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Abstract
We study the problem of estimating multivariate log-concave probability density functions. We
prove the first sample complexity upper bound for learning log-concave densities on Rd, for all
d ≥ 1. Prior to our work, no upper bound on the sample complexity of this learning problem was
known for the case of d > 3.

In more detail, we give an estimator that, for any d ≥ 1 and ε > 0, draws Õd

(
(1/ε)(d+5)/2

)
samples from an unknown target log-concave density on Rd, and outputs a hypothesis that (with
high probability) is ε-close to the target, in total variation distance. Our upper bound on the sample
complexity comes close to the known lower bound of Ωd

(
(1/ε)(d+1)/2

)
for this problem.

Keywords: density estimation, log-concave densities, VC inequality

1. Introduction

1.1. Background and Motivation

The estimation of a probability density function based on observed data is a classical and paradig-
matic problem in statistics Pearson (1895) with a rich history (see, e.g., Barlow et al. (1972); De-
vroye and Györfi (1985); Silverman (1986); Scott (1992); Devroye and Lugosi (2001)). This infer-
ence task is known as density estimation or distribution learning and can be informally described
as follows: Given a set of samples from an unknown distribution f that is believed to belong to (or
be well-approximated by) a given family D, we want to output a hypothesis distribution h that is a
good approximation to the target distribution f .

The first and arguably most fundamental goal in density estimation is to characterize the sample
complexity of the problem in the minimax sense, i.e., the number of samples inherently required
to obtain a desired accuracy (in expectation or with high probability). In other words, for a given
distribution family D and desired accuracy ε > 0, we are interested in obtaining an estimator for D
with a sample complexity upper bound of N = N(D, ε), and an information-theoretic lower bound
showing that no estimator forD can achieve accuracy ε with fewer than Ω(N) samples. The sample
complexity of this unsupervised learning problem depends on the structure of the underlying family
D. Perhaps surprisingly, while density estimation has been studied for several decades, the sample
complexity of learning is not yet well-understood for various natural and fundamental distribution
families.
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We emphasize here that there is no known simple complexity measure of a distribution family
D that characterizes the sample complexity of learning (an unknown distribution from) D under
the total variation distance. In contrast, the VC dimension of a concept class plays such a role in
the PAC model of learning Boolean functions (see, e.g., Blumer et al. (1989); Kearns and Vazirani
(1994)).

It should be noted that the classical information-theoretic quantity of the metric entropy and its
variants (e.g., bracketing entropy) van der Vaart and Wellner (1996); Devroye and Lugosi (2001);
Tsybakov (2008)1, provide upper bounds on the sample complexity of distribution learning that
are not tight in general. Specifically, such upper bounds are suboptimal – both quantitatively and
qualitatively – for various distributions families, see, e.g., Diakonikolas et al. (2016a) for a natural
example.

There are two main strands of research in distribution learning. The first one concerns the
learnability of high-dimensional parametric distribution families (e.g., mixtures of Gaussians). The
sample complexity of learning parametric families is typically polynomial in the dimension and the
goal is to design computationally efficient algorithms. The second strand – which is the focus of
this paper – studies the learnability of low-dimensional nonparametric distribution families under
various assumptions on the shape of the underlying density. There has been a long line of work
on this strand within statistics since the 1950’s and, more recently, in theoretical computer science
(see Section 1.3 for an overview of related work). The majority of this literature has studied the
univariate (one-dimensional) setting which is by now fairly well-understood for a wide range of dis-
tributions. On the other hand, the multivariate setting and specifically the regime of fixed dimension
is significantly more challenging and poorly understood for many natural distribution families.

1.2. Our Results and Comparison to Prior Work

In this work, we study the problem of density estimation for the family of log-concave distributions
on Rd. A distribution on Rd is log-concave if the logarithm of its probability density function is
a concave function (see Definition 1). Log-concave distributions constitute a rich and attractive
non-parametric family that is particularly appealing for modeling and inference Walther (2009).
They encompass a range of interesting and well-studied distributions, including uniform, normal,
exponential, logistic, extreme value, Laplace, Weibull, Gamma, Chi and Chi-Squared, and Beta
distributions (see, e.g., Bagnoli and Bergstrom (2005)). Log-concave distributions have been studied
in a range of different contexts including economics An (1995), statistics and probability theory
(see Saumard and Wellner (2014) for a recent survey), theoretical computer science Lovász and
Vempala (2007), and algebra, combinatorics and geometry Stanley (1989).

The problem of density estimation for log-concave distributions is of central importance in the
area of non-parametric shape constrained inference. As such, this problem has received significant
attention in the statistics literature, see Cule et al. (2010); Dumbgen and Rufibach (2009); Doss
and Wellner (2016); Chen and Samworth (2013); Kim and Samworth (2016); Balabdaoui and Doss
(2014); Han and Wellner (2016) and references therein, and, more recently, in theoretical computer
science Chan et al. (2013, 2014a); Acharya et al. (2017, 2015a); Canonne et al. (2016); Diakonikolas

1. Roughly speaking, the metric entropy of a distribution familyD is the logarithm of the size of the smallest ε-cover of
D. A subset Dε ⊆ D in a metric space (D, d) is said to be an ε-cover of D with respect to the metric d : X 2 → R+,
if for every x ∈ D there exists some y ∈ Dε such that d(x,y) ≤ ε. In this paper, we focus on the total variation
distance between distributions.
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et al. (2016d). In Section 1.3, we provide a detailed summary of related work. In this subsection,
we confine ourselves to describing the prior work that is most relevant to the results of this paper.

We study the following fundamental question:

How many samples are information-theoretically required to learn an arbitrary
log-concave density on Rd, up to total variation distance ε?

Despite significant amount of work on log-concave density estimation, our understanding of this
question even for constant dimension d remains surprisingly poor. The only prior work that ad-
dresses the d > 1 case in the finite sample regime is Kim and Samworth (2016). Specifically, Kim
and Samworth (2016) study this estimation problem with respect to the squared Hellinger distance
and obtain the following results:

(1) an information-theoretic sample complexity lower bound of Ωd

(
(1/ε)(d+1)/2

)
for any d ∈

Z+, and

(2) a sample complexity upper bound that is tight (up to logarithmic factors) for d ≤ 3.

Specifically, prior to our work, no finite sample complexity upper bound was known even for d = 4.

In this paper, we obtain a sample complexity upper bound of Õd
(
(1/ε)(d+5)/2

)
, for any d ∈ Z+,

under the total variation distance. By using the known relation between the total variation and
squared Hellinger distances, our sample complexity upper bound immediately implies the same
upper bound under the squared Hellinger distance. Moreover, the aforementioned lower bound
of Kim and Samworth (2016) also directly applies to the total variation distance. Hence, our upper
bound is tight up to an Õd(ε−2) multiplicative factor.

To formally state our results, we will need some terminology.

Notation and Definitions. Let f : Rd → R be a Lebesgue measurable function. We will use f(A)
to denote

∫
A f(x)dx. A Lebesgue measurable function f : Rd → R is a probability density function

(pdf) if f(x) ≥ 0 for all x ∈ Rd and
∫
Rd f(x)dx = 1. The total variation distance between two

non-negative measures f, g : Rd → R is defined as dTV (f, g) = supS |f(S) − g(S)|, where the
supremum is over all Lebesgue measurable subsets of the domain. If f, g : Rd → R+ are probability
density functions, then we have that dTV (f, g) = (1/2) · ‖f − g‖1 = (1/2) ·

∫
Rd |f(x)− g(x)|dx.

Definition 1 A probability density function f : Rd → R+, d ∈ Z+, is called log-concave if there
exists an upper semi-continuous concave function φ : Rd → [−∞,∞) such that f(x) = eφ(x) for
all x ∈ Rd. We will denote by Fd the set of upper semi-continuous, log-concave densities with
respect to the Lebesgue measure on Rd.

We use the following definition of learning under the total variation distance. We remark that
our learning model incorporates adversarial model misspecification, and our proposed estimators
are robust in this sense.

Definition 2 (Agnostic Distribution Learning) Let D be a family of probability density functions
on Rd. A randomized algorithm AD is an agnostic distribution learning algorithm for D, if for
any ε > 0, and any probability density function f : Rd → R+, on input ε and sample access
to f , with probability 9/10, algorithm AD outputs a hypothesis density h : Rd → R+ such that

dTV (h, f) ≤ O(OPT) + ε, where OPT
def
= infg∈D dTV (f, g).
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Our agnostic learning definition subsumes Huber’s ε-contamination model Huber (1964), which
prescribes that the target distribution f is of the form (1 − ε)g + εr, where g ∈ D and r is some
arbitrary distribution. The main result of this paper is the following theorem:

Theorem 3 (Main Result) There exists an agnostic learning algorithm for the family Fd of log-
concave densities on Rd with the following performance guarantee: For any d ∈ Z+, ε > 0,
and any probability density function f : Rd → R+, the algorithm draws O(d/ε)(d+5)/2 log2(1/ε)
samples from f and, with probability at least 9/10, outputs a hypothesis density h : Rd → R+ such

that dTV (h, f) ≤ 3 ·OPT + ε, where OPT
def
= infg∈Fd dTV (f, g).

To the best of our knowledge, our estimator provides the first finite sample complexity guar-
antees for Fd for any d > 3. With the exception of Kim and Samworth (2016), prior work on
this problem that provides finite sample guarantees has been confined to the d = 1 case. As pre-
viously mentioned, Kim and Samworth (2016) study the case of general dimension d focusing on
the squared Hellinger distance. Recall that the squared Hellinger distance is defined as h2(f, g)

def
=∫

Rd(f
1/2 − g1/2)2dx and that for any two densities f, g it holds h2(f, g) ≤ dTV (f, g) ≤ h(f, g).

Therefore, the sample lower bound of Kim and Samworth (2016) also holds under the total variation
distance, and our sample upper bound immediately applies under the squared Hellinger distance.
This implies that our upper bound is tight up to an Õd(ε−2) multiplicative factor.

Our proposed estimator establishing Theorem 3 is robust to model misspecification with respect
to the total variation distance. It should be noted that our estimator does not rely on maximum
likelihood, as opposed to most of the statistics literature on this problem. In contrast, our estimator
relies on the VC inequality Vapnik and Chervonenkis (1971); Devroye and Lugosi (2001), a classical
result in empirical process theory (see Theorem 4). The VC inequality has been recently used Chan
et al. (2013, 2014a); Acharya et al. (2017) to obtain sharp learning upper bounds for a wide range
of one-dimensional distribution families, including univariate log-concave densities. As far as we
know, ours is the first use of the VC inequality to obtain learning upper bounds for structured
distributions in multiple dimensions.

Remark. Despite its many desirable properties, the maximum likelihood estimator (MLE) is known
to be non-robust in Huber’s contamination model2. To address this downside, recent work in theo-
retical computer science Chan et al. (2014a); Acharya et al. (2017) and statistics Baraud and Birge
(2016) has proposed alternative robust estimators. Moreover, for 4-dimensional log-concave densi-
ties, it has been conjectured (see, e.g., Wellner (2015)) that the MLE has suboptimal sample com-
plexity even without noise. These facts together provide strong motivation for the design and anal-
ysis of surrogate estimators with desirable properties, as we do in this work.

1.3. Related Work

The area of nonparametric density estimation under shape constraints is a classical topic in statis-
tics starting with the pioneering work of Grenander Grenander (1956) on monotone distributions
(see Barlow et al. (1972) for an early and Groeneboom and Jongbloed (2014) for a recent book
on the topic). Various structural restrictions have been studied in the literature, starting from mono-
tonicity, unimodality, and concavity Grenander (1956); Brunk (1958); Rao (1969); Wegman (1970);
Hanson and Pledger (1976); Groeneboom (1985); Birgé (1987a,b); Fougères (1997); Jankowski and

2. For log-concave densities, the MLE is known to be robust in the limit under weaker metrics Dumbgen et al. (2011).
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Wellner (2009). While the majority of the literature has focused on the univariate setting, a number
of works have studied nonparametric distribution families in fixed dimension, see, e.g., Biau and
Devroye (2003); Seregin and Wellner (2010); Koenker and Mizera (2010).

In recent years, there has been a body of work in computer science on nonparametric den-
sity estimation of with a focus on both sample and computational efficiency Daskalakis et al.
(2012a,b, 2013); Chan et al. (2013, 2014a,b); Acharya et al. (2015b, 2017); Diakonikolas et al.
(2015, 2016a,b); Daskalakis et al. (2016); Diakonikolas et al. (2016c); Valiant and Valiant (2016).

During the past decade, density estimation of log-concave densities has been extensively inves-
tigated. A line of work in statistics Cule et al. (2010); Dumbgen and Rufibach (2009); Doss and
Wellner (2016); Chen and Samworth (2013); Balabdaoui and Doss (2014) has obtained a complete
understanding of the global consistency properties of the maximum likelihood estimator (MLE) for
any dimension d. In terms of finite sample bounds, the sample complexity of log-concave density es-
timation has been characterized for d = 1, e.g., it is Θ(ε−5/2) under the variation distance Devroye
and Lugosi (2001). Moreover, it is known Kim and Samworth (2016); Han and Wellner (2016) that
the MLE is sample-efficient in the univariate setting. For dimension d > 1, Kim and Samworth
(2016) show that the MLE is nearly-sample optimal under the squared Hellinger distance for d ≤ 3,
and also prove bracketing entropy lower bounds suggesting that the MLE may be sub-optimal for
d > 3.

A recent line of work in theoretical computer science Chan et al. (2013, 2014a); Acharya et al.
(2017, 2015a); Canonne et al. (2016); Diakonikolas et al. (2016d) studies the d = 1 case and
obtains sample and computationally efficient estimators under the total variation distance. Specif-
ically, Chan et al. (2014a); Acharya et al. (2017) gave sample-optimal robust estimators for log-
concave distributions (among others) based on the VC inequality.

1.4. Technical Overview

In this subsection, we provide a high-level overview of our techniques establishing Theorem 3. Our
approach is inspired by the framework introduced in Chan et al. (2013, 2014a). Given a family of
structured distributions D that we want to learn, we proceed as follows: We find an “appropriately
structured” distribution family C that approximatesD, in the sense that every density inD is ε-close,
in total variation distance, to a density in C. By choosing the family C appropriately, we can obtain
(nearly-)tight sample upper bounds forD from sample upper bounds for C. Our estimator to achieve
this goal (see Lemma 6) leverages the VC inequality.

The aforementioned approach was used in Chan et al. (2013, 2014a); Acharya et al. (2017)
to obtain sample-optimal (and computationally efficient) estimators for various one-dimensional
structured distribution families. In particular, for the family F1 of univariate log-concave densities,
Chan et al. (2013) chooses C to be the family of densities that are piecewise-constant with Õ(1/ε)
interval pieces. Similarly, Chan et al. (2014a); Acharya et al. (2017) take C to be the family of
densities that are piecewise linear with Õ(ε−1/2) interval pieces.

Our structural approximation result for the multivariate case can be viewed as an appropriate
generalization of the above one-dimensional results. Specifically, we show that any log-concave
density f on Rd can be ε-approximated, in total variation distance, by a function g that is essen-
tially defined by Õd

(
(1/ε)(d+1)/2

)
hyperplanes. Once such an approximation has been established,

roughly speaking, we exploit the fact that families of sets defined by a small number of hyperplanes
have small VC dimension. This allows us to use the VC inequality to learn an approximation to g
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(and, thus, an approximation to f ) from an appropriate number of samples. If V is an upper bound
on the VC dimension of the resulting set system, the number of samples needed for this learning
task will be O(V/ε2).

To prove our structural approximation result for log-concave densities f on Rd we proceed
as follows: First, we make use of concentration results for log-concave densities implying that a
negligible fraction of f ’s probability mass comes from points at which f is much smaller than its
maximum value. This will allow us to approximate f by a function h that takes only Õd(1/ε)
distinct values. Furthermore, the superlevel sets h−1([x,∞)) will be given by the corresponding
superlevel sets for f , which are convex. We then use results from convex geometry to approximate
each of these convex sets (with respect to volume) by inscribed polytopes with Od

(
(1/ε)(d−1)/2

)
facets. Applying this approximation to each superlevel set of h gives us our function g.

We note that a number of constructions are possible here that differ in exactly how the layers are
constructed and what to do when they do or do not overlap. Many of these constructions are either
incorrect or difficult to analyze. In this work, we provide a simple construction with a succinct proof
that yields a near-optimal sample complexity upper bound. We believe that a more careful structural
approximation result may lead to the tight sample upper bound, and we leave this as an interesting
question for future work.

1.5. Organization

In Section 2, we record the basic probabilistic and analytic ingredients we will require. In Section 3,
we prove our main result. Finally, we conclude with a few open problems in Section 4.

2. Preliminaries

The VC inequality. For n ∈ Z+, we will denote [n]
def
= {1, . . . , n}. Let f : Rd → R be a Lebesgue

measurable function. Given a family A of measurable subsets of Rd, we define the A-norm of f by
‖f‖A

def
= supA∈A |f(A)| . We say that a set X ⊆ Rd is shattered by A if for every Y ⊆ X there

exists A ∈ A that satisfies A ∩X = Y . The VC dimension of a family of sets A over Rd is defined
to be the maximum cardinality of a subset X ⊆ Rd that is shattered by A. If there is a shattered
subset of size s for all s ∈ Z+, then we say that the VC dimension of A is∞.

Let f : Rd → R+ be a probability density function. The empirical distribution f̂n, corre-
sponding to n independent samples X1, . . . , Xn drawn from f , is the probability measure defined
by f̂n(A) = (1/n) ·

∑n
i=1 1Xi∈A , for all A ⊆ Rd. The well-known Vapnik-Chervonenkis (VC)

inequality states the following:

Theorem 4 (VC inequality, (Devroye and Lugosi, 2001, p.31)) Let f : Rd → R+ be a probabil-
ity density function and f̂n be the empirical distribution obtained after drawing n samples from f .
Let A be a family of subsets over Rd with VC dimension V . Then, E[‖f − f̂n‖A] ≤ C

√
V/n ,

where C is a universal constant.

Approximation of Convex Sets by Polytopes. There is a large literature on approximating convex
sets by polytopes (see, e.g., the surveys Gruber (1993); Bronstein (2008)). We will make essential
use of the following theorem that provides a volume approximation by an inscribed polytope with a
bounded number of facets:
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Theorem 5 (Gordon et al. (1994, 1995)) Let d ∈ Z+. For any convex body K ⊆ Rd, and n suffi-
ciently large, there exists a convex polytope P ⊆ K with at most n facets such that vol (K \ P ) ≤

Cd
n2/(d−1) vol(K), where C > 0 is a universal constant.

3. Proof of Theorem 3

To prove our theorem, we will make essential use of the following general lemma, establishing the
existence of a sample-efficient estimator using the VC inequality:

Lemma 6 (Chan et al. (2014a)) Let D be a family of probability density functions over Rd. Sup-
pose there exists a family A of subsets of Rd with VC-dimension V such that the following holds:
For any pair of densities f1, f2 ∈ D we have that dTV (f1, f2) ≤ ‖f1 − f2‖A + ε/2. Then, there
exists an agnostic learning algorithm for D with error guarantee 3 · OPT + ε that succeeds with
probability 9/10 using O(V/ε2) samples.

Proof This lemma is implicit in Chan et al. (2014a), and we include a proof here for completeness.
The estimator is extremely simple and its correctness relies on the VC inequality:

(1) Draw n = O(V/ε2) samples from f ;

(2) Output the density h ∈ D that minimizes3 the objective function ‖g − f̂n‖A over g ∈ D.

We now show that the above estimator is an agnostic learning algorithm for D. Let

f∗ = argmin{dTV (f, g) | g ∈ D} ,

i.e., OPT = dTV (f, f∗). Note that for any pair of densities f1, f2 and any collection of subsets A
we have that ‖f1 − f2‖A ≤ dTV (f1, f2). By Theorem 4 and Markov’s inequality, it follows that
with probability at least 9/10 over the samples drawn from f we have that

‖f − f̂n‖A ≤ ε/4 .

Conditioning on this event, we have that

dTV (h, f) ≤ dTV (f, f∗) + dTV (f∗, h)

≤ OPT + ‖f∗ − h‖A + ε/2 (since f∗, h ∈ D)

≤ OPT + ‖f∗ − f̂n‖A + ‖h− f̂n‖A + ε/2

≤ OPT + 2 · ‖f∗ − f̂n‖A + ε/2 (since ‖h− f̂n‖A ≤ ‖f∗ − f̂n‖A)

≤ OPT + 2 · ‖f∗ − f‖A + 2 · ‖f − f̂n‖A + ε/2

≤ OPT + 2 · dTV (f∗, f) + 2 · ‖f − f̂n‖A + ε/2

≤ OPT + 2 ·OPT + 2 · ε/4 + ε/2

= 3OPT + ε .

This completes the proof of the lemma.

In view of Lemma 6, to prove Theorem 3 we establish the following:

3. It is straightforward that it suffices to solve this optimization problem up to an additive O(ε) error.
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Proposition 7 There exists a family A of sets in Rd whose VC dimension is at most

V = O(d/ε)(d+1)/2 log2(1/ε)

that satisfies the condition of Lemma 6 for Fd, i.e., for any pair of densities f1, f2 ∈ Fd it holds that
dTV (f1, f2) ≤ ‖f1 − f2‖A + ε/2.

Lemma 6 and Proposition 7 together imply that there exists an agnostic learner for Fd with
sample complexity

O(V/ε2) = O (d/ε)(d+5)/2 log2(1/ε) ,

which gives Theorem 3. The main part of this section is devoted to the proof of Proposition 7.

Proof Overview: The proof has two main steps. In the first step, we define an appropriately
structured family of functions Cd,ε so that an arbitrary log-concave density f ∈ Fd can be ε-
approximated by a function g ∈ Cd,ε. More specifically, each function g ∈ Cd,ε takes at most
L = Od((1/ε) log(1/ε)) distinct values, and for each y ≥ 0, the sets g−1([y,∞)) are a union of
intersections of H = Od(ε

−(d−1)/2) many halfspaces. We then produce a familyAd,ε of sets so that
for f, g ∈ Cd,ε, dTV (f, g) = ‖f − g‖Ad,ε and so that the VC dimension of Ad,ε is Õ(d · L · H),
which yields the desired result. We proceed with the details below.

Proof of Proposition 7: We start by formally defining the family of functions Cd,ε:
Definition 8 Given ε > 0, let Cd,ε be the set of all functions g : Rd → R of the following form:

• We set L = L(d, ε)
def
= Θ((d/ε) log(d/ε)).

• For i ∈ [L], let yi > 0 and Pi be an intersection of H def
= Θ(d/ε)(d−1)/2 halfspaces in Rd.

• Given {(yi, Pi)}Li=1, we define the function g by

g(x) =

{
max {yi | i ∈ [L] : x ∈ Pi} if x ∈ ∪Lj=1Pj
0 if x /∈ ∪Lj=1Pj .

(1)

Furthermore, we assume that the asymptotic constants used in defining L and H are sufficiently
large.

We are now ready to state and prove our first important lemma:

Lemma 9 For any f ∈ Fd, and any ε > 0, there exists g ∈ Cd,ε so that ‖f − g‖1 = O(ε).

Proof For y ∈ R+ and a function f : Rd → R+ we will denote by

Lf (y)
def
= {x ∈ Rd | f(x) ≥ y}

its superlevel sets. We note that, since f is log-concave, Lf (y) is a convex set for all y ∈ R+.
We define the desired approximation in a natural way, by constructing appropriate polyhedral

approximations to the superlevel sets Lf (y) for a finite set of y’s in a geometric series with ratio
(1 + ε). Concretely, given f ∈ Fd and ε > 0, we define the function g ∈ Cd,ε as follows: For

i ∈ [L], we set yi
def
= Mf · (1 − ε)i, where Mf will denote the maximum value of f . We then

consider the collection of convex sets Lf (yi), i ∈ [L], and apply Theorem 5 to approximate each
such set by a polytope with an appropriate number of facets. For each i ∈ [L], Theorem 5, applied
for n = O(d/ε)(d−1)/2, prescribes that there exists a polytope, Pi, that is the intersection of H =
O(d/ε)(d−1)/2 many halfspaces in Rd, so that:
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(i) Pi ⊆ Lf (yi), and

(ii) vol(Pi) ≥ vol (Lf (yi)) · (1− ε).

This defines our function g. It remains to prove that ‖f − g‖1 = O(ε).
We first point out that, by the definition of g, we have that f(x) ≥ g(x) for all x ∈ Rd. This is

because, if g(x) = yi, it must be the case that x ∈ Pi ⊆ Lf (yi), by condition (i) above, and therefore
f(x) ≥ yi = g(x). So, to prove the lemma, it suffices to show that

∫
Rd g(x)dx = 1 − O(ε). We

start by noting that

1 =

∫
Rd
f(x)dx = vol

({
(x, y) ∈ Rd+1 | 0 ≤ y ≤ f(x)

})
=

∫
R+

vol (Lf (y)) dy.

Similarly, if we denote Lg(y) = {x ∈ Rd | g(x) ≥ y}, we have that∫
Rd
g(x)dx =

∫
R+

vol (Lg(y)) dy .

The following claim establishes that the contribution to
∫
Rd f(x)dx from the points x ∈ Rd with

f(x) ≤ yL−1 is small:

Claim 10 It holds that
∫ yL−1

0 vol (Lf (y)) dy ≤ ε.

Proof We assume without loss of generality that f attains its maximum value, Mf , at x = 0. Let

R = Lf

(
Mf

e

)
. Notice that

1 =

∫
R+

vol (Lf (y)) dy ≥
∫
0≤y≤Mf/e

vol (Lf (y)) dy ≥
∫
0≤y≤Mf/e

vol (R) dy =
Mf

e
· vol (R) ,

where we used the fact that R ⊆ Lf (y) since y ≤Mf/e. Hence, we have that

vol(R) ≤ e/Mf .

Moreover, we claim that, for z ≥ 1, by the log-concavity of f we have that

Lf (Mfe
−z) ⊆ zR .

Indeed, for f(x) ≥ Mfe
−z , then f(x/z) ≥ f(0)(z−1)/zf(x)1/z ≥ Mf/e. Therefore, we have that

x/z ∈ R or equivalently x ∈ zR. Hence,

vol
(
Lf (Mfe

−z)
)
≤ O(zd/Mf ). (2)
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Recall that, by our definition of L, if we choose sufficiently large asymptotic constants, it holds
yL−1 ≤ δMf for δ = ε2/O(d)2d. We now have the following sequence of inequalities:∫ yL−1

0
vol (Lf (y)) dy =

=

∫ ∞
ln(Mf/yL−1)

vol
(
Lf (Mfe

−z)
)
Mfe

−zdz

(by the change of variable y = Mfe
−z)

≤
∫ ∞
ln(1/δ)

O(zde−z)dz (by (2) and the assumption Mf/yL−1 ≥ 1/δ)

≤
∫ ∞
ln(1/δ)

O(d)de−z/2dz (since ez/2 ≥ (z/2)d/d!)

= O(d)dδ1/2

≤ ε . (using the definition of δ)

This completes the proof of Claim 10.

We now establish the following crucial claim:

Claim 11 For yL ≤ y ≤ y1, we have that vol (Lg(y)) ≥ (1− ε)vol
(
Lf

(
y

1−ε

))
.

Proof Recall that yi
def
= Mf (1− ε)i, i ∈ [L]. Since y1 > y2 > . . . > yL, we can equivalently write

(1) as follows:

g(x) =

{
yi, where i = min{j ∈ [L] : x ∈ Pj} if x ∈ ∪Lj=1Pj
0 if x /∈ ∪Lj=1Pj .

(3)

We claim that Lg(yi) =
⋃

1≤j≤i Pj , i ∈ [L]. Indeed, we can write

Lg(yi) = {x ∈ Rd | g(x) ≥ yi} =
⋃

1≤j≤i
{x ∈ Rd | g(x) = yj} =

⋃
1≤j≤i

(Pj \ ∪k<jPk) =
⋃

1≤j≤i
Pj ,

where the second and third equalities follow from (3).
For y = y1, we thus have that

vol(Lg(y1)) = vol(P1) ≥ (1− ε)vol(Lf (y1)) ≥ (1− ε)vol

(
Lf

(
y1

1− ε

))
,

where the first inequality is implied by (ii), and the second inequality follows from the fact Lf (y) ⊇
Lf (y′) whenever y ≤ y′.

For yL ≤ y < y1, consider the index i ∈ [L−1] such that yi+1 ≤ y < yi = yi+1

1−ε . By definition,
we have that

Lg(yi) ⊆ Lg(y) ⊆ Lg(yi+1) .

10
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Recalling that Lg(yi) =
⋃

1≤j≤i Pj , we obtain Lg(y) ⊇ Pi, and therefore

vol(Lg(y)) ≥ vol(Pi) ≥ (1− ε)vol(Lf (yi))

= (1− ε)vol

(
Lf

(
yi+1

1− ε

))
≥ (1− ε)vol

(
Lf

(
y

1− ε

))
,

where the second inequality is implied by (ii) and the third inequality uses the fact that y ≥ yi+1

and the fact Lf (y) ⊇ Lf (y′) whenever y ≤ y′. This completes the proof of Claim 11.

We are now ready to complete the proof. We have the following:∫
Rd
g(x)dx =

∫ y1

yL

vol (Lg(y)) dy

≥ (1− ε)
∫ y1

yL

vol

(
Lf

(
y

1− ε

))
dy (by Claim 11)

= (1− ε)2 ·
∫ Mf

yL/(1−ε)
vol
(
Lf (y′)

)
dy′

= (1− ε)2 ·
(∫ Mf

0
vol (Lf (y)) dy −

∫ yL−1

0
vol (Lf (y)) dy

)
≥ (1− ε)2 ·

(∫
Rd
f(x)dx− ε

)
(by Claim 10)

= (1− ε)2 · (1− ε)
= 1−O(ε) .

The proof of Lemma 9 is now complete.

We now proceed to define the family of subsets A and bound from above its VC dimension.
In particular, we define A to be the family of sets that exactly express the differences between two
elements of Cd,ε:

Definition 12 Define the family Ad,ε of sets in Rd to be the collection of all sets of the form {x ∈
Rd : g(x) ≥ g′(x)} for some g, g′ ∈ Cd,ε. Notice that if g, g′ ∈ Cd,ε then dTV (g, g′) = ‖g−g′‖Ad,ε .

We show the following lemma:

Lemma 13 The VC dimension of Ad,ε is at most O(d/ε)(d+1)/2 log2(1/ε). Furthermore, for
f, f ′ ∈ Fd, and c > 0 is a sufficiently small constant, we have that dTV (f, f ′) ≤ ‖f−f ′‖Ad,cε+ε/2.

Proof Note that a g ∈ Cd,ε is determined completely by L = O((d/ε) log(d/ε)) values yi and
LH = O(d/ε)(d+1)/2 log(1/ε) halfspaces used to define the L convex polytopes Pi. We will show
that if g′ ∈ Cd,ε is defined by L values y′i and another set of LH halfspaces, and if x ∈ Rd, then it
is possible to determine whether or not g(x) ≥ g′(x) based solely on:

11
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• The relative ordering of the yi and y′i.

• Which of the 2LH halfspaces x belongs to.

Now consider an arbitrary set T of n points in Rd. We wish to bound the number of possible distinct
sets that can be obtained by the intersection of T with a set in Ad,ε. By the above, the intersection
will be determined by:

• The relative ordering of the 2L elements given by the yi and y′i.

• The intersections of each of the 2LH halfspaces defining g and g′ with T .

Note that the number of orderings in question is at most (2L)!. Formally, we can write Pi =⋂H
j=1 Pi,j for halfspaces Pi,j , and similarly P ′i =

⋂H
j=1 P

′
i,j , where Pi and P ′i appear in the defini-

tion of g and g′ respectively. We have the following:

Claim 14 There exist at most (2L)! different 2L-ary set functions Fk such that for any g, g′ ∈ Cd,ε
the set {x : g(x) ≥ g′(x)} is given by Fk(P1,1, . . . , PL,H , P

′
1,1, . . . , P

′
L,H) for some k. Further-

more, these functions are distributive over intersection, i.e., for all k and T, S1, . . . , S2LH ⊆ Rd,
we have that Fk(S1, . . . , S2LH) ∩ T = Fk(S1 ∩ T, . . . , S2LH ∩ T ).

Proof Note that for a given x ∈ Rd, we have that g(x) ≥ g′(x) if and only if there is an i such
that x ∈ Pi and for all i′ with y′i′ ≥ yi we have x /∈ P ′i′ . That is, {x : g(x) ≥ g′(x)} =⋃L
i=1

(
Pi \

⋃
i′:y′

i′>yi
P ′i′
)

. In terms of halfspaces, this can be equivalently written as follows:

{x : g(x) ≥ g′(x)} =
L⋃
i=1

 H⋂
j=1

Pi,j \
⋃

i′:y′
i′>yi

H⋂
j=1

P ′i′,j

 .

Note that, viewed as a function of the halfspaces, the above expression only depends on the relative
ordering of the yi and y′i. Thus, we can express this as one of at most (2L)! functions of these
halfspaces.

Since these functions are defined using only unions, intersections and differences (which all
distribute over intersections), so do the Fk.

It is well-known that for any halfspace the number of possible intersections with a set T of size
n is at most O(n)d. By Claim 14, for any A ∈ Ad,ε we have that A ∩ T = Fk(S1 ∩ T, . . . , S2LH ∩
T ) for halfspaces S1, . . . , S2LH . There are (O(n)d)2LH different 2LH-tuples of intersections of
halfspaces with T and at most (2L)! different Fk. Therefore, the number of possible intersections
of an element of Ad,ε with T is at most

(2L)!O(n)2dLH = exp(O(d/ε)(d+1)/2 log(1/ε) log(n)) . (4)

On the other hand, if Ad,ε has VC dimension n, (4) must be at least 2n. Therefore, if n is the
VC-dimension of Ad,ε, we have that

n/ log(n) = O(d/ε)(d+1)/2 log(1/ε) ,

12
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and therefore,
n = O(d/ε)(d+1)/2 log2(1/ε) .

For the claim comparing the variation distance to ‖ · ‖Ad,cε , note that, by Lemma 9, if c is chosen
to be sufficiently small, there exist g, g′ ∈ Cd,cε so that dTV (f, g), dTV (f ′, g′) ≤ ε/8. We then have
that

dTV (f, f ′) ≤ dTV (f, g) + dTV (f ′, g′) + dTV (g, g′)

≤ ε/4 + ‖g − g′‖Ad,cε
≤ ε/4 + ‖f − f ′‖Ad,cε + dTV (f, g) + dTV (f ′, g′)

≤ ‖f − f ′‖Ad,cε + ε/2 .

This completes the proof of Lemma 13.

The proof of Proposition 7 and Theorem 3 is now complete.

4. Conclusions

In this paper, we gave the first sample complexity upper bound for learning log-concave densities on
Rd. Our upper bound agrees with the previously known lower bound up to a multiplicative factor
of Õd(ε−2). No sample complexity upper bound was previously known for this problem for any
d > 3.

Our result is a step towards understanding the learnability of log-concave densities in multiple
dimensions. A number of interesting open problems remain. We outline the two immediate ones
here:

• What is the optimal sample complexity of log-concave density estimation? It is a plausible
conjecture that the correct answer, under the total variation distance, is Θd

(
(1/ε)d/2+2

)
. We

believe that a more sophisticated version of our structural approximation results could give
such an upper bound. On the other hand, it seems likely that an adaptation of the construction
in Kim and Samworth (2016) could yield a matching lower bound.

• Is there a polynomial time algorithm (as a function of the sample complexity) to learn log-
concave densities on Rd? The estimator underlying this work (Lemma 6) has been previously
exploited Chan et al. (2013, 2014a); Acharya et al. (2017) to obtain computationally efficient
learning algorithms for d = 1 – in fact, running in sample near-linear time Acharya et al.
(2017). Obtaining a computationally efficient algorithm for the case of general dimension is
a challenging and important open question.
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