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Extended Abstract!

At the heart of scientific activity lies the practice of formulating models about observed phe-
nomena, and developing tools to test the validity of these models. Oftentimes, the models are
probabilistic; for example, one may model the effectiveness of a drug in a population as a truncated
Normal, or the waiting times in a queuing system as exponential random variables. When a model
is probabilistic, testing its validity becomes a distribution testing problem. In our drug example,
one would like to measure the effectiveness of the drug in a sample of the population, and somehow
determine whether these samples are “consistent” with a truncated Normal distribution. As humans
delve into the study of more and more complex phenomena, they quickly face high-dimensional dis-
tributions. The goal of this paper is to advance our understanding of high-dimensional hypothesis
testing.

Consider the task of testing whether a high-dimensional distribution P, to which we have sample
access, is identical to some model distribution Q € A(X"), where ¥ is some alphabet and n is the
dimension. A natural goal, which we will call goodness-of-fit testing in the tradition of Statistics, is
to distinguish

P=Q from d(PQ)> e,

where d(-, -) is some distance between distributions and ¢ > 0 some accuracy parameter. In this
paper, we will take d(-,-) to be the total variation distance, although all our results hold if one
considers Hellinger distance instead.

Sometimes we do not have a model distribution (), but sample access to two distributions P, () €
A(X"), and we want to determine if they are equal. Again, a natural goal is to distinguish

P=@Q from d(PQ)>e.

We will call this latter problem, where both distributions are unknown, identity testing.

As our access to P or to both P and () in the above problems is via samples, we cannot hope
to always solve them correctly. So our goal is actually probabilistic. We want to be correct with
probability at least 1 — ¢, for some parameter §. For ease of presentation, let us take 6 = 1/3 for
the remainder of this paper. Clearly, this probability can be then boosted to arbitrary §’s at a cost of
a factor of O(log 1/0) in the sample complexity.

1. Full version appears as arXiv preprint arXiv:1612.03164, v2 Daskalakis and Pan (2016).
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Both goodness-of-fit and identity testing have received tremendous attention in Statistics. In
the above formulation of these problems, they have received a fair amount of attention over the last
decade in both Theoretical Computer Science and Information Theory; see e.g. Batu et al. (2001,
2004); Paninski (2008); Valiant and Valiant (2014); Acharya et al. (2015); Canonne et al. (2016a)
and their references. Despite intense research, the high-dimensional (large n) version of the prob-
lems has received much smaller attention Batu et al. (2001); Alon et al. (2007); Rubinfeld and Xie
(2010); Bhattacharyya et al. (2011); Acharya et al. (2015), despite its importance for applications.
In part, this is due to the fact that the problem, as stated above, is hopeless for large n. For example,
if Q is the uniform distribution over {0, 1}", it is known that ©(2"/2/¢?) samples are necessary
(and sufficient) for goodness-of-fit testing Batu et al. (2001); Paninski (2008); Valiant and Valiant
(2014).

Our goal in this paper is to leverage combinatorial structure in the specification of P and Q)
to get around these exponential lower bounds. We are motivated by prior work of Daskalakis,
Dikkala and Kamath Daskalakis et al. (2016), which initiated the study of testing problems for
structured distributions. They considered testing problems for Ising models, showing that goodness-
of-fit and independence testing (testing if an Ising model is a product measure over {0, 1}™) can be
solved efficiently from poly(n/€) samples. Their bounds hold for Ising models defined on arbitrary
graphs, and for the stronger notion of symmetric Kullback-Leibler divergence (which upper bounds
(the square of) total variation distance). In particular, their results are able to side-step the afore-
described exponential lower bounds for a broad and important class of probability distributions.

Motivated by this recent work on the Ising model, in this paper we study testing problems on
Bayesian networks, which is a versatile and widely used probabilistic framework for modeling high-
dimensional distributions with structure. A Bayesian network specifies a probability distribution in
terms of a DAG GG whose nodes V' are random variables taking values in some alphabet ¥. To
describe the probability distribution, one specifies conditional probabilities Py, |x; (zv|zm,), for
all vertices v in GG, and configurations x,, € ¥ and xyj, € v where I, represents the set of
parents of v in G, taken to be () if v has no parents. In terms of these conditional probabilities, a
probability distribution over £V is defined as follows:

P(z) = HPX“XHU (2|2, ), forall z € BV (1)
v

A special case of a Bayesian network is, of course, a Markov chain, where the graph G is a
directed line graph. But Bayesian networks are much more versatile and are in fact universal. They
can interpolate between product measures and arbitrary distributions over =" as the DAG becomes
denser and denser. Because of their versatility they have found myriad applications in diverse fields
of application and study, ranging from probability theory to engineering, computational biology,
and law. Our goal is to determine whether goodness-of-fit and identity for these fundamental distri-
butions are actually testable. To achieve this, we develop a deeper understanding into the statistical
distance between Bayesian networks.

Results and Techniques. Given sample access to two Bayes nets P and () on n variables taking
values in some set 2, we would like to decide whether P = Q vs §(P,Q) > ¢, where 6(P, Q)
denotes the total variation distance between P and (). To build intuition, suppose that P and () are
defined on the same DAG, and () is given. Our goal is to test the equality of P and (), with fewer
than O(|X|"/2 /€?) samples required by standard methods, by exploiting the structure of the DAG.



TESTING BAYESNETS

A natural way to exploit the structure of the DAG is to “localize the distance” between P and
Q. It’s easy to prove that the total variation distance between P and () can be bounded as follows:

5(P,Q) < d(Puyoum, . Quyom,) + > (P, Qu,),

where, as above, II,, denotes the parents of v in the DAG, if any. The sub-additivity of total variation
distance with respect to the neighborhoods of the DAG allows us to distinguish between P = @
and 0(P, Q) > e by running n tests, distinguishing Pr,yurr, = Quyur, Vs 0(Ppyyurt, » Quyur,) =
€/2n, for all v. We output “P = @ if and only if all these tests output equality. Importantly the dis-
tributions Ppyurr, and Q 1, are supported on [{v} U II, | variables. Hence if our DAG has maxi-
mum in-degree d, each of these tests requires O(|2|(¢+1)/2n2 /%) samples. An extra O(log n) factor
in the sample complexity can guarantee that each test succeeds with probability at least 1 — 1/3n,
hence all tests succeed simultaneously with probability at least 2/3. Unfortunately the quadratic
dependence of the sample complexity on n is sub-optimal.

A natural approach to improve the sample complexity is to consider instead the Kullback-Leibler
divergence between P and (). Pinsker’s inequality gives us that KL(P||Q) > 26(P, Q). Hence,
KL(P||Q) = 0, if P = Q, while KL(P||Q) > 2¢2, if 6(P,Q) > e. Moreover, we can now
exploit the chain rule of the Kullback-Leibler divergence to localize the distance. Hence, to dis-
tinguish P = Q vs 6(P,Q) > e it suffices to run n tests, distinguishing Py, = Quyum, V8
KL(Ppyom, ||Qguyum,) = 2€%/n, for all v. We output “P = Q™ if and only if all these tests output
equality. Unfortunately, goodness-of-fit with respect to the Kullback-Leibler divergence requires

infinitely many samples. On the other hand, if every element in the support of ()(,yur, has prob-

e2/n

ability Q2 (W)’ it follows from the y2-test of Acharya et al. (2015) that Py, = Quyu,

vs KL(Ppom, ||Qquyum,) > 2€2/n can be distinguished from O(\El%n/g) samples. An extra
O(logn) factor in the sample complexity can guarantee that each test succeeds with probability at
least 1 — 1/3n, hence all tests succeed simultaneously with probability at least 2/3. So we man-
aged to improve the sample complexity by a factor of n. This requires, however, preprocessing the
Bayes-nets so that there are no low-probability elements in the supports of the marginals. We do
not know how to do this pre-processing unfortunately.

So, to summarize, total variation distance is subadditive in the neighborhoods of the DAG,
resulting in O(n?/€?) sample complexity. Kullback-Leibler is also subadditive and importantly
bounds the square of total variation distance. This is a key to a O(n/e?) sample complexity, but it
requires no low probability elements in the support of the marginals, which we do not know how to
enforce. Looking for a middle ground to address these issues, we study Hellinger distance, which
relates to total variation distance and Kullback-Leibler as follows:

5(P,Q) < V2-H(P,Q) < KL(P||Q).

One of our main technical contributions is to show that the square Hellinger distance between two
Bayesian networks on the same DAG is subadditive on the neighborhoods, namely:

Theorem 1 (Square Hellinger Subadditivity) Suppose P and (Q are Bayesian networks with the
same underlying DAG G, i.e. both factorize as in (1). Then,

H*(P,Q) <> H*(Ppyum,, Qi )»

where 11, denotes the set of parents of v in G, if any.
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The above bound, given as Corollary 7 in the full version, follows from a slightly more general
statement given there in Section 2 as Theorem 2. Given the sub-additivity of the Hellinger distance
and its relation to total variation, we can follow the same rationale as above to localize the distance.
Hence, to distinguish P = Q vs §(P, Q) > e it suffices to run n tests, distinguishing Py, =
Qquyum, V8 H2(Pyyom,, Quium,) = €2/2n, for all v. Importantly goodness-of-fit testing with
respect to the square Hellinger distance can be performed from O(n/e?) samples. This is the key to
our testing results.

While we presented our intuition for goodness-of-fit testing and when the structure of the Bayes-
nets is known, we actually do not need to know the structure and can handle sample access to both
distributions. Our results are summarized below. All results below hold if we replace total variation
with Hellinger distance.

e Testing Result 1: Given sample access to two Bayes-nets P, () on the same but unknown
structure of maximum in-degree d, O(|S[>/4(d+1) . %) samples suffice to test P = Q vs
d(P,Q) > €. See Theorem 12 of the full version. The running time is quasi-linear in the
sample size times O(n%t!). The dependence of our sample complexity on n and ¢ is tight
in this case, as shown by Daskalakis et al. (2016). If the DAG is known, the running time is
quasi-linear in the sample size times O(n).

e Testing Result 2: Given sample access to two Bayes-nets P, () on possibly different and un-
known trees, O(|2|*? - %) samples suffice to test P = Q vs 6(P, Q) > e. See Theorem 13 of
the full version. The running time is quasi-linear in the sample size times O(n%). The depen-
dence of our sample complexity on n and € is optimal up to logarithmic factors, even when
one of the two distributions is given explicitly, appealing to the same result of Daskalakis
et al. (2016) mentioned above.

Proving this result presents the additional analytical difficulty that two Bayes-nets on different
trees have different factorizations, hence it is unclear if their square Hellinger distance can be
localized to subsets of nodes involving a small number of variables. In Section 3 of the full
version, we prove that given any pair of tree-structured Bayes-nets P and (), there exists a
common factorization of P and () so that every factor involves up to 6 variables. This implies
a useful subadditivity bound for square Hellinger distance into n subsets of 6 nodes. See
Theorem 10, and the underlying combinatorial lemma, Lemma 9 of the full version.

e Testing Result 3: Finally, our results above were ultimately based on localizing the distance
between two Bayes-nets on neighborhoods of small size, as dictated by the Bayes-net struc-
ture. As we have already mentioned, even if the Bayes-nets are known to be trees, and one
of the Bayes-nets is given explicitly, O(n/e?) samples are necessary. Pushing the simplicitly
of the problem to the extreme, we consider the case where both P and () are Bayes-nets on
the empty graph, @ is given, and ¥ = {0, 1}. Using a non-localizing test, we show that the
identity of P and Q can be tested from O(y/n/€?) samples, which is optimal up to constant
factors, as shown by Daskalakis et al. (2016). See Theorem 14 of the full version.

The proof of this theorem also exploits the subadditivity of the square Hellinger distance.
Suppose p1,...,pn and q1, . .., g, are the expectations of the marginals of P and @ on the
different coordinates, and without loss of generality suppose that ¢; < %, for all 7. We use

the subadditivity of square Hellinger to show that, if 6(P, Q) > ¢, then ), (7”;77’")2 > €2/2.
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;—q; 2 . . . . . .
Noticing that ), % is an identical expression to the y? divergence applied to vectors

(p1,...,pn) and (q1, ..., qn), we reduce the problem to a y2-test, mimicking the approach
of Acharya et al. (2015). We only need to be careful that ), p; and >, ¢; do not necessarily
equal 1, but this does not create any issues.

Learning vs Testing. A natural approach to testing the equality between two Bayes-nets P and
Q is to first use samples from P and () to learn Bayes nets P and Q that are respectively close to P
and @, then compare P and Q offline, i.e. without drawing further samples from P and (). While
this approach has been used successfully for single-dimensional hypothesis testing, see e.g. Acharya
et al. (2015), it presents analytical and computational difficulties in the high-dimensional regime.
While learning of Bayes nets has been a topic of intense research, including the celebrated Chow-Liu
algorithm for tree-structured Bayes-nets Chow and Liu (1968), we are aware of no computationally
efficient algorithms that operate with O(n /€?) samples without assumptions. In particular, using
net-based techniques Devroye and Lugosi (2001); Daskalakis and Kamath (2014); Acharya et al.
(2014), standard calculations show that any Bayes-net on n variables and maximum in-degree d can
be learned from O(%?'d) samples, but this algorithm is highly-inefficient computationally (expo-
nential in n). Our algorithms are both efficient, and beat the sample complexity of this inefficient
algorithm. On the efficient algorithms front, we are only aware of efficient algorithms that provide
guarantees when the number of samples is >> %‘E‘d or that place assumptions on the parameters
or the structure of the Bayes-net to be able to learn it (see e.g. Anandkumar et al. (2012); Bresler
(2015) and their references), even when the structure is a tree Chow and Liu (1968). Our algorithms

do not need any assumptions on the parameters or the structure of the Bayes-net.

Comparison to Canonne et al. (2016b). Testing problems on Bayes-nets similar to the ones we
study here are also considered, independently and contemporaneously, in Canonne et al. (2016b)
for binary alphabets. However, their emphasis is quite different. Instead of trying to formulate
efficient sample-optimal algorithms that work for all cases, they try to identify assumptions under
which testing can be done from sub-linear in the number of nodes, n, samples. For example, for the
goodness-of-fit problem where the structure of the unknown distribution P is known to be the same
as that of the known distribution (), they require that, for all nodes v, the conditional probability
of v taking any value, conditioning on any assignment to the parent nodes, be bounded away from
0 by at least 2(1/4/n). They also assume that the parents of every node attain any configuration
with probability at least 2(1/4/n). (See Definition 5.1 and Theorem 5.2 in Canonne et al. (2016b).)
In the case the structure of P is unknown, they further assume that its structure contains less edges
than that of (). Moreover, they need that () satisfies a “y-non-degeneracy” condition, which, roughly
speaking, prohibits () from being close to any distribution that satisfies additional conditional inde-
pendence beyond that already implied by ()’s graphical structure. (See Definition 6.10 and Theorem
6.11 in Canonne et al. (2016b).) In contrast, we do not make any assumptions, and obtain optimal
results for our unconditional testing questions. As we show the testing complexity depends linearly
inn.
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