Proof of Lemma 5

Proof The lemma can be proved through the following set of inequalities:

∥∥∥Σ−1
\SU

>
\SL

∗
i

∥∥∥ (ζ1)

≤
∥∥∥Σ−1
\SU

>
\SU

∗
\SΣ∗\Sw

∥∥∥ ≤ 33

32
µ

√
r

n

∥∥∥Σ−1
\SU

>
\SL

∗
\S

∥∥∥
(ζ2)

≤ 33

32
µ

√
r

n

∥∥∥Σ−1
\SU

>
\SM

∗
\S

∥∥∥ ≤ 33

32
µ

√
r

n
,

where (ζ1) holds with ‖w‖ ≤ 33
32µ
√

r
n from Lemma 11 and (ζ2) follows from the fact that L∗\S can

be obtained from M∗\S by setting some columns in M∗\S to 0.

B.3. Lemma 17

Lemma 17 Consider the setting of Theorem 2. Let S ⊂ [n] denote any subset of the columns
of M∗ such that |S| ≤ 3ρn. Furthermore, suppose that ‖N∗‖F ≤

σk(L∗)
16 for some k ∈ [r]. Let

M∗\S(L∗\S , N∗\S , C∗\S) denote the matrix M∗(L∗, N∗, C∗) projected onto the columns not in S. Let
U\SΣ\SV

>
\S denote the rank-k′ SVD of M∗\S for some k′ ≤ k. Then, we have:

#

(
i : ‖Ei‖ ≥ 2µ

√
r

n

)
≤ 2ρn,

where E = Σ−1
\SU

>
\SM

∗

Proof From Lemma 11, we get that σk′(L∗\S) ≥ 31
32σk′(L

∗). Along with Theorem 9, we conclude
that σk′(L∗\S + N∗\S) ≥ 7

8σk′(L
∗). Since the column supports of L∗ + N∗ and C∗ are disjoint, we

have that σk′(L∗\S +N∗\S) ≤ σk′(M∗\S). That is,

σk′(M
∗
\S) ≥ 7

8
σk′(L

∗). (7)

22

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

We first bound the quantity
∥∥∥Σ−1
\SU

>
\SL

∗
i

∥∥∥∀i ∈ [n]:

∥∥∥Σ−1
\SU

>
\SL

∗
i

∥∥∥ (ζ1)

≤ 33

32
µ

√
r

n

∥∥∥Σ−1
\SU

>
\SL

∗
\S

∥∥∥
(ζ2)

≤ 33

32
µ

√
r

n

(∥∥∥Σ−1
\SU

>
\S(L∗\S +N∗\S)

∥∥∥+
∥∥∥Σ−1
\SU

>
\SN

∗
\S

∥∥∥)
(ζ3)

≤ 33

32
µ

√
r

n

(∥∥∥Σ−1
\SU

>
\SM

∗
\S

∥∥∥+
∥∥∥Σ−1
\SU

>
\SN

∗
\S

∥∥∥)
(ζ4)

≤ 33

32
µ

√
r

n

(
1 +

1

14

)
≤ 9

8
µ

√
r

n
, (8)

where ζ1 follows from Lemma 11, ζ2 using triangle inequality, ζ3 using the above given fact that
SVDr(M∗\S) = U\SΣ\S(V\S)>, ζ4 follows from using (7) with bound on ‖N∗‖F .

Suppose
∥∥∥Σ−1
\SU

>
\S(L∗i +N∗i)

∥∥∥ ≥ 2µ
√

r
n for some i. We now have:

∥∥∥Σ−1
\SU

>
\SN

∗
i

∥∥∥ ≥ 7

8
µ

√
r

n
.

Similarly, using (7), we get that:

‖N∗i ‖ ≥
3

4
µ

√
r

n
σk′(L

∗).

Let Γ := {i :
∥∥∥Σ−1
\SU

>
\S(L∗i +N∗i)

∥∥∥ ≥ 2µ
√

r
n}. Let N∗Γ denote the matrix N∗ restricted to the

set Γ. Then we have,

√
|Γ|3

4
µ

√
r

n
σk′(L

∗) ≤ ‖N∗Γ‖F ≤ ‖N
∗‖F ≤

1

16
σk′(L

∗).

This implies that |Γ| ≤ n
144µ2r

≤ ρn. Also, by our assumption, α ≤ ρ, i.e., number of non-zero C∗i
is less than ρn. That is, the set {i :

∥∥∥Σ−1
\SU

>
\SC

∗
i

∥∥∥ ≥ 2µ
√

r
n} is of size at most ρn. Using the fact

that support of C∗ and L∗ + N∗ is disjoint, we have that the set {i :
∥∥∥Σ−1
\SU

>
\SM

∗
i

∥∥∥ ≥ 2µ
√

r
n} is

of size at most 2ρn.

B.4. Proof of Lemma 18

Lemma 18 Assume the setting of Lemma 17. LetU\SΣ\SV
>
\S (U∗\SΣ∗\S(V ∗\S)>) be the rank-k SVD

of M∗\S (L∗\S), then the following holds ∀i, 1 ≤ i ≤ n:

∥∥∥(I − U\SU>\S)(L∗i +N∗i)
∥∥∥ ≤ 33

32
µ

√
r

n

(∥∥∥(I − U∗1:k(U
∗
1:k)
>)M∗\S

∥∥∥+ ‖N∗‖
)

+ ‖N∗i ‖ .

23

CHERAPANAMJERI JAIN NETRAPALLI

Proof ∥∥∥(I − U\SU>\S)(L∗i +N∗i)
∥∥∥ ≤ ‖N∗i ‖+

∥∥∥(I − U\SU>\S)L∗i

∥∥∥
(ζ1)

≤ ‖N∗i ‖+
33

32
µ

√
r

n

∥∥∥(I − U\SU>\S)L∗\S

∥∥∥
≤ ‖N∗i ‖+

33

32
µ

√
r

n

(∥∥∥(I − U\SU>\S)(L∗\S +N∗\S)
∥∥∥+

∥∥∥N∗\S∥∥∥)
≤ ‖N∗i ‖+

33

32
µ

√
r

n

(∥∥∥(I − U\SU>\S)M∗\S

∥∥∥+ ‖N∗‖
)

≤ ‖N∗i ‖+
33

32
µ

√
r

n

(∥∥∥(I − U∗1:k(U
∗
1:k)
>)M∗\S

∥∥∥+ ‖N∗‖
)

where (ζ1) follows from Lemma 11 and the fact that only 3ρn columns are ever thresholded
at any stage of the algorithm. The remaining inequalities follow using triangle inequality and
M∗\S = L∗\S +N∗\S along with SVDr(M∗\S) = U\SΣ\S(V\S)>.

B.5. Proof of Lemma 7

Proof Let S(t) denote the columns of C∗ that are not thresholded in the tth inner iteration. For each
j ∈ S(t), we know that

∥∥∥(Σ(t))−1(U (t))>C∗j

∥∥∥ ≤ 2µ
√

r
n from our assumption on the termination of

the algorithm. Furthermore, since C∗j is not thresholded, we can associate a unique column ij which

is thresholded and ij 6∈ Supp (C∗) such that
∥∥∥I − U (t)(U (t))>M∗ij

∥∥∥ ≥ ∥∥∥I − U (t)(U (t))>M∗j

∥∥∥. Let

yi,t := (U (t))−1(Σ(t))−1M∗i and ri,t := (I − U (t)(U (t))>)M∗i , ∀i. Thus we have:

∥∥yj,t∥∥ ≤ 2µ

√
r

n
,

∥∥rj,t∥∥ ≤ ∥∥rij ,t∥∥ .
Let Q(t) denote the columns of L∗ that have been thresholded in the tth iteration. Furthermore,

we definite the matrices L̃(t+1) := L∗\Q(t) , Ñ (t+1) := N∗\Q(t) and C̃(t+1) := C∗
S(t) . Recall the

notation, PU⊥ (M) = (I − UUT)M . We now have for any t ≥ 0:∥∥∥PU(t+1)

⊥ (L∗)
∥∥∥
F

=
∥∥∥PU(t+1)

⊥ (L̃(t+1) + (L∗ − L̃(t+1)))
∥∥∥
F

(9)

≤
∥∥∥PU(t+1)

⊥ (L̃(t+1))
∥∥∥
F

+
∥∥∥PU(t+1)

⊥ (L∗ − L̃(t+1))
∥∥∥
F

≤
∥∥∥PU(t+1)

⊥ (L̃(t+1))
∥∥∥
F

+

 ∑
i∈Q(t)

∥∥∥PU(t+1)

⊥ (L∗i)
∥∥∥2

 1
2

(10)

(ζ1)

≤
∥∥∥PU(t+1)

⊥ (L̃(t+1))
∥∥∥
F

(
1 +

√
3ρn

33

32
µ

√
r

n

)
(ζ2)

≤ 5

4

(∥∥∥PU(t+1)

⊥ (L̃(t+1) + Ñ (t+1))
∥∥∥
F

+
∥∥∥PU(t+1)

⊥ (Ñ (t+1))
∥∥∥
F

)

24

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

(ζ3)

≤ 5

4

(∥∥∥PU(t+1)

⊥ (L̃(t+1) + Ñ (t+1) + C̃(t+1))
∥∥∥
F

+
∥∥∥Ñ (t+1)

∥∥∥
F

)
(ζ4)

≤ 5

4

(
P
U∗1:k
⊥ (L̃(t+1) + Ñ (t+1) + C̃(t+1))

)
+
∥∥∥Ñ (t+1)

∥∥∥
F

(ζ5)

≤ 5

4

(∥∥∥PU∗1:k⊥ (M (t+1))
∥∥∥
F

+ ‖N∗‖F
)

(11)

where (ζ1) follows from Lemma 11, (ζ2) from triangle inequality and bound over ρ, (ζ3) from
Lemma 10, (ζ4) from the properties of the SVD and (ζ5) from Lemma 10.

We will now show that
∥∥∥PU∗1:k⊥ (M (t+1))

∥∥∥
F

decreases at a geometric rate:

∥∥∥PU∗1:k⊥ (M (t+1)
∥∥∥
F

(ζ6)

≤
∥∥∥PU∗1:k⊥ (L̃(t+1))

∥∥∥
F

+ ‖N∗‖F +
(∥∥∥PU∗1:k⊥ (C̃(t+1))

∥∥∥
F

)
(ζ7)

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

 ∑
j∈S(t−1)

∥∥∥PU∗1:k⊥ ((C̃(t+1))j)
∥∥∥2

(ζ8)

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

2
∑
j∈S(t)

∥∥∥PU∗1:k⊥ (U (t)Σ(t)yj,t
∥∥∥2

+
∥∥∥PU∗1:k⊥ (rj,t)

∥∥∥2

 1
2

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

8ρn
µ2r

n

∥∥∥PU∗1:k⊥ (U (t)Σ(t))
∥∥∥2

+ 2
∑
j∈S(t)

∥∥∥PU∗1:k⊥ (rj,t)
∥∥∥2

 1
2

(ζ9)

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

1

8

∥∥∥PU∗1:k⊥ (U (t)Σ(t))
∥∥∥2

+ 2
∑
j∈S(t)

∥∥rij ,t∥∥2

 1
2

(ζ10)

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

1

8

∥∥∥PU∗1:k⊥ (U (t)Σ(t))
∥∥∥2

︸ ︷︷ ︸
Term 1

+4
∑
j∈S(t)

∥∥∥N∗ij∥∥∥2
+

(
33

32

)2

µ2 r

n

(∥∥∥PU(t)

⊥ (L̃(t) + Ñ (t))
∥∥∥)2

︸ ︷︷ ︸
Term 2

1
2

, (12)

where (ζ6) follows from triangle inequality, (ζ7) follows from Lemma 10, (ζ8) follows from triangle
inequality and the fact that (a + b)2 ≤ 2a2 + 2b2, (ζ9) from our previous observations about yj,r

and rj,t and (ζ10) from Lemma 17.
We will now proceed to bound Term 1 as follows:∥∥∥PU∗1:k⊥ (U (t)Σ(t))

∥∥∥2

F

(ζ11)

≤
∥∥∥PU∗1:k⊥ (M (t))

∥∥∥2

F
, (13)

where (ζ11) follows from considering the full SVD of M (t) and Lemma 10.

25

CHERAPANAMJERI JAIN NETRAPALLI

We now proceed to bound Term 2 as:

∑
j∈S(t)

∥∥∥N∗ij∥∥∥2
+

(
33

32

)2

µ2 r

n

(∥∥∥PU(t)

⊥ (L̃(t) + Ñ (t))
∥∥∥)2
≤ ‖N∗‖2F +

9

8
ρn
µ2r

n

∥∥∥PU(t)

⊥ (M (t))
∥∥∥2

F

≤ ‖N∗‖2F +
1

32

∥∥∥PU∗1:k⊥ (M (t))
∥∥∥2

F
, (14)

where the first inequality follows from Lemma 10 and the second inequality from the fact that
U (t+1) are top-k left singular vectors of M (t).

Using (12), (13), (14), we have:∥∥∥PU∗1:k⊥ (M (t+1))
∥∥∥
F

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ ‖N∗‖F +

(
1

8

∥∥∥PU∗1:k⊥ (M (t))
∥∥∥2

F
+ 4 ‖N∗‖2F +

1

8

∥∥∥PU∗1:k⊥ (M (t))
∥∥∥2

F

) 1
2

≤
∥∥∥PU∗1:k⊥ (L∗)

∥∥∥
F

+ 3 ‖N∗‖F +
1

2

∥∥∥PU∗1:k⊥ (M (t))
∥∥∥
F

where the first inequality follows from Lemma 10 and considering the full SVD ofM (t) and the last
inequality follows from the fact that

√
a+ b+ c ≤

√
a+
√
b+
√
c.

By recursively applying the above inequality, we have:∥∥∥PU∗1:k⊥ (M (T+1))
∥∥∥
F
≤ 2

∥∥∥PU∗1:k⊥ (L∗)
∥∥∥
F

+ 6 ‖N∗‖F +
ε

20n
.

Lemma now follows using (11) with the above equation.

B.6. Lemma 19

Lemma 19 Let Y1, Y2, . . . , Yn be iid d-dimensional random vectors such that Yi ∼ N (0, I)∀i ∈
[n]. Then, we have for any c1 ≤ 1:

P

(
∃v ∈ Rd, ‖v‖ = 1 s.t

∣∣∣∣∣
{
i : 〈v, Yi〉 ≥ 2

(
log

(
µ2rd

c1

)) 1
2

}∣∣∣∣∣ ≥ 3c1n

µ2rd

)
≤ β,

when n ≥ 16µ2rd
c1

[
log
(

1
β

)
+ d log (80d)

]
.

Proof Let v ∈ Rd s.t ‖v‖ = 1. We define the set Sv,θ as follows:

Sv,θ = {u : u ∈ Rd ∧ ‖u‖ = 1 ∧ 〈u, v〉 ≥ cos(θ)}.

We now define the set T (v, θ, δ) as:

T (v, θ, δ) = {x : x ∈ Rd ∧ ∃u ∈ Sv,θ s.t 〈u, x〉 ≥ δ}.

26

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Now, let y ∼ N (0, I). Using spherical symmetry of the Gaussian, w.l.o.g. v = e1. We now define
the complementary sets Q (ν) andR (ν) as:

Q (ν) = {x : x ∈ Rd ∧ x1 < ν}, R (ν) = {x : x ∈ Rd ∧ x1 ≥ ν}.

We will now bound the probability that y ∈ T (v, θ, δ) for δ = 2
(

log
(
µ2rd
c1

))1/2
and θ =

csc−1
(
10(d− 1)1/2

)
.

P (y ∈ T (e1, θ, δ))

=

∫
T (e1,θ,δ)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy

=

∫
T (e1,θ,δ)∩Q(δ/

√
2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy +

∫
T (e1,θ,δ)∩R(δ/

√
2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy

≤
∫

R(δ/
√

2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy +

∫
T (e1,θ,δ)∩Q(δ/

√
2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy

(ζ1)

≤ c1

µ2rd
+

∫
T (e1,θ,δ)∩Q(δ/

√
2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy,

where (ζ1) follows from the fact that for t ≥ 1,
∞∫
t

1√
2π

exp
(
−x2

2

)
dx ≤ exp

(
− t2

2

)
.

We will useM (θ, δ, γ) to denote the set {z : z ∈ Rd−1 ∧ (γ, z) ∈ T (e1, θ, δ) ∩ Q
(
δ/
√

2
)
}.

We can bound the second term as follows:∫
T (e1,θ,δ)∩Q(δ/

√
2)

1(√
2π
)d exp

(
−‖y‖

2

2

)
dy

≤
δ/
√

2∫
−∞

1√
2π

exp

(
−y

2
1

2

) ∫
M(θ,δ,y1)

1(√
2π
)d−1

exp

(
−‖z‖

2

2

)
dz

 dy1. (15)

Now, let z ∈ Rd be such that z1 = y1 ∧ z2:d ∈M (θ, δ, y1) for some y1 ∈ [−∞, δ/
√

2]. Therefore,
∃w ∈ Sv,θ such that 〈w, z〉 ≥ δ. We can decompose w into its components along v and orthogonal
to it, w = cos(θ′)v + sin(θ′)v⊥ for some unit vector v⊥ orthogonal to v and some θ′ ∈ [0, θ]. We
know that 〈w, z〉 ≥ δ and that 〈w, v〉 ≤ δ/

√
2. From these two inequalities and using the fact that

v = e1, we get:

sin(θ′) ‖z2:d‖ ≥ sin(θ′)
〈
v⊥, z

〉
≥ δ − cos(θ′) 〈v, z〉 ≥ δ − cos(θ′)

δ√
2
≥
(

1− 1√
2

)
δ.

27

CHERAPANAMJERI JAIN NETRAPALLI

This allows us to lower bound the length of z2:d by 10(d − 1)1/2
(

1− 1√
2

)
δ. For our choice of

δ and θ and using Lemma 12, we now get that the inner integration in equation 15 is atmost c1
µ2rd

.
Thus, we have the following bound on P (y ∈ T (e1, θ, δ)):

P (y ∈ T (e1, θ, δ)) ≤
2c1

µ2rd
. (16)

Let p be used to denote the value P (y ∈ T (e1, θ, δ)). Now, assume Y1, . . . , Yn are iid random
vectors with Yi ∼ N (0, I) ∀i ∈ [n]. Now let Zi be defined such that Zi = I [Yi ∈ T (ei, θ, δ)]∀i ∈
[n]. Note that Zi is a Bernoulli random variable which is 1 with probability p. It can be seen that
Zi satisfy satisfy the conditions of 13 with ν = np and c = 1. Therefore, setting t = nc1

16µ2rd
in

Theorem 13, we get:

P

(
n∑
i=1

Zi ≥
3nc1

µ2rd

)
≤ P

(
n∑
i=1

Zi ≥ np+
nc1

µ2rd

)

≤ P

(
n∑
i=1

Zi ≥ np+
√

2νt+ t

)
≤ exp (−t) . (17)

Now, consider the subset K := {x : x ∈ Rd ∧ |xi| ≤ 1∀i ∈ [d]}. Consider a partitioning of K into
subsets K (ε, j) = {x : x ∈ K ∧ ∀i ∈ [d]jiε − 1 ≤ xi ≤ (ji + 1)ε − 1} where j ∈ J is an index
for each of these subsets. Note that for any ε, at most

(⌈
2
ε

⌉)d such indices are required to ensure
that K ⊆

⋃
j∈J K (ε, j). Setting ε = 1

40d , we have for any two unit vectors v1 and v2 such that
v1, v2 ∈ K (ε, j) for some j, ‖v1 − v2‖ ≤ 1

40d1/2
. From this fact, it can be seen that Equation 17

holds for all unit vectors inK (ε, j) with any unit vector v ∈ K (ε, j). Therefore, we choose for each
subset K (ε, j), which contains a unit vector, a unit vector v and take an union bound over all such
subsets K (ε, j). After doing so we get the following bound:

P

(
∃v ∈ Rd ∧ ‖v‖ = 1 s.t

n∑
i=1

Zi ≥
3nc1

µ2rd

)
≤ (80d)d exp (−t)

(ζ2)

≤ β, (18)

where (ζ2) follows from the conditions of the theorem. Thus, we have proved the theorem.

B.7. Lemma 20

Lemma 20 Assume the conditions of Theorem 3. Let S ⊂ [n] denote any subset such that
|S| ≤ 1

64µ2r
. Let M∗\S(L∗\S , N∗\S , C∗\S) denote the matrices M∗ (L∗, N∗, C∗) restricted to the

columns not in S. Let [U\S ,Σ\S , V\S] = SVDr+1(M∗\S). Furthermore, let E = {x : x =

U\SΣ\Sy for some ‖y‖ ≤ 2µ
√
r/n}. Then ∀i, we have:

∥∥∥PU\S (L∗i +N∗i)− PE (L∗i +N∗i)
∥∥∥ ≤ 33

32
µ

√
r

n
‖N∗‖+

∥∥∥PU\S (N∗i)
∥∥∥ ,

where PU\S (M) = U\SU
>
\SM .

28

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Proof Let [U∗\S ,Σ
∗
\S , V

∗
\S] = SVDr(L∗\S). Using Lemma 11, L∗i = L∗\SV

∗
\Swi for some ‖wi‖ ≤

33
32µ
√

r
n . Now consider the vector yi := U\SΣ\SV

>
\SV

∗
\Swi. Note that

∥∥∥(Σ\S)−1U>\Syi

∥∥∥ ≤ 33
32µ
√

r
n .

Now, using definition of PE :∥∥∥PU\S (L∗i +N∗i)− PE (L∗i +N∗i)
∥∥∥ ≤ ∥∥∥PU\S (L∗i +N∗i)− yi

∥∥∥
≤
∥∥∥PU\S (N∗i)

∥∥∥+
∥∥∥PU\S (L∗\SV ∗\Swi)− U\SΣ\SV

>
\SV

∗
\Swi

∥∥∥
(ζ1)

≤
∥∥∥PU\S (N∗i)

∥∥∥+
33

32
µ

√
r

n

∥∥∥PU\S (L∗\S)V ∗\S − PU\S (L∗\S +N∗\S

)
V ∗\S

∥∥∥
≤
∥∥∥PU\S (N∗i)

∥∥∥+
33

32
µ

√
r

n

∥∥∥PU\S (N∗\S)∥∥∥ ,
where (ζ1) holds from Lemma 11 and the fact that V ∗\S has zeros in the rows corresponding to the
support of C∗.

B.8. Proof of Lemma 8

Proof Note that under the conditions of Theorem 3, the following three conditions hold with prob-
ability at least 1− δ.

#i

(
‖N∗i ‖ ≥ σ

(
√
d+ 2d

1
4

√
log

(
µ2r

c2

)))
≤ 3c2n

µ2r

∀ ‖v‖ = 1 #i

(
|〈v,N∗i 〉| ≥ 2σ

√
log

(
µ2r2d

c1

))
≤ 6c1n

µ2r2d

0.9σ
√
n ≤ ‖N∗‖ ≤ 1.1σ

√
n

Also, for c1 = 1
12288 and c2 = 1

1536 , the invariant implies at most n
512µ2r

clean data points are
thresholded at any stage. This allows us to apply Lemma 20 in the subsequent steps.

We will prove the lemma by induction on the number of thresholding steps completed so far.
Let t denote the number of thresholding steps executed so far.

Base Case (t = 0): The invariant trivially holds before any data points have been thresholded.
Induction Step (t = k + 1): Assuming that the invariant holds after the kth thresholding step,

we now have two cases for the (k + 1)th thresholding step:

Case 1: Thresholding with respect to ζ1. For a column i 6∈ Supp (C∗) thresholded with respect to
ζ1, we have from Lemma 20 that:

‖N∗i ‖ ≥ ζ1 −
33

32
µ

√
r

n
‖N∗‖ = σ

(
5

4
µ
√
r + d

1
2 + 2d

1
4

√
log

(
µ2r

c2

))
− 5

4
σµ
√
r

≥ σ

(
d

1
2 + 2d

1
4

√
log

(
µ2r

c2

))
. (19)

From our choice of ζ1, there are only n
1024µ2r

clean points which satisfy 19.

29

CHERAPANAMJERI JAIN NETRAPALLI

Case 2: Thresholding with respect to ζ2. For a column i 6∈ Supp (C∗), it can only be thresholded
if the number of columns to be thresholded exceeds 24c1n

µ2rd
. Note that:

‖PU(k+1)(N∗i)‖ ≥ ζ2 −
5

4
σµ
√
r = 2σ

√
2r

√
log

(
µ2r2d

c1

)
.

Note that U (k+1) is at most a rank 2r subspace. Therefore, ∃j such that:

∣∣∣〈N∗i , U (k+1)
j

〉∣∣∣ ≥ 2σ

√
log

(
µ2r2d

c1

)
. (20)

Taking a union bound over all j ∈ [r + 1] and using Lemma 19 for both positive and
negative inner product values, we get that at most 12c1n

µ2rd
clean points satisfy 20. Since, we

threshold at least 24c1n
µ2rd

points, at least half of them must be outliers and hence the invariant
holds in the next iteration.

Appendix C. Gaussian Noise: Proof of Theorem 3

Proof We will prove the theorem for c1 = 1
12288 and c2 = 1

1536 . For our choices of c1 and c2 and
n, we have that:

#i

(
‖N∗i ‖ ≥ σ

(
√
d+ 2d

1
4

√
log

(
µ2r

c2

)))
≤ 3c2n

µ2r

∀ ‖v‖ = 1 #i

(
|〈v,N∗i 〉| ≥ 2σ

√
log

(
µ2r2d

c1

))
≤ 6c1n

µ2r2d

0.9σ
√
n ≤ ‖N∗‖ ≤ 1.1σ

√
n

with probability at least 1− δ from Lemmas 19, 16 and Corollary 15 along with our choice of n.
From Lemma 8, we know that Invariant 1 holds at the termination of the algorithm. Therefore,

at most n
512µ2r

inliers are removed (The number of inliers removed is at most αn+ n
1024µ2r

).

Suppose the algorithm terminated in the T th iteration. Let M := M∗ − C(T). We will start
by making a few observations. The algorithm terminates when no data point is thresholded. Let
[U,Σ, V] = SVDr+1(M). Furthermore, define E = {x : x = UΣy for some ‖y‖ ≤ 2µ

√
r/n}.

Now, define set A as:

A :=

{
i : ‖PU ((M)i)− PE((M)i)‖ ≥ σ

√
2r

(
5

4
µ+ 2 log

1
2

(
µ2r2d

c1

))}
,

and B as:

B :=

{
i : ‖PU (Mi)− PE(Mi)‖ ≥ σ

(
d

1
2 + 2d

1
4

(
log

1
2

(
µ2r

c2

)))
+ σ

5

4
µ
√
r

}
.

30

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Recall that we will threshold the columns in A if |A| ≥ 24c1n
µ2rd

and the columns in B if B is not
empty. Therefore, we know that:

∀i ∈ [n] ‖PU (Mi)− PE(Mi)‖ ≤ σ
(
d

1
2 + 2d

1
4

(
log

1
2

(
µ2r

c2

)))
+ σ

5

4
µ
√
r, |A| ≤ 24c1n

µ2rd
.

(21)
Let S denote the set of data points that have been thresholded when the algorithm terminated, i.e

S = CS(T). Let L = L∗\S , N = N∗\S and C = C∗\S . Additionally, let [U∗\S ,Σ
∗
\S , V

∗
\S] = SVD(L).

Similar to the proofs of Theorems 1 and 2, we start as follows:

∥∥∥PU1:r
⊥ (L∗)

∥∥∥ ≤ (∥∥∥PU1:r
⊥ (L)

∥∥∥2
+
∑
i∈S

∥∥∥PU1:r
⊥ (U∗\SΣ∗\Swi)

∥∥∥2
) 1

2

ζ1
≤

(∥∥∥PU1:r
⊥ (L)

∥∥∥2
+
∑
i∈S

9

8
µ2 r

n

∥∥∥PU1:r
⊥ (U∗\SΣ∗\S)

∥∥∥2
) 1

2

(22)

ζ2
≤
(∥∥∥PU1:r

⊥ (L)
∥∥∥2

+ 3ρn
9

8
µ2 r

n

∥∥∥PU1:r
⊥ (L)

∥∥∥2
) 1

2

≤ 5

4

∥∥∥PU1:r
⊥ (L)

∥∥∥ ≤ 5

4

(
‖N‖+

∥∥∥PU1:r
⊥ (L+N)

∥∥∥)
ζ3
≤ 5

4

(
‖N∗‖+

∥∥∥PU1:r
⊥ (M)

∥∥∥) =
5

4

(
‖N∗‖+

∥∥∥PU1:r
⊥ (PU (M))

∥∥∥) , (23)

ζ1 follows using Lemma 11, ζ2 follows using |S| ≤ 2ρn, ζ3 follows using Lemma 10 where the last
equality follows from the fact that U consists of the top r + 1 singular vectors of M .

Now, let Y be an orthogonal basis of the subspace spanned by PU (L). Note that the subspace
spanned by Y is at most rank-r. Let O denote the set of corrupted columns that haven’t been
thresholded at the termination of the algorithm and let Ol := O ∩A and Os := O\Ol. We can now
bound

∥∥∥PU1:r
⊥ (PU (M))

∥∥∥ as follows:∥∥∥PU1:r
⊥ (PU (M))

∥∥∥ ≤ ∥∥P Y⊥ (PU (L+N + C))
∥∥ ≤ ∥∥P Y⊥ (PU (N + C))

∥∥ ≤ ‖N‖+
∥∥P Y⊥ (PU (C))

∥∥

≤ ‖N∗‖+

∑
i∈Ol

∥∥P Y⊥ (PU (Ci))
∥∥2

︸ ︷︷ ︸
Term 1

+
∑
j∈Os

∥∥P Y⊥ (PU (Cj))
∥∥2

︸ ︷︷ ︸
Term 2

1
2

, (24)

where first inequality follows from the fact that U1:r are top singular vectors of PU (M) and second
inequality follows from definition of Y .

We can now bound Term 1 as follows:∑
i∈Ol

∥∥P Y⊥ (PU (Ci))
∥∥2 (ζ1)

≤ 2
∑
i∈Ol

∥∥P Y⊥ (PE (Ci))
∥∥2

+
∥∥P Y⊥ ((PU (Ci)− PE (Ci)))

∥∥2

≤ 2
∑
i∈Ol

4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ ‖PU (Ci)− PE (Ci)‖2 (From Definition of E)

31

CHERAPANAMJERI JAIN NETRAPALLI

(ζ2)

≤ 48c1n

µ2rd

4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ σ2

4µ2r + 2

(
√
d+ 2d

1
4

√
log

(
µ2r

c2

))2

(ζ3)

≤ 48c1n

µ2rd

(
4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ σ2

(
4µ2r + 2

(
2d+ 8d

1
2 log

(
µ2r

c2

))))
≤ 48c1n

µ2rd

(
4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ σ2

(
4µ2r + 4d+ 16d

1
2 log

(
µ2r

c2

)))
(ζ4)

≤ 48c1n

µ2rd

(
4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ σ2
(

4µ2r + 4d+ 16d
1
2 log(µ2r) + 16d

1
2 log(1536)

))
(ζ5)

≤ 48c1n

µ2rd

(
4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ σ2
(
24µ2rd+ 120d

))
≤
∥∥P Y⊥ (M)

∥∥2

32
+

48c1n

µ2rd
σ2
(
144µ2rd

)
(From Lemma 10)

≤
∥∥P Y⊥ (M)

∥∥2

32
+ 0.563σ2n

where (ζ1) and (ζ3) follow from (a+ b)2 ≤ 2a2 + 2b2, ζ2 follows from (21). (ζ4) and (ζ5) follow
from log(x) ≤ x and

√
x ≤ x for all x ≥ 1.

We now bound Term 2 as:∑
j∈Os

∥∥P Y⊥ (PU (Cj))
∥∥2 (ζ6)

≤ 2
∑
j∈Os

∥∥P Y⊥ (PE (Cj))
∥∥2

+
∥∥P Y⊥ ((PU (Cj)− PE (Cj)))

∥∥2

≤ 2
∑
i∈Os

4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ ‖PU (Cj)− PE (Cj)‖2 (Definition of E)

(ζ7)

≤ 2αn

(
4µ2r

n

∥∥P Y⊥ (UΣ)
∥∥2

+ 2σ2

(
4µ2r + 8r log

(
µ2r2d

c1

)))
(ζ8)

≤
∥∥P Y⊥ (M)

∥∥2

32
+ 4αnσ2

(
4µ2r + 8r log(µ2) + 16r log(r) + 8r log(d) + 8r log(12288)

)
(ζ9)

≤
∥∥P Y⊥ (M)

∥∥2

32
+ 4αnσ2

(
12µ2r + 24r log(d) + 8r log(12288)

)
(ζ10)

≤
∥∥P Y⊥ (M)

∥∥2

32
+ 0.435σ2n log(d),

where (ζ6) and (ζ7) follow from (a+b)2 ≤ 2a2+2b2 along with (21). (ζ8) follows from Lemma 10,
(ζ9) follows from the fact that r ≤ d and log(x) ≤ x and (ζ10) follows from assuming log(d) ≥ 1
and µ ≥ 1.

From our bounds on Term 1 and Term 2 and (24), we have:∥∥∥PU1:r
⊥ (PU (M))

∥∥∥ ≤ ∥∥P Y⊥ (PU (M))
∥∥ ≤ 4

3
σ
√
n log(d).

Theorem now follows by using the above observation with (23):∥∥∥PU1:r
⊥ (L∗)

∥∥∥ ≤ 6

4
σ
√
n+

5

3
σ
√
n log(d) ≤ 4σ

√
n log(d).

32

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Appendix D. TORP-BIN

In this section, we propose an improvement to Algorithm 2 which uses binary search instead of a
linear scan in the outer iteration. This improves the running time on Algorithm 2 by almost a factor
of r.

D.1. Algorithm

In this section, we present our algorithm (See Algorithm 4) for OR-PCAN which improves the
running time of Algorithm 2 by almost a factor of r. The main insight is that inner iteration of
Algorithm 2 is independent of the value of k in the outer iteration save for the rank of the projection.
In Algorithm 4, we use binary search on k instead of a linear scan which reduces the number of outer
iterations from O (r) to O (log r).

Algorithm 4 Binary search based TORP (TORP-BIN)

1: Input: Corrupted matrix M∗ ∈ Rd×n, Target rank r, Expressivity parameter η, Threshold
fraction ρ, Number of inner iterations T

2: minK ← 1, maxK ← r
3: while minK ≤ maxK do
4: k ← bminK+maxK

2 c
5: C(0) ← 0, τ ← false
6: for t = 0 to t = T do
7: [U (t),Σ(t), V (t)]← SVDk

(
M∗ − C(t)

)
, L(t) ← U (t)Σ(t)(V (t))>

} Projection onto
space of
low rank
matrices

8: E ← (Σ(t))−1(U (t))>M∗ /* Compute Incoherence */
9: R← (I − U (t)(U (t))>)M∗ /* Compute residual */

Projection onto space of
column sparse matrices

10: CS(t+1) ← HT 2ρ (M∗, E) ∪HT ρ (M∗, R)
11: C(t+1) ←M∗CS(t+1)

12: nthres ← |{i : ‖Ei‖ ≥ η}| /* Compute high incoherence points */
13: τ ← τ ∨ (nthres ≥ 2ρn) /* Check termination conditions */
14: end for
15: if τ then
16: maxK ← k − 1
17: else
18: minK ← k + 1
19: [U,Σ, V]← SVDk

(
M∗ − C(T+1)

)
20: end if
21: end while
22: Return: U

33

CHERAPANAMJERI JAIN NETRAPALLI

D.2. Analysis

In this section, we will state and prove a theoretical guarantee for Algorithm 4.

Theorem 21 Assume the conditions of Theorem 2. Furthermore, suppose that ‖N∗‖F ≤
σk(L∗)

16 for
some k. Then, for all α ≤ 1

128µ2r
, Algorithm 4 when run with parameters ρ = 1

128µ2r
, η = 2µ

√
r
n

and T = log 20nσ1(M)
ε , returns a subspace U which satisfies:∥∥∥(I − UU>)L∗

∥∥∥
F
≤ 3

∥∥∥(I − U∗1:k(U
∗
1:k)
>)L∗

∥∥∥
F

+ 9 ‖N∗‖F +
ε

10n
.

Proof We will begin by bounding the running time of the algorithm. Note that because of the binary
search, the algorithm will run for at most O (log r) outer iterations.

Let t denote the number of outer iterations of the algorithm. Let the value of k(maxK, minK)
in iteration t be denoted by k(t) (maxK(t), minK(t)). We will first prove the claim that at any point
in the running of the algorithm, maxK ≥ k. We will prove the claim via induction on the number
of iterations t:

Base Case: t = 0 The base case is trivially true as maxK = r.

Induction Step: t = l+1 Assume that the claim remains true at iteration t = l. In the (l+1)th

iteration, we assume two cases:

Case 1: The inner iteration finishes with τ = false. In this case, maxK is not updated.
So, the claim remains true for t = (l + 1)

Case 2: The inner iteration finishes with τ = true. In this case, k(t) > k (From
Lemma 17 and the termination condition of the inner iteration.). In this iteration,maxK
is updated to k(t) − 1 ≥ k. Thus, the claim remains true.

Therefore, at termination of the algorithm, we have maxK ≥ k. Suppose that the algorithm
terminated after iteration T . Note that minK(t) ≤ k ≤ maxK(t)∀0 ≤ t ≤ T . Therefore, we
have minK(T+1) = maxK(T+1) + 1. For this to happen, the inner iteration must have run with
k(T ′) = maxK(T+1) with τ = false for some iteration T ′ and also that this is the last such suc-
cessful iteration as minK is not updated after iteration T ′. Therefore, the algorithm returns the
subspace corresponding to k(T ′) = maxK(T+1) ≥ k. Since the inner iteration is successful for
iteration T ′, the Theorem is true from the application of Lemma 7 and noting that kT

′ ≥ k.

Appendix E. Fast Projection Operator

In this section, we will describe a fast algorithm to compute the projection operator onto the ellipsoid
in Algorithm 2. Formally, we are provided an orthogonal basisU ∈ Rd×r, a positive diagonal matrix
Σ, a bound b and a vector x. Let E = {y : y = UΣz for some ‖z‖ ≤ b}. The goal is to compute
the projection of the vector x onto the set E .

E.1. Algorithm

In this section, we present our algorithm (Algorithm 5) to compute the projection onto the set E . We
show that the projection operation boils down to an univariate optimization problem on a monotone
function. We then perform binary search on an interval in which the solution is guaranteed to lie.

34

THRESHOLDING BASED EFFICIENT OUTLIER ROBUST PCA

Algorithm 5 w = FAST-PR(U,Σ, b, x, ε)

1: Input: Orthogonal Basis U ∈ Rd×r, Positive Diagonal Matrix Σ, Bound b, Projection Vector
x, Accuracy Parameter ε

2: σmin = min
i∈[r]

(Σi,i), σmax = max
i∈[r]

(Σi,i)

3: y ← ΣU>x
4: λmin = 0, λmax = ‖y‖

b

5: T ← log
(
λmax

√
r‖x‖

σ2
minε

)
6: for Iteration t = 0 to t = T do
7: λ(t) ← λmin+λmax

2

8: z(t) ← (λI + Σ2)−1y
9: if

∥∥z(t)
∥∥ ≤ b then

10: λmax ← λ(t)

11: else
12: λmin ← λ(t)

13: end if
14: end for
15: Return: UΣz(T)

E.2. Analysis

Theorem 22 Let U ∈ Rd×r be an orthonormal matrix and Σ ∈ Rr×r be a positive diagonal
matrix. Then, for any b ≥ 0, x ∈ Rd and ε, the vector w returned by Algorithm 5 satisfies:

‖w − PE(x)‖ ≤ ε

where E := {y : y = UΣz for some ‖z‖ ≤ b}

Proof We first define the convex optimization problem corresponding to the projection operator
PE . Then, we have:

PE(x) = arg min
y
‖x− y‖ s.t y ∈ E

Since, y ∈ E , a solution to the above optimization problem is equivalent to:

PE(x) = arg min
z
‖x− UΣz‖2 s.t ‖z‖2 ≤ b2 (25)

Note that both the constraint and the objective function are convex. Therefore, we can introduce
a KKT multiplier λ ≥ 0 and writing down the stationarity conditions of 25, we get:

2Σ2z + 2λz = 2ΣU>x =⇒ z =
(
Σ2 + λI

)−1
ΣU>x

Now, we just need to ensure that
∥∥∥(Σ2 + λI

)−1
ΣU>x

∥∥∥ ≤ b. Let

f(λ) =
∥∥∥(Σ2 + λI

)−1
ΣU>x

∥∥∥ for λ ≥ 0. Let λ∗ be the solution to f(λ) = min(
∥∥Σ−1U>x

∥∥ , b).
We will first prove that at any point in the running of the algorithm λmax ≥ λ∗ and λmin ≤ λ∗. We
prove the claim by induction on the number of iterations t:

35

CHERAPANAMJERI JAIN NETRAPALLI

Base Case t = 0: Since λmin = 0, the lower bound holds trivially. That λmax ≥ λ∗ can be
proved as follows:

f(λmax) =
∥∥∥(Σ2 + λmaxI

)−1
ΣU>x

∥∥∥ ≤ min

(∥∥∥Σ−1U>x
∥∥∥ , ∥∥ΣU>x

∥∥
λmax

)
≤ min

(∥∥∥Σ−1U>x
∥∥∥ , b) .

Since, f is a monotonically decreasing function, the claim holds true in the base case.

Induction Step t = (k + 1): Assume that the claim holds till t = k. We have two cases for
iteration k + 1:

Case 1: λmax ← λ(t+1). In this case, λmin ≤ λ∗ still holds from the inductive hypoth-
esis. For λmax, we have:

f(λ(t+1)) =

∥∥∥∥(Σ2 + λ(t+1)I
)−1

ΣU>x

∥∥∥∥ ≤ min
(∥∥∥Σ−1U>x

∥∥∥ , f(λ(t+1))
)

≤ min
(∥∥∥Σ−1U>x

∥∥∥ , b) ,
where the last inequality holds from the fact that λmax was updated in this iteration.
From the monotonicity of f , the induction hypothesis holds in this iteration.

Case 2: λmin ← λ(t+1). In this case, λmax ≥ λ∗ by the inductive hypothesis. In this
case, we have:

f(λ(t+1)) ≥ b ≥ f(λ∗).

From the monotonicity of f , the induction hypothesis holds in this iteration.

Note that (λmax−λmin) is halved at each iteration. Therefore, at the termination of the algorith-
m, we have (λmax − λmin) ≤ σ2

minε√
r‖x‖ . From our claim, this implies that

∣∣λ∗ − λ(T)
∣∣ ≤ σ2

minε√
r‖x‖ . Note

that we can writePE(x) = UΣ2(λ∗I+Σ2)−1U>x. Note that ‖PE(x)− w‖ =
∥∥U>(PE(x)− w)

∥∥.
We will now bound the element-wise difference between U>PE(x) and U>w:

∣∣∣e>i Σ2((λ∗I + Σ2)−1 − (λ(T)I + Σ2)−1)U>x
∣∣∣ ≤ ‖x‖ ∣∣∣∣σ2

i

(
1

λ∗ + σ2
i

− 1

λ(T) + σ2
i

)∣∣∣∣
≤ ‖x‖σ2

i

∣∣∣∣∣ λ(T) − λ∗

(λ∗ + σ2
i)(λ

(T) + σ2
i)

∣∣∣∣∣ ≤ ‖x‖
∣∣∣∣∣λ(T) − λ∗

σ2
i

∣∣∣∣∣ ≤ ε√
r
.

By applying the element-wise bound to Σ2((λ∗I + Σ2)−1 − (λ(T)I + Σ2)−1)U>x, we have:

‖PE(x)− w‖ ≤
√
r
ε√
r
≤ ε.

36

	Introduction
	Related Works
	Notations

	Problem Formulation
	Our Results
	OR-PCA – Noiseless Setting
	OR-PCAN – Arbitrary Noise
	OR-PCAG– Gaussian Noise

	Outlier Robust PCA: Noiseless Setting
	Outlier Robust PCA: General Noise
	Outlier Robust PCA: Gaussian Noise
	Proof Overview
	Noiseless Setting—Theorem 1
	Arbitrary Noise—Theorem 2
	Gaussian Noise—Theorem 3

	Conclusions and Future Works
	Supplementary Results and Preliminaries
	Proof of Technical Lemmas
	Proof of Lemma 4
	Proof of Lemma 5
	Lemma 17
	Proof of Lemma 18
	Proof of Lemma 7
	Lemma 19
	Lemma 20
	Proof of Lemma 8

	Gaussian Noise: Proof of Theorem 3
	TORP-BIN
	Algorithm
	Analysis

	Fast Projection Operator
	Algorithm
	Analysis

