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Abstract
Learning automata is a foundational problem in computational learning theory. However, even ef-
ficiently learning random DFAs is hard. A natural restriction of this problem is to consider learning
random DFAs under the uniform distribution. To date, this problem has no non-trivial lower bounds
nor algorithms faster than brute force. In this note, we propose a method to find faster algorithms
for this problem. We reduce the learning problem to a conjecture about meeting times of random
walks over random DFAs, which may be of independent interest to prove.
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1. Introduction

We are motivated by understanding the complexity of learning deterministic finite automata. The
question of learning automata, or regular languages, has been studied since the advent of compu-
tational learning theory. While automata are known to be learnable in various query models (e.g.
MQ+EQ (Angluin, 1987) and label queries (Angluin et al., 2009)), cryptographic lower bounds give
strong evidence against their efficient learnability in Valiant’s PAC model (Pitt and Warmuth, 1990).

One natural easier task is to design algorithms for learning automata on average. In particular,
one can ask whether automata with random transitions and accept/reject behavior can be efficiently
PAC-learned. This restriction, however, still presents barriers – namely, even uniformly random
automata have super-polynomial statistical query dimension (Angluin et al., 2010). Even when in
addition the target distribution over input strings is uniform, no algorithms better than brute-force
are known, except when additional information is also given (Angluin and Chen, 2015).

Towards the goal of faster algorithms for learning random DFAs under the uniform distribution,
we reduce the learning problem via the powerful tools of boolean Fourier analysis to a conjecture
about random walks over random DFAs. We propose proving (or disproving) this conjecture as an
avenue towards progress on the learning problem.

Our conjecture may also be interesting in its own right and posits a statement about the meeting
time of random walks on DFAs, which is also related to the concept of synchronizing strings over
DFAs.

2. Definitions

Here, we consider the uniform distribution over n-state DFAs, so the transitions between states are
chosen uniformly at random, as are whether each state is an accept state or a reject state, and we
will call this distribution D. The goal is to PAC-learn uniformly random DFAs under the uniform
distribution over inputs in time poly(n). That is, we wish to return a hypothesis that has at most
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ε error with respect to the unknown DFA except with probability at most δ, where the probability
is taken both over the sample the learning algorithm receives and D. For m the length of the
input strings, even if we are allowed to choose m as a function of n where m = poly(n), nothing
faster than brute force is known when each input string is chosen uniformly at random (which we
will denote as Um). Note that there are Õ(2n logn) DFAs on n states, so merely improving to an
algorithm that takes O(2n) time remains an open problem.

To achieve this goal, we suggest using the tools of boolean Fourier analysis. Namely, for any
function f : {−1, 1}m → R, we may write it as f(x) =

∑
S⊆[m] f̂(S)χS(x), where χS(x) =

Πi∈Sxi and f̂(S) is a unique real number called the Fourier coefficient of f on S. The set of all
such coefficients is called the Fourier spectrum of f .

Definition 1 (ε-concentration) Let F be a collection of subsets S ⊆ [m]. The Fourier spectrum
of f : {−1, 1}m → R is ε-concentrated in F if∑

S 6∈F

f̂(S)2 ≤ ε.

Theorem 2 For unknown f , suppose an algorithm A can identify a collection F of subsets on
which f ’s Fourier spectrum is ε/2-concentrated. Then using poly(|F |,m, 1/ε, 1/δ) additional time
(and samples), A can learn f under the uniform distribution with error at most ε.

This approach was pioneered by Linial et al. (1993). We will show that a random DFA has a
concentrated Fourier spectrum by showing that most influences of the random DFA are small, as
defined below. For any string x ∈ {−1, 1}m, call x⊕i = (x1, . . . , xi−1,−xi, xi+1, . . . , xm).

Definition 3 (ith influence) The ith influence of a function f : {−1, 1}m → {−1, 1} is

Inf
i

[f ] = Px∼Um [f(x) 6= f(x⊕i)] =
∑
S3i

f̂(S)2.

Influence was first introduced in the theory of social choice by Ben-Or and Linial (1985). See
O’Donnell (2014) for a proof that these two definitions of the ith influence are equivalent.

3. Partial results and previous work

Note that showing that the ith influence of a DFA is small is both a statement about the concentration
of f and a statement about a random walk on the graph of a DFA. That is, the ith influence will be
small if the following holds: given a random walk on the DFA and the same walk where the ith bit
is flipped, these two walks are likely to end in both accept states or both reject states.

In particular, if the walks coincide at any time after i, then they will land in the same state.
Related to this is the concept of a ‘synchronizing’ string, which is a string that brings all of the
states of a DFA to the same state. If a DFA has such a string, it is said to be synchronizing. A
long-standing open problem is the maximum length of a synchronizing string, raised by Černỳ and
others (Černỳ, 1964). Černỳ’s conjecture states that all synchronizing DFAs have a synchronizing
string of length no more than (n − 1)2. For recent results on random DFAs see for example the
work of Skvortsov and Zaks (2010). However, in our case, we don’t need the string to be the same
for every set of states, but instead just need a random string to bring together two states.
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OPEN PROBLEM: MEETING TIMES FOR LEARNING RANDOM AUTOMATA

Also closely related is the concept of a meeting time of a random walk. In the simplest version,
the meeting time of random walks starting from states u and v is the number of steps it takes for the
two walks to first meet at any vertex. Bounds on expected meeting time on random walks in various
settings have appeared in the literature (Aldous, 1991; Cooper et al., 2013; Kanade et al., 2016).
Closest to our conjecture is the work of Cooper et al. (2009), who describes expected meeting times
on random r-regular, undirected graphs for r ≥ 3. However, we need high-probability results on
the meeting time on random 2-regular directed graphs (so that the out-degree but not necessarily
in-degree is always two, i.e. it is a DFA).

Namely, we conjecture that with high probability the meeting time is O(n). To state this pre-
cisely, for any DFA f , let δ(q, x) be the function that applies the string x on that DFA starting at
state q and returns the state that it ends in.

Conjecture 4 There is some constant c > 0 such that for any two states u and v, and any λ > 0,

Pf∼D

[
Px∼Ucn [δ(u, x) 6= δ(v, x)] ≤ O

(
1

nλ

)]
≥ 1− on(1).

We propose this conjecture as a concrete open problem; proving it would lead to progress on learn-
ing DFAs in this setting.

Specifically, using this conjecture, we can show that a random DFA with high probability has
many small influences, implying that its Fourier spectrum is sufficiently concentrated:

Proposition 5 Assume that Conjecture 4 holds with constant c. Consider x ∈ {−1, 1}m to be a
uniformly random string and f : {−1, 1}m → {1, 1} a uniformly random DFA on n states. There
is a 2O(n)-time learning algorithm for random DFAs under the uniform distribution over examples
of length m = Ω(n) that needs at most 2O(n) samples for any ε = 1/poly(n).

Proof Using Theorem 2, it suffices to give a collection of subsets of size 2O(n) that is ε/2-
concentrated with high probability. Let F = {S : S ⊆ {dm− cne, . . . ,m}}.∑

S 6∈F

f̂(S)2 ≤
∑

i<m−cn

∑
S3i

f̂(S)2 =
∑

i<m−cn
Inf
i

[f ].

Then it suffices to show that for i < m − cn, Infi[f ] ≤ ε
2(m−cn) .Consider i < m − cn, setting

m > cn. Calling q0 the start state and x|k the first k bits of x, if δ(q0, x|i+cn) = δ(q0, x
⊕i|i+cn),

then certainly f(x) = f(x⊕i): Then the flip of the bit at the ith position is ‘corrected’ to the same
state, at which point the rest of the strings x and x⊕i will end in the same state, at which point
f(x) = f(x⊕i). Let u = δ(q0, x|i) and v = δ(q0, x

⊕i|i). Conjecture 4 implies that with high
probability,

Py∼Ucn [δ(u, y) 6= δ(v, y)] ≤ 1/nλ

for any λ > 0, which immediately implies that

Px∼Um [f(x) 6= f(x⊕i)] ≤ Px∼Um [δ(q0, x|i+cn) 6= δ(q0, x
⊕i|i+cn)] ≤ ε

2m
≤ ε

2(m− cn)

for ε ≥ Ω
(

1
poly(n)

)
.
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