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Abstract
We develop a new family of algorithms for the online learning setting with regret against any
data sequence bounded by the empirical Rademacher complexity of that sequence. To develop a
general theory of when this type of adaptive regret bound is achievable we establish a connection
to the theory of decoupling inequalities for martingales in Banach spaces. When the hypothesis
class is a set of linear functions bounded in some norm, such a regret bound is achievable if and
only if the norm satisfies certain decoupling inequalities for martingales. Donald Burkholder’s
celebrated geometric characterization of decoupling inequalities (Burkholder, 1984) states that
such an inequality holds if and only if there exists a special function called a Burkholder function
satisfying certain restricted concavity properties. Our online learning algorithms are efficient in
terms of queries to this function.

We realize our general theory by giving new efficient and adaptive algorithms for classes in-
cluding `p norms, group norms, and reproducing kernel Hilbert spaces. The empirical Rademacher
complexity regret bound implies — when used in the i.i.d. setting — a data-dependent complexity
bound for excess risk after online-to-batch conversion. To showcase the power of the empirical
Rademacher complexity regret bound, we derive improved rates for a supervised learning gener-
alization of the online learning with low rank experts task and for the online matrix prediction
task.

In addition to obtaining tight data-dependent regret bounds, our algorithms enjoy improved
efficiency over previous techniques based on Rademacher complexity, automatically work in the
infinite horizon setting, and adapt to scale. To obtain such adaptive methods, we introduce novel
machinery, and the resulting algorithms are not based on the standard tools of online convex
optimization. We conclude with a number of open problems and new directions, both algorithmic
and information-theoretic.

1. Introduction

In the online supervised learning task, a learner receives data (x1, y1), . . . , (xn, yn) in a stream. At
time t they receive an instance xt and must predict yt given the instance and the previous observations
(x1, y1, ) . . . , (xt−1, yt−1). The learner’s prediction, denoted ŷt, is evaluated against yt according to
a loss function `(ŷt, yt); for classification this is typically a convex surrogate for the zero-one loss
`01(ŷ, y) = 1{ŷ ≠ y} such as the hinge loss `hinge(ŷ, y) = max{0,1 − ŷ ⋅ y}. The learner’s overall
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performance is measured in terms of their regret against a benchmark function class F :
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt). (1)

In the statistical setting, each pair (xt, yt) is drawn i.i.d. from some joint distribution D. In this
case, a bound on (1) is appealing because it immediately translates to an excess loss bound for the
batch statistical learning setting after online-to-batch conversion. At the other extreme is the fully
adversarial setting, where no generating assumptions on the data are made. We would like to develop
methods that enjoy optimal guarantees in both worlds.

Our goal is to come up with prediction strategies that adapt to the “difficulty” of the sequence.
In the statistical setting, optimal excess risk behavior has long been understood through empirical
process theory and, in particular, Rademacher averages (Bartlett and Mendelson, 2003). Empirical
Rademacher averages were shown to be an attractive data-dependent measure of complexity that can
be used for model selection and for estimating the excess risk of empirical minimizers. The question
considered in this paper is whether there exist prediction strategies such that empirical Rademacher
averages control the per-sequence regret (1). As we show below, the empirical Rademacher average
is the best sequence-based measure of complexity one can hope for.

Let us formally define the empirical Rademacher complexity of the class F :

R̂adF(x1∶n) = E
ε

sup
f∈F

n

∑
t=1

εtf(xt), (2)

where the Rademacher sequence ε ∈ {±1}n is drawn uniformly at random and x1∶n = (x1, . . . , xn).
The questions studied in this paper are:

• When does there exist a strategy (ŷt) such that
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤D(F , n) ⋅ R̂adF(x1∶n) (3)

for every sequence x1∶n, y1∶n?

• What is the best constant D(F , n)?

• When can the strategy (ŷt) be efficiently computed?

We provide a characterization of when the bound (3) is achievable, and, furthermore, develop
efficient algorithms based on a new set of techniques. The algorithms are parametrized by a certain
special function that has been studied in probability theory and harmonic analysis for the last three
decades. Interestingly, the function is neither convex nor concave (see Figure 1), yet it satisfies a
property called “zig-zag concavity”. The main message of this paper is that this special function can
be used for algorithmic purposes and to answer the above questions.

We begin our analysis by showing that R̂adF is an “optimal” data-dependent regret bound in
the following sense:

Lemma 1 (Sequence Optimality) Let ` be the absolute, hinge, or linear loss and let F be any
class of functions with value bounded by 1. Let B(x1∶n) be a data-dependent regret bound for which
there exists a strategy (ŷt) guaranteeing

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ B(x1∶n). (4)
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Then
R̂adF(x1∶n) ≤ B(x1∶n) ∀x1∶n.

The same result holds for the zero-one loss if we restrict to F and (ŷt) with range {±1}.

Lemma 1 reveals that no data-dependent regret bound can improve upon R̂adF beyond the
factor D(F , n). As we will soon show, the question of identifying D(F , n) is an extremely rich one.
When one restricts to linear function classes, this question is deeply tied to theory of Banach space
geometry and, in particular, to martingales in Banach spaces.

In Sections 3-5 we assume that F is a class of linear functions indexed by a unit ball; Section 6
will concern the general case. For the linear case, we assume that xt’s lie in the unit ball of a separable
Banach space (B, ∥⋅∥) and

F = {x↦ ⟨w,x⟩ ∣ w ∈B⋆, ∥w∥⋆ ≤ 1},

with ∥⋅∥⋆ being the dual norm and B⋆ the dual space. We then observe that

R̂adF(x1∶n) = E
ε

sup
∥w∥⋆≤1

n

∑
t=1

εt⟨w,xt⟩ = E
ε
∥
n

∑
t=1

εtxt∥.

Consider the Euclidean setting, where F is the unit `2 ball. It is known that gradient descent with

an adaptive step size yields a regret bound of order
√

∑
n
t=1∥xt∥

2 for any sequence. Khintchine’s
inequality then gives a further upper bound of order Eε∥∑nt=1 εtxt∥. Hence, adaptive gradient descent
answers the questions posed earlier for the specific case of linear functions indexed by Euclidean ball.
This is one of the very few cases known to us where the bound of R̂adF was previously available.1

2. Background

Let (B, ∥⋅∥) be a separable Banach space and (B⋆, ∥⋅∥⋆) denote its dual. This paper focuses on
the problem of online supervised learning described in Protocol 1. Input instances belong to some
subset X ⊆ B and predictions ŷt are real valued. Outcomes yt’s are selected from some abstract
label space Y . Throughout this paper we assume that the loss `(ŷ, y) is convex and 1-Lipschitz in
its first argument. We also assume that there exists some bounded domain [−B,B] such that for all
y ∈ Y , ∃ŷ ∈ [−B,B] such that the derivative with respect to the first argument `′(ŷ, y) = 0 (that is,
minimum is achievable in the compact set). Call such a loss function well-behaved. We remark that
this bound B never explicitly appears in our results, and its only purpose is to enable application of
the Minimax Theorem, which requires compactness.

Definitions For p ∈ (1,∞), let p′ = p/(p − 1) denote its conjugate, and p⋆ = max{p, p′}. An
X -valued tree x is a sequence of mappings (xt)

n
t=1 with xt ∶ {±1}t−1

→ X . When ε1, . . . , εn are
independent Rademacher random variables, the tree x is simply a predictable process with respect to
the dyadic filtration. Recall that a sequence of random variables (Zt)

n
t=1 is a martingale if for each t,

E[Zt ∣ Z1, . . . , Zt−1] = Zt−1, and is called a martingale difference sequence if E[Zt ∣ Z1, . . . , Zt−1] =

0. For a given martingale (Zt), we let (dZt) denote its corresponding martingale difference sequence,
i.e. dZt = Zt − Zt−1. For a matrix X ∈ Rd×d, let Xi,⋅ denote the ith row and X⋅j denote the jth
column. We define its (p, q) group norm as ∥X∥p,q = (∑i∈[d]∥Xi,⋅∥

p
q)

1/p
= ∥(∥Xi,⋅∥q)i∈[d]∥p. The

1. The other example is R̂adF for the `∞ ball, attained by diagonal AdaGrad (Duchi et al., 2011).
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Protocol 1 Online Supervised Learning
1: for t = 1, . . . , n do
2: Nature provides xt ∈ X .
3: Learner selects randomized strategy qt ∈ ∆(R).
4: Nature provides outcome yt ∈ Y .
5: Learner draws ŷt ∼ qt and incurs loss `(ŷt, yt).
6: end for

Schatten p-norm is defined as ∥X∥Sp = Tr((XX†)
p
2 )

1
p . We let ∥X∥σ denote the spectral norm

(Schatten S∞), ∥X∥Σ denote the trace norm (Schatten S1), and ∥X∥F denote the Frobenius norm
(Schatten S2). For a set A ⊆ Rd, assumed to be symmetric, the atomic norm with respect to A is
given by ∥x∥A = min{α ∣ x ∈ α ⋅ conv(A)}.

3. Deriving algorithms: Adaptive relaxations and zig-zag concavity

Let us propose a simple schema for designing algorithms to achieve (3). It will turn out that
considering this scheme naturally leads to us to decoupling inequalities for Banach space-valued
martingales via a deep result of Burkholder (1984). We begin by observing that by convexity of the
loss function,

`(ŷt, yt) − `(⟨w,xt⟩, yt) ≤ `
′
(ŷt, yt) ⋅ (ŷt − ⟨w,xt⟩) (5)

and hence, denoting the derivative by `′t = `
′(ŷt, yt),

n

∑
t=1

`(ŷt, yt) − inf
∥w∥⋆≤1

n

∑
t=1

`(⟨w,xt⟩, yt) ≤
n

∑
t=1

ŷt ⋅ `
′
t + ∥

n

∑
t=1

`′txt∥. (6)

Rather than aiming for the adaptive bound of empirical Rademacher averages in (3), we shall
aim for R̂adF(x1∶n, `

′
1∶n) = Eε∥∑nt=1 εt`

′
txt∥, a quantity that is always tighter than R̂adF(x1∶n) =

Eε∥∑nt=1 εtxt∥ because ` is 1-Lipschitz.
Foster et al. (2015) proposed a general framework called adaptive relaxations for deriving

algorithms to achieve data-dependent regret bounds. Adaptive relaxations are a compact tool for
reasoning about minimax strategies on a round-by-round basis.

Definition 2 An admissible relaxation Rel ∶ ⋃nt=0X
t × [−1,1]t → R satisfies the initial condition

Rel(x1∶n, `
′
1∶n) ≥ ∥

n

∑
t=1

`′txt∥ −D ⋅ E
ε
∥
n

∑
t=1

εt`
′
txt∥, (7)

and the recursive condition

Rel(x1∶t−1, `
′
1∶t−1) ≥ sup

xt∈X
inf
ŷt

sup
`′t∈[−1,1]

[ŷt ⋅ `
′
t +Rel(x1∶t, `

′
1∶t)].

2 (8)

2. In original game, `′t = `
′
(ŷt, yt). We have moved to an upper bound by allowing the adversary to choose `′t arbitrarily.
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Proposition 3 Suppose Rel is an admissible relaxation. If at each time t the learner plays the
strategy

ŷt = arg min
ŷ

sup
`′t∈[−1,1]

[ŷ ⋅ `′t +Rel(x1∶t, `
′
1∶t)], (9)

regret is bounded as
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤D ⋅ E
ε
∥
n

∑
t=1

εt`
′
txt∥ +Rel(∅).

The takeaway from Proposition 3 is that if we can design an adaptive relaxation for which the end
value Rel(∅) is not too large, we will have succeeded in achieving the upper bound of empirical
Rademacher complexity3. But how should we find such a relaxation? Let us try the simplest possible
choice:

Rel(x1∶t, `
′
1∶t) = ∥

t

∑
s=1

`′sxs∥ −D ⋅ E
ε
∥
t

∑
s=1

εs`
′
sxs∥.

This relaxation clearly satisfies the initial condition, but it is not so clear how to demonstrate the
recursive condition. The challenge in analyzing this relaxation is that the function z ↦ ∥A + z∥ −
D∥B + εz∥ is neither convex nor concave. Virtually all potential functions used in online learning
are convex and the absence of such a property makes it difficult to bound the relaxation’s growth
under possible outcomes for the gradient `′t. Let us propose a surrogate potential with more tractable
analytical properties:

Proposition 4 Suppose there exists a function U ∶B ×B→ R satisfying

1. U(x,x′) ≥ ∥x∥ −D∥x′∥.

2. U is zig-zag concave: z ↦U(x + z, x′ + εz) is concave for all x,x′ ∈B and ε ∈ {±1}.

3. U(0,0) ≤ 0.

Then the adaptive relaxation

Rel(x1∶t, `
′
1∶t) = E

ε1∶t
U(

t

∑
s=1

`′sxs,
t

∑
s=1

εs`
′
sxs) (10)

is admissible.

Property 1 of U clearly implies that the relaxation satisfies the initial condition, and Property 3
ensures that the end value is at most 0. The zig-zag concavity property (2) is most critical, as it
implies that the simple gradient-based strategy

ŷt = −
d

dα
E
ε1∶t

U(
t−1

∑
s=1

`′sxs + αxt,
t−1

∑
s=1

εs`
′
sxs + εtαxt)∣

α=0

(11)

achieves admissibility. We remark that this strategy is horizon-independent whenever U does not
depend on n (which we will show is usually the case). Furthermore, one may avoid re-drawing the
random signs, and, hence, the computation time is simply the evaluation of the derivative of U.

The full description of the ZigZag algorithm is given in Section 5, but before that let us spend
some time deriving such U functions — called the Burkholder functions — and connecting their
existence to other properties of the Banach space.

3. We omit proof of Proposition 3 for space, but the proof of Theorem 11, the main algorithm, uses the same technique
and is self-contained. See also Foster et al. (2015).
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4. Zig-Zag functions, regret, and UMD spaces

What have we gained by reducing our problem to finding a U function? We will now show that U
exists if and only if (B, ∥⋅∥) is an Unconditional Martingale Difference (UMD) space. Informally,
in a UMD space lengths of martingales are comparable to those of random walks with independent
increments (see Definition 6). We call U a Burkholder function in reference to Donald Burkholder’s
central result characterizing UMD spaces in terms of the existence of these functions (Burkholder,
1984).

In Proposition 4 we assumed that the Burkholder function U satisfies U(x,x′) ≥ ∥x∥ −D∥x′∥.
We will soon see that it is often easier to find an efficiently computable zig-zag concave function Up

that, as before, satisfies Up(0,0) ≤ 0, but the first requirement in Proposition 4 is replaced with

Up(x,x
′
) ≥ ∥x∥p −Dp

p∥x
′∥
p

for some p > 1 (i.e. p ≠ 1). However, the simple observation that for any number a > 0, a =
1
p infη>0{ηa

p + (p − 1)η−1/(p−1)} will allow us to algorithmically use a Up function for any p to

obtain the desired regret bound R̂adF (this is described in detail in Section 5). This motivates our
complete Burkholder function definition:

Definition 5 A function UB
p ∶B ×B→ R is Burkholder for (∥⋅∥, p,Dp) if

1. UB
p (x,x′) ≥ ∥x∥p −Dp

p∥x
′∥
p.

2. UB
p is zig-zag concave: z ↦UB

p (x + z, x′ + εz) is concave for all x,x′ ∈B and ε ∈ {±1}.

3. UB
p (0,0) ≤ 0.4

For concreteness, here is a simple example for the scalar case: The function

UR
2 (x,x

′
) = ∣x∣2 − ∣x′∣2

is Burkholder for (∣⋅∣,2,1). The reader can easily verify that this function is zig-zag concave by
observing that UR

2 (x + z, x
′ ± z) is in fact linear in z. Perhaps the most famous U function is

Burkholder’s construction for general powers in the scalar case: For p ∈ (1,∞) the function

UR
p (x,x

′
) = αp(∣x∣ − βp∣x

′
∣)(∣x∣ + ∣x′∣)

p−1
,

is a (∣⋅∣, p, βp) Burkholder function upper bounding ∣x∣p − βpp ∣x
′∣
p for appropriate αp, βp.

4.1. When does a zig-zag concave U function exist?

It turns out that the most common Banach spaces used in machine learning settings — such as `p
spaces, group norms, Schatten-p classes, and operator norms — all happen to be UMD spaces, and
that each UMD space comes with its own U function. This leaves us with the exciting prospect
of using their corresponding U functions to develop new adaptive online learning algorithms with
improved data-dependent regret bounds. Without further ado, let us define a UMD Banach space:

4. This condition is without loss of generality.
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Definition 6 A Banach space (B, ∥ ⋅ ∥) is called UMDp for some 1 < p <∞, if there is a constant
Cp such that for any finite B-valued martingale difference sequence (Xt)

n
t=1 in Lp(B) and any

fixed choice of signs (εt)
n
t=1 (where each εt ∈ {±1}),

E∥
n

∑
t=1

εtXt∥

p

≤Cp
pE∥

n

∑
t=1

Xt∥

p

. (12)

The space (B, ∥⋅∥) is called UMD1 if there is a constant C1 such that

E sup
τ≤n

∥
τ

∑
t=1

εtXt∥ ≤C1 E sup
τ≤n

∥
τ

∑
t=1

Xt∥ . (13)

Burkholder (1984) proved the following geometric characterization of UMD spaces in terms of
existence of appropriate zig-zag concave U functions.5

Theorem 7 (Hytönen et al. (2016), Theorem 4.5.6) For a Banach space (B, ∥ ⋅ ∥), the following
are equivalent:

1. B is UMDp with constant Cp.

2. There exists Burkholder function UB
p ∶B ×B↦ R for (∥⋅∥, p,Cp).

Theorem 7 is strengthened considerably by the following fact:

Theorem 8 Let p ∈ (1,∞). If UMDp holds with constant Cp, then

• For all q ∈ (1,∞), UMDq, holds with constant Cq ≤ 100( qp +
q′

p′ )Cp.

• UMD1 holds with C1 = O(Cp).

Furthermore, if UMD1 holds with constant C1, then for all p ∈ (1,∞) there is some constant C′
p for

which UMDp holds.

With these properties of UMD spaces established, we proceed to state our main theorem on
achieving the R̂adF regret bound in these spaces.

Theorem 9 Let (B, ∥⋅∥) satisfy UMDp with constant Cp for any p ∈ [1,∞). Then there exists
some randomized strategy achieving the regret bound:

E[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ O(CpEE
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥) (14)

≤ O(CpE(E
ε
∥
n

∑
t=1

εt`
′
(ŷt, yt)xt∥ +max

t∈[n]
∥xt∥ log(n))) (15)

≤ O(CpE(E
ε
∥
n

∑
t=1

εtxt∥ +max
t∈[n]

∥xt∥ log(n))). (16)

5. Burkholder (1984) does not work with U functions directly but rather an equivalent property called ζ-convexity. The
U function presentation first appeared in Burkholder (1986). See Hytönen et al. (2016) or Osekowski (2012) for a
modern exposition.
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This shows that a bound on Cp for any p gives D(F , n) ≤ Cp in (3), up to an extra additive logn
factor6.

An interesting feature of this theorem is that there are multiple ways through which it can be
proven. In the appendix it is proven purely non-constructively by plugging the UMD inequality (13)
into the minimax analysis framework developed in Foster et al. (2015). In Section 5 it is proven
constructively by using the existence of the U function to exhibit a particular strategy for the learner.

Let us remark that the bound in (14) has the desirable property of adapting to scale, in that it does
not require an a-priori upper bound on the data norms maxt∈[n]∥xt∥.

With Theorem 9 in mind, we finally state bounds on Cp for classes of interest.

Theorem 10 The following UMD constants hold:
• (R, ∣⋅∣): Cp = p

⋆ − 1 ∀p ∈ (1,∞).

• (Rd, ∥⋅∥p), p ∈ (1,∞): Cp = p
⋆ − 1.

• (Rd, ∥⋅∥1/∥⋅∥∞): C2 = O(log d).

• (Rd, ∥⋅∥A/∥⋅∥A⋆): C2 = O(log∣A∣).

• (Rd×d, ∥⋅∥Sp), p ∈ (1,∞): Cp = O((p⋆)2).

• (Rd×d, ∥⋅∥σ/∥⋅∥Σ): C2 = O(log2 d).

• (Rd×d, ∥⋅∥p,q), p, q ∈ (1,∞): Cp = O(p⋆q⋆).

• (H, ∥⋅∥H) for Hilbert spaceH: C2 = 1.

4.2. Efficient Burkholder functions

Burkholder’s geometric characterization, Theorem 7, implies existence of a Burkholder function
UB
p whenever a space (B, ∥⋅∥) has UMD constant Cp. Unfortunately, the generic U function

construction (see Hytönen et al. (2016), Theorem 4.5.6) is not efficiently computable; it is expressed
in terms of a supremum over all martingale difference sequences. However, the construction of
concrete U functions has been an active area of research in the three decades since Burkholder’s
original construction. This is because one can exhibit a U function to certify that a space is UMD for
a specific constant Cp, and discovering sharp UMD constants is of general interest to the analysis
community (Osekowski, 2012).

Let us begin by stating Burkholder’s optimal U function construction for the scalar setting. This
function was originally obtained by solving a particular partial differential equation. This function is
graphed in Figure 1.

Example 1 (∣⋅∣p, Hytönen et al. (2016), Theorem 4.5.7) For any p ∈ (1,∞), the function

UR
p (x, y) ≜ αp(∣x∣ − βp∣y∣)(∣x∣ + ∣y∣)p−1 (17)

is Burkholder for (∣⋅∣, p, βp) , where αp = p(1 − 1
p⋆ )

p−1
, βp = p⋆ − 1. βp is the sharpest constant

possible.

Observe that all of the Burkholder function properties (Definition 5) are preserved under addition.
This leads us to a construction for `p norms in the vector setting, which inherits the optimal constants
from Burkholder’s scalar construction.

6. All of the logn factors incurred in this paper arise when passing from bounds of the form E supτ≤n Fτ to those of the
form EFn for some random process (Ft). This is notable technical issue with most martingale inequalities involving
the L1(B) norm, including for example Doob’s well-known maximal inequality.
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Example 2 (`p norm)
U
`p
p (x, y) ≜ ∑

i∈[d]

UR
p (xi, yi) (18)

is a Burkholder function for (∥⋅∥
p
p, p, βp), with βp as in Example 1. U`p

p can be computed in time
O(d).

Example 3 (Weighted `2 norm) Let ∥x∥A =
√

⟨x,Ax⟩ for some PSD matrix A. Then

U
`2,A
2 (x, y) ≜ U `22 (A1/2x,A1/2y)

is a Burkholder function for (`2,A,2,1). U`2,A
2 can be computed in time O(d2).

Figure 1: UR
p (x,x

′) (blue) and ∣x∣p − βpp ∣x
′∣
p (orange) for p = 3.

Another useful construction extends Burkholder’s scalar function to general Hilbert spaces. This
is useful as it applies even to infinite dimensional spaces such as RKHS.

Example 4 (General Hilbert Space, Hytönen et al. (2016), Theorem 4.5.14) LetH be some Hilbert
space whose norm will be denoted ∥⋅∥H.

UHp (x, y) ≜ αp(∥x∥H − βp∥y∥H)(∥x∥H + ∥y∥H)
p−1 (19)

is a Burkholder function for (∥⋅∥H, p, βp) for each p ∈ (1,∞), where αp and βp, and are as in
Example 1. This function works for all Hilbert spaces, even those of infinite dimension. For p = 2
this function and its derivatives can be implemented efficiently using the Representer Theorem.

We can lift the former construction to a construction for group norms in the same fashion as in our
construction for `p norms.

Example 5 ((p,2) Group Norm) In this example we consider group norms over matrices in Rd×d.
The function,

U(p,2)
p (x, y) ≜ ∑

i∈[d]

U`2
p (x, y),

where U`2,p is the general Hilbert space Burkholder function (19), is a Burkholder function for
(∥⋅∥(p,2), p, βp). U(p,2)

p can be computed in time O(d2).

Group norms are used in multi-task learning. Furthermore, Example 5 works not just for Rd×d, but
more generally for Rd ×H for any Hilbert space H. This makes it well-suited to multiple kernel
learning tasks.

As we will show in the sequel, there are a number of algorithmic tricks we can use to achieve
R̂adF -type bounds even when we do not exactly have a U function for a class of interest.

9
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5. Algorithms and applications

Recall that our goal is to design algorithms whose regret is bounded by R̂adF(x1∶n, `
′
1∶n) =

Eε∥∑nt=1 εt`
′
txt∥. We now present an algorithm, ZIGZAG (Algorithm 2), which efficiently achieves a

regret bound of this form whenever we have an efficient Burkholder function UB
p , even if p ≠ 1.

Algorithm 2 ZIGZAG

1: procedure ZIGZAG(Up, p, η) ▷Up is Burkholder for (∥⋅∥, p, β). η > 0 is the learning rate.
2: for time t = 1, . . . , n do
3: Let Gt(α) = Eσt∈{±1}

η
pUp(∑

t−1
s=1 `

′
sxs + αxt,∑

t−1
t=1 εs`

′
sxs + σtαxt).

4: Predict ŷt = −G′
t(0). ▷ More generally, use the supergradient.

5: Draw independent Rademacher εt ∈ {±1}.
6: end for
7: end procedure

Theorem 11 Denote the prediction of Algorithm 2 as ŷε1∶t−1t to make the dependence on the sequence
(εt)t≤n explicit. Algorithm 2 enjoys the regret bound,

E
ε
[
n

∑
t=1

`(ŷε1∶t−1t , yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −
1

p
(ηβp∥

n

∑
t=1

εt`
′
txt∥

p

+
1

p′ − 1
η−(p

′−1)
)] ≤ 0. (20)

A few remarks are in order. A naive application of the relaxation technique would yield a bound

E
ε
[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤
1

p
(ηβpE

ε
∥
n

∑
t=1

εt`
′
txt∥

p

+
1

p′ − 1
η−(p

′−1)
), (21)

which falls short of the goal of achieving R̂adF for the following reason. Observe that for any p > 1,

x1/p
=

1

p
inf
η>0

(ηx +
1

p′ − 1
η1−p′

) ≜ inf
η>0

Ψη,p(x). (22)

Recall that η > 0 is a parameter of Algorithm 2. (22) combined with (21) suggest that if we
chose the optimal η in hindsight, the regret of ZIGZAG would be bounded by p

√
Eε∥∑nt=1 εt`

′
txt∥

p.
However, this bound is always worse than R̂adF via Jensen’s inequality, and is indeed sub-optimal
for `p norms. Luckily, (20) reveals that for ZIGZAG, the Rademacher sequence (εt)t≤n used by
the algorithm and the Rademacher sequence appearing in the regret bound are one and the same,
which allows us to adapt η to ∥∑

n
t=1 εt`

′
txt∥ for a particular playout of the sequence (εt)t≤n to get the

desired R̂adF bound. This tuning of η via doubling is stated in the next result.

Lemma 12 Define

Φ(xt1∶t2 , , `
′
t1∶t2 , εt1∶t2) = β

p sup
t1≤a≤b≤t2

∥
b

∑
t=a

εt`
′
txt∥

p

.

Consider the following strategy:

1. Choose η0 = (β ⋅ p)−p for p ≥ 2 and η0 = 1 for p < 2. Update with ηi = 2
− i
p′−1 η0.

10
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2. In phase i, which consists of all t ∈ {si, . . . , si+1 − 1}, play Algorithm 2, ZIGZAG, with
learning rate ηi.

3. Take s1 = 1, sN+1 = n + 1, and si+1 = inf{τ ∣ ηiΦ(xsi∶τ−1, `
′
si∶τ−1, εsi∶τ−1) > η

−(p′−1)
i }, where

N is the index of the last phase (note that whether t = si+1 can be tested using only information
available to the learner at time t).

This strategy achieves

E
ε
[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ O(β2 log2 n E
ε,ε′

∥
n

∑
t=1

ε′t`
′
txt∥ +min{logn + (p ⋅ β)

p
p−1 , βp logn}).

(23)

Remark 13 In the above bound, (xt) and (`′t) may adapt to the sequence (εt) drawn by the
algorithm (unless the adversary is oblivious), but may not adapt to (ε′t).

5.1. `p norms

We now specialize our generic algorithm to the important special case of `p norms. We use E (without
subscript) to denote the expectation with respect to the learner’s randomization.

Example 6 Fix p ∈ (1,∞). Let ŷt be the strategy produced by ZIGZAG (Algorithm 2) using the
Burkholder function U

`p
p from Example 2 with the learning rate tuning strategy from Lemma 12. This

strategy achieves

E[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ O
⎛

⎝
EE
ε
∥
n

∑
t=1

εt`
′
txt∥

p

⋅ (p⋆)2 log2 n + (p⋆)2 logn
⎞

⎠
. (24)

This algorithm serves as a generalization of AdaGrad to all powers of p. If we take p = 2, the result
recovers the regret bound for full matrix AdaGrad (Duchi et al., 2011) up to logarithmic factors:

E[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ Õ
⎛

⎝
E

¿
Á
ÁÀ

n

∑
t=1

∥xt∥
2
2

⎞

⎠
. (25)

We can also recover the regret bound for diagonal AdaGrad (Duchi et al., 2011) by taking p =

1 + 1/ log d:

E[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ Õ
⎛

⎝
E ∑
i∈[d]

∥x1∶n,i∥2
⎞

⎠
. (26)

Here x1∶n,i denotes the ith row of the data matrix (x1, x2, . . . , xn) ∈ Rd×n

There is also a direct construction of a U function for `1 due to Osekowski (2016), which is stated
in the appendix as Example 9. Using this function we will achieve (26), but without having to
use the learning rate tuning strategy, and with only O(log d) factors in the regret bound instead of
O(log 2d).
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6. Beyond linear function classes: Necessary and sufficient conditions

The aim of our paper is to analyze conditions for the existence of adaptive methods that enjoy
per-sequence empirical Rademacher complexity as the regret bound. In this quest, we introduced
the UMD property as a necessary condition. In the present section, we consider arbitrary, possibly
nonlinear function classes F ⊆ [−1,1]X and show that a closely related “probabilistic” UMD
property offers both a necessary and sufficient condition.

For this section we restrict ourselves to absolute loss `abs(ŷ, y) = ∣ŷ − y∣ and assume that
Y = [−1,1].

Theorem 14 Let F ⊂ [−1,1]X be any class of predictors. The following statements are equivalent:

1. There exists a learning algorithm and constant B such that the following regret bound against
any adversary holds:

n

∑
t=1

`abs(ŷt, yt) − inf
f∈F

n

∑
t=1

`abs(f(xt), yt) ≤ BE
ε

sup
f∈F

n

∑
t=1

εtf(xt) + b.

2. For any X valued tree x = (x1, . . . ,xn) where each xt ∶ {±1}t−1 → X , there exists constant
C such that

E
ε
[sup
f∈F

n

∑
t=1

εtf(xt(ε1∶t−1))] ≤ C E
ε,ε′

[sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1))] + c, (27)

where ε = (ε1, . . . , εn) and ε′ = (ε′1, . . . , ε
′
n) are independent Rademacher random variables.

Moreover, B = Θ(C) and b = Θ(c). More generally 2 implies 1 for any loss ` that is 1-Lipschitz and
well-behaved as in Section 2, for any choice of Y .

6.1. Function classes with the generalized UMD property

We now give examples of function classes that satisfy the generalized UMD inequality (27).

Example 7 (Kernel Classes) Let H be a Reproducing Kernel Hilbert Space with kernel K such
that supx∈X

√
K(x,x) ≤ B, and let F = {f ∈H ∣ ∥f∥H ≤ 1}. Then there are constants K1,K2 such

that the generalized UMD property (27) holds with

E
ε

sup
f∈F

n

∑
t=1

εtf(xt(ε1∶t−1)) ≤K1 E
ε,ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1)) +K2B log(n).

The next example is that of homogenous polynomial classes under an injective tensor norm. The
full description of this setting is deferred to Appendix A.

Example 8 (Homogeneous Polynomials) Consider homogeneous polynomials of degree 2k, with
coefficients under the unit ball of the norm (∥⋅∥{1,...,k},{k+1,...,2k})⋆ in (Rd)⊗2k. Then there exist
constants K1,K2 such that the generalized UMD property (27) holds with

E
ε

sup
f∈F

n

∑
t=1

εtf(xt(ε1∶t−1)) ≤K1k
2 log2

(d) E
ε,ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1)) +K2k
2 log2

(d) log(n).

12
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6.2. Necessary versus sufficient conditions

When we take F to be the unit ball of the dual norm ∥⋅∥⋆ as in previous sections, the inequality in
(27) becomes:

E
ε
∥
n

∑
t=1

εtxt(ε1∶t−1)∥ ≤ C E
ε,ε′

∥
n

∑
t=1

ε′tεtxt(ε1∶t−1)∥ . (28)

This condition is sometimes referred to as a probabilistic one-sided UMD inequality for Paley-Walsh
martingales (Hytönen et al., 2016). Comparing the condition to the UMD1 inequality (13) one
observes three differences: The Rademacher sequence ε′ is drawn uniformly rather than being fixed,
we only consider Paley-Walsh martingales (trees), and there is no supremum over end times. The
supremum in (13) does not present a significant difference, as it can be removed from UMD1 at a
multiplicative cost of O(logn). The randomization over ε′ is more interesting. It turns out that if in
addition to (28) we require the opposite direction of this inequality to hold, i.e.

E
ε,ε′

∥
n

∑
t=1

ε′tεtxt(ε1∶t−1)∥ ≤ C
′E
ε
∥
n

∑
t=1

εtxt(ε1∶t−1)∥ ,

then this is equivalent to the full UMD property (13) up to the presence of the supremum (Hytönen
et al., 2016, Theorem 4.2.5). Thus, (28) can be thought of as a one-sided version of the UMD
inequality.

There are indeed classes for which one-sided UMD inequality holds but the full UMD property
does not. A result due to Hitczenko (1994) shows that there is a mild separation between these
conditions even in the scalar setting:7

Theorem 15 (Hitczenko (1994)) There exists a constant K independent of p such that for all
p ∈ [1,∞),

E
ε
∣
n

∑
t=1

εtxt(ε1∶t−1)∣

p

≤Kp E
ε,ε′

∣
n

∑
t=1

ε′tεtxt(ε1∶t−1)∣

p

. (29)

When p = 1 this result is exactly the generalized UMD inequality (27), and for p > 1 it gives a
one-sided version of the UMDp condition. This bound is quantitatively stronger than what one
would obtain from the UMDp property, since (Burkholder, 1984) shows that the full two-sided
UMDp condition requires K ≥ p⋆ − 1. In the next section we show that the stronger constants in the
one-sided inequality (29) can be used to obtain improved rates for the low-rank experts setting of
Hazan et al. (2016) The full UMDp inequality would not be sufficient for this task due to its larger
constant. However, we remark that the gap here is only in logarithmic factors, and that the separation
between the one-sided and full UMD properties is very mild for all examples we are aware of.

6.3. Application: Low-rank experts

In this section we consider a supervised learning generalization of the problem of online learning
with low-rank experts (Hazan et al., 2016). Within Protocol 1, we take X = {x ∈ Rd ∣ ∥x∥∞ ≤ 1} and
take our set of predictors to be the simplex: F = {x↦ ⟨w,x⟩ ∣ w ∈ ∆d}. We let Y = [−1,+1] and
take ` to be any well-behaved loss.

The challenge stated in (Hazan et al., 2016) is to develop algorithms for this setting whose regret
scales not with the dimension d (as in the standard experts bound of O(

√
n log d)), but rather scales

7. See also Hitczenko (1993); Cox and Veraar (2007, 2011).
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with the rank of the observed data matrix X1∶n = (x1 ∣ . . . ∣ xn) ∈ Rd×n. Hazan et al. (2016) gave an
algorithm obtaining regret O(

√
n ⋅ rank(X1∶n)) and showed a lower bound of Ω(

√
n ⋅ rank(X1∶n)).

Note that these bounds differ by a factor of
√

rank(X1∶n); improving this gap was stated in (Hazan
et al., 2016) as Open Problem (1). Using Hitczenko’s decoupling inequality, this gap can be closed
for the supervised setting.

Theorem 16 For the supervised experts setting, there exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O(
√
n ⋅ rank(X1∶n)) +O(logn log d). (30)

This bound matches the lower bound given in (Hazan et al., 2016) up to a low-order additive log d
term. The result has two main ingredients: First, using Hitczenko’s inequality, we show that there
exists an algorithm whose regret is bounded by a quantity that closely approximates the empirical
Rademacher complexity R̂adF for the classF . Then, following Hazan et al. (2016), we show that the
empirical Rademacher complexity of F on a sequence x1∶n can be bounded as O(

√
n ⋅ rank(X1∶n)).

Our approach also yields improved rates in terms of approximate rank of the matrix X1∶n, which
was stated as Open Problem (3) in (Hazan et al., 2016). Define the γ-approximate rank of X via
rankγ(X) = min{rank(X ′) ∣ ∥X −X ′∥∞ ≤ γ, ∥X ′∥∞ ≤ 1}.

Theorem 17 There exists a strategy (ŷt) that for all γ > 0 attains

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O(
√
n ⋅ rankγ(X1∶n) + γ

√
n log d) +O(logn log d). (31)

Furthermore, the strategy is the same as that of Theorem 16.

A bound matching (31) up to log factors was given in (Hazan et al., 2016), but only for the stochastic
setting.

Lastly, we give improved rates for Open Problem (2) of (Hazan et al., 2016), which asks for
experts bounds that only depend on the max norm of X1∶n. Recall that

∥X∥max = min
U∈Rd×d,V ∈Rn×d,X=UV †

∥U∥∞,2∥V ∥∞,2,

where ∥⋅∥∞,2 denotes the group norm.

Theorem 18 There exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O(
√
n ⋅ ∥X1∶n∥max) +O(logn log d). (32)

Furthermore, the strategy is the same as that of Theorem 16 and Theorem 17.

For Theorem 16, Theorem 17, and Theorem 18, the key idea is to (almost) achieve the empirical
Rademacher complexity in the online setting, then apply bounds that had previously been used in the
statistical setting to get tight data-dependent bounds. Since all of of these theorems are derived as
upper bounds on the empirical Rademacher complexity, they are actually achieved simultaneously by
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a single algorithm, and this algorithm needs no knowledge of the rank, approximate rank parameter
γ, or max norm a-priori.

While our bounds depend on the ambient dimension d, they do so only weakly, through an
additive log d term that does not depend on, for example,

√
n. Therefore, they improve on (Hazan

et al., 2016) as long as the dimension d is at most exponential in
√
n.

It is important to note that the new bounds we have stated do not immediately transfer to the
online linear optimization setting considered in (Hazan et al., 2016) due to the condition on the
loss `. Rather, they act as supervised analogues to the results in that paper. We do not yet have an
efficient algorithm that obtains (30) because we do not have an efficient U function analogue for the
one-sided UMD inequality.

6.4. Application: Online matrix prediction

We are not yet aware of a construction for an efficient Burkholder function for matrix classes such
as the spectral norm, trace norm, and more generally the Schatten p-norm ball. Nonetheless, the
UMD constants for these classes (given by Theorem 10) imply the existence of algorithms with new
tradeoffs for online matrix prediction, which we highlight below.

In the online matrix prediction setting (Hazan et al., 2012) one takes X = [d] × [d] and the
hypothesis class F to be a set of d × d matrices. Writing xt = (it, jt) for the t’th input instance, we
let F (xt) = F [it, jt] denote the (it, jt)’th entry of the matrix. Suppose one wishes to compete with
a class G of low rank — for concreteness, rank r — matrices with entry magnitudes bounded by 1.
A standard approach to developing efficient algorithms for this setting is to take F to be a convex
relaxation of G:

F = {F ∈ Rd×d ∣ ∥F ∥Σ ≤ r
√
d}.

Then G ⊆ F , but the worst-case sample complexity of F is larger than that of G. We show the
existence of an algorithm for competing with F whose regret matches that of G when the data (xt)
is favorable, matches the optimal worst-case behavior of F for unfavorable data, and more generally
interpolates between these regimes.

Let ` be any convex 1-Lipschitz loss and Y = [−1,+1]. Let Nrow = maxi∣{t ∣ it = i}∣ and
Ncol = maxj ∣{t ∣ jt = j}∣; these are the maximum number of times an entry appears in a given row
or column, respectively.

Theorem 19 There exists a strategy (ŷt) that achieves the following regret bound:

n

∑
t=1

`(ŷt, yt) − inf
F ∈F

n

∑
t=1

`(F (xt), yt) ≤ Õ(
√
r ⋅ d ⋅

√
max{Nrow,Ncol}). (33)

Remark 20 Consider the average regret Regn/n, which appears as an upper bound on excess risk
after online-to-batch conversion.

• When entries are drawn from the uniform distribution, Ncol,Nrow ≈ n/d, which yields

Regn

n
≈

√
rd

n
.

This implies that the algorithm will begin to generalize after seeing a constant number of rows
worth of entries, which is the best possible rate in this setting, even if one competes with G
directly.
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• Any entry pattern satisfying Ncol,Nrow ≈ n/d, is sufficient to obtain the optimistic Regn/n ≈√
rd/n rate. Remarkably, this can happen even when the entries are chosen adaptively, so

long as the condition on Ncol and Nrow is satisfied once the game ends.

• In the worst case Regn/n ≈
√
rd/

√
n, which is the standard worst-case Rademacher com-

plexity bound for the trace norm, and is obtained when the entry distribution is too “spiky”.

The i.i.d./optimistic bound of
√
rd/n matches that obtained by (Foygel and Srebro, 2011,

Theorem 4) for the statistical learning setting up to logarithmic factors, but the algorithm does not
need to know in advance that the entries will be distributed i.i.d.

The worst-case
√
rd/

√
n bound is weaker than that of Hazan et al. (2012), which obtains worst-

case regret of Regn/n ≈
√
rd3/2/n, because it does not fully exploit that well-behaved losses such

as `hinge are effectively bounded (see Shamir and Shalev-Shwartz (2014) for a discussion). One can
achieve the best of both worlds by using the standard multiplicative weights strategy to combine the
predictions of the two algorithms. One could also combine predictions with the transductive matrix
prediction algorithm proposed in Rakhlin et al. (2012), which will obtain a tighter

√
rd3/2/n rate if

there are no repetitions in the observed entries.

6.5. Application: Empirical covering number bounds

Having developed online learning algorithms for which regret is bounded by the empirical Rademacher
complexity, we are in the appealing position of being able to apply empirical process tools designed
for the statistical setting to derive tight regret bounds for the adversarial setting. One particularly
powerful set of tools is that of covering numbers and, in particular, chaining.

Definition 21 (Empirical Cover) For a hypothesis class F ∶ X → R, data sequence x1∶n, and
α > 0, a set V ⊆ Rn is called an empirical covering with respect to `p, p ∈ [1,∞), if

∀f ∈ F ∃v ∈ V s.t. (
1

n

n

∑
t=1

(f(xt) − vt)
p
)

1/p

≤ α. (34)

The set V is a cover with respect to `∞ if ∀f ∈ F ∃v ∈ V s.t. ∣f(xt) − vt∣ ≤ α ∀t ∈ [n].

We let the empirical covering number Np(F , α, x1∶n) denote the size of the smallest α-empirical
cover for F on x1∶n with respect to `p.

Because our task is simply to obtain bounds on the empirical Rademacher complexity on a
particular sequence x1∶n, we can obtain regret bounds that depend on the data-dependent empirical
covering number defined above, instead of a worst-case covering number. Such bounds have proved
elusive in the adversarial setting, where most existing results are based on worst-case covering
numbers (e.g. Rakhlin et al. (2010)). In particular, we derive two regret bounds based on the classical
covering number bound (Pollard, 1990) and Dudley Entropy Integral bound (Dudley, 1967) for
Rademacher complexity.

Theorem 22 (Empirical covering bound) For any class F ⊆ [−1,+1]X satisfying the generalized
UMD inequality (27) with constant C, there exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O(C ⋅ inf
α>0

{αn +
√

logN1(F , α, x1∶n)n}). (35)
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Theorem 23 (Empirical Dudley Entropy bound) For any class F ⊆ [−1,+1]X satisfying the
generalized UMD inequality (27) with constant C, there exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O(C ⋅ inf
α>0

{α ⋅ n + ∫
1

α

√
logN2(F , δ, x1∶n)ndδ}). (36)

More generally, since our upper bounds depend on the empirical Rademacher complexity
conditioned on the data x1∶n, more powerful techniques — such as Talagrand’s generic chaining —
may be applied to derive even tighter data-dependent covering bounds than those implied by (36).

Cohen and Mannor (2017) recently obtained bounds in the online learning with expert advice
setting that scale with the empirical covering number of the class F = ∆N (the simplex on countably
many experts) on the data sequence. They derive regret bounds that scale as

inf
α>0

{αn +N∞(∆N, α, x1∶n) +
√
N∞(∆N, α, x1∶n)n}.

This bound falls short of the covering bound (35), which enjoys logarithmic scaling in the
covering numberN . As a corollary of our empirical Rademacher complexity regret bound, we derive
a rate with the correct dependence on N for the supervised learning generalization of the experts
setting described in the previous section.

Theorem 24 For the supervised experts setting, there exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt) − inf
f∈∆d

n

∑
t=1

`(f(xt), yt) ≤ O(inf
α>0

{αn +
√

logN1(∆d, α, x1∶n)n}) +O(logn log d).

(37)

This bound does not apply to the countable simplex ∆N due to the low-order additive log(d) term,
but offers an improvement on two fronts: First, it has the correct logarithmic dependence on the
empirical cover, and second, it scales with the `1-cover instead of the `∞-cover. Note that one always
has N1 ≤ N∞.

The extraneous log(d) can be replaced by the worst-case data-independent covering number
(i.e. supx1∶n∈Xn logN1(∆N, α, x1∶n)), and so can apply to the countable simplex ∆N if X possesses
additional structure a-priori. We leave replacing log(d) with an empirical covering number or
removing it entirely as an open question.

We conclude this section by noting that one can further derive an improvement on (37) based on
the data-dependent Dudley chaining.

Theorem 25 For the supervised experts setting, there exists a strategy (ŷt) that attains

n

∑
t=1

`(ŷt, yt)− inf
f∈∆d

n

∑
t=1

`(f(xt), yt) ≤ O(inf
α>0

{αn + ∫
1

α

√
logN2(∆d, δ, x1∶n)ndδ})+O(logn log d).

(38)

7. Discussion and further directions

We considered the task of achieving regret bounded by the empirical Rademacher complexity R̂adF
in the adversarial online learning setting. We showed that R̂adF satisfies a notion of sequence
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optimality, and derived necessary and sufficient conditions under which this bound can be achieved
based on a connection to decoupling inequalities for martingales, namely the UMD property. We
leveraged Burkholder’s geometric characterization of UMD spaces to derive efficient algorithms
based on Burkholder/Bellman functions. Most importantly, we showed that achieving tight data-
dependent regret bounds such as R̂adF reduces to the crisp mathematical task of exhibiting a
Burkholder function with the zig-zag concavity property. We used this observation to give efficient
algorithms for classes based on `p norms and group norms, and to derive improved rates for settings
such as matrix prediction and learning with low-rank experts.

This work leaves open a plethora of new directions centered around applying the Burkholder
function method in online learning and optimization.

Related work (Foster et al., 2015) was the first work to explore data-dependent regret bounds via
symmetrization techniques, but focused on non-constructive results instead of developing efficient
algorithms. The present work extends the algorithmic directions proposed in that paper.

General function classes Much of the existing work on adapting to data in online learning focuses
on the experts setting, where of particular interest are small loss or L⋆-type bounds. Existing UMD
results fall short in this setting because they have only been developed for the symmetric setting
of the `1 ball, a superset of the probability simplex, thus leading to looser bounds. Extending our
algorithmic results to non-symmetric sets like the simplex and more generally abstract function
classes as in (27) is an interesting direction for future research.

Designing U functions The design of U functions and related objects called Bellman functions
has witnessed significant research activity in areas from harmonic analysis to optimal stopping and
stochastic optimal control (Osekowski, 2012; Nazarov and Treil, 1996; Nazarov et al., 2001). The
applicability to our setting has been limited so far by a focus on bounds that have sharp constants
and are dimension- and horizon-independent. We anticipate that designing new U functions from a
computer science perspective — for example, exploiting that we are tolerant to logarithmic factors in
most settings — will allow us to unlock the full power of these techniques for learning applications.
One such example — an elementary derivation of a scalar U function with sub-optimal constants —
is given in the appendix as Theorem 41.

Beyond UMD UMD is far from the only martingale inequality that can be certified using Burkholder
functions. For example, the textbook (Osekowski, 2012) applies the Burkholder technique to inequal-
ities all across probability, in both discrete and continuous time. We anticipate that this technique will
find extensive application in and around online learning for a wide range of settings and performance
measures.

Tighter rates for specific losses The R̂adF bound is not tight for strongly convex losses such as
the square loss. Offset rademacher complexity techniques have been used to obtain tight worst-case
rates in this case (Rakhlin and Sridharan, 2014). Developing UMD-type inequalities for the offset
Rademacher complexity and more generally developing martingale inequalities to support other
types of loss structure should yield new adaptive algorithms for a number of settings.
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Appendix A. Proofs

Proof [Proof of Lemma 1] Recall that `hinge(ŷ, y) = max{0,1 − ŷ ⋅ y}, `abs(ŷ, y) = ∣ŷ − y∣, `lin(ŷ, y) =
−ŷ ⋅ y. Fix a sequence x1∶n, and let yt = εt where ε ∈ {±1}n is a Rademacher sequence. By our
hypothesis, we have

B(x1∶n) ≥ E
ε
[
n

∑
t=1

`(ŷt, εt) − inf
f∈F

n

∑
t=1

`(f(xt), εt)] ≥ E
ε
[− inf

f∈F

n

∑
t=1

`(f(xt), εt)].

For the linear loss, observe that since ŷt cannot react to εt, we immediately have

E
ε
[
n

∑
t=1

`(ŷt, εt) − inf
f∈F

n

∑
t=1

`(f(xt), εt)] = E
ε
[− inf

f∈F

n

∑
t=1

`(f(xt), εt)] = R̂adF(x1∶n).

For the absolute and hinge losses, we will use two facts. First, since ∣f(xt)∣ ≤ 1, both losses
satisfy `(f(xt), εt) = 1 − f(xt)εt. Second, without any assumption on the range of ŷt, one has
`(ŷt, εt) ≥ 1 − ŷtεt. Therefore, whenever ` is the absolute or hinge loss, one has

E
ε
[
n

∑
t=1

`(ŷt, εt) − inf
f∈F

n

∑
t=1

`(f(xt), εt)] ≥ E
ε
[
n

∑
t=1

(1 − ŷtεt) − inf
f∈F

n

∑
t=1

(1 − f(xt)εt)]

= E
ε
[
n

∑
t=1

−ŷtεt − inf
f∈F

n

∑
t=1

−f(xt)εt]

= E
ε
[− inf

f∈F

n

∑
t=1

−εtf(xt)].

The above is equal to R̂adF(x1∶n) as in the linear loss case, so we have shown that for each loss our
hypothesis implies R̂adF(x1∶n) ≤ B(x1∶n).

Proof [Proof of Proposition 4] We stress that this proof is meant to serve as a warmup exercise. See
the proof of Theorem 11 for the correctness proof for the full ZIGZAG algorithm (Algorithm 2),
which is more computationally efficient and attains a stronger performance guarantee.

Recall that the relaxation is given by

Rel(x1∶t, `
′
1∶t) = E

ε1∶t
U(

t

∑
s=1

`′sxs,
t

∑
s=1

εs`
′
sxs).

We first show that the initial condition property is satisfied.

Initial Condition

The initial value of the online learning game is:
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −D ⋅ R̂adF(x1∶n, `
′
1∶n).
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Linearizing as in (6) and expanding out R̂adF , we have

≤
n

∑
t=1

ŷt`
′
t + ∥

n

∑
t=1

`′txt∥ −D ⋅ E
ε
∥
n

∑
t=1

εt`
′
txt∥

Now use property 1 of the function U:

≤
n

∑
t=1

ŷt`
′
t +E

ε
U(

n

∑
t=1

`′txt,
n

∑
t=1

εt`
′
txt).

=
n

∑
t=1

ŷt`
′
t +Rel(x1∶n, `

′
1∶n).

This establishes the initial condition.

Admissibility Condition First, observe that we have

sup
xt

inf
ŷt

sup
`′t

E
εt
[ŷt`

′
t +Rel(x1∶t, `

′
1∶t, ε1∶t)]

= sup
xt

inf
ŷt

sup
`′t

[ŷt`
′
t + E

ε1∶t
U(

t

∑
s=1

`′sxs,
t

∑
s=1

εt`
′
sxs)].

Define a function Gt ∶ R→ R:

Gt(α) = E
ε1∶t

U(
t−1

∑
s=1

`′sxs + αxt,
t−1

∑
s=1

εt`
′
sxs + εtαxt).

Zig-zag concavity (property 2 of U) implies that Gt(α) is concave in α. With this definition, the
above is equal to

= sup
xt

inf
ŷt

sup
`′t

[ŷt`
′
t +Gt(`

′
t)].

Observe that the strategy prescribed in (11) is equivalent to ŷt = −G′
t(0). Moving to an upper bound

by replacing the infimum with this choice of ŷt, we have:

= sup
xt

sup
`′t

[−G′
t(0) ⋅ `

′
t +Gt(`

′
t)].

By concavity of Gt, this is upper bounded by:

≤ sup
xt
Gt(0)

=Rel(x1∶t−1, `
′
1∶t−1, ε1∶t−1).

Hence, Rel is an admissible relaxation, and if we play the strategy ŷt in (11) we will have

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −D ⋅ R̂adF(x1∶n, `
′
1∶n)

≤Rel(x1∶n, `
′
1∶n) ≤Rel(x1∶n−1, `

′
1∶n−1) ≤ . . . ≤Rel(∅).

Finally, by property 3 of U, Rel(∅) = U(0,0) ≤ 0, and so the final value of the game is at most
zero. This implies that the regret bound of R̂adF(x1∶n, `

′
1∶n) is achieved.
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A.1. Proofs from Section 4

Proof [Proof of Theorem 8] For the case p, q ∈ (1,∞), we appeal to Theorem 34.
Now consider the case q = 1, and suppose UMDp holds for p ∈ (1,∞) with Cp. Then by

Theorem 34, C2 ≤ 200Cp. Finally, by Theorem 35, C1 ≤ 108C2 ≤ 108 ⋅ 200Cp.
For the converse direction, we appeal to Pisier (2011), Remark 8.2.4.

Proof [Proof of Theorem 9] Fix some C > 0 to be chosen later. Define the minimax value for the a
game where the learner’s goal is to achieve the R̂adF regret bound:

V =

⟪sup
xt

inf
qt∈∆([−B,+B])

sup
yt∈[−1,+1]

E
ŷt∼qt

⟫

n

t=1

[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥].

Here ⟪⋆⟫
n
t=1 denotes repeated application of the operator ⋆ for t = 1, . . . , n. From this definition,

there always exists some randomized strategy making predictions in [−B,+B] whose regret is
bounded by

C EE
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥ + V.

See Foster et al. (2015) for a more detailed discussion of this principle. We will show that for the
value of C given in the theorem statement one has V ≤ 0. To begin, observe that in view of the
linearization inequality (6), the minimax value V is bounded by

⟪sup
xt

inf
qt∈∆([−B,+B])

sup
yt∈[−1,+1]

E
ŷt∼qt

⟫

n

t=1

[
n

∑
t=1

`′(ŷt, yt)ŷt + ∥
n

∑
t=1

`′(ŷt, yt)xt∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥].

Using the minimax theorem swap technique for regret analysis — see Foster et al. (2015)8 — the last
expression is equal to

⟪sup
xt

sup
pt∈∆([−1,+1])

inf
ŷt∈[−B,+B]

E
yt∼pt

⟫

n

t=1

[
n

∑
t=1

`′(ŷt, yt)ŷt + ∥
n

∑
t=1

`′(ŷt, yt)xt∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥].

Choose ŷ⋆t = arg minf Eyt∼pt[`(f, yt)]. By the assumption on the loss, the minimizer is obtained in
[−B,B] and so Eyt∼pt[`′(ŷ⋆t , yt)] = 0. With this (sub)optimal choice, we obtain an upper bound of

⟪sup
xt

sup
pt∈∆([−1,+1])

E
yt∼pt

⟫

n

t=1

[
n

∑
t=1

`′(ŷ⋆t , yt)ŷ
⋆
t + ∥

n

∑
t=1

`′(ŷ⋆t , yt)xt∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t , yt)xt∥].

Since ŷ⋆t is the population minimizer, we have Eyt∼pt[`′(ŷ⋆t , yt)ŷ⋆t ] = Eyt∼pt[`′(ŷ⋆t , yt)]ŷ⋆t = 0. The
proceeding expression is thus equal to

⟪sup
xt

sup
pt∈∆([−1,+1])

E
yt∼pt

⟫

n

t=1

[∥
n

∑
t=1

`′(ŷ⋆t , yt)xt∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t , yt)xt∥]

≤ ⟪sup
xt

sup
pt∈∆([−1,+1])

E
yt∼pt

⟫

n

t=1

[sup
τ≤n

∥
τ

∑
t=1

`′(ŷ⋆t , yt)xt∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t , yt)xt∥].

8. A word of caution: we use the assumption on the loss that there exists a minimizer for every label within some bounded
domain precisely so that we can now use minimax theorem restricting ŷt’s to be in bounded domain.
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Observe that we may rewrite the above expression as

sup
x

sup
P

E
y1∶n∼P

[sup
τ≤n

∥
τ

∑
t=1

`′(ŷ⋆t (p1∶t), yt)xt(y1∶t−1)∥ −C E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t (p1∶t), yt)xt(y1∶t−1)∥],

where P = (p1, . . . , pn) is a sequence of conditional distributions over y1∶n, x is a sequence of
mappings xt ∶ Y

t−1 → X , and ŷ⋆t (p1∶t) is the minimizer policy described above. For any fixed
choice for P and x, we have that (`′(ŷ⋆t (p1∶t), yt)xt(y1∶t−1))t≤n is a martingale difference sequence,
because the choice of ŷ⋆t guarantees E[`′(ŷ⋆t (p1∶t), yt)xt(y1∶t−1) ∣ y1∶t−1] = 0.

Therefore, if UMD1 holds with constant C1, we have (by choosing a uniform random sign
sequence in Definition 6) that for any fixed P , x,

E sup
τ≤n

∥
τ

∑
t=1

`′(ŷ⋆t (p1∶t), yt)xt(y1∶t−1)∥ ≤C1 EE
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t (p1∶t), yt)xt(y1∶t−1)∥.

This implies that the inequality holds for the supremum over P and x, so we have

V ≤ ⟪sup
xt

sup
pt∈∆([−1,+1])

E
yt∼pt

⟫

n

t=1

[C1 E
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t , yt)xt∥ −C E

ε
sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷ⋆t , yt)xt∥].

Thus, if we take C ≥C1:

≤ 0.

We have established that there exists a strategy (ŷt) guaranteeing

E[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤C1 EE
ε

sup
τ≤n

∥
τ

∑
t=1

εt`
′
(ŷt, yt)xt∥

Treating (`′(ŷt, yt)xt)t≤n as a fixed sequence, we may now apply Corollary 40 to remove the
supremum over end times:

≤ 4C1 E
ε
∥
n

∑
t=1

εt`
′
(ŷt, yt)xt∥ + 5C1 max

t∈[n]
∥xt∥ log(n).

By the standard contraction argument for Rademacher complexity, since ∣`′∣ ≤ 1,

≤ 4C1 E
ε
∥
n

∑
t=1

εtxt∥ + 5C1 max
t∈[n]

∥xt∥ log(n).

Finally, recall that by Theorem 8, C1 ≤ O(Cp).

Proof [Proof of Theorem 10] Most of the proofs in this theorem use the following fact: If (Xt)t≤n

is a martingale difference sequence, its restriction to a subset of coordinates is also a martingale
difference sequence. This allows one to prove the deterministic UMD property (12) for complex
spaces by building up from simpler spaces.
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• (R, ∣⋅∣): Burkholder (1984) shows that for all p ∈ (1,∞), Cp = p
⋆ − 1.

• (Rd, ∥⋅∥p), for p ∈ (1,∞):

E
X
∥
n

∑
t=1

εtXt∥

p

p

= ∑
i∈[d]

E
X
∣
n

∑
t=1

εtXt[i]∣

p

≤ (p⋆−1) ∑
i∈[d]

E
X
∣
n

∑
t=1

Xt[i]∣

p

= (p⋆−1)E
X
∥
n

∑
t=1

Xt∥

p

p

. (39)

The middle inequality here uses the UMDp constant for the scalar case.

• (Rd, ∥⋅∥p), for p ∈ {1,∞}: We will start with `∞. Set p = log d, and observe that for `p, by
Theorem 34, `p has C2 = O(Cp) = O(p⋆) (the second bound is from the previous example).
Then we have, for any sequence of signs,

E∥
n

∑
t=1

εtXt∥

2

∞

≤ E∥
n

∑
t=1

εtXt∥

2

p

≤ O(p⋆)E∥
n

∑
t=1

Xt∥

2

p

≤ O(p⋆)E(d1/p
∥
n

∑
t=1

Xt∥

∞

)

2

.

Since d1/ log d = O(1), the last expression is at most

O(p⋆)E∥
n

∑
t=1

Xt∥

2

∞

.

Finally, note that p⋆ = O(log d).
The same argument works for the `1 norm using p = 1 + 1/ log d. Alternatively, the constant
can be deduced from duality using Theorem 37. That these constants are optimal follows from
Hytönen et al. (2016), Proposition 4.2.19.

• (Rd, ∥⋅∥A/∥⋅∥A⋆). Let us focus on ∥⋅∥A⋆ . Assume A = {a1, . . . , aN}. Observe that

∥x∥A⋆ = max{⟨y, x⟩ ∣ y ∈ conv(A)}

= max

⎧⎪⎪
⎨
⎪⎪⎩

∑
i∈[N]

θi⟨ai, xi⟩ ∣ θ ∈ ∆(N)

⎫⎪⎪
⎬
⎪⎪⎭

Since we assumed A is symmetric:

= ∥(⟨ai, xi⟩)i∈[N])∥∞

= ∥Ax∥∞, where A ∈ RN×d is the matrix of elements of A stacked as rows.

For any martingale difference sequence (Xt)t≤n, (AXt)t≤n is also a martingale difference.
Therefore, we can deduce the UMD2 property for ∥⋅∥A⋆ from our result for ∥⋅∥∞. The UMD2

property for ∥⋅∥A follows from Theorem 37.

• (Rd×d, ∥⋅∥Sp), for p ∈ (1,∞): Hytönen et al. (2016) Theorem 5.2.10 and Proposition 5.5.5.
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• (Rd×d, ∥⋅∥σ): C2 = O(log2 d). We will build up from the Schatten p-norms in the same
fashion as for the `p spaces. Let p = log d. For any sequence of signs,

E∥
n

∑
t=1

εtXt∥

2

σ

≤ E∥
n

∑
t=1

εtXt∥

2

Sp

.

Using Theorem 34 to get C2 ≤ O((p⋆)2) for Sp:

≤ O((p⋆)2
)E∥

n

∑
t=1

Xt∥

2

Sp

≤ O((p⋆)2
)E(d1/p

∥
n

∑
t=1

Xt∥

σ

)

2

.

Since d1/ log d = O(1), the preceding expression is at most

O((p⋆)2
)E∥

n

∑
t=1

Xt∥

2

σ

.

Once again, p⋆ ≤ log d. The constant for ∥⋅∥Σ follows from Theorem 37, since the trace norm
is dual to the spectral norm.

• (Rd×d, ∥⋅∥p,q), for p, q ∈ (1,∞): For any sequence of signs, we apply the UMD property for
`p row-wise:

E∥
n

∑
t=1

εtXt∥

p

p,q

= ∑
i∈[d]

E∥
n

∑
t=1

εt(Xt)i⋅∥

p

q

.

We know `q has Cq ≤ O(q⋆). By Theorem 34, this implies that Cp for `q has Cp ≤ O(p⋆ ⋅ q⋆).

≤ O(p⋆ ⋅ q⋆) ∑
i∈[d]

E∥
n

∑
t=1

(Xt)i⋅∥

p

q

= O(p⋆ ⋅ q⋆)E∥
n

∑
t=1

Xt∥

p

p,q

.

• (H, ∥⋅∥H) for any Hilbert spaceH: See Example 4.

A.2. Proofs from Section 5

A.2.1. PROOFS FOR ALGORITHM 2

Proof [Proof of Theorem 11] We will show that the strategy achieves the regret bound

E
ε
[
n

∑
t=1

`(ŷε1∶t−1t , yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −Ψη,p(β
p
∥
n

∑
t=1

εt`
′
(ŷε1∶t−1t , yt)xt∥

p

)] ≤ 0. (40)
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Our proof technique is to define a relaxation

Rel(x1∶t, `
′
1∶t, ε1∶t) =

η

p
Up(

t

∑
s=1

`′sxs,
t

∑
t=1

εs`
′
sxs).

and show that the relaxation is admissible for the following game:

⟪sup
xt

inf
ŷt

sup
`′t

E
εt
⟫

n

t=1

[
n

∑
t=1

ŷt`
′
t − inf

f∈F

n

∑
t=1

f(xt)`
′
t −Ψη,p(β

p
∥
n

∑
t=1

εt`
′
txt∥

p

)]. (41)

This relaxation is slightly generalized compared to Definition 2 in that Rademacher sequence
(εt)t≤n also appears as an argument. This is essential to accomplish the coupling of the algorithm’s
randomness and the regret functional R̂adF .

With the game defined we can proceed to showing that the relaxation satisfies the admissibility
and initial conditions, with one extra step of linearization in the initial condition.

Initial Condition In view of (6),

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −Ψη,p(β
p
∥
n

∑
t=1

εt`
′
(ŷt, yt)xt∥

p

)

≤
n

∑
t=1

ŷt`
′
t + ∥

n

∑
t=1

`′txt∥ −Ψη,p(β
p
∥
n

∑
t=1

εt`
′
txt∥

p

)

≤
n

∑
t=1

ŷt`
′
t +Ψη,p(∥

n

∑
t=1

`′txt∥

p

) −Ψη,p(β
p
∥
n

∑
t=1

εt`
′
txt∥

p

)

=
n

∑
t=1

ŷt`
′
t +

η

p
(∥

n

∑
t=1

`′txt∥

p

− βp∥
n

∑
t=1

εt`
′
txt∥

p

)

≤
n

∑
t=1

ŷt`
′
t +

η

p
Up(

n

∑
t=1

`′txt,
n

∑
t=1

εt`
′
txt)

=
n

∑
t=1

ŷt`
′
t +Rel(x1∶n, `

′
1∶n, ε1∶n).

Admissibility Condition

sup
xt

inf
ŷt

sup
`′t

E
εt
[ŷt`

′
t +Rel(x1∶t, `

′
1∶t, ε1∶t)]

= sup
xt

inf
ŷt

sup
`′t

E
εt
[ŷt`

′
t +

η

p
Up(

t

∑
s=1

`′sxs,
t

∑
t=1

εs`
′
sxs)]

= sup
xt

inf
ŷt

sup
`′t

[ŷt`
′
t +E

εt

η

p
Up(

t

∑
s=1

`′sxs,
t

∑
t=1

εs`
′
sxs)]

= sup
xt

inf
ŷt

sup
`′t

[ŷt`
′
t +Gt(`

′
t)]
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Plugging in the strategy specified by Algorithm 2, the last expression is at most

sup
xt

sup
`′t

[−G′
t(0) ⋅ `

′
t +Gt(`

′
t)]

≤ sup
xt
Gt(0)

=Rel(x1∶t−1, `
′
1∶t−1, ε1∶t−1).

Finally, since Up is Burkholder we have Rel(∅)∝Up(0,0) ≤ 0, and so the final value of the game
is at most zero. This implies that (40) is achieved.

Proof [Proof of Lemma 12] In what follows we will leave the dependence of ŷt, xt, `′t on ε1∶t−1

implicit for notational convenience. We will handle this dependence at the end of the proof.
Assume N > 1. Otherwise, the algorithm’s regret is bounded as 2η

−(p′−1)
1 = 4η

−(p′−1)
0 .

E
ε
[
n

∑
t=1

`(ŷε1∶t−1t , yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt)] ≤ E
ε

⎡
⎢
⎢
⎢
⎣

N

∑
i=1

⎡
⎢
⎢
⎢
⎣

si+1−1

∑
t=si

`(ŷε1∶t−1t , yt) − inf
f∈F

si+1−1

∑
t=si

`(f(xt), yt)
⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

Using the regret bound for Algorithm 2 (note that that algorithm has an anytime regret guarantee)
given by Theorem 11:

≤ E
ε

⎡
⎢
⎢
⎢
⎣

1

p

N

∑
i=1

⎡
⎢
⎢
⎢
⎣
ηiβ

p
p

XXXXXXXXXXX

si+1−1

∑
t=si

εt`
′
txt

XXXXXXXXXXX

p

+
1

p′ − 1
η
−(p′−1)
i

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
.

Introducing a new supremum:

≤ E
ε
[

1

p

N

∑
i=1

[ηiΦ(xsi∶si+1−1, `
′
si∶si+1−1, εsi∶si+1−1) +

1

p′ − 1
η
−(p′−1)
i ]].

The doubling condition implies that ηiΦ(xsi∶si+1−2, `
′
si∶si+1−2, εsi∶si+1−2) ≤ η

−(p′−1)
i . To use this fact,

observe that since ∥xt∥ ≤ 1, we have that for any C > 0,

ηiΦ(xsi∶si+1−1, `
′
si∶si+1−1, εsi∶si+1−1)

= ηiβ
p
p sup
si≤a≤b≤si+1−1

∥
b

∑
t=a

εt`
′
txt∥

p

≤ ηi(1 + 1/C)
pβpp sup

si≤a≤b≤si+1−2
∥
b

∑
t=a

εt`
′
txt∥

p

+ ηiC
pβpp .

For C = p:

≤ ηieΦ(xsi∶si+1−2, εsi∶si+1−2) + ηip
pβpp .

= eη
−(p′−1)
i + ηip

pβpp .
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Returning to the regret bound, we have

≤ E
ε
[

1

p

N

∑
i=1

[eη
−(p′−1)
i + ηip

pβpp +
1

p′ − 1
η
−(p′−1)
i ]]

≤ E
ε
[e

N

∑
i=1

η
−(p′−1)
i + ppβppηi]

We will handle with the left-hand term first. Now observe that

ηN−1Φ(xsN−1∶sN , `
′
sN−1∶sN

, εsN−1∶sN ) > η
−(p′−1)
N−1 .

Rearranging further implies

η
−(p′−1)
N−1 ≤ Φ(xsN−1∶sN , `

′
sN−1∶sN

, εsN−1∶sN )
1/p

≤ Φ(x1∶n, `
′
1∶n, ε1∶n)

1/p.

Finally, since η−(p
′−1)

i = 2η
−(p′−1)
i−1 ,

N

∑
i=1

η
−(p′−1)
i = η

−(p′−1)
0

N

∑
i=1

2i ≤ 2 ⋅ 2Nη
−(p′−1)
0 ≤ 4Φ(x1∶n, `

′
1∶n, ε1∶n)

1/p
= 4βp sup

1≤a≤b≤n
∥
b

∑
t=a

εt`
′
txt∥.

For the second term, observe that ηi ≤ η0 for all i, so

N

∑
i=1

ppβppηi ≤ p
pβppη0 ⋅N.

Finally, by the invariant 2N−1η
−(p′−1)
0 ≤ Φ(x1∶n, ε1∶n)

1/p we established earlier,

N ≤ log(Φ(x1∶n, `
′
1∶n, ε1∶n)

1/pη
(p′−1)
0 ) + 1

Putting everything together, the regret is bounded as

E
ε

max{2eβp sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥ + p

pβppη0(log( sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥η

(p′−1)
0 ) + 1),4η

−(p′−1)
0 }

≤ E
ε
[2eβp sup

1≤a≤b≤n
∥
b

∑
t=a

εt`
′
txt∥ + p

pβppη0(log( sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥η

(p′−1)
0 ) + 1) + 4η

−(p′−1)
0 ]

Using that ∥xt∥ ≤ 1:

≤ 2eβpE
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥ + p

pβppη0 log (n ⋅ η
(p′−1)
0 ) + 4η

−(p′−1)
0 .

For the choice η0 = (βp ⋅ p)
−p:

≤ 2eβpE
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥ + log (n) + (p ⋅ βp)

p
p−1 .

29



FOSTER RAKHLIN SRIDHARAN

For the choice η0 = 1:

≤ 2eβpE
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
txt∥ + p

pβpp log (n) + 4.

Writing xt(ε1∶t−1) and `′t(ε1∶t−1) to make the adversary’s dependence on the sequence ε explicit,
the main term of interest in the above quantity is

E
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εt`
′
t(ε1∶t−1)xt(ε1∶t−1)∥.

It remains to remove the supremum and decouple the data sequences (xt) and (`′t) from the
Rademacher sequence ε. Since `′txt can only react to ε1∶t−1, the sequence (εt`

′
txt)t≤n is a martingale

difference sequence. Since ∥∑
b
t=a εt`

′
txt∥ ≤ n, we may apply Corollary 33 to arrive at an upper bound

of

≤ O(log(n)E
ε

sup
1≤b≤n

∥
b

∑
t=1

εt`
′
t(ε1∶t−1)xt(ε1∶t−1)∥).

Now observe that since Algorithm 2 uses a Burkholder function Up for (∥⋅∥, p, βp), Theorem 7 and
Theorem 8 together imply that the UMD1 inequality (13) holds with constant O(βp), therefore, the
above is bounded as

≤ O(βp log(n)E
ε
E
ε′

sup
1≤b≤n

∥
b

∑
t=1

ε′t`
′
t(ε1∶t−1)xt(ε1∶t−1)∥).

Note that the variables (xt) and (`′t) no longer depend on the Rademacher sequence appearing in the
sum. Lastly, we apply Corollary 33 once more to remove the remaining supremum and arrive at the
bound,

≤ O(βp log2
(n)E

ε
E
ε′
∥
b

∑
t=1

ε′t`
′
t(ε1∶t−1)xt(ε1∶t−1)∥).

Proof [Proof of Example 6] (24) is obtained by plugging the optimal UMD constant p⋆ − 1 into
the bound for Lemma 12. For (25), observe that for any sequence zt we have Eε∥∑nt=1 εtzt∥2 ≤
√

Eε∥∑nt=1 εtzt∥
2
2 =

√

Eε∑nt=1∥zt∥
2
2. Applying this fact with the algorithm’s bound for p = 2 gives

the regret bound

O
⎛

⎝

¿
Á
ÁÀ

n

∑
t=1

∥`′txt∥
2
2 ⋅ log2 n + logn

⎞

⎠
.

For (26), observe that with p = 1/ log d we have the regret bound

O
⎛

⎝
E
ε
∥
n

∑
t=1

εt`
′
txt∥

p

⋅ log d log2 n + log2 d logn
⎞

⎠
.
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However for any X , ∥X∥p ≤ d
1−1/p∥X∥1. For our choice of p = 1 + 1/ log d we have d1−1/p = O(1).

≤ O(E
ε
∥
n

∑
t=1

εt`
′
txt∥

1

⋅ log d log2 n + log2 d logn)

≤ O(E
ε
∥
n

∑
t=1

εtxt∥
1

⋅ log d log2 n + log2 d logn)

= O
⎛

⎝
∑
i∈[d]

E
ε
∣
n

∑
t=1

εtxt[i]∣ ⋅ log d log2 n + log2 d logn
⎞

⎠

≤ O
⎛

⎝
∑
i∈[d]

¿
Á
ÁÀ

n

∑
t=1

(xt[i])2 ⋅ log d log2 n + log2 d logn
⎞

⎠

= O
⎛

⎝
∑
i∈[d]

∥x1∶n,i∥2 ⋅ log d log2 n + log2 d logn
⎞

⎠
.

A.2.2. SIMPLIFIED DOUBLING TRICK

In this section we derive a variant of the doubling trick given in Lemma 12 which achieves an upper
bound on R̂adF rather than R̂adF itself, but does so with improved dependence on constants and
low-order terms. This strategy will be used as a subroutine in subsequent algorithms.

Lemma 26 Suppose we have an anytime regret minimization algorithm (ŷt) that guarantees a
regret bound of the form

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤
1

p
[ηKpE

ε
∥
n

∑
t=1

εtxt∥

p

+
1

p′ − 1
η−(p

′−1)
],

where p > 1 is fixed and η is a parameter of the algorithm. Define

Φ(xt1∶t2) =K
pE
ε

sup
t1≤a≤b≤t2

∥
b

∑
t=a

εtxt∥

p

.

Consider the following strategy

1. Choose η0 < 1 arbitrary. Update with ηi = 2
− 1
p′−1 ηi−1.

2. In phase i, which consists of all t ∈ {si, . . . , si+1 − 1}, play strategy (ŷt) with learning rate ηi.

3. Take s1 = 1, sN+1 = n + 1, and si+1 = inf{τ ∣ ηiΦ(xsi∶τ) > η
−(p′−1)
i }, where N is the index of

the last phase.

This strategy achieves

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤K
⎛

⎝
E
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εtxt∥

p
⎞

⎠

1/p

+ η
−(p′−1)
0

≤ C ⋅ (p′)2
⋅K(E

ε
∥
n

∑
t=1

εtxt∥

p

)

1/p

+ η
−(p′−1)
0 .
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Proof [Proof of Lemma 26] We assume N > 1. Otherwise, the algorithm’s regret is bounded as
2η

−(p′−1)
1 = 4η

−(p′−1)
0 .

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤
N

∑
i=1

⎡
⎢
⎢
⎢
⎣

si+1−1

∑
t=si

`(ŷt, yt) − inf
f∈F

si+1−1

∑
t=si

`(f(xt), yt)
⎤
⎥
⎥
⎥
⎦

Using the assumed regret bound (note that that algorithm has an anytime regret guarantee):

≤
1

p

N

∑
i=1

⎡
⎢
⎢
⎢
⎣
ηiK

pE
ε

XXXXXXXXXXX

si+1−1

∑
t=si

εtxt

XXXXXXXXXXX

p

+
1

p′ − 1
η
−(p′−1)
i

⎤
⎥
⎥
⎥
⎦

Introducing a new supremum:

≤
1

p

N

∑
i=1

[ηiΦ(xsi∶si+1−1) +
1

p′ − 1
η
−(p′−1)
i ]

Using the invariant ηiΦ(xsi∶si+1−1) ≤ η
−(p′−1)
i :

≤
1

p
(1 +

1

p′ − 1
)
N

∑
i=1

η
−(p′−1)
i

=
N

∑
i=1

η
−(p′−1)
i

Observe that ηN−1Φ(xsN−1∶sN ) > η
−(p′−1)
N−1 , and so rearrangingimplies

η
−(p′−1)
N−1 ≤ Φ(xsN−1∶sN )

1/p
≤ Φ(x1∶n)

1/p.

Finally, we can check that η−(p
′−1)

i = 2η
−(p′−1)
i−1 , so 2Nη

−(p′−1)
0 ≤ Φ(x1∶n)

1/p. Now,

N

∑
i=1

η
−(p′−1)
i = η

−(p′−1)
0

N

∑
i=1

2i ≤ 2 ⋅ 2Nη
−(p′−1)
0 ≤ Φ(x1∶n)

1/p
=K

⎛

⎝
E
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εtxt∥

p
⎞

⎠

1/p

.

This gives the first inequality. For the second, apply Doob’s maximal inequality (Theorem 32).
In particular, let Zb = sup1≤a≤b∥∑

b
t=a εtxt∥. Then Zb is a sub-martingale, so Doob’s maximal in-

equality implies Eε supb≤nZ
p
b ≤ (p′)pEεZpn. Applying Doob’s inequality once more shows that

EεZpn ≤ (p′)pEε∥∑nt=1 εtxt∥, which gives the result.

A.3. Proofs from Section 6

Since we restrict to the absolute loss in this section and restrict to yt ∈ [−1,+1], we can also restrict
to ŷt ∈ [−1,+1] without loss of generality, since for any value of yt the loss may always be decreased
by clipping ŷt into this range. In the proof below, any infimum over ŷt is understood to be over this
range.
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Proof [Proof of Theorem 14] We shall first show that 2 implies 1, specifically for constant B = 2C.
We can write down the minimax value for the proposed regret bound and check if it indeed is
achievable. To this end, note that

V = ⟪sup
xt

inf
ŷt

sup
yt∈[−1,+1]

⟫

n

t=1

[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) − 2C E
ε

sup
f∈F

n

∑
t=1

εtf(xt)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

(`(ŷt, yt) − `(f(xt), yt)) − 2C E
ε

sup
f∈F

n

∑
t=1

εtf(xt)]

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

`′(ŷt, yt)(ŷt − f(xt)) − 2C E
ε

sup
f∈F

n

∑
t=1

εtf(xt)]

setting ŷ∗t to be minimizer of E `(ŷt, yt), we have

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

`′(ŷ∗t , yt)(ŷ
∗
t − f(xt)) − 2C E

ε
sup
f∈F

n

∑
t=1

εtf(xt)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

−`′(ŷ∗t , yt)f(xt) − 2C E
ε

sup
f∈F

n

∑
t=1

εtf(xt)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

( E
y′t∼pt

`′(ŷ∗t , y
′
t) − `

′
(ŷ∗t , yt))f(xt) − 2C E

ε
sup
f∈F

n

∑
t=1

εtf(xt)]

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

(`′(ŷ∗t , y
′
t) − `

′
(ŷ∗t , yt))f(xt) − 2C E

ε
sup
f∈F

n

∑
t=1

εtf(xt)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

E
ε′t

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

ε′t(`
′
(ŷ∗t , y

′
t) − `

′
(ŷ∗t , yt))f(xt) − 2C E

ε
sup
f∈F

n

∑
t=1

εtf(xt)]

≤ ⟪sup
xt

E
ε′t

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

2ε′tf(xt) − 2C E
ε

sup
f∈F

n

∑
t=1

εtf(xt)]

= sup
x

E
ε′

sup
f∈F

[
n

∑
t=1

2ε′tf(xt(ε
′
1∶t−1)) − 2C E

ε
sup
f∈F

n

∑
t=1

εtxt(ε
′
1∶t−1)].

However by 2, we have that the above is bounded by 0 and so we can conclude that the minimax
strategy does attain the regret bound proposed in 1.

Now to prove that 1 implies 2 (with constant B), notice that we have an algorithm that guarantees
regret bound:

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ BE
ε

sup
f∈F

n

∑
t=1

εtf(xt)

Assume now that the adversary at time first provides input instance xt(ε1∶t−1) where x is any arbitrary
X valued binary tree. Also assume that yt is picked to be εt a draw of a coin flip. In this case, we
have from the regret bound that

n

∑
t=1

`(ŷt, εt) − inf
f∈F

n

∑
t=1

`(f(xt(ε1∶t−1)), εt) ≤ BE
ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1))
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Taking expectation we find that,

E
ε
[
n

∑
t=1

`(ŷt, εt) − inf
f∈F

n

∑
t=1

`(f(xt(ε1∶t−1)), εt)] ≤ B E
ε,ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1))

Now notice that irrespective of what ŷt the algorithm picks, Eεt `(ŷt, εt) = 1. Hence,

E
ε
[sup
f∈F

n

∑
t=1

(1 − `(f(xt(ε1∶t−1)), εt))] ≤ B E
ε,ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1))

However note that when y ∈ {±1} and a ∈ [−1,1], we have that `(a, y) = ∣a − y∣ = 1 − ay. Hence
from above we conclude that,

E
ε
[sup
f∈F

n

∑
t=1

εtf(xt(ε1∶t−1))] ≤ B E
ε,ε′

sup
f∈F

n

∑
t=1

ε′tf(xt(ε1∶t−1))

Since the above is true for any choice of x, we have shown that 1 implies 2 with constant B.

Proof [Proof of Example 7] Let x be some X -valued tree. Observe that by the reproducing property,

E
σ

sup
f∈F

n

∑
t=1

σtf(xt(σ)) = E
σ
∥
n

∑
t=1

σtK(⋅,xt(σ))∥
H

,

and likewise Eσ,ε supf∈F ∑
n
t=1 εtf(xt(σ)) = Eσ,ε∥∑nt=1 εtK(⋅,xt(σ))∥H.

SinceH is a Hilbert space the deterministic UMD property for power 2 is trivial. For any fixed
sequence ε ∈ {±1}n,

E
σ
∥
n

∑
t=1

σtK(⋅,xt(σ))∥

2

H

= E
σ
∥
n

∑
t=1

εtσtK(⋅,xt(σ))∥

2

H

.

By Corollary 36, this implies there is some C such that

E
σ

sup
τ≤n

∥
τ

∑
t=1

σtK(⋅,xt(σ))∥
H

= C E
σ

sup
τ≤n

∥
τ

∑
t=1

εtσtK(⋅,xt(σ))∥
H

.

Now suppose ε is drawn uniformly at random. For a fixed draw of σ, Corollary 40 implies that the
RHS enjoys the bound

E
ε

sup
τ≤n

∥
τ

∑
t=1

εtK(⋅,xt(σ))∥
H

≤ 2E
ε
∥
n

∑
t=1

εtK(⋅,xt(σ))∥
H

+ 5 max
t∈[n]

∥K(⋅,xt(σ))∥H log(n)

≤ 2E
ε
∥
n

∑
t=1

εtK(⋅,xt(σ))∥
H

+ 5B log(n).
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A.3.1. POLYNOMIALS

Suppose we receive data x1, . . . , xn ∈ Rd and want to compete with a class F of homogeneous
polynomials of degree k. Any homogeneous degree k polynomial f may be represented via a
coefficient tensor M in (Rd)⊗k via

f(x) = ⟨M,x⊗k⟩.

We may take M to be symmetric, so that M1,...,k =Mπ(1),...,π(k) for any permutation. We may thus
work with a classM ⊆ (Rd)⊗k of symmetric tensors, then take F = {x↦ ⟨M,x⊗k⟩ ∣M ∈M}. Our
task is then to decide which norm to place onM. Following, e.g., Adamczak and Wolff (2015);
Wang et al. (2016), we define a class of general tensor norms. Let J = {J1, . . . , JN} be a partition
of [k]. For some α ∈ [d]k and J ⊆ [k], let αJ = (αi)i∈J . We then define

∥M∥J = sup

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑

α∈[d]k
Mα

N

∏
l=1

xlαJl
∣ ∥xl∥

2
≤ 1 ∀l ∈ [N]

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (42)

where xl ∈ (Rd)⊗∣Jl∣. Under this notation we have ∥M∥{1},{2} as the spectral norm and ∥M∥{1,2}

as the Frobenius norm when k = 2 and M is a matrix. In general, ∥M∥{1},{2},...,{k} is called the
injective tensor norm.
Proof [Proof of Example 8] Fix an X -valued tree x. Then we have

E
σ

sup
f∈F

n

∑
t=1

σtf(xt(σ)) = E
σ

sup
M∈M

n

∑
t=1

σt⟨M,xt(σ)
⊗2k⟩ = E

σ
∥
n

∑
t=1

σtxt(σ)
⊗2k

∥

{1,...,k},{k+1,...,2k}

For some tensor T ∈ (Rd)⊗2k, we can define its flattening T into a Rdk×dk matrix and verify that in
fact

∥T ∥{1,...,k},{k+1,...,2k} = max
u,v∈Rdk ∣∥u∥2,∥v∥2≤1

∑

α∈[d]k,β∈[d]k
Tα,βuαvβ = ⟨u,Tv⟩ = ∥T ∥σ,

so in fact this is the spectral norm of the flattened matrix. Let Xt ∈ Rdk×dk be the flattening of
(xt)

⊗2k. Then

E
σ

sup
f∈F

n

∑
t=1

σtf(xt(σ)) = E
σ
∥
n

∑
t=1

σtXt(σ)∥
σ

,

so we can prove the desired inequality by applying the UMD inequality for the spectral norm. Recall
from Theorem 10 that the UMD inequality for the spectral norm has a constant of order log2(dim),
which for this application translates into a constant of order O(k2 log2(d)). We finally apply Corol-
lary 40 as in Example 7 to get the result.

A.3.2. LOW-RANK EXPERTS

In this section we prove Theorem 16. The proof relies on the following key lemma, which is proven
using the one-sided UMD property for scalars.
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Lemma 27 There exists a strategy (ŷt) for the experts setting that guarantees

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O
⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

, (43)

where ` is any well-behaved 1-Lipschitz loss.

With this lemma, we need one more fact to prove Theorem 16, which is a corollary of John’s
theorem about the volume of a minimum-volume enclosing ellipsoid.

Lemma 28 (Hazan et al. (2016), Lemma 12) Let K be a symmetric convex set in Rd. There exists
a positive semidefinite matrix Ξ such that for all x ∈K,

⟨x,Ξx⟩ ≤ sup
f∈K⋆

∣⟨f, x⟩∣2 ≤ d ⋅ ⟨x,Ξx⟩. (44)

Applying Lemma 28 to the intersection of the `∞ ball and span(x1∶n) gives a Euclidean approxima-
tion to the `∞ norm in terms of the rank of X1∶n.

Corollary 29
There exists some positive semidefinite Ξ ∈ Rd×d such that for all S ∈ span(x1∶n),

⟨S,ΞS⟩ ≤ ∥S∥2
∞ ≤ rank(X1∶n) ⋅ ⟨S,ΞS⟩. (45)

We can now proceed to the proof of the main theorem.
Proof [Proof of Theorem 16] By Lemma 27, there exists a strategy whose regret is bounded by

O
⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

.

We now complete the upper bound using concentration. Let Z = ∥∑
n
t=1 εtxt∥∞. Then we can

write (Eε∥∑nt=1 εtxt∥
log d
∞ )

1/ log d
as (EZ log d)

1/ log d
, where the expectation is over the sequence ε.

We will upper bound this quantity in terms of the rank. First observe that by Corollary 29, there
exists a PSD matrix Ξ such that

E
ε
∥
n

∑
t=1

εtxt∥
∞

≤
√

rank(X1∶n)E
ε
∥
n

∑
t=1

εtxt∥
Ξ

,

where ∥x∥Ξ = ⟨x,Ξx⟩.
Observe that since ∥⋅∥Ξ is Euclidean,

E
ε
∥
n

∑
t=1

εtxt∥
Ξ

¿
Á
Á
ÁÀE

ε
∥
n

∑
t=1

εtxt∥

2

Ξ

=

¿
Á
ÁÀ

n

∑
t=1

∥xt∥
2
Ξ ≤

¿
Á
ÁÀ

n

∑
t=1

∥xt∥
2
∞ ≤

√
n,

where the second-to-last inequality uses Corollary 29. This establishes that

EZ ≤
√

rank(X1∶n)n.
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Now, since ∥xt∥∞ ≤ 1, Lemma 38 implies that with probability at least 1 − δ over the draw of ε,

Z ≤ O(EZ + log(1/δ)).

By the law of total expectation, this establishes that for all δ > 0,

⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

≤ O(((
√

rank(X1∶n)n + log(1/δ))log d
+ nlog dδ)

1/ log d
).

Taking δ = n− log d, the above quantity is bounded by

O(((
√

rank(X1∶n)n + log(n) log(d))log d
)

1/ log d
),

which is further bounded as

O(
√

rank(X1∶n)n + log(n) log(d)).

Proof [Proof of Theorem 17] This result is proven from the same starting point as in Theorem 16.
Recall from Lemma 27 that there is a strategy whose regret is bounded by

O
⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

.

Suppose rankγ(X1∶n) = r. Then there exist matrices X ′
1∶n ∈ Rd×n and Z1∶n ∈ Rd×n such that

X1∶n =X
′
1∶n +Z1∶n,

with rank(X ′
1∶n) = r and ∥Z∥∞ ≤ γ. Using x′t to denote the tth column of X ′

1∶n and zt to denote the
tth column of Z1∶n, triangle inequality implies

⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

= (E
ε
∥X1∶nε∥

log d
∞ )

1/ log d

≤ O((E
ε
∥X ′

1∶nε∥
log d

∞
)

1/ log d

+ (E
ε
∥Z1∶nε∥

log d
∞ )

1/ log d

)

= O
⎛
⎜
⎝

⎛

⎝
E
ε
∥
n

∑
t=1

εtx
′
t∥

log d

∞

⎞

⎠

1/ log d
⎞
⎟
⎠
+O

⎛
⎜
⎝

⎛

⎝
E
ε
∥
n

∑
t=1

εtzt∥

log d

∞

⎞

⎠

1/ log d
⎞
⎟
⎠
.

Since the loss matrix in the first term has rank r, this term can be bounded exactly as in Theorem 16.
We now show how to bound the second term. First, observe that since ∥Z1∶n∥∞ ≤ γ, the standard
estimate on the maximum of d subgaussian random variables (e.g. Kakade et al. (2009)) gives

E
ε
∥
n

∑
t=1

εtzt∥
∞

≤ O(γ
√
n log d).
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Lemma 38 implies that with probability at least 1 − δ over the draw of ε

∥
n

∑
t=1

εtzt∥
∞

≤ O(γ
√
n log d + γ log(1/δ)).

Applying the law of total expectation (and recalling that γ ≤ 1), this implies that for all δ > 0

⎛

⎝
E
ε
∥
n

∑
t=1

εtzt∥

log d

∞

⎞

⎠

1/ log d

≤ O(((γ
√
n log d + γ log(1/δ))log d

+ nlog dδ)
1/ log d

)

Taking δ = n− log d, the above is finally bounded as

O(γ
√
n log d + γ logn log d).

Proof [Proof of Theorem 18] This proof follows the same structure as Theorem 16 and Theorem 17.
Starting from Lemma 27, we have that there is a strategy whose regret is bounded by

O
⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

.

Observe that Eε∥∑nt=1 εtxt∥∞ = Eε∥X1∶nε∥∞. From the definition of the max norm, there exist
U ∈ Rd×d, V ∈ Rn×d such that X1∶n = UV

† and ∥U∥∞,2∥V ∥∞,2 = ∥X1∶n∥max. With this observation,
we have

E
ε
∥X1∶nε∥∞ = E

ε
∥UV †ε∥

∞
= E
ε
∥U

n

∑
t=1

vtεt∥
∞

,

where vt denotes the tth row of V . Now, observe that

∥U∥∞,2 = max
i∈[d]

∥ui∥2 = max
i∈[d]

max
x∶∥x∥2≤1

⟨ui, x⟩ = max
x∶∥x∥2≤1

∥Ux∥∞ = ∥U∥2→∞,

so ∥⋅∥∞,2 is actually the 2→∞ operator norm. This implies that

E
ε
∥U

n

∑
t=1

vtεt∥
∞

≤ ∥U∥∞,2 ⋅ E
ε
∥
n

∑
t=1

vtεt∥
2

.

Proceeding with the standard Euclidean calculation for Rademacher complexity (e.g. Kakade et al.
(2009)), and using that ∥vt∥2 ≤ ∥V ∥∞,2 ∀t, the above implies that

E
ε
∥
n

∑
t=1

εtxt∥
∞

≤ ∥U∥∞,2∥V ∥∞,2
√
n = ∥X1∶n∥max

√
n.

Once again, we appeal to Lemma 38, which implies that with probability at least 1 − δ over the
draw of ε,

∥
n

∑
t=1

εtxt∥
∞

≤ O(∥X∥max ⋅
√
n + log(1/δ)).
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Again using the law of total expectation, this implies that for all δ > 0

⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

≤ O(((∥X∥max ⋅
√
n + log(1/δ))log d

+ nlog dδ.)
1/ log d

)

Taking δ = n− log d, we have
O(∥X∥max ⋅

√
n + logn log d).

We now focus on proving Lemma 27. The structure of this proof will follow that of Theorem 14,
which gives an upper bound on regret in terms of R̂adF whenever the one-sided UMD inequality
holds. To achieve the desired bound in this framework, we will need the following corollary of
Hitczenko’s decoupling inequality Theorem 15.

Corollary 30 (One-sided UMD inequality for `p norms) There exists some constant K such that
for all p ≥ 1,

E
ε
∥
n

∑
t=1

εtxt(ε)∥

p

p

≤Kp E
ε,ε′

∥
n

∑
t=1

ε′tεtxt(ε)∥

p

p

, (46)

where x is any X -valued tree.

Proof [Proof of Corollary 30] Simply apply Theorem 15 coordinate-wise.

With this inequality, we proceed to prove Lemma 27.
Proof [Proof of Lemma 27] Let p = log d. Recall that we have defined

Ψη,p(x) =
1

p
(ηx +

1

p′ − 1
η1−p′

).

We first will prove that there is a strategy (ŷt) that achieves

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)

for some C > 0. This portion of the proof will closely follow Theorem 14. Fix C to be decided later
and define

V = ⟪sup
xt

inf
ŷt

sup
yt∈[−1,+1]

⟫

n

t=1

[
n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) −Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)].

The infimum over ŷt is understood to range over [−B,+B], as guaranteed by the assumption on the
loss in Section 2. Observe that the regret bound we desired is achievable if there is a value for C
such that V ≤ 0. Using the minimax theorem, the value is equal to

V = ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

(`(ŷt, yt) − `(f(xt), yt)) −Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)].
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Linearizing the loss, the above is bounded by

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

`′(ŷt, yt)(ŷt − f(xt)) −Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)].

Setting ŷ∗t to be minimizer of E `(ŷt, yt), we have

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

`′(ŷ∗t , yt)(ŷ
∗
t − f(xt)) −Ψη,p(C E

ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

−`′(ŷ∗t , yt)f(xt) −Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

( E
y′t∼pt

`′(ŷ∗t , y
′
t) − `

′
(ŷ∗t , yt))f(xt) −Ψη,p(C E

ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

(`′(ŷ∗t , y
′
t) − `

′
(ŷ∗t , yt))f(xt) −Ψη,p(C E

ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

E
ε′t

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

ε′t(`
′
(ŷ∗t , y

′
t) − `

′
(ŷ∗t , yt))f(xt) −Ψη,p(C E

ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

≤ ⟪sup
xt

E
ε′t

⟫

n

t=1

sup
f∈F

[
n

∑
t=1

2ε′tf(xt) −Ψη,p(C E
ε
∥
n

∑
t=1

εtxt∥

p

∞

)]

= sup
x

E
ε′

sup
f∈F

[∑
t=1

2ε′tf(xt(ε
′
)) −Ψη,p(C E

ε
∥
n

∑
t=1

εtxt(ε
′
)∥

p

∞

)].

Using that the simplex ∆d is a subset of the `1 ball:

≤ sup
x

E
ε′
[2∥∑

t=1

ε′txt(ε
′
)∥

∞

−Ψη,p(C E
ε
∥
n

∑
t=1

εtxt(ε
′
)∥

p

∞

)].

Using (22), this is upper bounded by

= sup
x

E
ε′

η

p
[2∥∑

t=1

ε′txt(ε
′
)∥

p

∞

−C E
ε
∥
n

∑
t=1

εtxt(ε
′
)∥

p

∞

].

We can replace the left `∞ norm with the `p norm as an upper bound:

≤ sup
x

E
ε′

η

p

⎡
⎢
⎢
⎢
⎢
⎣

2∥∑
t=1

ε′txt(ε
′
)∥

p

p

−C E
ε
∥
n

∑
t=1

εtxt(ε
′
)∥

p

∞

⎤
⎥
⎥
⎥
⎥
⎦

.

We now apply the one-sided UMD property for the `p norm Corollary 30:

≤ sup
x

E
ε,ε′

η

p

⎡
⎢
⎢
⎢
⎢
⎣

2Kp
∥∑
t=1

εtxt(ε
′
)∥

p

p

−C∥
n

∑
t=1

εtxt(ε
′
)∥

p

∞

⎤
⎥
⎥
⎥
⎥
⎦

.

Finally, since p = log d, there is some constant A such that ∥x∥p ≤ A∥x∥∞ pointwise. Therefore, if
we take C = O(K)p, the expression is bounded by zero.
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Now, to achieve the bound stated in the theorem, simply using the doubling trick given in
Lemma 26 on top of the strategy described above. Since p′ = O(1), the doubling strategy will
guarantee a regret bound of

n

∑
t=1

`(ŷt, yt) − inf
f∈F

n

∑
t=1

`(f(xt), yt) ≤ O
⎛

⎝
K(E

ε
∥
n

∑
t=1

εtxt∥

p

∞

)

1/p
⎞

⎠
.

Proof [Proof of Theorem 15] This theorem is an immediate corollary of (Hitczenko, 1994), Theorem
1.1. We will spend a moment to explain this in detail, as that theorem is stated in terms of tangent
sequences, which are a concept that otherwise does not appear in the present paper.

Given an adapted sequence (Zt)t≤n, we define its decoupled tangent sequence (Z ′
t)t≤n as follows:

At time t, conditioned on Z1∶t−1, sample Z ′
t as an i.i.d. copy of Zt under the conditional distribution

Pr(Zt ∣ Z1, . . . , Zt−1). Then (Z ′
t)t≤n satisfies

1. Identical conditional distribution: Pr(Z ′
t ∣ Z1, . . . , Zt−1) = Pr(Zt ∣ Z1, . . . , Zt−1)

2. Conditional independence: Pr(Z ′
1, . . . , Z

′
n ∣ Z1, . . . , Zn) =∏

n
t=1 Pr(Z ′

t ∣ Z1, . . . , Zn)

With this definition, (Hitczenko, 1994), Theorem 1.1 is stated as follows:
There is some universal constant K such that for any adapted sequence (Zt) and its decoupled
tangent sequence (Z ′

t), for any 1 ≤ p <∞,

E∣
n

∑
t=1

Zt∣

p

≤Kp
∣
n

∑
t=1

Z ′
t∣

p

. (47)

We now show how to conclude Theorem 15 from this result. Observe that for a Paley-Walsh
martingale (εtxt(εt∶t−1))

n
t=1, its decoupled tangent sequence is given by (ε′txt(εt∶t−1))

n
t=1, where

ε′ is an independent sequence of Rademacher random variables. Furthermore, this sequence is
distributed identically to (ε′tεtxt(εt∶t−1))

n
t=1. Therefore Theorem 15 follows from specializing (47)

to Paley-Walsh martingales.

A.3.3. ONLINE MATRIX PREDICTION

Proof [Proof of Theorem 19] Recall that F = {F ∈ Rd×d ∣ ∥F ∥Σ ≤ τ}. We will take τ = r
√
d, which

implies that F contains all matrices F with rank(F ) ≤ r and ∥F ∥∞ ≤ 1.
Let Xt = eit ⊗ ejt be the incidence matrix for the entry (it, jt). Then we may write F (xt) =

⟨F,Xt⟩. With this notation, we have

R̂adF(x1∶n) = τ E
ε
∥
n

∑
t=1

εtXt∥

σ

.
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From Theorem 10, the class F has UMD constant C2 ≤ log2(d). Therefore, by Theorem 9, there
exists a randomized strategy that guarantees9

E[
n

∑
t=1

`(ŷt, yt) − inf
F ∈F

n

∑
t=1

`(F (xt), yt)] ≤ O(τCpE(E
ε
∥
n

∑
t=1

εtXt∥

σ

+max
t∈[n]

∥Xt∥σ log(n)))

= Õ(r
√
dEE

ε
∥
n

∑
t=1

εtXt∥

σ

).

We now apply concentration to remove the expectation over ε. Observe that the spectral norm of
each Xt is bounded by 1 (since each Xt is an indicator matrix). Hence by Theorem 6.1 of Tropp
(2012) we have, letting σ2 = max{∥∑tXtX

†
t ∥σ, ∥∑tX

†
tXt∥σ

}, we have that with probability at
least 1 − δ over the draw of ε,

∥
n

∑
t=1

εtXt∥

σ

≤ O(σ log(d/δ)).

Since each Xt has ∥Xt∥σ ≤ 1, the law of total expectation then implies that

E
ε
∥
n

∑
t=1

εtXt∥

σ

≤ O(σ log(nd)).

(Xt) are incidence matrices, and so ∑tXtX
†
t and ∑tX

†
tXt. A straightforward calculation reveals:

σ =

√

max{max
i

∣{t ∣ it = i}∣,max
j

∣{t ∣ jt = j}∣} =
√

max{Nrow,Ncol}.

A.3.4. EMPIRICAL COVERING NUMBER BOUNDS

Proof [Proof of Theorem 22 and Theorem 23] Theorem 14 proves that when the one-sided UMD-
property (27) holds, there exists a strategy whose regret is bounded as

C E
ε

sup
f∈F

n

∑
t=1

εtf(xt).

Since this quantity is the statistical Rademacher complexity, we may apply the classical covering
number bound (Rakhlin and Sridharan, 2012, Proposition 12.3):

E
ε

sup
f∈F

n

∑
t=1

εtf(xt) ≤ O(inf
α>0

{αn +
√

logN1(∆d, α, x1∶n)n}).

Likewise, the classical Dudley entropy integral bound (Rakhlin and Sridharan, 2012, Theorem
12.4) yields:

E
ε

sup
f∈F

n

∑
t=1

εtf(xt) ≤ O(inf
α>0

{α ⋅ n + ∫
1

α

√
logN2(F , δ, x1∶n)ndδ}).

9. One can deduce the existence of a deterministic strategy achieving this bound from Theorem 14.
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Proof [Proof of Theorem 24 and Theorem 25] By Lemma 27, there exists a strategy whose regret is
bounded by

O
⎛

⎝
E
ε
∥
n

∑
t=1

εtxt∥

log d

∞

⎞

⎠

1/ log d

.

Observe that

E
ε
∥
n

∑
t=1

εtxt∥
∞

= E
ε

sup
f∈∆d

n

∑
t=1

εtf(xt).

We prove the theorem by appealing to the following classical empirical process bounds (Rakhlin and
Sridharan, 2012, Proposition 12.3, Theorem 12.4). For Theorem 24:

E
ε

sup
f∈∆d

n

∑
t=1

εtf(xt) ≤ O(inf
α>0

{αn +
√

logN1(∆d, α, x1∶n)n}).

For Theorem 25:

E
ε

sup
f∈∆d

n

∑
t=1

εtf(xt) ≤ O(inf
α>0

{αn + ∫
1

α

√
logN2(∆d, δ, x1∶n)ndδ}).

To show the final bound, proceed with the concentration argument used in the proof of Theo-
rem 16.

Appendix B. UMD spaces and martingale inequalities

B.1. Stopping inequalities

Let (Zt) be a martingale. For two stopping times τ1, τ2, we define its stopped version as Zτ1∶τ2t via

dZτ1∶τ2t = dZt1{t > τ1}1{t ≤ τ2}.

Proposition 31 (Hytönen et al. (2016), Proposition 3.1.14) For any p ∈ [1,∞),

E∥Zτ1∶τ2n ∥
p
≤ 2pE∥Zn∥

p.

Theorem 32 (Doob’s Maximal Inequality) For any martingale (Zt)t≥1 taking values in (B, ∥⋅∥)
and any p ∈ (1,∞],

E sup
τ≤n

∥
τ

∑
t=1

dZt∥

p

≤ (p′)pE∥
n

∑
t=1

dZt∥

p

. (48)

Furthermore

Pr(sup
τ≤n

∥
τ

∑
t=1

dZt∥ > λ) ≤
1

λ
E∥

n

∑
t=1

dZt∥ ∀λ > 0. (49)

More generally, (48) and (49) hold when the sequence (∥∑
τ
t=1Zt∥)τ≥1 is replaced by any non-negative

submartingale (Fτ)τ≥1.
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Corollary 33 If (Fn) is a non-negative submartingale and Fn ≤ A almost surely then for all η > 0,

E[max
τ≤n

Fτ] ≤ (logA + log η) ⋅ E[Fn] +
1

η
.

Proof [Proof of Corollary 33]

E[max
τ≤n

Fτ] = ∫
∞

0
Pr(max

τ≤n
Fτ > λ)dλ

= ∫

A

0
Pr(max

τ≤n
Fτ > λ)dλ

≤ ∫

A

1/η
Pr(max

τ≤n
Fτ > λ)dλ +

1

η

≤ E[Fn]∫
A

1
η

1

λ
dλ +

1

η

= (logA + log η) ⋅ E[Fn] +
1

η
.

B.2. UMD inequalities

Theorem 34 (Hytönen et al. (2016), Theorem 4.2.7) Suppose (B, ∥⋅∥) is such that the determin-
istic UMD inequality

E∥
n

∑
t=1

εtdZt∥

p

≤Cp
pE∥

n

∑
t=1

dZt∥

p

holds for p ∈ (1,∞). Then the determinstic UMD inequality

E∥
n

∑
t=1

εtdZt∥

q

≤Cq
q E∥

n

∑
t=1

dZt∥

q

holds for any q ∈ (1,∞), with

Cq ≤ 100(
q

p
+
q′

p′
)Cp.

Theorem 35 (Pisier (2011), Theorem 8.23) Suppose that the deterministic UMD inequality

sup
n

E∥
n

∑
t=1

εtdZt∥

2

≤C2
2 sup

n
E∥

n

∑
t=1

dZt∥

2

holds for any sign sequence. Then the L1 UMD inequality

E sup
n

∥
n

∑
t=1

εtdZt∥ ≤ 54C2 E sup
n

∥
n

∑
t=1

dZt∥

holds as well.
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Corollary 36 If deterministic UMD inequality

E∥
n

∑
t=1

εtdZt∥

2

≤C2
2 E∥

n

∑
t=1

dZt∥

2

holds for any sign sequence, then the L1 UMD inequality

E sup
n

∥
n

∑
t=1

εtdZt∥ ≤ 108C2 E sup
n

∥
n

∑
t=1

dZt∥

holds as well.

Theorem 37 (Hytönen et al. (2016), Proposition 4.2.17) If (B, ∥⋅∥) is UMDp with constant Cp,
then (B⋆, ∥⋅∥⋆) is UMDp′ with constant Cp′ =Cp.

B.3. Concentration for Rademacher complexity

Lemma 38 (Bartlett et al. (2005), Theorem A.2) With probability at least 1 − δ over the draw of
ε,

∥
b

∑
t=a

εtyt∥ ≤ E
ε
∥
b

∑
t=a

εtyt∥ +

¿
Á
ÁÀE

ε
∥
b

∑
t=a

εtyt∥ ⋅ 2 max
t∈[n]

∥yt∥ log(1/δ) +
maxt∈[n]∥yt∥ log(1/δ)

3

≤ 2E
ε
∥
b

∑
t=a

εtyt∥ +max
t∈[n]

∥yt∥ log(1/δ).

Lemma 39 For any fixed sequence y1, . . . , yn, with probability at least 1 − δ over the draw of ε,

sup
1≤a≤b≤n

∥
b

∑
t=a

εtyt∥ ≤ 4E
ε
∥
n

∑
t=1

εtyt∥ + 2 max
t∈[n]

∥yt∥ log(n/δ).

Corollary 40

E
ε

sup
1≤a≤b≤n

∥
b

∑
t=a

εtyt∥ ≤ 4E
ε
∥
n

∑
t=1

εtyt∥ + 5 max
t∈[n]

∥yt∥ log(n).

Proof [Proof of Lemma 39] Consider Z = ∥∑
b
t=a εtyt∥ for fixed a, b and a fixed sequence y1, . . . , yn.

Applying Lemma 38 and taking a union bound over all possible pairs (a, b), of which there are
strictly less than n2, we have that with probability at least 1 − δ,

sup
1≤a≤b≤n

∥
b

∑
t=a

εtyt∥ ≤ 2 sup
1≤a≤b≤n

E
ε
∥
b

∑
t=a

εtyt∥ + 2 max
t∈[n]

∥yt∥ log(n/δ).

By Proposition 31:

≤ 4E
ε
∥
n

∑
t=1

εtyt∥ + 2 max
t∈[n]

∥yt∥ log(n/δ).
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Appendix C. Burkholder/Bellman functions

C.1. Elementary design of U functions

The following construction for the scalar case does not obtain optimal constants, but should give the
reader a taste of how one can construct a U function from first principles.

Theorem 41 (Elementary Scalar U Function) Let k ≥ 4 be an even integer. Then the function

U(x, y) =
k

2
(xk − 2(

k

2
)xk−2yk −

1

k − 2
(
k

2
)

−1

(4(
k

2
)(
k − 2

2
))

k−2

yk).

is Burkholder for ∣⋅∣
k, with UMD constant

Ck ≤ αk
4

for some constant α.

Proof Let Ũ(x, y) = xk −Cxk−2y2 −Byk. We will show that Ũ is Burkholder for an appropriate
choice of constants B and C.

Fix h ∈ R and let G(t) = Ũ(x + ht, y + εht) for ε ∈ {±1}. By direct calculation we have

G′′
(0) = 2h2

[(
k

2
)xk−2

−C((
k − 2

2
)xk−4y2

+ 2(
k − 2

2
)εxk−3y + xk−2

) −B(
k

2
)yk−2

]

Since k is even, xk−4y2 is a square; we will simply drop this term.

≤ 2h2
[(
k

2
)xk−2

−C(2(
k − 2

2
)εxk−3y + xk−2

) −B(
k

2
)yk−2

]

≤ 2h2
[(
k

2
)xk−2

+ 2C(
k − 2

2
)∣x∣k−3

∣y∣ −Cxk−2
−B(

k

2
)yk−2

]

By Young’s inequality, we have

2C(
k − 2

2
)∣x∣k−3

∣y∣ = (2C(
k − 2

2
)∣y∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

⋅ ∣x∣k−3

²
b

≤
1

k − 2
((2C(

k − 2

2
))
k−2yk−2

+ (k − 3)xk−2
),

where we have applied a ⋅ b ≤ 1
k−2a

k−2 + k−3
k−2b

k−2
k−3 .

Returning to G′′(0), we now have

G′′
(0) ≤ 2h2

[((
k

2
) +

k − 3

k − 2
−C)xk−2

+ (
1

k − 2
(2C(

k − 2

2
))

k−2

−B(
k

2
))yk−2

].

In particular, we can take C ≥ 2(k2) and B ≥ 1
k−2

(2C(
k−2

2
))
k−2

(
k
2
)
−1

.

≤ 0.

This certifies that G is zig-zag concave. To see the upper bound property, observe by that Young’s
inequality,

xk −Cxk−2y2
−Byk ≥

2

k
xk − (

2

k
C
k
2 +B)yk.
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Hence, if we take U(x, y) = k
2Ũ(x, y), we have

U(x, y) ≥ xk − (C
k
2 +

k

2
B)yk.

C.2. U functions for p = 1

Definition 42 ((1,1) Weak Type Burkholder Function) A function U ∶ B ×B → R is (∥⋅∥, β)
Burkholder for weak type if

1. U(x,x′) ≥ 1{∥x∥ ≥ 1} − β∥x′∥.

2. U is zig-zag concave: z ↦U(x + εz, x′ + z) is concave for all x,x′ ∈ X and ε ∈ {±1}.

3. U(0,0) ≤ 0.

Lemma 43 Suppose we are given a weak type Burkholder function U∥⋅∥,weak for (∥⋅∥, β). Then for
all arguments x, y with ∥x∥, ∥y∥ ≤ B, the following function is Burkholder for (∥⋅∥,1,Cβ log(B/ε))
up to additive slack ε:

U∥⋅∥,1(x, y) ≜ ε
N

∑
k=1

U∥⋅∥,weak(x/λk, y/λk), (50)

where N = ⌈B/ε⌉ and λk = kε.

Proof [Proof of Lemma 43] Let V (x, y) = ∥x∥−C ′β log(B/ε)∥y∥− ε. We will show that U(x, y) ≥
V (x, y) when ∥x∥, ∥y∥ ≤ B.

V (x, y) = ∥x∥ −C ′β log(B/ε)∥y∥ − ε

≤ ε + ε
N

∑
k=1

1{∥x∥ ≥ λk} −C
′β log(B/ε)∥y∥ − ε

≤ ε
N

∑
k=1

[U∥⋅∥,weak(x/λk, y/λk) +
β

λk
∥y∥] −C ′β log(B/ε)∥y∥

=U∥⋅∥,1(x, y) + ε
N

∑
k=1

β

λk
∥y∥ −C ′β log(B/ε)∥y∥

=U∥⋅∥,1(x, y) + β∥y∥
N

∑
k=1

1

k
−C ′β log(B/ε)∥y∥

≤U∥⋅∥,1(x, y) +Cβ∥y∥ log(N) −C ′β log(B/ε)∥y∥

For sufficiently large C ′:

≤U∥⋅∥,1(x, y).

It can be seen immediately that U∥⋅∥,1(x, y) is zig-zag concave and has U∥⋅∥,1(0,0) ≤ 0.
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C.2.1. ζ-CONVEXITY

Definition 44 Say (B, ∥⋅∥) is ζ-convex if there exists ζ ∶B ×B→ R such that

1. ζ is biconvex.

2. ζ(x, y) ≤ ∥x + y∥ if ∥x∥ = ∥y∥ = 1,

Given a such a function ζ, we can construct a “canonical” function u which satisfies some
additional properties

Definition 45

u(x, y) ≜ {
max{ζ(x, y), ∥x + y∥}, max{∥x∥, ∥y∥} < 1
∥x + y∥, max{∥x∥, ∥y∥} ≥ 1.

.

Then u is biconvex, has ζ(0,0) ≤ u(0,0), and satisfies

u(x, y) ≤ ∥x + y∥ if max{∥x∥, ∥y∥} ≥ 1.

Also, u(x, y) = u(−x,−y).

Assumption 1 u(x,−x) ≤ 0.

The ζ function given in Example 9 satisfies this condition. More generally, most ζ functions can be
made to satisfy this property with a slight blowup in the UMD constant they imply (c.f. (Burkholder,
1986, Lemma 8.5)).

By (Burkholder, 1986, 8.6) Assumption 1 implies u(x, y) ≤ u(0,0) + ∥x + y∥. The following
argument due to (Burkholder, 1986) shows how to create a U function from the function u.

Theorem 46 Suppose ∥⋅∥ is ζ-convex and u satisfies Assumption 1. Then this space is UMD with
weak type estimate

Pr(∥
n

∑
t=1

dZt∥ ≥ 1) ≤
2

u(0,0)
E∥

n

∑
t=1

εtdZt∥

for any martingale difference sequence (dZt). Furthermore, the function

U(x, y) = 1 −
u(x + y, y − x)

u(0,0)

is weak-type Burkholder for (∥⋅∥, 2
ζ(0,0)), in the sense of Definition 42.

Proof [Proof of Theorem 46] For the weak type estimate, we will start with the base function

V (x, y) = 1{∥x∥ ≥ 1} −
2

u(0,0)
∥y∥.

We will now show that V (x, y) ≤U(x, y). First, observe that

1{∥x∥ ≥ 1} = 1{∥(x + y) + (x − y)∥ ≥ 2} ≤ 1{max{∥x + y∥, ∥y − x∥} ≥ 1} ≤ 1{2∥y∥ ≥ u(x + y, y − x)},
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where the last inequality follows from the additional property of u from Definition 45. We have now
established

V (x, y) ≤ 1{2∥y∥ ≥ u(x + y, y − x)} −
2

u(0,0)
∥y∥

= 1{2∥y∥ − u(x + y, y − x) + u(0,0) ≥ u(0,0)} −
2

u(0,0)
∥y∥

By the second additional property of u from Definition 45, 2∥y∥ − u(x + y, y − x) + u(0,0) ≥ 0, and
so we may apply Markov’s inequality

≤
2∥y∥ − u(x + y, y − x) + u(0,0)

u(0,0)
−

2

u(0,0)
∥y∥

=U(x, y).

Observe that U(0,0) = 0 and, since u is biconvex, −u(x + y, y − x) is zig-zag concave, and so U is
itself zig-zag concave. We can now prove that the UMD property holds with constant 2

u(0,0) ≤
2

ζ(0,0)
using the standard step-by-step peeling argument with U described in Hytönen et al. (2016), Theorem
4.5.6.

Example 9 (`d1 Osekowski (2016)) Define

z(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

a⟨x,y⟩
2 − 1

2a , ∥x + y∥ + ∥x − y∥ ≤ 2/a
∥x+y∥

2 log(a2(∥x + y∥ + ∥x − y∥)) −
∥x−y∥

2 , ∥x + y∥ + ∥x − y∥ > 2/a
.

Then define

ζ(x, y) =
2

log(3a)
(1 +

d

∑
i=1

z(xi, yi)).

For a ≥ d log d the ζ-convexity properties are satisfied and the bound

ζ(0,0) ≤
2

log d + log(2 log d)
(1 −

1

2 log d
)

is achieved.
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