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Abstract
We consider the minimization of composite objective functions composed of the expectation of
quadratic functions and an arbitrary convex function. We study the stochastic dual averaging al-
gorithm with a constant step-size, showing that it leads to a convergence rate of O(1/n) without
strong convexity assumptions. This thus extends earlier results on least-squares regression with
the Euclidean geometry to (a) all convex regularizers and constraints, and (b) all geometries repre-
sented by a Bregman divergence. This is achieved by a new proof technique that relates stochastic
and deterministic recursions.
Keywords: Convex optimization, stochastic approximation, dual averaging, mirror descent

1. Introduction

Many learning problems may be cast as the optimization of an objective function defined as an
expectation of random functions, and which can be accessed only through samples. In this paper,
we consider composite problems of the form

min
θ∈Rd

Ez`(z, θ) + g(θ), (1)

where for any z, `(z, ·) is a convex quadratic function (plus some linear terms) and g is any extended-
value convex function.

In a machine learning context, `(z, θ) is the loss occurred for the observation z and the predictor
parameterized by θ, f(θ) = Ez`(z, θ) is its generalization error, while the function g represents
some additional regularization or constraints on the predictor. Thus in this paper we consider com-
posite least-squares regression problems, noting that solving such problems effectively leads to ef-
ficient algorithms for all smooth losses by using an online Newton algorithm (Bach and Moulines,
2013), with the same running-time complexity of O(d) per iteration for linear predictions.

When g = 0, averaged stochastic gradient descent with a constant step-size achieves the optimal
convergence rate of O(1/n) after n observations, even in ill-conditioned settings without strong
convexity (Dieuleveut et al., 2016; Jain et al., 2016), with precise non-asymptotic results that depend
on the statistical noise variance σ2 of the least-squares problem, as σ2d/n, and on the squared
Euclidean distance between the initial predictor θ0 and the optimal predictor θ∗, as ‖θ0 − θ∗‖22/n.

In this paper, we extend this O(1/n) convergence result in two different ways:
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• Composite problems: we provide a new algorithm that deals with composite problems
where g is (essentially) any extended-value convex function, such as the indicator function
of a convex set for constrained optimization, or a norm or squared norm for additional reg-
ularization. This situation is common in many applications in machine learning and signal
processing (see, e.g., Rish and Grabarnik, 2014, and references therein). Because we consider
large steps-sizes (that allow robustness to ill-conditioning), the new algorithm is not simply
a proximal extension; for example, in the constrained case, averaged projected stochastic
gradient descent with a constant step-size is not convergent, even for quadratic functions.
• Beyond Euclidean geometry: Following mirror descent (Bauschke et al., 2016), our new

algorithm can take into account a geometry obtained with a Bregman divergence Dh associ-
ated with a convex function h, which can typically be the squared Euclidean norm (leading
to regular stochastic gradient descent in the non-composite case), the entropy function, or the
squared `p-norm. This will allow convergence rates proportional toDh(θ∗, θ0)/n, which may
be significantly smaller than ‖θ0 − θ∗‖2/n in many situations.

In order to obtain these two extensions, we consider the stochastic dual averaging algorithm
of Nesterov (2009) and Xiao (2010) which we present in Section 2, and study under the particular
set-up of constant step-size with averaging, showing in Section 3 that it also achieves a convergence
rate ofO(1/n) even without strong-convexity. This is achieved by a new proof technique that relates
stochastic and deterministic recursions.

Given that known lower bounds for this class of problems are proportional to 1/
√
n for function

values, we established our O(1/n) results with a different criterion, namely the Mahalanobis dis-
tance associated with the Hessian of the least-squares problem. In our simulations in Section 5, the
two criteria behave similarly. Finally, in Section 4, we shed additional insights of the relationships
between mirror descent and dual averaging, in particular in terms of continuous-time interpretations.

2. Dual averaging algorithm

In this section, we introduce dual averaging as well as related frameworks, together with new results
in the deterministic case.

2.1. Assumptions

We consider the Euclidean space Rd of dimension d endowed with the natural inner product 〈·, ·〉
and an arbitrary norm ‖ · ‖ (which may not be the Euclidean norm). We denote by ‖ · ‖∗ its dual
norm and for any symmetric positive-definite matrix A, by ‖ · ‖A =

√
〈·, A·〉 the Mahalanobis

norm. For a vector θ ∈ Rd, we denote by θ(i) its i-th coordinate and by ‖θ‖p = (
∑d

i=1 |θ(i)|p)1/p

its `p-norm. We also denote the convex conjugate of a function f by f∗(η) = supθ∈Rd〈η, θ〉−f(θ).
We remind that a function f is L-smooth with respect to a norm ‖ · ‖ if for all (α, β) ∈ Rd × Rd,
‖∇f(α) − ∇f(β)‖∗ ≤ L‖α − β‖ and is µ-strongly convex if for all (α, β) ∈ Rd × Rd and
g ∈ ∂f(β), f(α) ≥ f(β) + 〈g, α− β〉+ µ

2‖α− β‖
2 (see, e.g., Shalev-Shwartz and Singer, 2006).

We consider problems of the form:

min
θ∈X

ψ(θ) = f(θ) + g(θ), (2)

where X ⊂ Rd is a closed convex set with non empty interior. Throughout this paper, we make the
following general assumptions:
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(A1) f : Rd → R ∪ {+∞} is a proper lower semicontinuous convex function and is differentiable
on X̊ (the interior of X ).

(A2) g : Rd → R ∪ {+∞} is a proper lower semicontinuous convex function.

(A3) h : Rd → R ∪ {+∞} with dom h ∩ dom g = X , ˚dom h ∩ dom g 6= ∅. Moreover h is a
Legendre function (Rockafellar, 1970, chap. 26):

• h is a proper lower semicontinuous strictly convex function, differentiable on ˚dom h.

• The gradient of h is diverging on the boundary of dom h (i.e., limn→+∞‖∇h(θn)‖ =∞
for any sequence (θn) converging to a boundary point of dom h). Note that ∇h is then
a bijection from ˚dom h to ˚dom h∗ whose inverse is the gradient of the conjugate∇h∗.

(A4) The function ψ = f + g attains its minimum over X at a certain θ∗ ∈ Rd (which may not be
unique).

Note that we adopt the same framework as Bauschke et al. (2016) with the difference that the convex
constraint C can be handled with more flexibility: either by considering a Legendre function h
whose domain is C or by considering the hard constraint g(θ) = 1C(θ) (equal to 0 if θ ∈ C and +∞
otherwise).

2.2. Dual averaging algorithm

In this section we present the dual averaging algorithm (referred to from now on as “DA”) for solving
composite problems of the form of Eq. (2). It starts from θ0 ∈ ˚dom h and η0 = ∇h(θ0) and iterates
for n ≥ 1 the recursion

ηn = ηn−1 − γ∇f(θn−1)

θn = ∇h∗n(ηn), (3)

with hn = h + nγg and γ ∈ (0,∞) (commonly referred to as the step-size in optimization or the
learning rate in machine learning). We note that equivalently θn ∈ argmaxθ∈Rd{〈ηn, θ〉 − hn(θ)}.
When h = 1

2‖ · ‖
2
2 and g = 0, we recover gradient descent.

Two iterates (ηn, θn) are updated in DA. The dual iterate ηn is simply proportional to the sum
of the gradients evaluated in the primal iterates (θn). The update of the primal iterate θn is more
complex and raises two different issues: its existence and its tractability. We discuss the first point
in Appendix A and assume, as of now, that the method is generally well defined in practice. The
tractability of θn is essential and the algorithm is only used in practice if the functions h and g are
simple in the sense that the gradient ∇h∗n may be computed effectively. This is the case if there
exists a closed form expression. Usual examples are given in Appendix I.

Euclidean case and proximal operators. In the Euclidean case, Eq. (3) may be written in term
of the proximal operator defined by Moreau (1962) as Proxg(η) = argminθ∈X {1

2‖θ− η‖
2
2 + g(θ)}:

θn = argmin
θ∈X

{
〈−ηn, θ〉+nγg(θ) +

1

2
‖θ‖22

}
= argmin

θ∈X

{1

2
‖θ− ηn‖22 +nγg(θ)

}
= Proxγng(ηn).

DA is in this sense related to proximal gradient methods, also called forward-backward splitting
methods (see, e.g., Beck and Teboulle, 2009; Wright et al., 2009; Combettes and Pesquet, 2011).
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These methods are tailored to composite optimization problems: at each iteration f is linearized
around the current iterate θn and they consider the following update

θn+1 = argmin
θ∈X

{
〈γ∇f(θn), θ〉+ γg(θ) +

1

2
‖θ − θn‖22

}
= Proxγg(θn − γ∇f(θn)).

Note the difference with DA which considers a dual iterate and a proximal operator for the function
nγg instead of γg (see additional insights in Section 4).

From non-smooth to smooth optimization. DA was initially introduced by Nesterov (2009) to
optimize a non-smooth function f with possibly convex constraints (g = 0 or g = 1C). It was
extended to the general stochastic composite case by Xiao (2010) who defined the iteration as

θn = argmin
θ∈X

{ 1

n

n−1∑
i=0

〈zi, θ〉+ g(θ) +
βn
n
h(θ)

}
,

where zi is an unbiased estimate1 of a subgradient in ∂f(θi) and (βn)n≥1 a nonnegative and nonde-
creasing sequence of real numbers. This formulation is equivalent to Eq. (3) for constant sequences
βn = 1/γ. Xiao (2010) proved convergence rates of order O(1/

√
n) for convex problems with de-

creasing step-size C/
√
n and O(1/(µn)) for problems with µ-strongly convex regularization with

constant step-size 1/µ. DA was also studied with decreasing step-sizes in the distributed case by
Duchi et al. (2012); Dekel et al. (2012); Colin et al. (2016) and combined with the alternating direc-
tion method of multipliers (ADMM) by Suzuki (2013). It was further shown to be very efficient in
manifold identification by Lee and Wright (2012) and Duchi and Ruan (2016).

Relationship with mirror descent. The DA method should be associated with its cousin mirror
descent algorithm (referred to from now on as “MD”), introduced by Nemirovski and Yudin (1979)
for the constrained case and written under its modern proximal form by Beck and Teboulle (2003)

θn = argmin
θ∈X

{
γ〈∇f(θn−1), θ〉+Dh(θ, θn−1)

}
,

where we denote byDh(α, β) = h(α)−h(β)−〈∇h(β), α−β〉 the Bregman divergence associated
with h. Moreover it was later extended to the general composite case by Duchi et al. (2010)

θn = argmin
θ∈X

{
γ〈∇f(θn−1), θ〉+ γg(θ) +Dh(θ, θn−1)

}
. (4)

DA was initially motivated by Nesterov (2009) to avoid new gradients to be taken into account with
less weight than previous ones. However, as an extension of the Euclidean case, DA essentially
differs from MD on the way the regularization component is dealt with. See more comparisons in
Section 4.

Relationship with online learning. DA was traditionally studied under the online learning setting
(Zinkevich, 2003) of regret minimization and is related to the “follow the leader” approach (see, e.g.,
Kalai and Vempala, 2005) as noted by McMahan (2011). More generally, the DA method may be
cast in the primal-dual algorithmic framework of Shalev-Shwartz and Singer (2006) and Shalev-
Shwartz and Kakade (2009).

1. Their results remain true in the more general setting of online learning.
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2.3. Deterministic convergence result for dual averaging

In this section we present the convergence properties of the DA method for optimizing deterministic
composite problems of the form in Eq. (2), for any smooth function f (see proof in Appendix B).

Proposition 1 Assume (A1-4). For any step-size γ such that h − γf is convex on X̊ we have for
all θ ∈ X

ψ(θn)− ψ(θ) ≤ Dh(θ, θ0)

γ(n+ 1)
.

Moreover assume g = 0, and there exists µ ∈ R such that f −µh is also convex on X̊ then we have
for all θ ∈ X

f(θn)− f(θ) ≤ (1− γµ)n
Dh(θ, θ0)

γ
.

We can make the following remarks:

• Following Bauschke et al. (2016), we adapt the proof of Chen and Teboule (1993) to the
composite case and the DA method by including the regularization component g in the Breg-
man divergence. If g was differentiable we would simply use Dhn = Dh+nγg and prove the
following recursion:

Dhn(θ∗, θn)−Dhn−1(θ∗, θn−1) = −Dhn−1(θn, θn−1) + γ〈∇f(θn−1), θn−1 − θn〉
− γ(g(θn)− g(θ))− γ〈∇f(θn−1), θn−1 − θ∗〉.

Since g is not differentiable, we extend instead the notion of Bregman divergence to the non-
smooth case in Appendix B.2 and show the proof works in the same way.

• Related work: A result on MD with analogue assumptions is presented by Bauschke et al.
(2016). DA was first analyzed for smooth functions in the non-composite case where g = 0,
by Dekel et al. (2012) in the stochastic setting and by Lu et al. (2016) in the deterministic
setting. The technique to extend the Bregman divergence to analyze the regularization com-
ponent has its roots in the time-varying potential method in online learning (Cesa-Bianchi
and Lugosi, 2006, Chapter 11.6) and the “follow the regularized leader” approach (Abernethy
et al., 2008).

• This convergence rate is suboptimal for the class of addressed problems. Indeed accelerated
gradient methods achieve the convergence rate of O(L/n2) in the composite setting (Nes-
terov, 2013), such a rate being optimal for optimizing smooth functions among first-order
techniques that can access only sequences of gradients (Nesterov, 2004).

• Classical results on the convergence of optimization algorithms in non-Euclidean geometries
assume on one hand that the function h is strongly convex and on the other hand the function f
is Lipschitz or smooth. Following Bauschke et al. (2016), we consider a different assumption
which combines the smoothness of f and the strong convexity of h on the single condition
h−γf convex. For the Euclidean geometry where h(θ) = 1

2‖θ‖
2
2, this condition is obviously

equivalent to the smoothness of the function f with regards to the `2-norm. Moreover, under
arbitrary norm ‖ · ‖, this is also equivalent to assuming h µ-strongly convex and f L-smooth
(with respect to this norm). However it is much more general and may hold even when
f is non-smooth, which precisely justifies the introduction of this condition (see examples
described by Bauschke et al., 2016).
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• The bound adapts to the geometry of the function h through the Bregman divergence between
the starting point θ0 and the solution θ∗ and the step-size γ which is controlled by h. Therefore
the choice of h influences the constant in the bound. Examples are provided in Appendix I.

3. Stochastic convergence results for quadratic functions

In this section, we consider a symmetric positive semi-definite matrix Σ ∈ Rd×d and a convex
quadratic function f defined as

(A5) f(θ) = 1
2〈θ,Σθ〉 − 〈q, θ〉, with q ∈ Rd in the column space of Σ,

so that f has a global minimizer θΣ ∈ Rd. Without loss of generality2, Σ is assumed invertible,
though its eigenvalues could be arbitrarily small. The global solution is known to be θΣ = Σ−1q,
but the inverse of the Hessian is often too expensive to compute when d is large. The function
may be simply expressed as f(θn) = 1

2〈θn − θΣ,Σ(θn − θΣ)〉+ f(θΣ) and the excess of the cost
function ψ = f + g as

ψ(θn)− ψ(θ∗) = 〈θ∗ − θΣ,Σ(θn − θ∗)〉+ g(θn)− g(θ∗) (linear part)

+
1

2
〈θn − θ∗,Σ(θn − θ∗)〉 (quadratic part) .

The first-order condition of the optimization problem in Eq. (2) is 0 ∈ ∇f(θ∗)+∂g(θ∗)+∂1X (θ∗).
By convexity of g, we have g(θn)− g(θ∗) ≥ 〈z, θn − θ∗〉 for any z ∈ ∂g(θ∗). Moreover 1X (θn)−
1X (θ∗) = 0 ≥ 〈z, θn − θ∗〉 for any z ∈ ∂1X (θ∗) since θn, θ∗ ∈ X by definition. Therefore this
implies that the linear part g(θn) − g(θ∗) + 〈∇f(θ∗), θn − θ∗)〉 is non-negative and we have the
bound

1

2
‖θn − θ∗‖2Σ ≤ ψ(θn)− ψ(θ∗). (5)

We derive, in this section, convergence results in terms of the distance ‖θn − θ∗‖Σ which takes into
account the ill-conditioning of the matrix Σ and is a lower bound in the excess of function values.
Furthermore it directly implies classical results for strongly convex problems.

In many practical situations, the gradient of f is not available for the recursion in Eq. (3), and
we have only access to an unbiased estimate ∇fn+1(θn) of the gradient of f at θn. We consider in
this case the stochastic dual averaging method (referred to from now on as “SDA”) defined the same
way as DA as

ηn = ηn−1 − γ∇fn(θn−1)

θn = ∇h∗n(ηn), (6)

for θ0 ∈ ˚dom h and η0 = ∇h(θ0). Here we consider the stochastic approximation framework
(Kushner and Yin, 2003). That is, we let (Fn)n≥0 be an increasing family of σ-fields such that for
each θ ∈ Rd and for all n ≥ 1 the random variable∇fn(θ) is square-integrable and Fn-measurable
with E[∇fn(θ)|Fn−1] = ∇f(θ). This includes (but also extends) the usual machine learning situ-
ation where ∇fn is the gradient of the loss associated with the n-th independent observation. We
will consider in the following two different gradient oracles.

2. By decomposing θ in θ = θ‖ + θ⊥ with θ⊥ ∈ Null(Σ) and 〈θ⊥, θ‖〉 = 0 and considering ψ(θ) = f(θ‖) + g̃(θ‖)
where g̃(θ‖) = infθ⊥∈Null(Σ) g(θ⊥ + θ‖).
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3.1. Additive noise

We study here the convergence of the SDA recursion defined in Eq. (6) under an additive noise
model:

(A6) For all n ≥ 1,∇fn(θ) = ∇f(θ)− ξn, where the noise (ξn)n≥1 is a square-integrable martin-
gale difference sequence (i.e., E[ξn|Fn−1] = 0) with bounded covariance E[ξn ⊗ ξn] 4 C.

With this oracle and for the quadratic function f , SDA takes the form

ηn = ηn−1 − γ(Σθn−1 − q) + γξn

θn = ∇h∗n(ηn). (7)

We obtain the following convergence result on the average θ̄n = 1
n

∑n−1
k=0 θk which is an extension

of results from Bach and Moulines (2013) to non-Euclidean geometries and to composite settings
(see proof in Appendix C).

Proposition 2 Assume (A2-6). Consider the recursion in Eq. (7) for any constant step-size γ such
that h− γf is convex. Then

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2 min

{
Dh(θ∗, θ0)

γn
;
‖∇h(θ0)−∇h(θ∗)‖2Σ−1

(γn)2

}
+

4

n
tr Σ−1C.

We can make the following observations:

• The proof in the Euclidean case (Bach and Moulines, 2013) highly uses the equality θn −
θΣ = (I − γΣ)(θn−1 − θΣ) which is no longer available in the non-Euclidean or proximal
cases. Instead we adapt the classic proof of convergence of averaged SGD of Polyak and
Juditsky (1992) which rests upon the expansion

∑n
k=0∇fk+1(θk) =

∑n
k=0(ηk− ηk+1)/γ =

(η0− ηn+1)/γ. The crux of the proof is then to consider the iterates with noise (ηsto
n ) defined

by Eq. (7) and without noise (ηdet
n ) defined by Eq. (3), whose difference ηsto

n −ηdet
n happens to

satisfy a similar recursion as Eq. (7) but started from the solution θ∗. The quadratic nature of
f is used twice: (a) to bound ‖ηsto

n −ηdet
n ‖Σ−1 ∼

√
n, and (b) to expand∇f(θ̄n) = ∇f(θn) ∼

ηsto
n −η0

γn + 1/
√
n.

• As for Proposition 1, the constraint on the step-size γ depends on the function h. Moreover
the step-size γ is constant, contrary to previous works on SDA (Xiao, 2010) which prove
results for decreasing step-size γn = C/

√
n for the convex case (and with a convergence rate

of only O(1/
√
n)).

• The first term is the “bias” term. It only depends on the “distance” from the initial point θ0 to
the solution θ∗ as the minimum of two terms. The first one recovers the deterministic bound
of Proposition 1. The second one, specific to quadratic objectives, leads to an accelerated
rate of O(1/n2) for some good starting points such that ‖∇h(θ0)−∇h(θ∗)‖2Σ−1 <∞, thus
extending the result from Flammarion and Bach (2015).

• The second term is the “variance” term which depends on the noise in the gradients. When
the noise is structured (such as for least-squares regression), i.e, there exists σ > 0 such that
C 4 σ2Σ, the variance term becomes σ2d

n which is optimal over all estimators in Rd with-
out regularization (Tsybakov, 2003). However the regularization g does not bring statistical
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improvement as possible, for instance, with `1-regularization. We believe this is due to our
proof technique. Indeed, in the case of linear constraints, Duchi and Ruan (2016) recently
showed that the primal iterates (θn) follow a central limit theorem (CLT), namely

√
nθ̄n is

asymptotically normal with a covariance precisely restricted to the active constraints. This
supports that SDA may leverage the regularization (the active constraints in their case) to get
better statistical performance. We leave such non-asymptotic results to future work.

Assumption (A6) on the gradient noise is quite general, since the noise (ξn) is allowed to be a
martingale difference sequence (correct conditional expectation given the past, but not necessarily
independence from the past). However it is not verified by the oracle corresponding to regular SDA
for least-squares regression, where the noise combines both an additive and a multiplicative part,
and its covariance is then no longer bounded in general (it will be for g the indicator function of a
bounded set).

3.2. Least-squares regression

We consider now the least-squares regression framework, i.e, risk minimization with the square
loss. Following Bach and Moulines (2013), we assume that:

(A7) The observations (xn, yn) ∈ Rd × R, n ≥ 1, are i.i.d. distributed with finite variances
E‖xn‖22 <∞ and Ey2

n <∞.

(A8) We consider the least-squares regression problem which is the minimization of the quadratic
function f(θ) = 1

2E(〈xn, θ〉 − yn)2.

(A9) We denote by Σ = E[xn ⊗ xn] the population covariance matrix, which is the Hessian of f
at all points. Without loss of generality, we reduce Rd to the minimal subspace where all xn,
n ≥ 1, lie almost surely. Therefore Σ is invertible and all the eigenvalues of Σ are strictly
positive, even if they may be arbitrarily small.

(A10) We denote the residual by ξn = (yn − 〈θ∗, xn〉)xn. We have E[ξn] = 0 but E[ξn|xn] 6= 0 in
general (unless the model is well-specified). There exists σ > 0 such that E[ξn ⊗ ξn] 4 σ2Σ.

(A11) There exists κ > 0 such that for all z ∈ Rd, E〈z, xn〉4 ≤ κ〈z,Σz〉.
(A12) The function g is lower bounded by some constant which is assumed by sake of simplicity

to be 0.

(A13) There exists L > 0 such that Lh− 1
2‖ · ‖

2
Σ is convex.

Assumptions (A7-9) are standard for least-squares regression, while Assumption (A10) defines
a bounded statistical noise. Assumption (A11) is commonly used in the analysis of least-mean-
square algorithms (Macchi, 1995) and says the projection of the covariates xn on any direction
z ∈ Rd have a bounded kurtosis. It is true for Gaussian vectors with κ = 3. Assumption (A13)
links up the geometry of the function h and the objective function f ; for example for `p-geometries,
L is proportional to E‖x‖2q where 1/p+ 1/q = 1 (see Corollary 21 in Appendix I).

For the least-squares regression problem, the SDA algorithm defined in Eq. (6) takes the form:

ηn = ηn−1 − γ
(
〈xn, θn−1〉 − yn

)
xn

θn = ∇h∗n(ηn). (8)
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This corresponds to a stochastic oracle of the form ∇fn(θ) = (Σ + ζn)(θ − θΣ) − ξn for θ ∈
Rd, with ζn = xn ⊗ xn − Σ. This oracle combines an additive noise ξn satisfying the previous
Assumption (A6) and a multiplicative noise ζn which is harder to analyze.

We obtain a similar result compared to Proposition 2 at the cost of additional corrective terms.

Proposition 3 Assume (A2-4) and (A7-13). Consider the recursion in Eq. (8) for any constant
step-size γ such that γ ≤ 1

4κLd . Then

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2

Dh(θ∗, θ0)

γn
+

32d

n

(
σ2 + κ‖θ∗ − θΣ‖2Σ

)
+

16κd

n2

(
5Dh(θ∗, θ0)

γ
+ g(θ0)

)
.

We can make the following remarks:

• The proof technique is similar to the one of Proposition 2. Nevertheless its complexity comes
from the extra multiplicative noise ζn in the gradient estimate (see Appendix D).

• The result is only proven for γ ≤ 1/(4κLd) which seems to be a proof artifact. Indeed
we empirically observed (see Section 5) that the iterates still converge to the solution for all
γ 6 1/(2E‖xn‖22).

• The global bound leads to a rate of O(1/n) without strong convexity, which is optimal for
stochastic approximation, even with strong convexity (Nemirovsky and Yudin, 1983). We
recover the terms of Proposition 2 pertubed by: (a) one corrective term of order O(d/n)
which depends on the distance between the solution θ∗ and the global minimizer θΣ of the
quadratic function f , which corresponds to the covariance of the multiplicative noise at the
optimum, and (b) two residual terms of order O(d/n2). It would be interesting to study
whether these two terms can be removed.

• As in Proposition 2, the bias is also O
(

1
(γn)2 ‖∇h(θ0) − ∇h(θ∗)‖2Σ−1

)
for specific starting

points (see proof in Appendix D for details).

• It is worth noting that in the constrained case (g = 1C for a bounded convex set C), the
covariance of the noisy oracle is simply bounded by (κ tr Σr2 + σ2)Σ where we denote by
r = maxθ∈C ‖θ − θΣ‖2 (see Appendix D.1 for details). Therefore Proposition 2 already
implies 1

2E‖θ̄n − θ∗‖
2
Σ ≤ 2Dh(θ∗,θ0)

γn + 8d
n (σ2 +κr2 tr Σ). Moreover the result holds then for

any step-size γ 6 1/L, which is bigger than allowed for g = 0 (Bach and Moulines, 2013).

3.3. Convergence results on the objective function

In this section we present the convergence properties of the SDA method on the objective function
ψ = f + g rather than on the norm ‖ · ‖Σ.

We first start with a disclaimer: it is not possible to obtain general non-asymptotic results on the
convergence of the SDA iterates in term of function values without additional assumptions on the
regularization g. We indeed show in Appendix E that, even in the simple case of a linear function
f(θ) = 〈a, θ〉, for a ∈ Rd, we can always find, for any finite time horizon N , a quadratic non-
strongly convex regularization function gN such that for any unstructured noise of variance σ2, the
function value ψN (θ) = f(θ) + gN (θ) evaluated in the SDA iterates at time N is lowerbounded by

ψN (θ̄N )− ψN (θ∗) ≥
σ2

12
.
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This lower bound is specific to the SDA algorithm and we underline that the regularization gN
depends on the horizon N . However this result still prevents the possibility of a universal non-
asymptotic convergence result on the function value for the SDA iterates for general quadratic and
linear functions. We note that this does not apply to the setting of Proposition 2 and Proposition 3
since Σ = 0 for a linear function and the vector q defining the linear term 〈q, θ〉 cannot be in the
column space of Σ, thus violating Assumption (A5). We conjecture that in the setting of Assump-
tion (A5), the lower bound is O(1/

√
n) as well.

We now provide some specific examples for which we can prove convergence in function values.

Quadratic objectives with smooth regularization. When there exists a constant Lg ≥ 0 such
that Lgf − g is convex on X̊ then results from Propositions 2 and 3 directly imply convergence of
the composite objective to the optimum through

ψ(θ̄n)− ψ(θ∗) ≤
(Lg + 1)

2
‖θ̄n − θ∗‖2Σ = O(1/n),

with precise constants from Propositions 2 and 3. Indeed we have in that case (Lg+1)f−ψ convex
and this would be directly implied by Proposition 5 in Appendix B.

An easy but still interesting application is the non-regularized case (g = 0) when the optimum θ∗
is the global optimum θΣ of f , because then ψ(θ)−ψ(θ∗) = 1

2‖θ−θ∗‖
2
Σ. Thus this extends previous

results on function values (Dieuleveut et al., 2016) to non-Euclidean geometries.

Constrained problems. When g is the indicator function of a convex set C then by definition the
primal iterate θn ∈ C and by convexity θ̄n ∈ C. Therefore ψ(θ̄n) = f(θ̄n) + 1C(θ̄n) = f(θ̄n) and
we obtain with the Cauchy-Schwarz inequality:

f(θ̄n)− f(θ∗) = 〈∇f(θ∗), θ̄n − θ∗〉+
1

2
‖θ̄n − θ∗‖2Σ

≤ ‖θ∗ − θΣ‖2‖θ̄n − θ∗‖Σ +
1

2
‖θ̄n − θ∗‖2Σ = O

(‖θ∗ − θΣ‖2√
n

)
,

with precise constants from Propositions 2 and 3. Hence we obtain a global rate of order O(1/
√
n)

for the convergence of the function value in the constrained case.
These rates may be accelerated to O(1/n) for certain specific convex constraints or when the

global optimum θΣ ∈ C; Duchi and Ruan (2016) recently obtained asymptotic convergence results
for the iterates in the cases of linear and `2-ball constraints for linear objective functions. Their
results can be directly extended to asymptotic convergence of function values and very probably to
all strongly convex sets (see, e.g., Vial, 1983). However, even for the simple `2-ball constrained
problem, we were not able to derive non-asymptotic convergence rates for function values.

However the global rate of order O(1/
√
n) is statically non-improvable in general. In Ap-

pendix F, we relate the stochastic convex optimization problem (Agarwal et al., 2012) to the statis-
tical problem of convex aggregation of estimators (Tsybakov, 2003; Lecué, 2006). These authors
showed lower bounds on the performance of such estimators which provide us lower bounds on
the performance of any stochastic algorithm to solve constrained problems. In Proposition 17 and
Proposition 19 of Appendix F, we derive more precisely lower bound results for linear and quadratic
functions for certain ranges of n and d confirming the optimality of the convergence rate O(1/

√
n).

This being said, in our experiments in Section 5, we observed that the convergence of function
values follows closely the convergence in the Mahalanobis distance.
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4. Parallel between dual averaging and mirror descent

In this section we compare the behaviors of DA and MD algorithms, by highlighting their similari-
ties and differences, in particular in terms of continuous-time interpretation.

4.1. Lazy versus greedy projection methods

DA and MD are often described in the online-learning literature as “lazy” and “greedy” projection
methods (Zinkevich, 2003). Indeed, the difference between these two methods is more apparent
in the Euclidean projection case (when g = 1C and h = 1

2‖ · ‖
2
2). MD is then projected gradient

descent and may be written under its primal-dual form as:

ηmd
n = θmd

n−1 − gmd
n with gmd

n ∈ ∂f(θmd
n−1) and θmd

n = argmin
θ∈C

‖ηmd
n − θ‖2.

Whereas DA takes the form

ηda
n = ηda

n−1 − gda
n with gda

n ∈ ∂f(θda
n−1) and θda

n = argmin
θ∈C

‖ηda
n − θ‖2.

Therefore, imagining the subgradients gn are provided by an adversary without the need to compute
the primal sequence (θn), no projections are needed to update the dual sequence (ηda

n ), and this one
moves far away in the asymptotic direction of the gradient at the optimum ∇f(θ∗). Furthermore
the primal iterate θda

n is simply obtained, when required, by projecting back the dual iterate in the
constraint set. Conversely, the MD dual iterate ηmd

n update calls for θmd
n−1, and therefore a projection

step is unavoidable. Thereby MD iterates (ηmd
n , θmd

n ) are going, at each iteration, back-and-forth
between the boundary and the outside of the convex set C.

4.2. Strongly convex cases

MD converges linearly for smooth and strongly convex functions f , in the absence of a regulariza-
tion component (Lu et al., 2016) or for Euclidean geometries (Nesterov, 2013). However we were
not able to derive faster convergence rates for DA when the function f or the regularization g are
strongly convex. Moreover the only results we found in the literature are about (a) an alteration of
the dual gradient method (Devolder et al., 2013, Section 4) which is itself a modification of DA with
an additional projection step proposed by Nesterov (2013) for smooth optimization, (b) the strongly
convex regularization g which enables Xiao (2010) to obtain a O(1/µn) convergence rate in the
stochastic case.

At the simplest level, for h = 1
2‖ · ‖

2
2 and f = 0, MD is equivalent to the proximal point algo-

rithm (Martinet, 1970) θmd
n = argminθ∈Rd

{
g(θ) + 1

γ ‖θ− θ
md
n−1‖22

}
, whereas DA, which is not any-

more iterative, is such that θda
n = argminθ∈Rd

{
g(θ) + 1

γn‖θ‖
2
2

}
. For the squared `2-regularization

g(θ) = ν
2‖θ − θ∗‖

2
2, we compute exactly (see Appendix G)

g(θmd
n )− g(θ∗) =

( 1

γν

)n
[g(θmd

0 )− g(θ∗)] and g(θda
n )− g(θ∗) =

g(θda
0 )− g(θ∗)

(1 + νγn)2
.

Therefore the convergence of DA can be dramatically slower than MD. However when noise is
present, its special structure may be leveraged to get interesting results.

11
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4.3. Continuous time interpretation of DA et MD

Following Nemirovsky and Yudin (1983); Bolte and Teboulle (2003); Krichene et al. (2015); Wibisono
et al. (2016) we propose a continuous interpretation of these methods for g twice differentiable. Pre-
cise computations are derived in Appendix H.

The MD iteration in Eq. (4) may be viewed as a forward-backward Euler discretization of the
MD ODE (Bolte and Teboulle, 2003):

θ̇ = −∇2h(θ)−1[∇f(θ) +∇g(θ)]. (9)

On the other hand, the ODE associated to DA takes the form

θ̇ = −∇2(h(θ) + tg(θ))−1(∇f(θ) +∇g(θ)). (10)

It is worth noting that these ODEs are very similar, with an additional term tg(θ) in the inverse
mapping∇2(h(θ) + tg(θ))−1 which may slow down the DA dynamics.

In analogy with the discrete case, the Bregman divergences Dh and Dh+tg are respectively
Lyapunov functions for the MD and the DA ODEs (see, e.g., Krichene et al., 2015) and we notice
in Appendix H the continuous time argument really mimics the proof of Proposition 1 without the
technicalities associated with discrete time. Moreover we recover the variational interpretation of
Krichene et al. (2015); Wibisono et al. (2016); Wilson et al. (2016): the Lyapunov function generates
the dynamic in the sense that a function L is first chosen and secondly a dynamics, for which L is
a Lyapunov function, is then designed. In this way MD and DA are the two different dynamics
associated to the two different Lyapunov functions Dh and Dh+tg. We also provide in Appendix H
a slight extension to the noisy-gradient case.

5. Experiments

In this section, we illustrate our theoretical results on synthetic examples. We provide additional
experiments on a standard machine learning benchmark in Appendix K.

Simplex-constrained least-squares regression with synthetic data. We consider normally dis-
tributed inputs xn ∈ Rd with a covariance matrix Σ that has random eigenvectors and eigenvalues
1/k, for k = 1, . . . , d and a random global optimum θΣ ∈ [0,+∞)d. The outputs yn are generated
from a linear function with homoscedatic noise with unit signal to noise-ratio (σ2 = 1). We denote
by R2 = tr Σ the average radius of the data and we show results averaged over 10 replications.

We consider the problem of least-squares regression constrained on the simplex ∆d of radius
r = ‖θΣ‖1/2 , i.e., minθ∈r∆d

E(〈xn, θ〉 − yn)2, for d = 100. We compare the performance of SDA
and SGD algorithms with different settings of the step-size γn, constant or proportional to 1/

√
n.

In the left plot of Figure 1 we show the performance on the objective function and on the right plot,
we show the performance on the squared Mahalanobis norm ‖ · ‖2Σ. All costs are shown in log-
scale, normalized so that the first iteration leads to f(θ0)− f(θ∗) = 1. We can make the following
observations (we only show results on Euclidean geometry since results under the negative entropy
geometry were very similar):

• With constant step-size, SDA converges to the solution at rate O(1/n) whereas the SGD
algorithm does not converge to the optimal solution.

12
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• With decaying step-size γn = 1/(2R2√n), SDA and SGD converge first at rate O(1/
√
n),

then at rate O(1/n), taking finally advantage of the strong-convexity of the problem.

• We note (a) there is no empirical difference between the performance on the objective function
and the squared distance ‖ · ‖2Σ, (b) with decreasing step-size, SGD and SDA behave very
similarly.
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Figure 1: Simplex-constrained least-squares regression with synthetic data. Left: Performance on
the objective function. Right: Performance on the Mahalanobis norm ‖ · ‖2Σ.

6. Conclusion

In this paper, we proposed and analyzed the first algorithm to achieve a convergence rate of O(1/n)
for stochastic composite objectives, without the need for strong convexity. This was achieved by
considering a constant step-size and averaging of the primal iterates in the dual averaging method.

Our results only apply to expectations of quadratic functions (but to any additional potentially
non-smooth terms). In fact, constant step-size stochastic dual averaging is not convergent for general
smooth objectives; however, as done in the non-composite case by Bach and Moulines (2013), one
could iteratively solved quadratic approximations of the smooth problems with the algorithm we
proposed in this paper to achieve the same rate of O(1/n), still with robustness to ill-conditioning
and efficient iterations. Finally, it would be worth considering accelerated extensions to achieve a
forgetting of initial conditions in O(1/n2).
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The authors would like to thank Jérôme Bolte and Marc Teboulle for interesting discussions and the
reviewers for their constructive and helpful comments.

13



FLAMMARION BACH

References

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the Dark: An Efficient Algorithm for Ban-
dit Linear Optimization. In Proceedings of the International Conference on Learning Theory
(COLT), pages 263–274, 2008.

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds
on the oracle complexity of stochastic convex optimization. IEEE Transactions on Information
Theory, 58(5):3235–3249, 2012.

F. Bach. Duality between subgradient and conditional gradient methods. SIAM J. Optim., 25(1):
115–129, 2015.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate O(1/n). In Advances in Neural Information Processing Systems (NIPS), 2013.

H. H. Bauschke and J. M. Borwein. Legendre functions and the method of random Bregman pro-
jections. J. Convex Anal., 4(1):27–67, 1997.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New
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Appendix A. Unambiguity of the primal iterate

We describe here conditions under which the primal iterate θn in Eq. (3) is correctly defined. Since h
is strictly convex, h∗n is continuously differentiable on ˚dom h∗n (see Hiriart-Urruty and Lemaréchal,
2001, Theorem 4.1.1). Therefore the primal iterate θn is well defined if the dual iterate ηn ∈

˚dom h∗n. It is, for example, the case under two natural assumptions as shown by the next lemma
which is an adaption of Lemma 2 by Bauschke et al. (2016).

Lemma 4 We make the following assumptions:

(B1) h or g is supercoercive.

(B2) argminθ∈X ψ(θ) is compact and h bounded below.

Under (B1) or (B2) the primal iterates (θn) defined in Eq. (3) are well defined.

Proof Since h is strictly convex, h∗n is continuously differentiable on ˚dom h∗n (see Hiriart-Urruty
and Lemaréchal, 2001, Theorem 4.1.1). Therefore the primal iterate θn is well defined if the dual
iterate ηn ∈ ˚dom h∗n.

• If h or g is supercoercive then hn is supercoercive (see Bauschke and Combettes, 2011, Propo-
sition 11.13) and it follows from Hiriart-Urruty and Lemaréchal (2001, Chapter E, Proposition
1.3.8) that dom h∗n = Rd.

• If argminθ∈X {ψ(θ)} is compact then ψ + 1X is coercive. Moreover

h∗n(ηn) = sup
θ∈X

{
〈ηn, θ〉 − hn(θ)

}
sinceX ⊂ dom h

= − inf
θ∈X

{
h(θ) + γ

n∑
i=1

(g(θ) + f(θi−1) + 〈∇f(θi−1), θ − θi−1〉)
}

+γ
n∑
i=1

(f(θi−1)− 〈∇f(θi−1), θi−1〉)

≤ − inf
θ∈X

{
h(θ) + nγ(g(θ) + f(θ))

}
by convexity of f

+γ
n∑
i=1

(f(θi−1)− 〈∇f(θi−1), θi−1〉).

Therefore ηn ∈ ˚dom h∗n since ψ + 1X is coercive and h bounded below (see Bauschke and
Combettes, 2011, Proposition 11.15).

Appendix B. Proof of convergence of deterministic DA

We first describe a new notion of smoothness defined by Bauschke et al. (2016). Then we present our
extension of the Bregman divergence to the non-smooth function g to finally prove Proposition 1.
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B.1. A Lipschitz-like/convexity condition

Classical results on the convergence of optimization algorithms in non-Euclidean geometry assume
on one hand that the function h is strongly convex and on the other hand the function f is Lip-
schitz or smooth. Following Bauschke et al. (2016), we consider a different assumption which
combines the smoothness of f and the strong convexity of h on a single condition called Lipschitz-
like/Convexity Condition by Bauschke et al. (2016) and denoted by (LC):

(LC) There exists a constant L ∈ R such that Lh− f is convex on X̊ .

For Euclidean geometry, this condition is obviously equivalent to the smoothness of the function f
with regards to the `2-norm. Moreover, under an arbitrary norm ‖ · ‖, assuming h µ-strongly convex
and f L-smooth clearly implies, by simple convex computation, (LC) with constant L/µ. However
(LC) is much more general and may hold even when f is non-smooth what precisely justifies the
introduction of this condition. Many examples are described by Bauschke et al. (2016). Furthermore
this notion has the elegance of pairing well with Bregman divergences and leading to more refined
proofs as shown in the following proposition which summarizes equivalent properties of (LC).

Proposition 5 (Bauschke et al. (2016)) Assume (A1-4). For L > 0 the following conditions are
equivalent:

• Lh− f is convex on X̊ , i.e., (LC) holds,

• Df (α, β) ≤ LDh(α, β) for all (α, β) ∈ X × X̊ .

Furthermore, when f and h are assumed twice differentiable, then the above is equivalent to

∇2f(θ) 4 L∇2h(θ) for all θ ∈ X̊ .

B.2. Generalized Bregman divergence

The Bregman divergence was defined by Bregman (1967) for a differentiable convex function h as

Dh(α, β) = h(α)− h(β)− 〈∇h(β), α− β), for (α, β) ∈ dom h× ˚dom h. (11)

It behaves as a squared distance depending on the function h and extends the computational prop-
erties of the squared `2-norm to non-Euclidean spaces. Indeed most proofs in Euclidean space rest
upon the expansion ‖θn− θ∗− γ∇f(θn)‖22 = ‖θn− θ∗‖22 + γ2‖∇f(θn)‖22− 2γ〈∇f(θn), θn− θ∗〉
which is not available in non-Euclidean geometry. Therefore the Bregman divergence comes to res-
cue and is used to compute a deviation between the current iterate of the algorithm and the solution
of the problem and, seemingly, used as an non-Euclidean Lyapunov function. It has been widely
used in optimization (see, e.g., Bauschke and Borwein, 1997, for a review).

We follow this path and include the regularization component g of the objective function ψ =
f + g in the Bregman divergence for the sake of the analysis. If g was differentiable we would
simply use Dh+nγg. Since g is not differentiable, Dhn is not well defined. However for (α, η) ∈
dom h× ˚dom h∗n, we denote by extension for θ = ∇h∗n(η):

D̃n(α, η) = hn(α)− hn(θ)− 〈η, α− θ〉. (12)
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This extension is different from the one defined by Kiwiel (1997). It is worth noting that if there
exists µ such that α = ∇h∗n(µ), we recover the classical formula D̃n(α, η) = Dh∗n(η, µ) which
is well defined since h∗n is differentiable. Yet D̃n is defined more generally since such a µ does
not always exist. The next lemma relates D̃n to Dh and is obvious if g is differentiable since
Dhn = Dh + γnDg.

Lemma 6 Let n ≥ 0, α ∈ dom h and η ∈ ˚dom h∗n, then with θ = ∇h∗n(η),

D̃n(α, η) ≥ Dh(α, θ). (13)

Proof θ = ∇h∗n(η), thus η ∈ ∂hn(θ) and by elementary calculus rule ∂hn(θ) = ∇h(θ)+nγ∂g(θ).
Consequently η −∇h(θ) ∈ nγ∂g(θ) and by convexity of g

D̃n(α, η)−Dh(α, θ) = nγ

[
g(α)− g(θ)−

〈
η −∇h(θ)

γn
, α− θ

〉]
≥ 0.

B.3. Proof of Proposition 1

We assume their exists a constant L > 0 such that Lh − f is convex on X̊ and we assume the
step-size γ ≤ 1/L. We first show that the Bregman divergence decreases along the iterates (see,
e.g., Chen and Teboule, 1993; Beck and Teboulle, 2003; Bach, 2015). For all θ ∈ X ,

D̃n(θ, ηn)− D̃n−1(θ, ηn−1) = hn−1(θn−1)− hn(θn) + hn(θ)− hn−1(θ)

−〈ηn, θ − θn〉+ 〈ηn−1, θ − θn−1〉
= hn−1(θn−1)− hn−1(θn)− γ(g(θn)− g(θ))

+〈ηn−1, θn − θn−1〉+ 〈ηn − ηn−1, θn − θ〉
= −D̃n−1(θn, ηn−1)− γ(g(θn)− g(θ))− γ〈∇f(θn−1), θn − θ〉.

Therefore for all θ ∈ X ,

D̃n(θ, ηn)− D̃n−1(θ, ηn−1) = −D̃n−1(θn, ηn−1) + γ〈∇f(θn−1), θn−1 − θn〉
− γ(g(θn)− g(θ))− γ〈∇f(θn−1), θn−1 − θ〉. (14)

It follows from Proposition 5 and Lemma 6

f(θn)− f(θn−1) + 〈∇f(θn−1), θn − θn−1〉 ≤ LDh(θn, θn−1) ≤ LDn−1(θn, θn−1),

and from the convexity of f ,

−〈∇f(θn−1), θn−1 − θ〉 ≤ f(θ)− f(θn−1).

And Eq. (14) is bounded by

D̃n(θ, ηn)− D̃n−1(θ, ηn−1) ≤ γ(ψ(θ)− ψ(θn)) + (γL− 1)Dh(θn, θn−1).
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Thus for γ ≤ 1/L,
D̃n(θ, ηn)− D̃n−1(θ, ηn−1) ≤ γ(ψ(θ)− ψ(θn)).

Taking θ = θn−1 we note that the sequence {ψ(θn)}n≥0 is decreasing and we obtain for γ ≤ 1/L,

ψ(θn)− ψ(θ) ≤ 1

n+ 1

n∑
k=0

[ψ(θi)− ψ(θ)] ≤ Dh(θ, θ0)− D̃n(θ, ηn)

γ(n+ 1)
. (15)

We assume now that the non-smooth part g = 0 and there exists µ ≥ 0 such that f − µh is
convex. So Proposition 5 implies

−〈∇f(θn−1), θn−1 − θ〉 ≤ f(θ)− f(θn−1)− µDh(θ, θn−1),

which gives with Eq. (14) the better bound

Dh(θ, θn)−Dh(θ, θn−1) ≤ γ(f(θ)− f(θn))− γµDh(θ, θn−1) + (γL− 1)Dh(θn, θn−1).

And for γ ≤ 1/L, this can be simplified as

Dh(θ, θn) ≤ (1− γµ)Dh(θ, θn−1) + γ(f(θ)− f(θn)).

The sequence {f(θn)}n≥0 is still decreasing and we obtain by expanding the recursion

Dh(θ, θn) ≤ (1− γµ)nDh(θ, θ0) +
n∑
k=1

(1− γµ)n−kγ(f(θ)− f(θk))

≤ (1− γµ)nDh(θ, θ0) +
n∑
k=1

(1− γµ)n−kγ(f(θ)− f(θk))

≤ (1− γµ)nDh(θ, θ0) +

n∑
k=1

(1− γµ)n−kγ(f(θ)− f(θn))

≤ (1− γµ)nDh(θ, θ0) + γ
1− (1− γµ)n

γµ
(f(θ)− f(θn)).

Thus for all θ ∈ X ,

1− (1− γµ)n

µ
(f(θn)− f(θ)) +Dh(θ, θn) ≤ (1− γµ)nDh(θ, θ0),

and

f(θn)− f(θ) ≤ γµ(1− γµ)n

1− (1− γµ)n
Dh(θ, θ0)

γ
≤ (1− γµ)n

Dh(θ, θ0)

γ
,

since (1− γµ)2 ≤ 1− γµ implies γµ/(1− (1− γµ)n) ≤ 1.

Appendix C. Proof of Proposition 2

In this section, we will prove Proposition 2. The proof relies on considering the difference between
the iteration with noise we denote by (ηn, θn) and without noise we denote by (ωn, φn), which
happens to verify a similar recursion as the SDA recursion. The precise definition of these iterates
will be given in Section C.2
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• We first show in Lemma 7 that the distance E‖ηn − ωn‖2Σ−1 is of order n.

• Then in Lemma 8 we show that E‖θ̄n − φ̄n‖2Σ is of order O(1/n), by: (a) noticing that

E‖θ̄n−φ̄n‖2Σ is of order
E‖ηn−ωn‖2

Σ−1

n2 + variance
n , (b) combining this with the result of Lemma 7.

C.1. Two technical lemmas

We first present and prove two technical lemmas.

C.1.1. BOUND ON THE DIFFERENCE OF TWO DUAL ITERATES

In the following lemma we show that the difference between two dual iterates that follow the same
recursion is of order n. This will be used with the iteration with noise (ηn, θn) and without noise
(ωn, φn).

Lemma 7 Let us consider two sequences of iterates (µk, αk) and (νk, βk) which satisfy the recur-
sion µn− νn = µn−1− νn−1− γΣ(αn−1− βn−1) + γξn, αn = ∇h∗n(µn) and βn = ∇h∗n(νn) and
assume that γ is such that 2h− γf is convex then for all n ≥ 0

E‖µn − νn‖2Σ−1 ≤ ‖µ0 − ν0‖2Σ−1 + nγ2 tr Σ−1C.

Proof We first expand the square.

‖µn+1 − νn+1‖2Σ−1 = ‖µn − νn‖2Σ−1 + γ2‖[Σ(αn − βn)− ξn+1]‖2Σ−1

−2γ〈Σ(αn − βn)− ξn+1,Σ
−1(µn − νn)〉

= ‖µn − νn‖2Σ−1 + γ2‖αn − βn‖2Σ + γ2‖ξn+1‖2Σ−1

−2γ2〈αn − βn, ξn+1〉 − 2γ〈αn − βn − Σ−1ξn+1, µn − νn〉.

And taking the expectation

E[‖µn+1 − νn+1‖2Σ−1 |Fn] = ‖µn − νn‖2Σ−1 + γ2E[‖ξn+1‖2Σ−1 |Fn]

+γ2‖αn − βn‖2Σ − 2γ2E[〈αn − βn, ξn+1〉|Fn]

−2γE[〈αn − βn)− Σ−1ξn+1, µn − νn〉|Fn]

= ‖µn − νn‖2Σ−1 + γ2 tr Σ−1E[ξn+1 ⊗ ξn+1|Fn]

+γ2‖αn − βn‖2Σ − 2γ2〈αn − βn,E[ξn+1|Fn]〉
−2γ〈αn − βn)− Σ−1E[ξn+1|Fn], µn − νn〉

= ‖µn − νn‖2Σ−1 + γ2 tr Σ−1C

+γ2‖αn − βn‖2Σ − 2γ〈αn − βn, µn − νn〉.

Moreover, using the definition of αn and βn,

γ‖αn − βn‖2Σ − 2〈αn − βn, µn − νn〉 = 〈γΣ(αn − βn)− 2(µn − νn), αn − βn〉
= 〈γ∇f(αn)−∇f(βn)− 2(∇h(αn)−∇h(βn)), αn − βn〉
−2〈(µn −∇h(αn))− (νn −∇h(βn)), αn − βn〉

= 〈∇(γf − 2h)(αn)−∇(γf − 2h)(βn), αn − βn〉
−2〈(µn −∇h(αn))− (νn −∇h(βn)), αn − βn〉.
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Using the h-smoothness of f and assuming that γ is such 2h− γf is convex,

〈∇(γf − 2h)(αn)−∇(γf − 2h)(βn), αn − βn〉 ≤ 0,

and as explained in the proof of Lemma 6, µn−∇h(αn) ∈ ∂nγg(αn) and νn−∇h(βn) ∈ ∂nγg(βn)
and consequently

〈(µn −∇h(αn))− (νn −∇h(βn)), αn − βn〉 ≥ 0,

by convexity of g. This explains that

γ‖αn − βn‖2Σ − 2〈αn − βn, µn − νn〉 ≤ 0.

Then, taking the global expectation, we have shown that

E‖µn+1 − νn+1‖2Σ−1 ≤ E‖µn − νn‖2Σ−1 + γ2 tr Σ−1C,

which concludes the proof.

C.1.2. BOUND ON THE DIFFERENCE OF THE AVERAGE OF TWO PRIMAL ITERATES

In the following lemma we adapt the classic proof of averaged SGD by Polyak and Juditsky (1992)
to show that the difference between two averaged primal iterates, which follow the same recursion,
is of order O(1/n).

Lemma 8 Let us consider two sequences of iterates (µk, αk) and (νk, βk) which satisfy the recur-
sion µn− νn = µn−1− νn−1− γΣ(αn−1− βn−1) + γξn, αn = ∇h∗n(µn) and βn = ∇h∗n(νn) and
assume that γ is such that 2h− γf is convex then for all n ≥ 0

E‖ᾱn − β̄n‖2Σ ≤ 4
‖µ0 − ν0‖2Σ−1

(γn)2
+

4

n
tr Σ−1C.

Proof Let us consider two sequences of iterates (µk, αk) and (νk, βk) which satisfy the recursion
µn − νn = µn−1 − νn−1 − γΣ(αn−1 − βn−1) + γξn, αn = ∇h∗n(µn) and βn = ∇h∗n(νn). This
can be written as

Σ(αn − βn) =
µn − νn − µn+1 + νn+1

γ
+ ξn+1.

Thus we obtain

Σ1/2
n−1∑
i=0

(αi − βi) =
Σ−1/2(µ0 − ν0 − µn + νn)

γ
+

n−1∑
i=0

Σ−1/2ξi+1.

Finally, using that by convexity (a+ b)2 ≤ 2(a2 + b2), this leads to

n2E‖ᾱn − β̄n‖2Σ ≤ 2E
∥∥∥Σ−1/2(µ0 − ν0)

γ
+
n−1∑
i=0

Σ−1/2ξi+1

∥∥∥2

2
+ 2E

∥∥∥Σ−1/2(µn − νn)

γ

∥∥∥2

2
.
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Using martingale second moment expansions, we obtain

E‖ᾱn − β̄n‖2Σ ≤ 2E
‖µ0 − ν0‖2Σ−1

(γn)2
+ 2

E‖µn − νn‖2Σ−1

(γn)2
+

2

n2

n−1∑
i=0

tr Σ−1E(ξi+1 ⊗ ξi+1).

We compute
∑n−1

i=0 tr Σ−1E(ξi+1 ⊗ ξi+1) =
∑n−1

i=0 tr Σ−1C = n tr Σ−1C and, using Lemma 7,
we bound E‖µn − νn‖2Σ−1 as

E‖µn − νn‖2Σ−1

(γn)2
≤
‖µ0 − ν0‖2Σ−1

(γn)2
+

1

n
tr Σ−1C.

This implies the final bound

E‖ᾱn − β̄n‖2Σ ≤ 4
‖µ0 − ν0‖2Σ−1

(γn)2
+

4

n
tr Σ−1C.

C.2. Application of Lemma 8 to prove Proposition 2

First of all we define the sequence

η∗n = ∇h(θ∗)− nγ∇f(θ∗). (16)

By definition of θ∗, −∇f(θ∗) ∈ ∂g(θ∗) then η∗n ∈ ∂(h + nγg)θ∗ and θ∗ = ∇h∗n(η∗n). Therefore
the sequence η∗n is obtained by iterating DA started from the solution of the problem θ∗.

We note then than Lemma 8 applied to (µn = ηn, αn = θn) and (νn = η∗n, βn = θ∗) gives the
first bound of Proposition 2.

On the other hand, when considering the noiseless iterates (ωn, φn) defined by ωn = ωn−1 −
γΣ(φn−1 − θΣ) and φn = ∇h∗n(ωn), started from the same point φ0 = θ0, we obtain, following
Proposition 1, for γ such that h− γf is convex, the bound

1

2
‖φ̄n − θ∗‖2Σ ≤ ψ(φ̄n)− ψ(θ∗) ≤

Dh(θ∗, θ0)

γn
.

Therefore, considering the difference between the semi-stochastic and the noiseless iterate (ηn−ωn)
which verifies the same equation ηn−ωn = ηn−1−ωn−1−γΣ(θn−1−φn−1)+γξn with θ0−φ0 = 0
as initial value, we may apply Lemma 8 to show

E‖θ̄n − φ̄n‖2Σ ≤
4

n
tr Σ−1C.

And by the Cauchy-Schwarz inequality

E‖θ̄n − θ∗‖2Σ ≤ 2E‖θ̄n − φ̄n‖2Σ + 2E‖φ̄n − θ∗‖2Σ

≤ 8

n
tr Σ−1C + 4

Dh(θ∗, θ0)

γn
,

which proves the second bound of Proposition 2.
It is worth noting that the condition on the step-size of Lemma 7 is less restrictive than in

Proposition 2. Indeed for all γ such that 2h− γf is convex, the difference between the dual iterates
of the stochastic and deterministic recursions stay close but the deterministic iterates only converge
to the solution for γ such that h− γf is convex.
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Appendix D. Proof of Proposition 3

In this section, we prove Proposition 3. The proof technique is similar to Proposition 2 but with the
additional difficulty of the multiplicative noise.

We first note that Assumption (A11) is equivalent by the Cauchy-Schwarz inequality to

E〈xn,Mxn〉〈xn, Nxn〉 ≤ κ tr(MΣ) tr(NΣ), (17)

for all positive semi-definite symmetric matrices M and N (see, e.,g., proof in Dieuleveut et al.,
2016). We will often use, in the following demonstrations, Eq. (17) and its direct corollary

〈xn,Mxn〉xn ⊗ xn 4 κ tr(MΣ)Σ, (18)

without always referring to it.

D.1. A simple proof for the bounded constrained case

We first prove Proposition 3 for the constrained case. It is then a simple corollary of Proposition 2.
Let us denote by C a bounded convex set and consider the constrained problem (g = 1C). We

remind that the general stochastic oracle for SDA in least-squares regression is

∇fn(θ) = (Σ + ζn)(θ − θΣ)− ξn, for θ ∈ Rd,

with ζn = xn⊗xn−Σ. We denote by r = maxθ∈C ‖θ−θΣ‖2 and we show that the noise covariance
is directly bounded, despite the multiplicative noise:

E
[(
∇fn(θ)−∇f(θ)

)
⊗
(
∇fn(θ)−∇f(θ)

)]
4 2E

[
ζn(θ − θΣ)⊗ (θ − θΣ)ζn

]
+ 2Eξn ⊗ ξn,

and using Assumption (A11)

E
[
ζn(θ − θΣ)⊗ (θ − θΣ)ζn

]
4 r2Eζnζn 4 r2κ(tr Σ)Σ.

Therefore

E
[(
∇fn(θ)−∇f(θ)

)
⊗
(
∇fn(θ)−∇f(θ)

)]
4 2
(
σ2 + r2κ(tr Σ)

)
Σ.

Hence Proposition 2 already implies for all step-size such that h− γf is convex

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2

Dh(θ∗, θ0)

γn
+

8d

n
(σ2 + κr2 tr Σ).

D.2. A general result

We prove in this section a more general result than Proposition 3 under the additional assumption

(A14) There exists b ∈ [0, 1] and µb > 0 such that h− µb
2 ‖ · ‖

2
Σb

is convex.

Proposition 9 Assume (A2-4) and (A7-14). Consider the recursion in Eq. (8). For any constant
step-size γ such that γ ≤ min{ µb

4κ tr Σ1−b ,
1
κLd}. Then

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2

Dh(θ∗, θ0)

γn
+

24

n
tr Σ−1C +

16κdγ

nµb
trCΣ−b

+
8κd

n

(
4κγ tr Σ1−b

µb
+ 3

)
‖θ∗ − θΣ‖2Σ + 80

κd

γn2
Dh(θ∗, θ0) +

16κd

n2
g(θ0).
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We note Assumption (14) is always satisfied for b = 1, for which it is Assumption (13). Therefore
Proposition 9 directly implies Proposition 3 as a corollary. We prove now two auxiliary lemmas
which will be used in the proof of the Proposition 9.

D.3. Two auxiliary results for least-squares objectives

For b ∈ [0, 1], we denote by Tb the operator Tb = E[〈x,Σ−bx〉x⊗ x]. We first prove that, for least-
square objectives, the sum of the function evaluated along the primal iterates remains bounded.

Lemma 10 Let us consider the recursion ηn = ηn−1− γxn⊗ xn(θn−1− θ∗) + γξn and assume g
is positive and there exist µb such that h − µb

2 ‖ · ‖
2
Σb

is convex and κ such that Tb 4 κ tr(Σ1−b)Σ,
then for γ ≤ µb/(4κ tr Σ1−b) and θ ∈ X we have

E
n∑
i=0

[ψ(θi)− ψ(θ)] +
(

1− 4γκ tr(Σ1−b)/µb

) n∑
i=0

1

2
E‖θi − θ‖2Σ

≤ Dh(θ, θ0)− EDh(θ, θn+1)

γ
+ (n+ 1)γ/µb tr Σ−bC + 4(n+ 1)κ tr(Σ1−b)/µbf(θ) + g(θ0).

We note that we can also obtain a bound depending on 2ψ(θ) rather than 4f(θ) with a similar proof.
Proof Let denote by fn(θ) = xn ⊗ xn(θ − θΣ) + ξn. Then following the proof of Proposition 1
(see Eq. (14)) we have the expansion

D̃n(θ, ηn)− D̃n−1(θ, ηn−1) ≤ −γ(g(θn)− g(θ))− γ〈∇fn(θn−1), θn−1 − θ〉
−Dh(θn, θn−1) + γ〈∇fn(θn−1), θn−1 − θn〉. (19)

Since h− µb
2 ‖ · ‖

2
Σb

is convex, using Proposition 5, we get that Dh(θn, θn−1) ≥ µb
2 ‖θn − θn−1‖2Σb .

Let denote by A = −Dh(θn, θn−1),+γ〈∇fn(θn−1), θn−1 − θn〉,

A ≤ −µb
2
‖θn − θn−1‖2Σb + γ〈xn ⊗ xn(θn−1 − θΣ) + ξn, θn−1 − θn〉

≤ −µb
2
‖θn − θn−1‖2Σb

+
〈γΣ−b/2
√
µb

[xn ⊗ xn(θn−1 − θΣ) + ξn],Σb/2√µbθn−1 − θn
〉

≤ γ2µb
2
‖xn ⊗ xn(θn−1 − θΣ) + ξn‖2Σ−b

−1
2‖γΣb/2√µb(θn − θn−1)− γΣ−b/2√

µb
[xn ⊗ xn(θn−1 − θΣ) + ξn]‖22

≤ γ2

2µb
‖xn ⊗ xn(θn−1 − θΣ) + ξn‖2Σ−1

≤ γ2

µb
‖θn−1 − θΣ‖2Tb +

γ2

µb
‖ξn‖2Σ−b .
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Thus, taking the conditional expectation and assuming that κ is such that Tb 4 κ tr(Σ1−b)Σ we
obtain

− E[Dh(θn, θn−1)Fn−1] + γE〈∇fn(θn−1), θn−1 − θn〉Fn−1]

≤ γ2κ tr(Σ1−b)

µb
‖θn−1 − θΣ‖2Σ +

γ2

µb
tr Σ−bC.

Taking again the conditional expectation in Eq. (19), we have for θ ∈ X

E[D̃n(θ, ηn)|Fn−1]− D̃n−1(θ, ηn−1) ≤ γ2κ

µb
tr(Σ1−b)‖θn−1 − θΣ‖2Σ +

γ2

µb
tr Σ−bC

−γE[〈xn ⊗ xn(θn−1 − θΣ) + ξn, θn−1 − θ〉|Fn−1]

−γ(E[g(θn)|Fn−1]− g(θ))

≤ γ2κ

µb
tr(Σ1−b)‖θn−1 − θΣ‖2Σ − γ〈θn−1 − θΣ,Σ(θn−1 − θ)〉

+
γ2

µb
tr Σ−bC − γ(E[g(θn)|Fn−1]− g(θ)).

And we note that

−γ〈θn−1 − θΣ,Σ(θn−1 − θ∗)〉 = −γ[f(θn−1)− f(θ∗)]−
γ

2
‖θn−1 − θ‖2Σ.

Therefore

E[D̃n(θ∗, ηn)|Fn−1]− D̃n−1(θ∗, ηn−1) ≤ −γ[f(θn−1)− f(θ∗) + E[g(θn)|Fn−1]− g(θ∗)]

−γ
2

(
1− 4

γκ

µb
tr(Σ1−b)

)
‖θn−1 − θΣ‖2Σ

+2
γ2κ

µb
tr(Σ1−b)‖θ − θΣ‖2Σ +

γ2

µb
tr Σ−bC.

Taking the total expectation we obtain

Ef(θn−1)− f(θ∗) + Eg(θn)− g(θ∗)] +
1

2

(
1− 4

γκ

µb
tr(Σ1−b)

)
‖θn−1 − θΣ‖2Σ

≤ ED̃n−1(θ∗, ηn−1)− ED̃n(θ∗, ηn)

γ
+ 2

γκ

µb
tr(Σ1−b)‖θ − θΣ‖2Σ +

γ

µb
tr Σ−bC,

which, summing from i = 0 to i = n, leads to

n∑
i=0

[Ef(θi)− f(θ∗) + Eg(θi)− g(θ∗)]] +
(

1− 4
γκ

µb
tr(Σ1−b)

) n∑
i=0

1

2
‖θi − θΣ‖2Σ ≤

Dh(θ∗, θ0)− ED̃n+1(θ∗, ηn+1)

γ
+ 4

γκ

µb
tr(Σ1−b)(n+ 1)‖θ − θΣ‖2Σ

+ (n+ 1)
γ

µb
tr Σ−bC − Eg(θn+1) + g(θ0).

The result follows if g is non negative.

We now present an extension of Lemma 7 to least-squares objectives.

27



FLAMMARION BACH

Lemma 11 Let us consider two sequences of iterates (µk, αk) and (νk, βk) which satisfy the recur-
sion µn−νn = µn−1−νn−1−γxn⊗xn(αn−1−βn−1)+γξn, αn = ∇h∗n(µn) and βn = ∇h∗n(νn)
and denote by C = E[xn ⊗ xn] for n ≥ 0. Assume that γ is such that h− γT is convex. Then

E‖µn − νn‖2Σ−1 ≤ E‖µ0 − ν0‖2Σ−1 + 2γ2n tr Σ−1C.

We note that the condition h−γT is rather restrictive since bounds on T are often of the form d
times a matrix. For instance Eq. (17) directly implies T 4 κdΣ. Even for independent normal data
xn with diagonal covariance matrix Σ we are able to derive the equality T = (d+ 2)Σ.
Proof We expand

‖µn − νn‖2Σ−1 = ‖µn−1 − νn−1‖2Σ−1 + γ2‖xn ⊗ xn(αn−1 − βn−1) + ξn‖2Σ−1

−2γ〈xn ⊗ xn(αn−1 − βn−1) + ξn,Σ
−1(µn−1 − νn−1)〉.

Taking conditional expectations, we get

E[‖µn − νn‖2Σ−1 |Fn−1] = ‖µn−1 − νn−1‖2Σ−1 + γ2E[‖xn ⊗ xn(αn−1 − βn−1) + ξn‖2Σ−1 |Fn−1]

−2γE[〈xn ⊗ xn(αn−1 − βn−1) + ξn,Σ
−1(µn−1 − νn−1)〉|Fn−1]

= ‖µn−1 − νn−1‖2Σ−1 + γ2E[‖xn ⊗ xn(αn−1 − βn−1) + ξn‖2Σ−1 |Fn−1]

−2γ〈αn−1 − βn−1, µn−1 − νn−1〉.

Using (a + b)2 ≤ 2a2 + 2b2 and denoting by B = E[‖xn ⊗ xn(αn−1 − βn−1) + ξn‖2Σ−1 |Fn−1],
this leads to

B ≤ 2E[‖xn ⊗ xn(αn−1 − βn−1)‖2Σ−1 |Fn−1] + 2E[‖ξn‖2Σ−1 |Fn−1]

≤ 2‖αn−1 − βn−1‖2E[xn⊗xnΣ−1xn⊗xn|Fn−1] + 2 tr Σ−1E[εn ⊗ εn|Fn−1]

≤ 2‖αn−1 − βn−1‖2T + 2 tr Σ−1C,

with T = E[x⊗ xΣ−1x⊗ x]. Thus we obtain

E[‖µn − νn‖2Σ−1 |Fn−1] ≤ ‖µn−1 − νn−1‖2Σ−1 + 2γ2 tr Σ−1C

−2γ〈µn−1 − νn−1 − γT (αn−1 − βn−1), αn−1 − βn−1〉
≤ ‖µn−1 − νn−1‖2Σ−1 + 2γ2 tr Σ−1C,

assuming that γ is such h − γ 1
2‖ · ‖

2
T is convex (as in the proof of Lemma 7). Taking global

expectations, we have shown that

E‖µn − νn‖2Σ−1 ≤ E‖µn−1 − νn−1‖2Σ−1 + 2γ2 tr Σ−1C.

D.4. Bound on the difference between two averages of primal variables

We present now the following lemma with is an analogue of Lemma 8 for the least-squares problem.
It shows that the difference between the average of two sequences of primal iterates which follow
the same recursion is O(1/n).
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Lemma 12 Let us consider two sequences of iterates (µk, αk) and (νk, βk) which satisfy the recur-
sion µn−νn = µn−1−νn−1−γxn⊗xn(αn−1−βn−1)+γξn, αn = ∇h∗n(µn) and βn = ∇h∗n(νn).
For n ≥ 0 denote by C = E[xn⊗ xn]. Assume that γ is such that h− γT is convex and there exists
κ such that T 4 κdΣ. Then

E‖ᾱn − β̄n‖2Σ ≤ 4
κd− 1

n2

n−1∑
i=0

E‖αi − βi‖2Σ + 4
‖η0 − µ0‖2Σ−1

(γn)2
+

8

n
tr Σ−1C.

Proof Using the expansion µn − νn = µn−1 − νn−1 − γxn ⊗ xn(αn−1 − βn−1) + γξn, we derive

Σ(αn − βn) = (Σ− xn+1 ⊗ xn+1)(αn − βn) + xn+1 ⊗ xn+1(αn − βn)

= (Σ− xn+1 ⊗ xn+1)(αn − βn) +
µn − νn − µn+1 + νn+1

γ
+ ξn+1.

We obtain by summing n times

Σ1/2
n−1∑
i=0

(αi − βi) =
n−1∑
i=0

Σ−1/2Xi+1 +
Σ−1/2(µ0 − ν0 − µn + νn)

γ
+
n−1∑
i=0

Σ−1/2ξi+1,

where we denote by Xi = (Σ − xi ⊗ xi)(αi−1 − βi−1) which is a square-integrable martingale
difference sequence. We use (a+ b)2 ≤ 2(a2 + b2) to obtain

‖(ᾱn − β̄n)‖2Σ ≤
2

n2

∥∥∥ n−1∑
i=0

Σ−1/2Xi+1 +
Σ−1/2(µ0 − ν0)

γ
+
n−1∑
i=0

Σ−1/2ξi+1

∥∥∥2

2
+ 2
‖µn − νn‖2Σ−1

(γn)2
.

Therefore using martingale square moment inequalities which here amount to considering the vari-
ance of the sum as the sum of the variance, we have

E‖(ᾱn − β̄n)‖2Σ ≤
4

n2

n−1∑
i=0

E‖Xi+1‖2Σ−1 + 2
‖µ0 − ν0‖2Σ−1

(γn)2

+ 2
E‖µn − νn‖2Σ−1

(γn)2
+

4

n2

n−1∑
i=0

tr Σ−1E(ξi+1 ⊗ ξi+1). (20)

• The variance term may be bounded as

n−1∑
i=0

tr Σ−1E(ξi+1 ⊗ ξi+1) ≤
n−1∑
i=0

tr Σ−1C ≤ n tr Σ−1C.

• Following Lemma 11 we bound the dual iterates E‖µn − νn‖2Σ−1 as

E‖µn − νn‖2Σ−1

(γn)2
≤
‖µ0 − ν0‖2Σ−1

(γn)2
+

2

n
tr Σ−1C.
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• The martingale difference sequence (Xi) satisfies

E‖Σ−1/2Xi+1‖22 ≤ E〈(Σ− xi+1 ⊗ xi+1)(αi − βi),Σ−1(Σ− xi+1 ⊗ xi+1)(αi − βi)〉
≤ 〈αi − βi,E[(Σ− xi+1 ⊗ xi+1)>Σ−1(Σ− xi+1 ⊗ xi+1)](αi − βi)〉
≤ 〈αi − βi, [E(xi+1 ⊗ xi+1)>Σ−1xi+1 ⊗ xi+1 − Σ](αi − βi)〉
≤ 〈αi − βi, [T − Σ](αi − βi)〉
≤ (κd− 1)‖αi − βi‖2Σ.

Consequently we obtain in Eq. (20)

E‖Σ1/2(ᾱn − β̄n)‖22 ≤ 4
κd− 1

n2

n−1∑
i=0

E‖αi − βi‖2Σ + 4
‖µ0 − ν0‖2Σ−1

(γn)2
+

8

n
tr Σ−1C.

D.5. Application of Lemma 12 to the proof of Proposition 9

We are now able to prove Proposition 9 using Lemma 12.
Firstly we can directly apply Lemma 12 to (µn = ηn, αn = θn) and (νn = η∗n, βn = θ∗) where

(η∗n, θ∗) are defined in Eq. (16). This implies

E‖Σ1/2(θ̄n − θ∗)‖22 ≤ 4
κd− 1

n2

n−1∑
i=0

E‖θi − θ∗‖2Σ + 4
‖∇h(θ0)−∇h(θ∗)‖2Σ−1

(γn)2
+

8

n
tr Σ−1C.

Following Lemma 10, the primal variables (θi) satisfy

n−1∑
i=0

E‖θi − θ∗‖2Σ ≤ 2
Dh(θ∗, θ0)

γ
+ 2

nγ

µb
tr Σ−bC +

8nγκ tr Σ1−b

µb
f(θ∗) + 2g(θ0).

This leads to the final bound

E‖Σ1/2(θ̄n − θ∗)‖22 ≤ 8
κd− 1

γn2
Dh(θ∗, θ0) + 4

‖∇h(θ0)−∇h(θ∗)‖2Σ−1

(γn)2

+ 8
1

n
tr Σ−1C + 8

κd− 1

n

γ

µb
[tr Σ−bC + 4κ tr Σ1−bf(θ∗)] + 8

κd− 1

n2
g(θ0). (21)

This bound depends on ‖ · ‖Σ−1 which may be infinite. For this reason we compare again the
noisy iterate θn to the noiseless iterate we still denote by (φn). We remind these iterates verify the
recursion

ωn = ωn−1 − γΣ(φn−1 − θΣ).

Therefore the difference (ηn − ωn) satisfies the same form of recursion as (ηn):

ηn − ωn = ∇ηn−1 − ωn−1 − γxn ⊗ xn(θn−1 − φn−1) + γεn,

30



STOCHASTIC COMPOSITE LEAST-SQUARES REGRESSION

with a different noise εn = ξn − [xn ⊗ xn − Σ](φn−1 − θΣ) and 0 for initial value. Although the
noise εn is different from ξn, its covariance is still bounded by

1

3
E[εn ⊗ εn] 4 E[ξn ⊗ ξn] + E[[xn ⊗ xn − Σ](φn−1 − θ∗)⊗ (φn−1 − θ∗)[xn ⊗ xn − Σ]]

+E[[xn ⊗ xn − Σ](θ∗ − θΣ)⊗ (θ∗ − θΣ)[xn ⊗ xn − Σ]]

4 E[ξn ⊗ ξn]− E[Σ(φn−1 − θ∗)⊗2Σ]− E[Σ(θ∗ − θΣ)⊗2Σ]

+E[xn ⊗ xn(φn−1 − θ∗)⊗2xn ⊗ xn] + E[xn ⊗ xn(θ∗ − θΣ)⊗2xn ⊗ xn]

4 E[ξn ⊗ ξn] + (κ− 1)
(
‖φn−1 − θ∗‖2Σ + ‖θ∗ − θΣ‖2Σ

)
Σ,

where we have use that for z ∈ Rd, E〈z, xn〉4 ≤ κ〈z,Σz〉. We may apply Proposition 1 and obtain

E[εn ⊗ εn] 4 3C +
6(κ− 1)

γn
Dh(θ∗, θ0)Σ + 6(κ− 1)f(θ∗).

Thereby Lemma 12 can be applied with θ0 = α0 and we get

E‖θ̄n − φ̄n‖2Σ ≤ 4
κd− 1

n2

n−1∑
i=0

E‖θi − φi‖2Σ +
8

n
tr Σ−1E[εn ⊗ εn].

As before we apply Lemma 10 to have

n−1∑
i=0

E‖θi − φi‖2Σ ≤

[
2

n−1∑
i=0

E‖θi − θ∗‖2Σ + 2

n−1∑
i=0

‖φi − θ∗‖2Σ

]

≤

[
8Dh(θ∗, θ0)

γ
+
nγ

µb
4 tr Σ−bC +

16nγκ tr Σ1−b

µb
f(θ∗) + 4g(θ0)

]
.

Therefore

E‖θ̄n − φ̄n‖2Σ ≤ 4
κd− 1

n2

[
8
Dh(θ∗, θ0)

γ
+
nγ

µb
4 tr Σ−bC +

16nγκ tr Σ1−b

µb
f(θ∗) + 4g(θ0)

]

+
8

n

[
3 tr Σ−1C +

6(κ− 1)

γn
Dh(θ∗, θ0)d+ 6(κ− 1)f(θ∗)d

]
.

And rearranging terms we obtain

E‖θ̄n − φ̄n‖2Σ ≤ 80
κd

γn2
Dh(θ∗, θ0) +

64κ2dγ

nµb
tr Σ1−bf(θ∗) +

16κdγ

nµb
trCΣ−b

+
16κd

n2
g(θ0) +

24

n
tr Σ−1C +

48κd

n
f(θ∗).

And by the Cauchy-Schwarz inequality (E‖θ̄n − θ∗‖2Σ ≤ 2E‖θ̄n − φ̄n‖2Σ + 2E‖φ̄n − θ∗‖2Σ)

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2

Dh(θ∗, θ0)

γn
+

24

n
tr Σ−1C+

16κdγ

nµb
trCΣ−b+

16κd

n

(4κγ tr Σ1−b

µb
+3
)
f(θ∗)

+ 80
κd

γn2
Dh(θ∗, θ0) +

16κd

n2
g(θ0),

which proves the second bound of Proposition 9.
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D.6. A corollary of Proposition 9 for h with an Euclidean behavior

When h rather behaves as an Euclidean norm, we may replace Assumptions (A12-13) by the fol-
lowing:

(A12’) There exists µh > 0 such that h− µh
2 ‖ · ‖

2
2 is convex.

(A13 ’) There exists R2 such that E[‖xn‖22xn ⊗ xn] 4 R2Σ.

And Proposition 9 implies the following corollary.

Corollary 13 Assume For any constant step-size γ such that γ ≤ min{ µh
4κR2 ,

R2

4κd}. Then

1

2
E‖θ̄n − θ∗‖2Σ ≤ 2

Dh(θ∗, θ0)

γn
+

8

n

(
3+

4γκR2

µh

)(
σ2d+κd‖θ∗−θΣ‖2Σ

)
+

16κd

n2

(5Dh(θ∗, θ0)

γ
+g(θ0)

)
.

This corollary would pave the way for a general result for larger step-size γ without the condition
γ ≤ R2

4κd . Unfortunately the latter seems not improvable, as noted after Lemma 11.

Appendix E. Lower bound for non-strongly convex quadratic regularization

We derive, in this section, a lower bound on the performance of SDA when f is the linear form
f(θ) = 〈a, θ〉 with a ∈ Rd and g is a non-strongly convex quadratic function. We assume that the
vector a is not available and we only have access to estimates of the gradient

∇fn(θ) = a+ ξn for n ≥ 1, (22)

where (ξn) is an uncorrelated zero-mean noise sequence with bounded covariance.

Proposition 14 For any d ≥ 2, L > 0; γ > 0 and finite time horizon N ≥ 1, there exists a
quadratic function g L-smooth such that for any uncorrelated zero-mean noise sequence (ξn) with
bounded covariance E[ξn ⊗ ξn] = σ2LId, SDA with constant step-size γ applied with the oracle
Eq. (22) satisfies

ψ(θ̄N )− ψ(θ∗) ≥
σ2

12
min{(Lγ)2, 1}.

Proof For sake of clarity, we consider d = 2 and a = 0. Thus f(θ) = E〈ξn, θ〉 = 0. Let

g(θ) = 1
2〈θ,Aθ〉 be a quadratic form with A =

(
L 0
0 µ

)
for L ≥ µ > 0 with µ possibly arbitrary

small. The noise (ξn) is assumed to be uncorrelated zero-mean with bounded covariance E[ξn ⊗
ξn] = σ2LI2. The stochastic dual algorithm with step-size γ takes the form:

θn = ∇h∗n(−nγξ̄n)

= argmin
θ∈Rd

{
〈ξ̄n, θ〉+

1

2
〈θ,Aθ〉+

1

2nγ
‖θ‖22

}
= γn(I + γnA)−1ξ̄n.
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And

θ̄n =
γ

n

n−1∑
k=1

k∑
j=1

k(I + γkA)−1 1

k
ξj

=
γ

n

n−1∑
j=1

( n−1∑
k=j

(I + γkA)−1
)
ξj .

Therefore using standard martingale square moment inequalities

E〈θ̄n, Aθ̄n〉 =
γ2

n2

n∑
j=1

E
〈
ξj

( n∑
k=j

(I + γkA)−1
)
, A
( n∑
k=j

(I + γkA)−1
)
ξj

〉
=

γ2σ2L

n2
tr

n∑
j=1

( n∑
k=j

(I + γkA)−1
)
A
( n∑
k=j

(I + γkA)−1
)
I2

=
γ2σ2L

n2

n∑
j=1

[
L
( n∑
k=j

1

1 + γLk

)2
+ µ

( n∑
k=j

1

1 + γµk

)2]
.

And

E〈θ̄n, Aθ̄n〉 ≥
γ2σ2L

n2

[ L

(1 + γLn)2
+

µ

(1 + γµn)2

] n∑
j=1

(n− j)2

≥ nσ2γ2L

3

[ L

(1 + γLn)2
+

µ

(1 + γµn)2

]
≥ nσ2γ2

3

µ

(1 + γµn)2

≥ σ2L

12
min

(
nµγ2,

1

µn

)
.

Conclude by taking µ = L/N .
The proof is the same for d ≥ 2 by considering A = diag(L, . . . , L, Lµ) with d− 1 L.

Appendix F. Lower bound for stochastic approximation problems

In this section we relate the problem of aggregation of estimators to the stochastic convex optimiza-
tion problem, i.e., minimizing a convex function, given only unbiased estimates of its gradients. We
will consider the regression and the classification with hinge loss problems which will individually
provide lower bounds for quadratic and linear functions. We follow here Tsybakov (2003); Lecué
(2006); Agarwal et al. (2012).

F.1. Oracle complexity of stochastic convex optimization

Beforehand we describe the stochastic oracle model formalism as done by Nemirovsky and Yudin
(1983); Agarwal et al. (2012); Raginsky and Rakhlin (2011). For a given class of problems we
aim to determine lower bounds on the number of queries to a stochastic first-order oracle needed
to optimize to a certain precision any function in this class. To this end we have the following
definition.
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Definition 15 (Agarwal et al. (2012)) For a given constraint convex set C, and a function class S,
a first-order stochastic oracle is a random mapping π : C × S → R× Rd of the form

φ(θ, f) = (f̃(θ), g(θ)),

such that
Ef̃(θ) = f(θ); Eg(θ) = ∇f(θ),

and there exists a constant C <∞ such that for every θ ∈ Rd

E[‖g(θ)−∇f(θ)‖2] ≤ C(1 + ‖θ‖2).

The class of first-order stochastic oracle is denoted by Φ. A stochastic approximation algorithm
M is a method which approximately minimizes a function f by querying, at each iteration i, the
oracle at the point θi. The oracle answers with the information φ(θi, f) and the method uses all the
information {φ(θ0, f), . . . , φ(θi, f)} to build a new point θi+1. For n ∈ N we denote byMn the
class of all such methods that are allowed to make n queries. As done by Agarwal et al. (2012), we
denote the error of the method M on the function f after n steps as

εn(M,f, C, φ) = f(θn)−min
θ∈C

f(θ).

Given a class of functions S, an oracle φ and a convex constraint set C, Agarwal et al. (2012) also
defines the minimax error as

ε∗n(S, C, φ) = inf
M∈Mn

sup
f∈S

Eφεn(M,f, C, φ).

We will lower bound this minimax error by relating convex stochastic approximation with con-
vex aggregation of estimators (Juditsky and Nemirovski, 2000; Tsybakov, 2003).

F.2. Convex aggregation of estimators

Let (X ,A) be a measurable space andY ⊂ R . We consider random variables (X,Y ) onX×Y with
probability distribution denoted by π. We observe n i.i.d. pairs Dn = {(X1, Y1), . . . , (Xn, Yn)}
which follow the law π and we want to predict the output Y for any feature X ∈ X by a prediction
f(X) for a measurable function f from X to R. For this purpose we want to minimize the risk
defined by

A(f) = E[`(f(X), Y )],

for any measurable function f from X to R and ` : Y × Y → R a loss function.
We consider we have access to d different arbitrary estimators F = {f1, . . . , fd} with values

in Y . We denote their convex hull by C = conv(f1, . . . , fd). The aim of convex aggregation is
to build a new estimator which is a convex combination of the different fi and behaves as the best
among the estimators fi. The aggregation problem is equivalent to a minimization problem over
the simplex ∆d since for f ∈ C there is θ ∈ ∆d such that f =

∑d
i=1 θ(i)fi. Therefore, defining

B(θ) = A
(∑d

i=1 θ(i)fi

)
, we have

min
f∈C

A(f) = min
θ∈∆d

B(θ).
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We denote by F : X → Rd, x 7→ (f1(x), . . . , fd(x)) the function whose the ith coordinate is the
function fi, and we have

B(θ) = E[`(〈F (X), θ〉, Y )].

Therefore the convex aggregation problem of minimizing A(f) over the convex hull of F is for-
mally equivalent to the stochastic approximation problem of minimizing, over the simplex ∆d, the
function B(θ) = E[`(〈F (X), θ〉, Y )], given only unbiased estimates of its gradient ∇Bn(θ) =
∇`(〈F (xn), θ〉, yn). Hence lower bounds on convex aggregation problems provide lower bounds
on stochastic approximation problems studied in this paper.

F.3. Aggregation in regression and application to oracle complexity of stochastic quadratic
optimization

We first consider the regression problem for which Y = R. We rely substantially on Tsybakov
(2003). The regression model is

Yi = f∗(Xi) + ξi, for i = 1, . . . , n,

where X1, . . . , Xn are i.i.d. random vectors of X of law PX and ξi are i.i.d. Gaussian N (0, σ2)
random variables such that (ξ1, . . . , ξn) is independent of (X1, . . . , Xn) and f∗ : X → R is the
regression function. Regression problem aims to estimate the unknown regression function f∗ based
on the data Dn by minimizing the risk

Areg(f, f∗) = E(f(X)− f∗(X))2.

The problem of the optimal rate of convex aggregation has been studied by Tsybakov (2003). We
reintroduce his notations and assumptions for sake of completeness.

Let denote by F0 = {f : ‖f‖∞ ≤ L} for L > 0 and assume that

(B1) There exists a cube S ⊂ X such that PX admits a bounded density µ on S w.r.t. the Lebesgue
measure and µ(x) ≥ µ0 > 0 for all x ∈ S.

(B2) There exists a constant c0 such that d ≤ c0 exp(n).

We have the following result

Theorem 16 (Theorem 2, Tsybakov (2003)) Under assumptions (B1-2) we have

sup
f1,...,fd∈F0

inf
Tn

sup
f∗∈F0

[
EDnAreg(Tn, f∗)−min

f∈C
Areg(f, f∗)

]
≥ cζn(d),

for some constant c > 0 and any integer n, where infTn denotes the infimum over all estimators,
EDn denotes the expectation with regard to the probability distribution of the data Dn and

ζn(d) =

{
d/n if d ≤

√
n√

1
n log

(
d√
n

+ 1
)

if d >
√
n.
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We relate now the problem of convex aggregation of regression functions to the problem of
stochastic quadratic functions optimization. Consider F = {f1, . . . , fd} the set of estimators given
by Proposition 16 and denote by F : X → Rd, x 7→ (f1(x), . . . , fd(x)). For f ∈ C, there is θ ∈ ∆d

such that f =
∑d

i=1 θ(i)fi and we obtain

Areg(f, f∗) = E[(〈θ, F (X)〉 − f∗(X))2] = B(θ),

whereB(θ) = 〈θ,E[F (X)⊗F (X)], θ〉−2〈θE[f∗(X)F (X)]〉+E[f∗(X)2] is a quadratic function.
This set enables us to construct a difficult subclass of quadratic functions:

Gquad =
{
B(θ) =

1

2
E[(〈θ, F (X)〉 − f∗(X))2]; f∗ ∈ F0

}
.

We also define the first-order stochastic oracle φquad on Gquad as follows

φquad(θ, f) =

(
1

2
(〈θ, F (x)〉 − f∗(x))2, (〈θ, F (x)〉 − f∗(x))F (x)

)
, for x ∼ PX .

We can optimize B with a stochastic approximation algorithm M ∈ Mn to obtain θn ∈ ∆d and
therefore build a estimator Tn =

∑d
i=1 θn(i)fi which belongs to C. Moreover we have

Areg(Tn, f∗) = B(θn) and min
f∈C

Areg(f, f∗) = min
θ∈∆d

B(θ).

Consequently, for the oracle φquad and the class Gquad Proposition 16 implies that

ε∗n(Gquad,∆d, φquad) ≥ cζn(d). (23)

And we have proven the following minimax oracle complexity.

Proposition 17 Let ∆d be the simplex. Then there exists universal constants c0 > 0 and c > 0
such that the minimax oracle complexity over the class Squad of quadratic functions satisfies the
following lower bounds:

• For d ≤
√
n

sup
φ∈Φ

ε∗n(Squad,∆d, φ) ≥ c d
n
.

• For
√
n ≤ d ≤ c0 exp(n)

sup
φ∈Φ

ε∗n(Squad,∆d, φ) ≥ c

√
1

n
log
( d√

n
+ 1
)
.

We note that without assumption on d the lower bound for the class of quadratic functions is of
order O(1/n) but in high-dimensional settings it becomes of order (1/

√
n). Nevertheless we will

see in the next section this lower bound is always of order (1/
√
n) for the class of linear functions.
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F.4. Aggregation in classification and application to oracle complexity of stochastic linear
optimization

We consider now the classification problem with the hinge loss for which Y = {−1, 1}. We follow
very closely the framework of Lecué (2006, 2007) and use their notations. We still consider random
variables (X,Y ) on X × Y with probability distribution denoted by π. We observe n i.i.d. pairs
Dn = {(X1, Y1), . . . , (Xn, Yn)} which follow the law π and we want to predict the label Y for any
feature X ∈ X by minimizing the hinge risk defined by

Acla(f) = Emax(1− Y f(X), 0),

for any measurable function f from X to R. We consider we have access to d different estimators
F = {f1, . . . , fd} with values in [−1, 1]. We denote their convex hull by C = conv(f1, . . . , fd).
Lecué (2006, Theorem 1) and Lecué (2007, Theorem 2) provide a lower bound on this aggregation
problem for classification we adapt to our specific case.

Proposition 18 ( Adaptation of Theorem 2 of Lecué (2007) for κ =∞) Let d, n be two integers
such that 2 log2 d ≤ n. We assume that the input space X is infinite. There exists an absolute
constant c > 0, and a set of prediction rules F = {f1, . . . , fn} such that for any real-valued
procedure Tn, there exists a probability measure π, for which

EDn [Acla(Tn)]−min
f∈C

(Acla(f)) ≥ c
√

log d

n
.

Proof Theorem 2 of Lecué (2007) is stated under an additional Margin assumption MAH(κ) (see
definition and notation below Eq. (9) in Lecué (2007)) on the probability distribution π, i.e., there
exists a constant c0 such that

E[|f(X)− f∗(X)|] ≤ c0(A(f)−A∗)1/κ,

for any function f on X with values in [−1, 1]. Therefore taking κ → ∞, we can always consider
c0 = 2. And the constant c(κ) in Theorem 2 of Lecué (2007) is

c(κ) = cκ0(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1),

which goes when κ → ∞ to c∞ =
√

2/(4e
√

log 2). Hence taking κ → ∞ in Theorem 2 of Lecué
(2007) implies Proposition 18. We could also have plugged arguments of the proof of Theorem 14.5
of Devroye et al. (1996) to directly prove this result.

We relate now the problem of convex aggregation of classifiers to the problem of optimizing a
linear function on the simplex. Consider the set of prediction rules F = {f1, . . . , fn} given by
Proposition 18 and denote by F : X → Rd, x 7→ (f1(x), . . . , fd(x)). For f ∈ C, there is θ ∈ ∆d

such that f =
∑d

i=1 θ(i)fi and we obtain

Acla(f) = Emax(1− Y 〈F (X), θ〉, 0).

On the other hand, when the fi are valued in [−1, 1], the classification problem becomes equivalent
to maximize the expectation EY f(X) since the hinge loss is linear on [−1, 1]:

Y ∈ {−1, 1}, f(X) ∈ [−1, 1] =⇒ Y f(X) ∈ [−1, 1] =⇒ Emax(1−Y f(X), 0) = 1−EY f(X).
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Combining both, we obtain that

Acla(f) = 1− 〈E[Y F (X)], θ〉 = 1 + C(θ),

where C(θ) = −〈E[Y F (X)], θ〉 is a linear function. This set enables us to construct a difficult
subclass of linear functions

Glin = {C(θ) = −〈E[Y F (X)], θ〉; (X,Y ) ∼ π}.

We also define the first-order stochastic oracle φlin on Glin as follows

φlin(θ, f) =
(
〈yF (x), θ〉, yF (x)

)
, for (x, y) ∼ π.

As before we may optimize C with a stochastic approximation algorithm M ∈ Mn to obtain
θn ∈ ∆d and therefore build a estimator Tn =

∑d
i=1 θn(i)fi which belongs to C. Moreover we

have
Acla(Tn) = C(θn) and min

f∈C
Acla(f) = min

θ∈∆d

C(θ).

Consequently, for the oracle φlin and the class Glin Proposition 16 implies that

ε∗n(Glin,∆d, φlin) ≥ c
√

log d

n
. (24)

And we have proven the following minimax oracle complexity.

Proposition 19 Let ∆d be the simplex. Then there exists universal constant c > 0 such that the
minimax oracle complexity over the class Slin of linear functions satisfies the following lower bound
for 2 log2 d ≤ n

sup
φ∈Φ

ε∗n(Slin,∆d, φ) ≥ c
√

log(d)

n
.

Appendix G. Lower bound on the rates of convergence of DA and MD algorithms

Let us consider in this section that f = 0, g(θ) = 1
2ν ‖θ − θ∗‖

2
2 and h = 1

2‖θ‖
2
2. In this case, for

n ≥ 1, MD iterates (θmd
n ) verify

θmd
n = argmin

θ∈Rd

{ 1

2ν
‖θ − θ∗‖22 +

1

2γ
‖θ − θmd

n−1‖22
}
.

Therefore θmd
n = θ∗ + 1

γν (θmd
n−1 − θ∗), θmd

n − θ∗ = 1
(γν)n (θmd

0 − θ∗) and

g(θmd
n )− g(θ∗) =

g(θmd
0 )− g(θ∗)

(γν)2n
.

Whereas DA iterates (θda
n ) satisfy

θda
n = argmin

θ∈Rd

{ 1

2ν
‖θ − θ∗‖22 +

1

2γn
‖θ‖22

}
.

We compute θda
n = γνn

γνn+1θ∗ and

g(θda
n )− g(θ∗) =

g(θda
0 )− g(θ∗)

(1 + νγn)2
.
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Appendix H. Continuous time interpretation of DA et MD

Following Nemirovsky and Yudin (1983); Bolte and Teboulle (2003); Krichene et al. (2015) we
propose a continuous interpretation of these methods for g twice differentiable. We note this could
be extended for g non-smooth with differential inclusions.

Derivation of the ordinary differential equation (ODE). The first-order optimality condition of
the MD iteration in Eq. (4) γ∇f(θn) + γ∇g(θn+1) +∇h(θn+1)−∇h(θn) can be rearranged as

∇h(θn+1)−∇h(θn)

γ
= −∇f(θn)−∇g(θn+1).

Noting ∂t∇h(θ) = ∇2h(θ)θ̇, this is exactly a forward-backward Euler discretization of the MD
ODE

θ̇ = −∇2h(θ)−1[∇f(θ) +∇g(θ)]. (25)

On the other hand, considering the DA iteration in Eq. (3) we obtain

ηn − ηn−1

γ
= −∇f(θn−1) and ηn = nγ∇g(θn) +∇h(θn). (26)

Combining both parts in Eq. (26) leads to the single equation

nγ
∇g(θn)−∇g(θn−1)

γ
+∇g(θn−1) +

∇h(θn)−∇h(θn−1)

γ
= −∇f(θn−1),

which is the explicit Euler discretization of the ODE ∂t(t∇g(θ) +∇h(θ)) = −∇f(θ). Therefore
the ODE associated to DA takes the form

θ̇ = −∇2(h(θ) + tg(θ))−1(∇f(θ) +∇g(θ)). (27)

It is worth noting that this ODE is very similar to the MD ODE in Eq. (25), with an additional term
tg(θ) in the inverse mapping∇2(h(θ) + tg(θ))−1 which may thus slow down the DA dynamic.

Lyapunov analyzes. Lyapunov functions are used to prove convergence of the solutions of ODEs.
In analogy with the discrete case, the Bregman divergence is a Lyapunov function for these ODEs
(see, e.g., Bolte and Teboulle, 2003; Krichene et al., 2015) since

∂tDh(θ∗, θ(t)) = ∂t[h(θ∗)− h(θ(t))− 〈∇h(θ(t)), θ∗ − θ(t)〉]
= −〈∇h(θ(t)), θ̇(t)〉+ 〈∇2h(θ(t))θ̇(t), θ(t)− θ∗〉+ 〈∇h(θ(t)), θ̇(t)〉
= 〈∇2h(θ(t))θ̇(t), θ(t)− θ∗〉.

For the MD ODE in Eq. (25) we obtain

∂tDh(θ∗, θ(t)) = −〈∇f(θ(t)) +∇g(θ(t)), θ(t)− θ∗〉
≤ ψ(θ∗)− ψ(θ(t)) (by convexity of ψ).

Integrating, this yields with Jensen inequality

ψ(θ̄(t))− ψ(θ∗) ≤
1

t

∫ t

0

(
ψ(θ(s))− ψ(θ∗)

)
ds ≤ Dh(θ∗, θ(0))−Dh(θ∗, θ(t))

t
,
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for θ̄(t) = 1
t

∫ t
0 θ(s)ds. This is the same convergence result as in the discrete time. For the DA

ODE in Eq. (27) we obtain

∂tDh+tg(θ∗, θ(t)) = ∂t[(h+ tg)(θ∗)− (h+ tg)(θ(t))− 〈∇(h+ tg)(θ(t)), θ∗ − θ(t)〉]
= g(θ∗)− 〈(∇h(θ(t)) + t∇g(θ(t))), θ̇(t)〉+ g(θ(t))

+〈∂t(∇h+ t∇g)(θ(t)), θ(t)− θ∗〉+ 〈(∇+ t∇g)h(θ(t)), θ̇(t)〉
= g(θ∗)− g(θt)− 〈∇f(θ(t)), θ(t)− θ∗〉.

Therefore by convexity of f , ∂tDh+tg(θ∗, θ(t)) ≤ ψ(θ∗)− ψ(θ(t)) and we obtain

ψ(θ̄(t))− ψ(θ∗) ≤
Dh(θ∗, θ(0))−Dh+tg(θ∗, θ(t))

t
.

The continuous time argument really mimics the proof of Proposition 1 without the technicalities
associated with the discrete time. We remind that we recover the variational interpretation of Krich-
ene et al. (2015); Wibisono et al. (2016); Wilson et al. (2016): the Lyapunov function generates
the dynamic in the sense that a function L is first chosen and secondly a dynamics, for which L
is a Lyapunov function, is then designed. In this way MD and DA are the two different dynamics
associated to the two different Lyapunov functions Dh and Dh+tg.

Extension to the noisy-gradient case. We consider now we only have access to noisy estimates
of the gradient as in Section 3 and propose a continuous-time interpretation of these stochastic
methods. Stochastic MD and SDA may be viewed, in their primal-dual forms, as discretizations of
the following stochastic differential equations (SDE). For stochastic MD

dη(t) = −[∇f(θ(t)) +∇g(θ(t))]dt+ σdW (t)dt and η(t) = ∇h(θ(t)),

and for SDA

dη(t) = −∇f(θ(t))dt+ σdW (t)dt and η(t) = ∇(h+ tg)(θ(t)),

where Wt is a Wiener process and σ > 0. We note that the regularization g does not take part
in the SDA SDE which explains this dynamic is efficient in presence of noise. In contrast, the
stochastic MD SDE is corrupted by the presence of the gradient ∇g which may not behaves well
for non-smooth g. This continuous-time interpretation of stochastic algorithms could lead to further
insights but is outside the scope of this paper.

Appendix I. Examples of different geometries

We describe now different examples of concrete geometries and how SDA is then implemented for
well known regularizations g.

Euclidean distance. The simplest geometry is obtained by taking the function h(θ) = 1
2‖θ‖

2
2,

which is a Legendre function on dom h = Rd. Its associated Bregman divergence is also the squared
Euclidean distance Dh(α, β) = 1

2‖α− β‖
2
2. Therefore (LC) is equivalent to the smoothness of the

function f and we return to classic results on proximal gradient descent.
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• Projection: Let g = 1C be the indicator of a convex set C. The SDA method yields to the
projected method

θn = min
θ∈C

∥∥∥θ + γ
n−1∑
k=0

∇fk+1(θk)
∥∥∥2

2
.

• `2-regularization: Let g = 1
2‖ · ‖

2
Q where Q < 0, we directly have∇h∗n(η) = (I + nγQ)−1η

and the SDA method comes back to

θn = θn−1 − (γ−1I + nQ)−1(Qθn−1 +∇fn(θn−1)), for n ≥ 1,

which is a standard gradient descent on f + g with a structured decreasing step-size γn =
(γ−1I + nQ)−1.

• `1-regularization: Let g = λ‖ · ‖1, we can compute the primal iterate with, for i = 1, . . . , d,
∇ih∗n(η) = sign(η(i)) max(|η(i)|−nγλ, 0) . Therefore the SDA method is equivalent to the
iteration:

θn(i) = − sign
( n−1∑
k=0

∇ifk+1(θk)
)

max

(∣∣∣ n−1∑
k=0

∇ifk+1(θk)
∣∣∣− nγλ, 0) for i = 1, . . . , d.

Yet since convergence results hold on the average of the iterates θ̄n, SDA provides less sparse
solutions than other methods which rather consider final iterates as outputs.

Kullback-Leibler divergence. The negative entropy h(θ) =
∑n

i=1 θ(i) log(θ(i)) is a Legendre
function on dom h = (0,∞)n whose associated Bregman divergence is the Kullback-Leibler diver-
gence

Dh(α, β) =

n∑
i=1

α(i) log
(α(i)

β(i)

)
+

n∑
i=1

(β(i)− α(i)),

and its conjugate gradient mapping is∇ih∗(η) = exp(ηi)− 1 for i = 1, . . . , d.
When constrained on the simplex ∆d, h is 1-strongly convex with respect to the `1-norm (see,

e.g., Beck and Teboulle, 2003, Proposition 5.1), and (LC) holds, for example, if f is smooth with
regards to the `1-norm. This illustrates one of the non-Euclidean benefit since Lipschitz constants
under the `∞-norm are smaller than under the `2-norm.

This geometry is particularly appropriated to constrained minimization on the simplex ∆d. With
g(θ) = 1∆d

, SDA update is the dual averaging analogue of the exponentiated gradient algorithm
(Kivinen and Warmuth, 1997):

θn(i) =
exp(ηn(i))∑d
j=1 exp(ηn(j))

for i = 1, . . . , d.

`p-norm. The choice h = 1
2(p−1)‖ · ‖

2
p for p ∈ (1, 2] is believed to adapt to the geometry of

learning problem and is often used with p = 1 + 1/ log(d) in association with `1-regularization
(see, e.g., Duchi et al., 2010). Its Fenchel conjugate is the squared conjugate norm h∗ = 1

2(q−1)‖·‖
2
q

for 1/p + 1/q = 1 and its conjugate gradient mapping is ∇ih∗(η) = sign(η(i))|η(i)|q−1

(q−1)‖η‖q−2
q

(see, e.g.,

Gentile and Littlestone, 1999). For `1-regularization, this yields to:

∇ih∗n(η) = ∇ih∗
(

sign(η(i)) max(|η(i)| − nγλ, 0)
)

for i = 1, . . . , d.
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The function h is 1-strongly convex with respect to the `p-norm (see, e.g., Hanner, 1956). There-
fore (LC) holds if f is smooth with respect to the the `p-norm. However when the function f con-
sidered is quadratic as in Section 3, we can directly show that (LC) holds under tighter conditions
on the Hessian matrix Σ (see proof in Appendix J).

Proposition 20 Assume that f(θ) = 1
2〈θ,Σθ〉 and h(θ) = 1

2(p−1)‖θ‖
2
p. Then h− γf is convex for

any constant step-size γ such that

γ ≤ min
α

‖α‖2p
〈α,Σα〉

.

When Σ = E(x ⊗ x) is a covariance matrix as in Section 3.2, 〈α,Σα〉 = E〈x, α〉2 ≤ E‖x‖2q‖α‖2p
by Hölder inequality, and Proposition 20 admits the following corollary.

Corollary 21 Assume that f(θ) = 1
2E(〈x, θ〉−y)2, h(θ) = 1

2‖θ‖
2
p and q such that 1/p+ 1/q = 1.

Then h− γf is convex for any constant step-size γ such that

γ ≤ 1/E‖x‖2q .

Therefore we may use the algorithm with bigger step-size than in the Euclidean case. Moreover
when the algorithm is started from θ0 = 0, the Bregman divergence is Dh(θ∗, θ0) = 1

2(p−1)‖θ∗‖
2
p

and the bias in Proposition 1 would be bounded by E‖x‖2q‖θ∗‖2p
2(p−1) .

For high-dimension problems, taking q = 1 + log(d) (with p ∼ 1 and q ∼ +∞) yields to
bounds depending on the `1-norm of the optimal predictor and the `∞-norm of the features which
is advisable for sparse problems.

Appendix J. Proof of Proposition 20

We consider here h(θ) = 1
2(p−1)‖θ‖

2
p. For θ ∈ Rd, h is twice differentiable. Its gradient is

∇ih(θ) =
sign(θ(i))|θ(i)|p−1

(p− 1)‖θ‖p−2
p

,

and its Hessian may be written for α = 2−p
(p−1)‖θ‖

−2(p−1)
p , u(i) = ‖θ‖2−pp θ(i)p−2 and v(i) = θ(i)p−1

for i = 1, . . . , d, as
∇2h(θ) = Diag(u) + αvv>,

The function h − γf is convex if and only if ∇2h(θ) 4 γΣ for all θ ∈ Rd. This condition is
equivalent to

min
θ

min
α

〈α,∇2h(θ)α〉
〈α,Σα〉

≥ γ.

A sufficient condition is that Diag u < γΣ. After a change of variables, u may be written as
u(i) = η(i)p−2 where η(i) = |θ(i)|/‖θ‖p satisfies

∑d
i=1 η(i)p = 1 and η(i) ≥ 0. Hence for all

θ, α ∈ Rd

〈α,∇2h(θ)α〉 ≥
d∑
i=1

α(i)2u(i) =

d∑
i=1

α(i)2η(i)p−2,

42



STOCHASTIC COMPOSITE LEAST-SQUARES REGRESSION

which implies

min
θ∈Rd
〈α,∇2h(θ)α〉 ≥ min

η∈Rd

d∑
i=1

α(i)2η(i)p−2 such that
d∑
i=1

η(i)p = 1 and η(i) ≥ 0.

This optimization problem is equivalent with v(i) = η(i)p to the one the simplex ∆d

min
v∈Rd

d∑
i=1

α(i)2v(i)1−2/p such that
d∑
i=1

v(i) = 1 and ν(i) ≥ 0,

for which we define the Lagrangian L(v, λ, µ) =
∑d

i=1 α(i)2v(i)1−2/p−〈λ, v〉+ν(1−
∑d

i=1 v(i))
for λ ∈ Rd+ and µ ∈ R. Its gradient is ∇v(i)L(v, λ, µ) = (1 − 2/p)α(i)2/v(i)2/p − λ(i) − ν.
Writing the KKT condition for this problem (see, e.g., Boyd and Vandenberghe, 2004), we have
that (v, λ, ν) is optimal if and only if (1− 2/p)α(i)2/v(i)2/p − λ(i)− ν = 0,

∑d
i=1 v(i) = 1 and

for all i; λ(i) ≥ 0, v(i) ≥ 0 and λ(i)v(i) = 0. These conditions are satisfied by v(i) = α(i)p∑d
i=1 a(j)p

,

α(i) = 0 and ν = (1− 2p)(
∑d

i=1 a(j)p)2/p. Hence the minimum value is

d∑
i=1

α(i)2v(i)1−2/p =
d∑
i=1

α(i)2 α(i)p−2

(
∑d

i=1 a(j)p)1−2/p
=

∑d
i=1 a(j)

(
∑d

i=1 a(j)p)1−2/p
= ‖α‖2p.

Consequently
〈α,∇2h(θ)α〉 ≥ ‖α‖2p,

and h− γf is convex for γ ≤ minα∈Rd
‖α‖2p
〈α,Σα〉 .

Appendix K. Standard benchmarks

We have considered the sido dataset which is often used for comparing large-scale optimization
algorithms. This is a finite binary classification dataset with finite number of observations with
outputs in {−1, 1}. We have followed the following experimental protocol: (1) remove all outliers,
i.e., sample points xn whose norms is greater than 5 times the average norm. (2) divide the dataset
in two equal parts, one for training, one for testing, (3) start the algorithms from θ0 = 0, (4) sample
within the training dataset with replacement, for 100 times the number of observations in the training
set; a dashed line marks the first effective pass in all plots, (5) compute averaged cost on training
and testing data based on 10 replications. All cost are shown in log-scale, normalized to that the
first iteration leads to ψ(θ0)− ψ(θ∗) = 1.

We solved a `1-regularized least-squares regression for three different values of `1-regularization:
(1) one with the λ∗ which corresponds to the best generalization error after 500 effective passes
through the train set, (2) one with λ∗/8 and (3) one with 256λ∗.

We compare five algorithms: averaged SGD with constant step-size, average SGD with decreas-
ing step-size C/(R2√n), SDA with constant step-size, SDA with decreasing step-size C/(R2√n)
and SAGA with constant step-size (Defazio et al., 2014), which showed state-of-the-art performance
in the set-up of finite data sets. We consider the theoretical value of step-size which ensures conver-
gence. We note the behaviors are comparable to the situation where step-sizes with the best testing
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error after one effective pass through the data (testing powers of 4 times the theoretical step-size)
are used.

We can make the following observations:

• We show results for λ = λ∗ in Figure 2. SAGA, constant-step-size SDA and constant-step-
size SGD exhibit the best behavior for both settings of step-size. However the training error
of SGD does not converge to 0. On the other hand, SGD and SDA with step-size decaying as
C/R2√n are slower. SAGA and constant-step-size SDA exhibit some overfitting after more
than 10 passes on the regularized objective ψ.

• We show results for λ = λ∗/8 in Figure 3. The problem is then very little regularized and the
behavior of constant-step-size SGD gets closer to constant-step-size SDA. There is here still
overfitting for the regularized objective ψ.

• We show results for λ = 256λ∗ in Figure 2. The problem is then much more regularized.
In this case the regularization has an important weight and the stochasticity of the quadratic
objective plays a minor role. Therefore SAGA exhibits the best behavior, despite strong early
oscillations, with a linear convergence but reaches a saturation point after few passes over the
data. On the other hand, constant-step-size SDA exhibits a sublinear convergence which is
faster at the beginning and catches up with SAGA at the end. Constant-step-size SGD is not
converging to the solution.

To conclude, constant-step-size SDA behaves similarly to SAGA which is specially dedicated to the
set-up of finite data sets. For larger datasets, where only a single pass is possible, SAGA could not
be run. Moreover SAGA does not come with generalization guarantees while SDA does (if a single
pass is made).
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Figure 2: Test and train performances for `1-regularized least-squares regression on the sido dataset
with λ = λopt. Left: test performance. Right: train performance.
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Figure 3: Test and train performances for `1-regularized least-squares regression on the sido dataset
with λ =

λopt
8 . Left: test performance. Right: train performance.
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Figure 4: Test and train performances for `1-regularized least-squares regression on the sido dataset
with λ = 256λopt. Left: test performance. Right: train performance.
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