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Abstract
In this paper, we revisit the recently established theoretical guarantees for the convergence of the
Langevin Monte Carlo algorithm of sampling from a smooth and (strongly) log-concave density.
We improve the existing results when the convergence is measured in the Wasserstein distance and
provide further insights on the very tight relations between, on the one hand, the Langevin Monte
Carlo for sampling and, on the other hand, the gradient descent for optimization. Finally, we also
establish guarantees for the convergence of a version of the Langevin Monte Carlo algorithm that
is based on noisy evaluations of the gradient.
Keywords: Markov Chain Monte Carlo, Approximate sampling, Rates of convergence, Langevin
algorithm, Gradient descent

1. Introduction

Let p be a positive integer and f : Rp → R be a measurable function such that the integral∫
Rp exp{−f(θ)} dθ is finite. In various applications, one is faced with the problems of finding

the minimum point of f or computing the average with respect to the probability density

π(θ) =
e−f(θ)∫

Rp e−f(u) du
.

In other words, one often looks for approximating the values θ∗ and θ̄ defined as

θ̄ =

∫
Rp

θ π(θ) dθ, θ∗ ∈ arg min
θ∈Rp

f(θ).

In most situations, the approximations of these values are computed using iterative algorithms which
share many common features. There is a vast variety of such algorithms for solving both tasks,
see for example (Boyd and Vandenberghe, 2004) for optimization and (Atchadé et al., 2011) for
approximate sampling. The similarities between the task of optimization and that of averaging have
been recently exploited in the papers (Dalalyan, 2014; Durmus and Moulines, 2016; Durmus et al.,
2016) in order to establish fast and accurate theoretical guarantees for sampling from and averaging
with respect to the density π using the Langevin Monte Carlo algorithm. The goal of the present
work is to push further this study both by improving the existing bounds and by extending them in
some directions.
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We will focus on strongly convex functions f having a Lipschitz continuous gradient. That is,
we assume that there exist two positive constants m and M such thatf(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ (m/2)‖θ − θ′‖22,

‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2,
∀θ,θ′ ∈ Rp, (1)

where ∇f stands for the gradient of f and ‖ · ‖2 is the Euclidean norm. We say that the den-
sity π(θ) ∝ e−f(θ) is log-concave (resp. strongly log-concave) if the function f satisfies the first
inequality of (1) with m = 0 (resp. m > 0).

The Langevin Monte Carlo (LMC) algorithm studied throughout this work is the analogue of
the gradient descent algorithm for optimization. Starting from an initial point ϑ(0) ∈ Rp that may
be deterministic or random, the iterations of the algorithm are defined by the update rule

ϑ(k+1,h) = ϑ(k,h) − h∇f(ϑ(k,h)) +
√

2h ξ(k+1); k = 0, 1, 2, . . . (2)

where h > 0 is a tuning parameter, referred to as the step-size, and ξ(1), . . . , ξ(k), . . . is a sequence
of mutually independent, and independent of ϑ(0), centered Gaussian vectors with covariance ma-
trices equal to identity. Under the assumptions imposed on f , when h is small and k is large (so that
the product kh is large), the distribution of ϑ(k,h) is close in various metrics to the distribution with
density π(θ), hereafter referred to as the target distribution. An important question is to quantify
this closeness; this might be particularly useful for deriving a stopping rule for the LMC algorithm.

The measure of approximation used in this paper is the Wasserstein-Monge-Kantorovich dis-
tance W2. For two measures µ and ν defined on (Rp,B(Rp)), W2 is defined by

W2(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
Rp×Rp

‖θ − θ′‖22 dγ(θ,θ′)
)1/2

,

where the inf is with respect to all joint distributions γ having µ and ν as marginal distributions.
This distance is perhaps more suitable for quantifying the quality of approximate sampling schemes
than other metrics such as the total variation. Indeed, on the one hand, bounds on the Wasserstein
distance—unlike the bounds on the total-variation distance—directly provide the level of approxi-
mating the first order moment. For instance, if µ and ν are two Dirac measures at the points θ and θ′,
respectively, then the total-variation distance DTV(δθ, δθ′) equals one whenever θ 6= θ′, whereas
W2(δθ, δθ′) = ‖θ − θ′‖2 is a smoothly increasing function of the Euclidean distance between θ
and θ′. This seems to better correspond to the intuition on the closeness of two distributions.

2. Improved guarantees for the Wasserstein distance

The rationale behind the LMC algorithm (2) is simple: the Markov chain {ϑ(k,h)}k∈N is the Euler
discretization of a continuous-time diffusion process {Lt : t ∈ R+}, known as Langevin diffusion,
that has π as invariant density (Bhattacharya, 1978, Thm. 3.5). The Langevin diffusion is defined
by the stochastic differential equation

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0, (3)

where {W t : t ≥ 0} is a p-dimensional Brownian motion. When f satisfies condition (1), equation
(3) has a unique strong solution which is a Markov process. Let νk be the distribution of the k-th
iterate of the LMC algorithm, that is ϑ(k,h) ∼ νk.
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Theorem 1 Assume that h ∈ (0, 2/M). The following claims hold:

(a) If h ≤ 2/(m+M) then W2(νK , π) ≤ (1−mh)KW2(ν0, π) + (M/m)(5hp/3)1/2.

(b) If h ≥ 2/(m+M) then W2(νK , π) ≤ (Mh− 1)KW2(ν0, π) +
Mh

2−Mh
(5hp/3)1/2.

The proof of this theorem is postponed to Section 6. We content ourselves here by discussing
the relation of this result to previous work. Note that if the initial value ϑ(0) = θ(0) is deterministic
then, according to (Durmus and Moulines, 2016, Theorem 1), we have

W2(ν0, π)2 =

∫
Rp

‖θ(0) − θ‖22π(dθ)

= ‖θ(0) − θ̄‖22 +

∫
Rp

‖θ̄ − θ‖22π(dθ)

≤ ‖θ(0) − θ̄‖22 + p/m. (4)

First of all, let us remark that if we choose h and K so that

h ≤ 2/(m+M), e−mhKW2(ν0, π) ≤ ε/2, (M/m)(5hp/3)1/2 ≤ ε/2, (5)

then we have W2(νK , π) ≤ ε. In other words, conditions (5) are sufficient for the density of the
output of the LMC algorithm with K iterations to be within the precision ε of the target density
when the precision is measured using the Wasserstein distance. This readily yields

h ≤ 3m2ε2

20M2p
∧ 2

m+M
and hK ≥ 1

m
log
(2(‖θ(0) − θ̄‖22 + p/m)1/2

ε

)
Assuming m,M and ‖θ(0) − θ̄‖22/p to be constants, we can deduce from the last display that it
suffices K = Cpε−2 log(p/ε) number of iterations in order to reach the precision level ε. This
fact has been first established in (Dalalyan, 2014) for the LMC algorithm with a warm start and
the total-variation distance. It was later improved by Durmus and Moulines (2016), who showed
that the same result holds for any starting point and established similar bounds for the Wasserstein
distance.

In order to make the comparison easier, let us recall the corresponding result from1 (Durmus
and Moulines, 2016). It asserts that under condition (1), if h ≤ 1/(m+M) then

W 2
2 (νK , π) ≤ 2

(
1− mMh

m+M

)K
W 2

2 (ν, π)+
Mhp

m
(m+M)

(
h+

m+M

2mM

)(
2+

M2h

m
+
M2h2

6

)
.

(6)
When we compare this inequality with the claims of Theorem 1, we see that

i) Theorem 1 holds under weaker conditions: h ≤ 2/M instead of h ≤ 1/(m+M).

ii) The analytical expressions of the upper bounds on the Wasserstein distance in Theorem 1 are
not as involved as those of (6).

1. We slightly adapt the original result taking into account the fact that we are dealing with the LMC algorithm with a
constant step.
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Figure 1: The curves of the functions p 7→ logK(p), where K(p) is the number of steps— derived
either from our bound or from the bound (6) of (Durmus and Moulines, 2016)—sufficing
for reaching the precision level ε (for ε = 0.1 and ε = 0.3).

iii) If we take a closer look, we can check that when h ≤ 1/(m+M), the upper bound in part (a) of
Theorem 1 is sharper than that of (6).

In order to better illustrate the claim in iii) above, we consider a numerical example in which
m = 4, M = 5 and ‖θ(0) − θ̄‖22 = p. Let Four(h,K, p) and FDM(h,K, p) be the upper bounds on
W2(νK , π) provided by Theorem 1 and (6). For different values of p, we compute

Kour(p) = min
{
K : there exists h ≤ 1/(m+M) such that Four(h,K, p) ≤ ε

}
,

KDM(p) = min
{
K : there exists h ≤ 1/(m+M) such that FDM(h,K, p) ≤ ε

}
.

The curves of the functions p 7→ logKour(p) and p 7→ logKDM(p), for ε = 0.1 and ε = 0.3 are
plotted in Figure 1. We can deduce from these plots that the number of iterations yielded by our
bound is more than 5 times smaller than the number of iterations recommended by bound (6) of
Durmus and Moulines (2016).

Remark 2 Although the upper bound on W2(ν0, π) provided by (4) is relevant for understanding
the order of magnitude of W2(ν0, π), it has limited applicability since the distance ‖θ0 − θ̄‖ might
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be hard to evaluate. An attractive alternative to that bound is the following2:

W2(ν0, π)2 =

∫
Rp

‖θ(0) − θ‖22π(dθ)

≤ 2

m

∫
Rp

(
f(θ0)− f(θ)−∇f(θ)>(θ0 − θ)

)
π(dθ)

=
2

m

(
f(θ0)−

∫
Rp

f(θ)π(dθ) + p
)
.

If f is lower bounded by some known constant, for instance if f ≥ 0, the last inequality provides
the computable upper bound W2(ν0, π)2 ≤ 2

m

(
f(θ0) + p

)
.

3. Relation with optimization

We have already mentioned that the LMC algorithm is very close to the gradient descent algorithm
for computing the minimum θ∗ of the function f . However, when we compare the guarantees
of Theorem 1 with those available for the optimization problem, we remark the following striking
difference. The approximate computation of θ∗ requires a number of steps of the order of log(1/ε)
to reach the precision ε, whereas, for reaching the same precision in sampling from π, the LMC
algorithm needs a number of iterations proportional to (p/ε2) log(p/ε). The goal of this section
is to explain that this, at first sight very disappointing behavior of the LMC algorithm is, in fact,
continuously connected to the exponential convergence of the gradient descent.

The main ingredient for the explanation is that the function f(θ) and the function fτ (θ) =
f(θ)/τ have the same point of minimum θ∗, whatever the real number τ > 0. In addition, if we
define the density function πτ (θ) ∝ exp

(
− fτ (θ)

)
, then the average value

θ̄τ =

∫
Rp

θ πτ (θ) dθ

tends to the minimum point θ∗ when τ goes to zero. Furthermore, the distribution πτ (dθ) tends to
the Dirac measure at θ∗. Clearly, fτ satisfies (1) with the constants mτ = m/τ and Mτ = M/τ .
Therefore, on the one hand, we can apply to πτ claim (a) of Theorem 1, which tells us that if we
choose h = 1/Mτ = τ/M , then

W2(νK , πτ ) ≤
(

1− m

M

)K
W2(δθ(0) , πτ ) + 2

(M
m

)(pτ
M

)1/2
. (7)

On the other hand, the LMC algorithm with the step-size h = τ/M applied to fτ reads as

ϑ(k+1,h) = ϑ(k,h) − 1

M
∇f(ϑ(k,h)) +

√
2τ

M
ξ(k+1); k = 0, 1, 2, . . . (8)

When the parameter τ goes to zero, the LMC sequence (8) tends to the gradient descent sequence
θ(k). Therefore, the limiting case of (7) corresponding to τ → 0 writes as

‖θ(K) − θ∗‖2 ≤
(

1− m

M

)K
‖θ(0) − θ∗‖2,

which is a well-known result in Optimization. This clearly shows that Theorem 1 is a natural
extension of the results of convergence from optimization to sampling.

2. The second line follows from strong convexity whereas the third line is a consequence of the two identities∫
Rp ∇f(θ)π(dθ) = 0 and

∫
Rp θ

>∇f(θ)π(dθ) = p. These identities follow from the fundamental theorem of
calculus and the integration by parts formula, respectively.
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4. Guarantees for the noisy gradient version

In some situations, the precise evaluation of the gradient ∇f(θ) is computationally expensive or
practically impossible, but it is possible to obtain noisy evaluations of ∇f at any point. This is the
setting considered in the present section. More precisely, we assume that at any point ϑ(k,h) ∈ Rp
of the LMC algorithm, we can observe the value

Y (k,h) = ∇f(ϑ(k,h)) + σ ζ(k),

where {ζ(k) : k = 0, 1, . . .} is a sequence of independent zero mean random vectors such that
E[‖ζ(k)‖22] ≤ p and σ > 0 is a deterministic noise level. Furthermore, the noise vector ζ(k) is
independent of the past states ϑ(1,h), . . . ,ϑ(k,h). The noisy LMC (nLMC) algorithm is then defined
as

ϑ(k+1,h) = ϑ(k,h) − hY (k,h) +
√

2h ξ(k+1); k = 0, 1, 2, . . . (9)

where h > 0 and ξ(k+1) are as in (2). The next theorem extends the guarantees of Theorem 1 to the
noisy-gradient setting and to the nLMC algorithm.

Theorem 3 Let ϑ(K,h) be the K-th iterate of the nLMC algorithm (9) and νK be its distribution.
If the function f satisfies condition (1) and h ≤ 2/M then the following claims hold:

(a) If h ≤ 2/(m+M) then

W2(νK , π) ≤
(

1− mh

2

)K
W2(ν0, π) +

(2hp

m

)1/2{σ2(M +m)2

(M −m)2
+

3.3M2

m

}1/2
. (10)

(b) If h ≥ 2/(m+M) then

W2(νK , π) ≤
(Mh

2

)K
W2(ν0, π) +

( 2h2p

2−Mh

)1/2{σ2(M +m)2

(M −m)2
+

6.6M

2−Mh

}1/2
.

To understand the potential scope of applicability of this result, let us consider a typical sta-
tistical problem in which f(θ) is the negative log-likelihood of n independent random variables
X1, . . . , Xn. Then, if `(θ, x) is the log-likelihood of one variable, we have

f(θ) =

n∑
i=1

`(θ, Xi).

In such a situation, if the Fisher information is not degenerated, both m and M are proportional to
the sample size n. When the gradient of `(θ, Xi) with respect to parameter θ is hard to compute,
one can replace the evaluation of ∇f(ϑ(k,h)) at each step k by that of Yk = n∇θ`(ϑ(k,h), Xk).
Under suitable assumptions, this random vector satisfies the conditions of Theorem 3 with a σ2

proportional to n. Therefore, if we analyze the expression between curly brackets in (10), we see
that the additional term, σ2 (M+m)2

(M−m)2
, due to the subsampling is of the same order of magnitude as

the term 5M2/(3m). Thus, using the subsampled gradient in the LMC algorithm does not cause a
significant deterioration of the precision while reducing considerably the computational burden.

6



FURTHER ANALOGY BETWEEN SAMPLING AND OPTIMIZATION

5. Discussion and outlook

We have established simple guarantees for the convergence of the Langevin Monte Carlo algorithm
under the Wasserstein metric. These guarantees are valid under strong convexity and Lipschitz-
gradient assumptions on the log-density function, for a step-size smaller than 2/M , where M is
the constant in the Lipschitz condition. These guarantees are sharper than previously established
analogous results and in perfect agreement with the analogous results in Optimization. Furthermore,
we have shown that similar results can be obtained in the case where only noisy evaluations of the
gradient are possible.

There are a number of interesting directions in which this work can be extended. One relevant
and closely related problem is the approximate computation of the volume of a convex body, or,
the problem of sampling from the uniform distribution on a convex body. This problem has been
analyzed by other Monte Carlo methods such as “Hit and Run” in a series of papers by Lovász
and Vempala (2006b,a), see also the more recent paper (Bubeck et al., 2015). Numerical experi-
ments reported in (Bubeck et al., 2015) suggest that the LMC algorithm might perform better in
practice than “Hit and Run”. It would be interesting to have a theoretical result corroborating this
observation.

Other interesting avenues for future research include the possible adaptation of the Nesterov
acceleration to the problem of sampling, extensions to second-order methods as well as the allevia-
tion of the strong-convexity assumptions. We also plan to investigate in more depth the applications
is high-dimensional statistics (see, for instance, Dalalyan and Tsybakov (2012)). Some results in
these directions are already obtained in (Dalalyan, 2014; Durmus and Moulines, 2016; Durmus
et al., 2016). It is a stimulating question whether we can combine ideas of the present work and the
aforementioned earlier results to get improved guarantees.

6. Proofs

The first part of the proofs of Theorem 1 and Theorem 3 is the same. We start this section by this
common part and then we proceed with the proofs of the two theorems separately.

Let W be a p-dimensional Brownian Motion such that W (k+1)h −W kh =
√
h ξ(k+1). We

define the stochastic process L so that L0 ∼ π and

Lt = L0 −
∫ t

0
∇f(Ls) ds+

√
2W t, ∀ t > 0. (11)

It is clear that this equation implies that

L(k+1)h = Lkh −
∫ (k+1)h

kh
∇f(Ls) ds+

√
2 (W (k+1)h −W kh)

= Lkh −
∫ (k+1)h

kh
∇f(Ls) ds+

√
2h ξ(k+1).

Furthermore, {Lt : t ≥ 0} is a diffusion process having π as the stationary distribution. Since the
initial value L0 is drawn from π, we have Lt ∼ π for every t ≥ 0.

7



DALALYAN

Let us denote ∆k = Lkh − ϑ(k,h) and Ik = (kh, (k + 1)h]. We have

∆k+1 = ∆k + hY (k,h) −
∫
Ik

∇f(Lt) dt

= ∆k − h
(
∇f(ϑ(k,h) + ∆k)−∇f(ϑ(k,h))︸ ︷︷ ︸

:=Uk

)
+ σhζ(k) −

∫
Ik

(
∇f(Lt)−∇f(Lkh)

)
dt︸ ︷︷ ︸

:=V k

.

In view of the triangle inequality, we get

‖∆k+1‖2 ≤ ‖∆k − hUk + σhζ(k)‖2 + ‖V k‖2. (12)

For the first norm in the right hand side, we can use the following inequalities:

E[‖∆k − hUk + σhζ(k)‖22] = E[‖∆k − hUk‖22] + E[‖σhζ(k)‖22]

= E[‖∆k − hUk‖22] + σ2h2p. (13)

We need now three technical lemmas the proofs of which are postponed to Section 6.3.

Lemma 1 Let us introduce the constant γ that equals |1 −mh| if h ≤ 2/(m+M) and |1 −Mh| if
h ≥ 2/(m+M). (Since h ∈ (0, 2/M), this value γ satisfies 0 < γ < 1). It holds that

‖∆k − hUk‖2 ≤ γ‖∆k‖2. (14)

Lemma 2 If the function f is continuously differentiable and the gradient of f is Lipschitz with
constant M , then ∫

Rp

‖∇f(x)‖22 π(x) dx ≤Mp.

Lemma 3 If the function f has a Lipschitz-continuous gradient with the Lipschitz constant M , L
is the Langevin diffusion (11) and V (a) =

∫ a+h
a

(
∇f(Lt)−∇f(La)

)
dt for some a ≥ 0, then

(
E[‖V (a)‖22]

)1/2 ≤ (1

3
h4M3p

)1/2

+ (h3p)1/2M.

This completes the common part of the proof. We present below the proofs of the theorems.

6.1. Proof of Theorem 1

Using (12) with σ = 0 and Lemma 1, we get

‖∆k+1‖2 ≤ γ‖∆k‖2 + ‖V k‖2, ∀k ∈ N.

In view of the Minkowski inequality and Lemma 3, this yields

(E[‖∆k+1‖22])1/2 ≤ γ(E[‖∆k‖22])1/2 + (E[‖V k‖22])1/2

≤ γ(E[‖∆k‖22])1/2 + (1.82h3M2p)1/2,
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where we have used the fact that h ≤ 2/M . Using this inequality iteratively with k − 1, . . . , 0
instead of k, we get

(E[‖∆k+1‖22])1/2 ≤ γk+1(E[‖∆0‖22])1/2 + (1.82h3M2p)1/2
k∑
j=0

γj

≤ γk+1(E[‖∆0‖22])1/2 + (1.82h3M2p)1/2(1− γ)−1. (15)

Since ∆k+1 = L(k+1)h − ϑ(k+1,h) and L(k+1)h ∼ π, we readily get the inequality W2(νk+1, π) ≤(
E[‖∆k+1‖22]

)1/2. In addition, one can choose L0 so that W2(ν0, π) =
(
E[‖∆0‖22]

)1/2. Using
these relations and substituting γ by its expression in (15), we get the two claims of the theorem.

6.2. Proof of Theorem 3

Using (12), (13) and Lemma 1, we get

(E[‖∆k+1‖22])1/2 ≤ (E[‖∆k − hUk + σhζ(k)‖22])1/2 + (E[‖V k‖22])1/2

≤ (E[‖∆k − hUk‖22] + σ2h2p)1/2 + (E[‖V k‖22])1/2

≤ (γ2E[‖∆k‖22] + σ2h2p)1/2 + (E[‖V k‖22])1/2.

Since h ≤ 2/M , Lemma 3 implies that

E[‖∆k+1‖22] ≤
{

(γ2E[‖∆k‖22] + σ2h2p)1/2 + 1.82(h3M2p)1/2
}2

≤ (1 + t)γ2E[‖∆k‖22] + (1 + t)σ2h2p+ (1 + t−1)(1.82)2h3M2p

for every t > 0. Let us choose t = (1+γ
2γ )2 − 1 so that (1 + t)γ2 = (1+γ

2 )2. By recursion, this leads
to

W 2
2 (νk+1, π) ≤

(1 + γ

2

)2(k+1)
W 2

2 (ν0, π) +
( 2

1− γ

){
(1 + t)σ2h2p+ (1 + t−1)(1.82)2h3M2p

}
.

In the case h ≤ 2/(m+M), γ = 1−mh and we get 1+γ
2 = 1− 1

2mh. Furthermore,

(1 + t)σ2h2p =
(1 + γ

2γ

)2
σ2h2p ≤ σ2h2p

(1−mh)2
≤ σ2(M +m)2h2p

(M −m)2
,

(1 + t−1)h3M2p =
(1 + γ)2h3M2p

(1− γ)(1 + 3γ)
≤ h2M2p

m
.

This readily yields

W2(νk+1, π) ≤
(

1− mh

2

)k+1
W2(ν0, π) +

(2hp

m

)1/2{σ2(M +m)2

(M −m)2
+

3.3M2

m

}1/2
.

Similarly, in the case h ≥ 2/(m+M), γ = Mh− 1 and we get 1+γ
2 = 1

2Mh. Furthermore,

(1 + t)σ2h2p ≤ σ2h2p

(Mh− 1)2
≤ σ2(M +m)2h2p

(M −m)2
,

(1 + t−1)h3M2p =
(1 + γ)2h3M2p

(1− γ)(1 + 3γ)
≤ h3M2p

2−Mh
≤ 2h2Mp

2−Mh
.
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This readily yields

W2(νk+1, π) ≤
(Mh

2

)k+1
W2(ν0, π) +

( 2h2p

2−Mh

)1/2{σ2(M +m)2

(M −m)2
+

6.6M

2−Mh

}1/2
.

This completes the proof.

6.3. Proofs of lemmas

[Proof of Lemma 1] Since f is m-strongly convex, it satisfies the inequality

∆>
(
∇f(ϑ+ ∆)−∇f(ϑ)

)
≥ mM

m+M
‖∆‖22 +

1

m+M
‖∇f(ϑ+ ∆)−∇f(ϑ)‖22,

for all ∆,ϑ ∈ Rp. Therefore, simple algebra yields

‖∆k − hUk‖22 = ‖∆k‖22 − 2h∆>k Uk + h2‖Uk‖22
= ‖∆k‖22 − 2h∆>k

(
∇f(ϑ(k,h) + ∆k)−∇f(ϑ(k,h))

)
+ h2‖Uk‖22

≤ ‖∆k‖22 −
2hmM

m+M
‖∆k‖22 −

2h

m+M
‖Uk‖22 + h2‖Uk‖22

=
(

1− 2hmM

m+M

)
‖∆k‖22 + h

(
h− 2

m+M

)
‖Uk‖22. (16)

Note that, thanks to the strong convexity of f , the inequality ‖Uk‖2 = ‖∇f(ϑ(k,h) + ∆k) −
∇f(ϑ(k,h))‖2 ≥ m‖∆k‖2 is true. If h ≤ 2/(m+M), this inequality can be combined with (16) to
obtain

‖∆k − hUk‖22 ≤ (1− hm)2‖∆k‖22.

Similarly, when h ≥ 2/(m+M), we can use the Lipschitz property of ∇f to infer that ‖Uk‖2 ≤
M‖∆k‖2. Combining with (16), this yields

‖∆k − hUk‖22 ≤ (hM − 1)2‖∆k‖22, if h ≥ 2/(m+M).

Thus, we have checked that (14) is true for every h ∈ (0, 2/M).

Proof [Proof of Lemma 2] To simplify notations, we prove the lemma for p = 1. The function
x 7→ f ′(x) being Lipschitz continuous is almost surely differentiable. Furthermore, it is clear that
|f ′′(x)| ≤ M for every x for which this second derivative exists. The result of (Rudin, 1987,
Theorem 7.20) implies that

f ′(x)− f ′(0) =

∫ x

0
f ′′(y) dy.

Therefore, using f ′(x)π(x) = −π′(x), we get∫
R
f ′(x)2 π(x) dx = f ′(0)

∫
R
f ′(x)π(x) dx+

∫
R

(∫ x

0
f ′′(y) dy

)
f ′(x)π(x) dx

= −f ′(0)

∫
R
π′(x) dx−

∫
R

(∫ x

0
f ′′(y) dy

)
π′(x) dx

= −
∫ ∞

0

∫ x

0
f ′′(y)π′(x) dy dx+

∫ 0

−∞

∫ 0

x
f ′′(y)π′(x) dy dx.
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In view of Fubini’s theorem, we arrive at∫
R
f ′(x)2 π(x) dx =

∫ ∞
0

f ′′(y)π(y) dy +

∫ 0

−∞
f ′′(y)π(y) dy ≤M.

This completes the proof.

Proof [Proof of Lemma 3] Since the process L is stationary, V (a) has the same distribution as
V (0). For this reason, it suffices to prove the claim of the lemma for a = 0 only. Using the
Lipschitz continuity of f , we get

E[‖V (0)‖22] = E
[∥∥∥ ∫ h

0

(
∇f(Lt)−∇f(L0) dt

)∥∥∥2

2

]
≤ h

∫ h

0
E
[∥∥∇f(Lt)−∇f(L0)

∥∥2

2

]
dt

≤ hM2

∫ h

0
E
[∥∥Lt −L0

∥∥2

2

]
dt.

Combining this inequality with the stationarity of Lt, we arrive at(
E[‖V (0)‖22]

)1/2
≤
(
hM2

∫ h

0
E
[∥∥− ∫ t

0
∇f(Ls) ds+

√
2W t

∥∥2

2

]
dt

)1/2

≤
(
hM2

∫ h

0
E
[∥∥ ∫ t

0
∇f(Ls) ds

∥∥2

2

]
dt

)1/2

+

(
2hpM2

∫ h

0
t dt

)1/2

≤
(
hM2E

[∥∥∇f(L0)
∥∥2

2

] ∫ h

0
t2 dt

)1/2

+

(
2hpM2

∫ h

0
t dt

)1/2

=

(
1

3
h4M2E

[∥∥∇f(L0)
∥∥2

2

])1/2

+
(
h3M2p

)1/2
.

To complete the proof, it suffices to apply Lemma 2.
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