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Abstract
Let f : Sd−1 × Sd−1 → R be a function of the form f(x,x′) = g(〈x,x′〉) for g : [−1, 1] → R.
We give a simple proof that shows that poly-size depth two neural networks with (exponentially)
bounded weights cannot approximate f whenever g cannot be approximated by a low degree poly-
nomial. Moreover, for many g’s, such as g(x) = sin(πd3x), the number of neurons must be
2Ω(d log(d)). Furthermore, the result holds w.r.t. the uniform distribution on Sd−1 × Sd−1. As many
functions of the above form can be well approximated by poly-size depth three networks with poly-
bounded weights, this establishes a separation between depth two and depth three networks w.r.t.
the uniform distribution on Sd−1 × Sd−1.
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1. Introduction and main result

Many aspects of the expressive power of neural networks has been studied over the years. In par-
ticular, separation for deep networks (Telgarsky, 2016; Safran and Shamir, 2016), expressive power
of depth two networks (Cybenko, 1989; Hornik et al., 1989; Funahashi, 1989; Barron, 1994), and
more (Delalleau and Bengio, 2011; Cohen et al., 2016). We focus on the basic setting of depth 2 ver-
sus depth 3 networks. We ask what functions are expressible (or well approximated) by poly-sized
depth-3 networks, but cannot be approximated by an exponential size depth-2 network.

Two recent papers (Martens et al., 2013; Eldan and Shamir, 2016) addressed this issue. Both
papers presented a specific function f : Rd → R and a distribution D on Rd such that f can be
approximated w.r.t.D by a poly(d)-size depth 3 network, but not by a poly(d)-size depth 2 network.
In Martens et al. (2013) this was shown for f being the inner product mod 2 andD being the uniform
distribution on {0, 1}d × {0, 1}d. In Eldan and Shamir (2016) it was shown for a different (radial)
function and some (unbounded) distribution.

We extend the above results and prove a similar result for an explicit and rich family of functions,
and w.r.t. the uniform distribution on Sd−1 × Sd−1. In addition, our lower bound on the number of
required neurons is stronger: while previous papers showed that the number of neurons has to be
exponential in d, we show exponential dependency on d log(d). Last, our proof is short, direct and
is based only on basic Harmonic analysis over the sphere. In contrast, Eldan and Shamir (2016)’s
proof is rather lengthy and requires advanced technical tools such as tempered distributions, while
Martens et al. (2013) relied on the discrepancy of the inner product function mod 2. On the other
hand, Eldan and Shamir (2016) do not put any restriction on the magnitude of the weights, while
we and Martens et al. (2013) do require a mild (exponential) bound.

Let us fix an activation function σ : R→ R. For x ∈ Rn we denote σ(x) = (σ(x1), . . . , σ(xn)).
We say that F : Sd−1 × Sd−1 → R can be implemented by a depth-2 σ-network of width r and
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weights bounded by B if

F (x,x′) = wT2 σ(W1x+W ′1x
′ + b1) + b2 ,

where W1,W
′
1 ∈ [−B,B]r×d, w2 ∈ [−B,B]r, b1 ∈ [−B,B]r and b2 ∈ [−B,B]. Similarly,

F : Sd−1×Sd−1 → R can be implemented by a depth-3 σ-network of width r and weights bounded
by B if

F (x,x′) = wT3 σ(W2σ(W1x+W ′1x
′ + b1) + b2) + b3

for W1,W
′
1 ∈ [−B,B]r×d,W2 ∈ [−B,B]r×r, w3 ∈ [−B,B]r, b1, b2 ∈ [−B,B]r and b3 ∈

[−B,B]. Denote

Nd,n =

(
d+ n− 1

d− 1

)
−
(
d+ n− 3

d− 1

)
=

(2n+ d− 2)(n+ d− 3)!

n!(d− 2)!
.

Let µd be the probability measure on [−1, 1] given by dµd(x) =
Γ( d

2 )√
πΓ( d−1

2 )
(1−x2)

d−3
2 dx and define

An,d(f) = min
p is degree n−1 polynomial

‖f − p‖L2(µd)

Our main theorem shows that if An,d(f) is large then (x,x′) 7→ f(〈x,x′〉) cannot be approximated
by a small depth-2 network.

Theorem 1 (main) Let N : Sd−1 × Sd−1 → R be any function implemented by a depth-2 σ-
network of width r, with weights bounded byB. Let f : [−1, 1]→ R and define F : Sd−1×Sd−1 →
R by F (x,x′) = f(〈x,x′〉). Then, for all n,

‖N − F‖L2(Sd−1×Sd−1) ≥ An,d(f)

(
An,d(f)−

2rBmax|x|≤
√

4dB+B |σ(x)|+ 2B√
Nd,n

)

Example 1 Let us consider the case that σ(x) = max(0, x) is the ReLU function, f(x) =
sin(πd3x), n = d2 and B = 2d. In this case, lemma 4 implies that An,d(f) ≥ 1

5eπ . Hence, to
have 1

50e2π2 -approximation of F , the number of hidden neurons has to be at least,√
Nd,d2

20eπ22d(1 +
√
4d) + 2d+1

= 2Ω(d log(d))

On the other hand, corollary 6 implies that F can be ε-approximated by a ReLU network of depth
3, width 16πd5

ε and weights bounded by 2πd3

2. Proofs

Throughout, we fix a dimension d. All functions f : Sd−1 → R and f : Sd−1 × Sd−1 → R will be
assumed to be square integrable w.r.t. the uniform measure. Likewise, functions f : [−1, 1] → R
and f : [−1, 1]× [−1, 1]→ R will be assumed to be square integrable w.r.t. µd or µd × µd. Norms
and inner products of such functions are of the corresponding L2 spaces. We will use the fact that
µd is the probability measure on [−1, 1] that is obtained by pushing forward the uniform measure
on Sd−1 via the function x 7→ x1. We denote by Pn : L2(µd) → L2(µd) the projection on the
complement of the space of degree ≤ n− 1 polynomials. Note that An,d(f) = ‖Pnf‖L2(µd).
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2.1. Some Harmonic Analysis on the Sphere

The d dimensional Legendre polynomials are the sequence of polynomials over [−1, 1] defined by
the recursion formula

Pn(x) =
2n+d−4
n+d−3 xPn−1(x)− n−1

n+d−3Pn−2(x)

P0 ≡ 1, P1(x) = x

We also define hn : Sd−1 × Sd−1 → R by hn(x,x′) =
√
Nd,nPn(〈x,x′〉), and for x ∈ Sd−1

we denote Lx
n(x
′) = hn(x,x

′). We will make use of the following properties of the Legendre
polynomials.

Proposition 2 (e.g. Atkinson and Han (2012) chapters 1 and 2)

1. For every d ≥ 2, the sequence {
√
Nd,nPn} is orthonormal basis of the Hilbert spaceL2 (µd).

2. For every n, ||Pn||∞ = 1 and Pn(1) = 1.

3. 〈Lx
i , L

x′
j 〉 = Pi(〈x,x′〉)δij .

2.2. Main Result

We say that f : Sd−1 × Sd−1 → R is an inner product function if it has the form f(x,x′) =
φ(〈x,x′〉) for some function φ : [−1, 1] → R. Let Hd ⊂ L2(Sd−1 × Sd−1) be the space of inner
product functions. We note that

‖f‖2 = E
x
E
x′
φ2(〈x,x′〉) = E

x
‖φ‖2 = ‖φ‖2

Hence, the correspondence φ ↔ f defines an isomorphism of Hilbert spaces between L2(µd) and
Hd. In particular, the orthonormal basis {

√
Nd,nPn}∞n=0 is mapped to {hn}∞n=0. Likewise,

Pn

( ∞∑
i=0

αihi

)
=

∞∑
i=n

αihi

Let v,v′ ∈ Sd−1. We say that f : Sd−1 × Sd−1 → R is (v,v′)-separable if it has the form
f(x,x′) = ψ(〈v,x〉, 〈v′,x′〉) for some ψ : [−1, 1]2 → R. We note that each neuron implements a
separable function. Let Hv,v′ ⊂ L2(Sd−1 × Sd−1) be the space of (v,v′)-separable functions. We
note that

‖f‖2 = E
x,x′

ψ2(〈v,x〉, 〈v′,x′〉) = ‖ψ‖2

Hence, the correspondence ψ ↔ f defines an isomorphism of Hilbert spaces between L2(µd × µd)
andHv,v′ . In particular, the orthonormal basis {

√
Nd,nPn⊗

√
Nd,mPm}∞n,m=0 is mapped to {Lv

n⊗
Lv′
n }∞n,m=0.

The following theorem implies theorem 1, as under the conditions of theorem 1, any hidden
neuron implements a separable function with norm at most Bmax|x|≤

√
4dB+B |σ(x)|, and the bias

term is a separable function with norm at most B.
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Theorem 3 Let f : Sd−1 × Sd−1 → R be an inner product function and let g1, . . . , gr : Sd−1 ×
Sd−1 → R be separable functions. Then∥∥∥∥∥f −

r∑
i=1

gi

∥∥∥∥∥
2

≥ ‖Pnf‖

(
‖Pnf‖ −

2
∑r

i=1 ‖gi‖√
Nd,n

)
(1)

Proof We note that

E
x,x′

hn(x,x
′)Lv

i (x)L
v′
j (x′) = E

x
Lv
i (x)E

x′
hn(x,x

′)Lv′
j (x′)

= E
x
Lv
i (x)E

x′
Lx
n(x
′)Lv′

j (x′)

= δnj E
x
Lv
i (x)Pn(〈x,v′〉) (2)

=
δnj√
Nd,n

E
x
Lv
i (x)L

v′
n (x)

=
δnjδniPn(〈v,v′〉)√

Nd,n

Suppose now that f =
∑∞

i=n αihi and suppose that g =
∑r

j=1 gj where each gj depends only

on 〈vj ,x〉, 〈v′j ,x′〉 for some vj ,v
′
j ∈ Sd−1. Write gj(x,x′) =

∑∞
k,l=0 β

j
k,lL

vj

k (x)L
v′j
l (x′). By

equation (2), Lvj

k (x)L
v′j
l (x′) is orthogonal to f whever k 6= l. Hence, if we replace each gj with∑∞

k=0 β
j
k,kL

vj

k (x)L
v′j
k (x′), the l.h.s. of (1) does not increase. Likewise, the r.h.s. does not decrease.

Hence, we can assume w.l.o.g. that each gj is of the form gj(x,x
′) =

∑∞
i=0 β

j
iL

vj

i (x)L
v′j
i (x′).

Now, using (2) again, we have that

‖f − g‖2 =

∞∑
i=0

∥∥∥∥∥∥αihi −
r∑
j=1

βjiL
vj

i ⊗ L
v′j
i

∥∥∥∥∥∥
2

≥
∞∑
i=n

∥∥∥∥∥∥αihi −
r∑
j=1

βjiL
vj

i ⊗ L
v′j
i

∥∥∥∥∥∥
2

≥
∞∑
i=n

α2
i − 2

∞∑
i=n

r∑
j=1

〈αihi, βjiL
vj

i ⊗ L
v′j
i 〉

= ‖Pnf‖2 − 2

∞∑
i=n

r∑
j=1

βjiαiPi(〈vj ,v′j〉)√
Nd,k

≥ ‖Pnf‖2 − 2
r∑
j=1

∞∑
i=n

|βji ||αi|√
Nd,n

≥ ‖Pnf‖2 − 2

r∑
j=1

1√
Nd,n

√√√√ ∞∑
i=n

|βji |2

√√√√ ∞∑
i=n

|αi|2

≥ ‖Pnf‖2 −
2‖Pnf‖

∑r
j=1 ‖gj‖√

Nd,n
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2.3. Approximating the cosine function

Lemma 4 Define gd,m(x) = sin
(
π
√
dmx

)
. Then, for any d ≥ d0, for a universal constant

d0 > 0, and for any degree k polynomial p we have∫ 1

−1
(gd,m(x)− p(x))2dµd(x) ≥

m− k
4eπm

Proof We have that (e.g. Atkinson and Han (2012)) dµd(x) =
Γ( d

2 )√
πΓ( d−1

2 )
(1− x2)

d−3
2 dx. Likewise,

for large enough d and |x| < 1√
d

we have 1−x2 ≥ e−2x2 ≥ e−
2
d and hence (1−x2)

d−3
2 ≥ e−

d−3
d ≥

e−1. Likewise, since
Γ( d

2 )
Γ( d−1

2 )
∼
√

d
2 , we have that for large enough d and |x| ≤ 1√

d
, dµd(x) ≥

√
d

2eπ .

Hence, for f ≥ 0 we have∫ 1

−1
f(x)dµd(x) ≥

∫ d−
1
2

−d−
1
2

f(x)dµd(x) ≥
√
d

2eπ

∫ d−
1
2

−d−
1
2

f(x)dx =
1

2eπ

∫ 1

−1
f

(
t√
d

)
dt

Applying this equation for f = gd,m − p we get that∫ 1

−1
(gd,m(x)− p(x))2dµd(x) ≥

1

2eπ

∫ 1

−1
(sin(πmx)− q(x))2 dx

Where q(x) := p
(
x√
d

)
. Now, in the 2m segments Ii =

(
−1 + i−1

m ,−1 + i
m

)
, i ∈ [2m] we have

at least m − k segments on which x 7→ sin(πmx) and q do not change signs and have opposite

signs. On each of these intervals we have
∫
I (sin(πmx)− q(x))

2 dx ≥
∫ 1

m
0 sin2(πmx)dx = 1

2m .
�

Lemma 5 (e.g. Eldan and Shamir (2016)) Let σ(x) = max(x, 0) be the ReLU activation, f :
[−R,R]→ R an L-Lipschitz function, and ε > 0. There is a function

g(x) = f(0) +

m∑
i=1

αiσ(γix− βi)

for which ‖g − f‖∞ ≤ ε. Furthermore, m ≤ 2RL
ε , |βi| ≤ R, |αi| ≤ 2L, γi ∈ {−1, 1}, and g is

L-Lipschitz on all R.

Corollary 6 Let f : [−1, 1] → [−1, 1] be an L-Lipschitz function and let ε > 0. Define F :
Sd−1 × Sd−1 → [−1, 1] by F (x,x′) = f(〈x,x′〉). There is a function G : Sd−1 × Sd−1 → [−1, 1]
that satisfies ‖F − G‖∞ ≤ ε and furthermore G can be implemented by a depth-3 ReLU network
of width 16d2L

ε and weights bounded by max(4, 2L)

Proof By Lemma 5 there is a depth-2 network Nsquare that calculates x2

2 in [−2, 2], with an error
of ε

2dL and has width at most 16dL
ε and hidden layer weights bounded by 2, and prediction layer
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weights bounded by 4. For each i ∈ [d] we can compose the linear function (x,x′) 7→ xi + x′i
with Nsquare to get a depth-2 network Ni that calculates (xi+x

′
i)

2

2 with an error of ε
2dL and has the

same width and weight bound as Nsquare. Summing the networks Ni and subtracting 1 results with
a depth-2 networkNinner that calculates 〈x,x′〉 with an error of ε

2L and has width 16d2L
ε and hidden

layer weights bounded by 2, and prediction layer weights bounded by 4.
Now, again by lemma 5 there is a depth-2 networkNf that calculates f in [−1, 1], with an error

of ε2 , has width at most 2L
ε , hidden layer weights bounded by 1 and prediction layer weights bounded

by 2L, and is L-Lipschitz. Finally, consider the depth-3 network NF that is the composition of
Ninner and Nf . NF has width at most 16d2L

ε weight bound of max(4, 2L), and it satisfies

|NF (x,x′)− F (x,x′)| = |Nf (Ninner(x,x
′))− f(〈x,x′〉)|

≤ |Nf (Ninner(x,x
′))−Nf (〈x,x′〉)|+ |Nf (〈x,x′〉)− f(〈x,x′〉)|

≤ L|Ninner(x,x
′)− 〈x,x′〉|+ ε

2

≤ L
ε

2L
+
ε

2
= ε

�
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