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Abstract
One way to define the “randomness” of a fixed individual sequence is to ask how hard it is to pre-
dict. When prediction error is measured via squared loss, it has been established that memoryless
sequences (which are, in a precise sense, hard to predict) have some of the stochastic attributes of
truly random sequences. In this paper, we ask how changing the loss function used changes the
set of memoryless sequences, and in particular, the stochastic attributes they possess. We answer
this question for differentiable convex loss functions using tools from property elicitation, show-
ing that the property elicited by the loss determines the stochastic attributes of the corresponding
memoryless sequences. We apply our results to price calibration in prediction markets.
Keywords: Algorithmic randomness, property elicitation, loss functions, prediction markets

1. Introduction

Since the dawn of probability theory in the 17th century, there has been interest in the randomness
of fixed objects, a representative question being whether the digits of π are random in some sense.
Questions of this sort lead naturally to the problem of how to define the “randomness” of a fixed
individual sequence. Building on the work of Von Mises (1919) and Kolmogorov (1965), Martin-
Löf (1966) introduced the notion of algorithmic randomness, in which a sequence is random if it
passes every statistical test performed by some class of algorithms (typically Turing machines).

In this paper we focus on a notion of randomness under which a sequence is random if its entries
cannot be predicted well from previous elements of the sequence. This is a natural desideratum, for
example, in pseudorandomness, where one may only be concerned about a bystander’s ability to
guess the next bit in sequence, and not concerned with whether an algorithm having access to the
entire sequence could distinguish it from a random one. Nobel (2004) calls a sequence memoryless
if its entries cannot be predicted well by any continuous function applied to a fixed-width sliding
window of previous entries.1 It is shown that when prediction error is measured using squared loss,
memoryless sequences exhibit a number of stochastic properties, including a law of large numbers
and a version of the central limit theorem. These and other results follow from the fact that the weak
limits of the empirical distributions of a memoryless sequence are stationary martingale difference
sequences. The central role of the squared loss leads to a number of questions. How does the set of
memoryless sequences depend on the loss? Does some analog of the martingale difference property
hold for memoryless sequences under general losses?

1. An appealing quality of the definition of memoryless sequences is that it naturally applies to sequences of real
numbers, in contrast to Turing machines which require a careful theory of computation over the reals.
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This paper provides answers to these questions for convex differentiable losses, using ideas from
property elicitation. We establish that, in a manner reminiscent of Blackwell approachability, the
one-shot statistical attributes of the loss function alone determine which sequences are memoryless
with respect to that loss. In particular, we show that the set of memoryless sequences studied
by Nobel (2004) remain exactly the same when replacing squared loss by any other loss eliciting
the mean (i.e. for which the mean minimizes the expected loss), namely the class of Bregman
divergences (Savage, 1971; Frongillo and Kash, 2015). More generally, the property/statistic Γ
elicited by the loss function uniquely determines which sequences are memoryless, and under mild
assumptions, the weak limits of these sequences are “Γ-centered”, in the sense that the conditional
value of the statistic Γ is constant; when the loss is a Bregman divergence, Γ is the mean, and
Γ-centered sequences (centered at 0) reduce to standard martingale differences. We conclude with
applications to prediction markets and future work.

1.1. Related Work

The literature on the randomness of individual sequences began with Von Mises (1919), Kol-
mogorov (1965), and Martin-Löf (1966). In a survey of the area, Uspenskii et al. (1990) gives an
account of this early work. V’yugin (1998) shows an ergodic theorem for Martin-Löf random (typ-
ical) individual sequences under certain conditions of computability. While aside from Section 4.1
our results rely on convexity of the loss, Haussler, Kivinen, and Warmuth 1998 study individual
sequences for general loss functions. We refer the reader to Nobel 2004 for additional references.

Aside from this classical perspective, the literatures on no-regret online learning algorithms (Fos-
ter and Vohra, 1999; Cesa-Bianchi et al., 1999; Cesa-Bianchi and Lugosi, 2006) and game-theoretic
probability (Shafer and Vovk, 2005) are both related. In particular, Vovk (2001) studies a game-
theoretic setting which is similar to ours, wherein a learner attempts to predict an adaptive sequence
of outcomes. The conclusion is that, much like our Lemma 9 and Theorem 10, either the learner
can achieve low loss (squared or logarithmic), or the outcome sequence is “random” in the sense
that the martingale law of large numbers and law of the iterated logarithm hold. A major distinc-
tion, however, is that the outcome sequence in both online learning and game-theoretic probability
is allowed to adapt to the choices of the learner, which does not allow these results to apply to fixed
individual sequences. See Section 6 for further discussion.

Finally, the literature on property elicitation extends that of proper scoring rules (Brier, 1950;
Good, 1952; McCarthy, 1956; Savage, 1971; Gneiting and Raftery, 2007) and proper losses (Reid
and Williamson, 2010; Vernet et al., 2011). The modern literature begins with Osband (1985) and
Lambert et al. (2008) and continues (Lambert and Shoham, 2009; Lambert, 2011; Abernethy and
Frongillo, 2012; Steinwart et al., 2014; Agarwal and Agarwal, 2015; Frongillo and Kash, 2015).

2. Setting and Definitions

We begin with key definitions and an overview of elicitation.

2.1. Spaces and loss functions

The main notation we use throughout the paper is summarized below. We will denote elements of
the spaces X ,Y by x, y, and elements of the sequence spaces X,Y by x,y.

• X ⊆ Rd is the prediction space;
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• Y ⊆ Rd is the outcome space;

• X ⊆ XN is the prediction sequence space;

• Y ⊆ YN is the outcome sequence space;

• ` : X × Y → R is the loss function.

We are interested in the task of sequentially predicting an outcome sequence y ∈ Y by a sequence
x ∈ X, with predictive performance at stage n measured by the average value of the entrywise loss.
The following assumptions on the spaces and loss function ` : X ×Y → R will be made throughout
the paper.

A1. X ⊆ Rd is open and convex;

A2. Y ⊆ Rd is closed;

A3. `(·, y) is convex for each fixed y ∈ Y;

A4. `(x, y) is jointly continuous in (x, y).

A5. The derivative ∇ `(x, y) of the loss `(x, y) with respect to its first argument exists for all
(x, y) ∈ X × Y and is jointly continuous.

2.2. Property elicitation and property-centered sequences

We will frame our results in the language of property elicitation, which studies losses that “elicit” a
particular statistic, or property, of interest. The following definitions make this precise.

Definition 1 Let P be the set of all probability measures on Y . A property is a function Γ : P → X
that associates a value to each distribution on Y .

A loss elicits a property if, for every distribution in P , the expected loss is (uniquely) minimized
by the value of the property for that distribution.

Definition 2 A loss function ` : X × Y → R elicits a property Γ : P → X if for all p ∈ P ,
{Γ(p)} = argminx∈X Ep`(x, Y ) where Y ∼ p. A property is elicitable if it is elicited by some loss.

The most well-known example of elicitation is the fact that squared loss `(x, y) = (x−y)2 elicits
the mean: in this case one easily checks that, if relevant expectations are well-defined, Ep`(x, Y ) =
(x−Ep[Y ])2 +Ep[Y ]2−Ep[Y 2], which is minimized at x = Ep[Y ]. Squared loss is a special case
of a broader class of loss functions, called Bregman divergences, that measure the error of the linear
approximation of a convex function.

Definition 3 Given a differentiable convex functionG : Y → R, its associated Bregman divergence
is the loss function

`(ŷ, y) = G(y)−G(ŷ)− 〈∇G(ŷ), y − ŷ〉 . (1)

Theorem 4 (Savage (1971)) If ` is a Bregman divergence and Ep|`(ŷ, Y )| < ∞ for each ŷ ∈ Y
and p ∈ P , then ` elicits the mean Γ : p 7→ Ep Y .

3



FRONGILLO NOBEL

Proof Letting y∗ = Ep[Y ], note that Ep`(y∗, Y ) = EpG(Y )−G(y∗). Expanding and simplifying,
we find that Ep`(y∗, Y )−Ep`(ŷ, Y ) = G(y∗)−G(ŷ)−〈∇G(ŷ), y∗ − ŷ〉, which is nonnegative as
a Bregman divergence (or alternatively, by the subgradient inequality).

By applying a property Γ to conditional distributions, we may gain insight into the sequential
prediction of a finite or infinite sequence of random variables. Of particular interest are sequences
for which the optimal sequential predictor is a constant.

Definition 5 A sequence of random vectors Y1, . . . , Ym ∈ Y is Γ-centered if there is a (fixed) vector
c ∈ X such that c = Γ(Yk+1|Y k

1 ) with probability 1 for each k = 0, . . . ,m − 1. Here Yk+1|Y k
1

denotes the conditional probability distribution of Yk+1 given Y1, . . . , Yk, and when k = 0, the
distribution of Y1. The vector c will be called the center of sequence.

2.3. Bounded and interior sequences

The following definitions will be used in what follows.

Definition 6 Let u = u1, u2, . . . be a sequence with values in Rd. The sequence u is bounded if
there exists a finite constant L such that ||ui|| ≤ L for all i ≥ 1. The closure cl(u) of u is the
(ordinary) closure in Rd of the countable set {u1, u2, . . .}. We will say that u is interior to an open
set U ⊆ Rd if the closure of u is contained in U .

Definition 7 Given a subset U of a vector space, its star interior is given by

starint(U) = {u ∈ U : ∀v ∈ U ∃α0 > 0 ∀α ∈ [−α0, α0], u+ α(v − u) ∈ U}.

Note that the star interior of U is a subset of the relative interior of U .

2.4. Memoryless sequences

Given a sequence of vectors y ∈ YN, let yi denote the ith element of y, and let yji = yi, yi+1, . . . , yj
when i ≤ j. For each k ≥ 1 let Ck = Cb(Yk : X ) be the family of bounded continuous functions
g : Yk → X , and let C0 be the family of constant functions on Y with values in X .

Definition 8 A sequence y ∈ YN is memoryless under ` if there exists a vector c ∈ X such that for
every k ≥ 0 and every function g ∈ Ck

lim inf
n→∞

[
1

n

n∑
i=1

`(g(yi−1i−k), yi)−
1

n

n∑
i=1

`(c, yi)

]
≥ 0 (2)

where we adopt the convention that g(yi−1i−k) = 0 for i ≤ k. In this case we will say that y is
memoryless under ` with respect to c. Note that neither average is assumed to converge.

Each function g ∈ Ck represents a continuous, kth order Markov prediction scheme for y that
predicts the next value in the sequence by applying g to the k previous values. A sequence is
memoryless if there is a constant prediction scheme that is as good as any continuous Markov
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prediction scheme of finite order. The constant prediction scheme in the definition ignores the past
and always predicts the next value of y by c.

Note that memorylessness is by definition an asymptotic notion. For example, the “learner”
g could correctly predict the first N elements of y correctly, and yet the sequence could still be
memoryless. In fact, padding any memoryless sequence by N initial 0’s would preserve its memo-
rylessness. In this sense, our notion of randomness (memorylessness) is relatively weak, in a manner
analogous to “no-regret” in online learning: just as online learning algorithms can produce arbitrary
outputs for any initial block of time and still achieve no regret, here a learner can perform well for
a finite amount of time and still fail to predict the sequence y in an asymptotic sense.

2.5. Weak convergence

Several of the key results and proofs in this paper rely on the notion of weak convergence of prob-
ability measures, which we briefly review here. A succinct treatment of weak convergence can
be found in Chapter 2 of van der Vaart (2000). A sequence {νn : n ≥ 1} of probability mea-
sures on Rp is said to converge weakly to a limiting probability measure ν, written νn ⇒ ν, if∫
f dνn →

∫
f dν for every bounded continuous function f : Rp → R. A sequence {νn : n ≥ 1}

of probability measures on Rp is tight if for every ε > 0 there exists a compact setK ⊆ Rp such that
µn(Kc) < ε for each n ≥ 1. Thus any sequence of measures supported on a common compact set
is tight. Prokhorov’s theorem states that if {µn} is tight then any subsequence {µnk

} has a further
subsequence {µmk

} that converges weakly to a limiting measure.

3. An Orthogonality Condition

A critical ingredient in our analysis, and one that is interesting in its own right, is the following
orthogonality lemma. Roughly speaking the lemma shows that, for a given outcome sequence
y ∈ Y, a sequence x∗ in X is optimal under the average loss if and only if for every x in X the
difference x − x∗ is orthogonal, in an appropriate sense, to the gradients of `(·, yi) at x∗i . One
may view this result as a kind of first-order optimality condition in which equation (4) acts as the
“derivative” of eq. (3).

Lemma 9 (General loss, differentiable case) Let X ,Y be subsets of Rd satisfying assumptions
A1 and A2, and let `() be a loss function satisfying assumptions A3-A5. Let y ∈ YN be a bounded
sequence, and let X ⊆ XN be a family of bounded sequences x that are interior to X . Then for all
x∗ ∈ starint(X), the following two statements are equivalent:

lim inf
n→∞

[
1

n

n∑
i=1

`(xi, yi)−
1

n

n∑
i=1

`(x∗i , yi)

]
≥ 0 for all x ∈ X (3)

and

lim
n→∞

1

n

n∑
i=1

〈xi − x∗i ,∇`(x∗i , yi)〉 = 0 for all x ∈ X . (4)

Proof Let x∗ ∈ starint(X) be fixed. To show that (4) implies (3), we make use convexity of ` in
its first coordinate. By the subgradient inequality

`(xi, yi)− `(x∗i , yi) ≥ 〈xi − x∗i ,∇`(x∗i , yi)〉 .
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Summing over 1 ≤ i ≤ n, dividing by n, and taking the limit infimimum, inequality (3) follows
from (4).

To establish the converse, suppose that (4) fails to hold. Then there exists a sequence x ∈ X and
δ > 0 such that the average in (4) has limit infimum less than −δ or limit supremum greater than
δ. We consider the former case; the argument for the latter is similar. For each α ∈ R define xα by
xαi = x∗i + α(xi − x∗i ) = αxi + (1− α)x∗i . As x∗ is in the star interior of X by assumption, there
exists 0 < α0 ≤ 1 such that xα ∈ X for all α ∈ [0, α0]. Note that for each such α and each i ≥ 1,

`(xαi , yi)− `(x∗i , yi) = Gα(yi, xi, x
∗
i ) + α 〈xi − x∗i ,∇`(x∗i , yi)〉 (5)

where Gα : Y × X × X → R is defined by

Gα(u, v, w) = `(w + α(v − w), u) − `(w, u) − α 〈v − w,∇`(w, u)〉 (6)

and is equal to the Bregman divergence of `(·, u) evaluated at w + α(v − w) and w. In particular,
Gα is non-negative.

Define the set K = cl(y) × cl(x) × cl(x∗). As Y is closed and x,x∗ are interior to X by
assumption, K is a subset of Y × X × X . Moreover, the boundedness of y,x,x∗ implies that K
is a compact subset of (Rd)3. Our assumptions on `() ensure that Gα is continuous and bounded
on K. For n ≥ 1 let νn(·) = n−1

∑n
i=1 I((yi, xi, x∗i ) ∈ ·) be the empirical measure on K of the

finite sequence of triples (y1, x1, x
∗
1), . . . , (yn, xn, x

∗
n). By assumption, there is a subsequence {nl}

of the positive integers such that

lim
l→∞

1

nl

nl∑
i=1

〈xi − x∗i ,∇`(x∗i , yi)〉 ≤ −δ. (7)

As K is compact the sequence {νn} is tight, so there is a subsequence {nk} of {nl} such that νnk

converges weakly to some probability measure ν on K. Using equation (5), we find that for each
0 < α < α0,

lim inf
n→∞

[
1

n

n∑
i=1

`(xαi , yi)−
1

n

n∑
i=1

`(x∗i , yi)

]

≤ lim inf
k→∞

[
1

nk

nk∑
i=1

`(xαi , yi)−
1

nk

nk∑
i=1

`(x∗i , yi)

]

= lim inf
k→∞

[
1

nk

nk∑
i=1

Gα(yi, xi, x
∗
i ) +

α

nk

nk∑
i=1

〈xi − x∗i ,∇`(x∗i , yi)〉

]

= lim inf
k→∞

[∫
Gα dνnk

+
α

nk

nk∑
i=1

〈xi − x∗i ,∇`(x∗i , yi)〉

]

=

∫
Gα dν + α lim inf

k→∞

1

nk

nk∑
i=1

〈xi − x∗i ,∇`(x∗i , yi)〉

≤
∫
Gα dν − α δ.
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The last equality above follows from the weak convergence of νnk
to ν, and the final inequality

follows from (7).
It suffices to show that the final term of the last inequality above is negative for some α > 0,

and for this it is enough to show that
∫
Gα dν = o(α). Note that for each triple (u, v, w) in K the

existence of the gradient ∇`(w, u) implies that α−1Gα(u, v, w) → 0 as α → 0. We show that the
functionsGα for 0 < α < α0 are dominated by a constant function, and the result then follows from
the dominated convergence theorem. To this end, letM be the maximum of the continuous function
||∇`(w, u)|| over u in cl(y) andw in the convex hullW of cl(x)∪cl(x∗), which is a compact subset
of X . By standard results (Shalev-Shwartz, 2012, Lem 2.6), |`(w1, u)− `(w2, u)| ≤M ||w1−w2||
for all u ∈ cl(y) and w1, w2 ∈ W . From this bound and the Cauchy-Schwartz inequality, we find
that for all (u, v, w) ∈ K

|Gα(u, v, w)|
α

≤ |`(w + α(v − w), u) − `(w, u)|
||α(v − w)||

· ||v − w|| + | 〈v − w,∇`(w, u)〉 |

≤ 2M ||v − w|| ≤ 2MD

where D is the diameter of the set cl(x) − cl(x∗). As x and x∗ are bounded, D is finite, and the
proof is complete.

In the next section, Lemma 9 is used to relate memoryless individual sequences to Γ-centered
sequences of random variables.

4. Memoryless and Property-Centered Sequences

We now turn to our principal result, which establishes a close connection between memoryless indi-
vidual sequences and Γ-centered stochastic sequences. Roughly speaking, we show that a sequence
is memoryless under a loss ` if and only if its limiting empirical distributions are Γ-centered, where
Γ is a property elicited by `.

To every measure ν on Ym there correspond random vectors Y1, . . . , Ym ∈ Y , defined on a
common probability space and having ν as their joint distribution. Thus we will write νn ⇒ ν
equivalently as νn ⇒ (Y1, . . . , Ym) where (Y1, . . . , Ym) ∼ ν. For n,m ≥ 1 define the n-sample,
m-dimensional empirical measure of y by

µn,m(A) =
1

n

n−1∑
i=0

I{(yi+1, . . . , yi+m) ∈ A} (8)

for all Borel measurable sets A ⊆ Ym. Note that if y is bounded then for each m the empirical
measures {µn,m : n ≥ 1} are tight, and in particular, every subsequence {µnl,m} has a further
subsequence that converges weakly to a limiting measure, or equivalently, a jointly distributed se-
quence Y1, . . . , Ym ∈ Y . Following standard terminology, we will say that Y1, . . . , Ym is stationary
if for each s, j ≥ 1 with s + j ≤ m the sequence (Ys, . . . , Ys+j) has the same joint distribution as
(Y1, . . . , Yj+1)

Theorem 10 Let X ,Y be subsets of Rd satisfying assumptions A1 and A2, and let `() be a loss
function satisfying assumptions A3-A5 that elicits property Γ : P → X . Let c ∈ X and let y ∈ YN

be bounded. The following are equivalent:
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(i) The sequence y is memoryless under ` with respect to c;

(ii) For each m ≥ 1 every weak limit (Y1, . . . , Ym) of the m-dimensional empirical measures
{µn,m : n ≥ 1} of y is stationary, bounded, and Γ-centered with center c.

Proof Let y be a bounded sequence with values in Y . Suppose that for some m ≥ 2 and some
subsequence {nl} of the positive integers µnl,m ⇒ (Y1, . . . , Ym) as l → ∞, where µnl,m are
defined as in (8). Then for each s, j ≥ 1 with s + j ≤ m, and every bounded continuous function
f : Yj+1 → R,

Eg(Ys, . . . , Ys+j) = lim
l→∞

1

nl

nl−1∑
i=0

g(yi+s, . . . , yi+s+j)

= lim
l→∞

1

nl

nl−1∑
i=0

g(yi+1, . . . , yi+j+1) = Eg(Y1, . . . , Yj+1).

It follows that (Ys, . . . , Ys+j) has the same joint distribution as (Y1, . . . , Yj+1), and as this is true
for each choice of s, j above, the sequence Y1, . . . , Ym is stationary. By the Portmanteau theorem
(see, for example, Lemma 2.2 of Vaart (2000))

P (Yk ∈ cl(y)) ≥ lim sup
l→∞

1

nl

nl−1∑
i=0

I(yi ∈ cl(y)) = 1,

and since cl(y) is bounded by assumption, each of the random variables Yk is bounded as well.
Suppose that y satisfies condition (i) of the theorem. As X is open, there exists δ > 0 such

that B(c, 2δ) ⊆ X where B(c, γ) = {x : ||c − x|| < γ} is the open ball of radius γ centered at c.
Let X be the set of all infinite sequences x = x1, x2, . . . ∈ X such that, for some k ≥ 0 and some
continuous function g : Yk → B(c, δ), x1 = · · · = xk = c and xi = g(yi−1i−k) for i ≥ k + 1. One
may easily verify that the conditions of Lemma 9 are satisfied with x∗ identically equal to c, and
therefore

lim
n→∞

1

n

n∑
i=1

〈xi − c,∇`(c, yi)〉 = 0 for all x ∈ X. (9)

Let 1 ≤ k < m and let g : Yk → B(c, δ) be any continuous function. Then the function f :
Yk+1 → R defined by f(uk+1

1 ) =
〈
g(uk1)− c,∇`(c, uk+1)

〉
is continuous and is bounded on the

compact set cl(y)k+1 supporting (Y1, . . . , Yk+1). By appropriate choice of x ∈ X, the relation (9)
implies that

E
〈
g(Y k

1 )− c,∇`(c, Yk+1)
〉

= lim
l→∞

∫
f dµnl,m = lim

l→∞

1

nl

nl−1∑
i=0

f(yi+k+1
i+1 ) = 0.

As the function g : Yk → B(c, δ) was arbitrary, a routine argument shows that E[∇`(c, Yk+1) |Y k
1 ] =

0. Now fix x ∈ X . As `(u, v) is convex in its first argument, `(x, y)− `(c, y) ≥ 〈y − c,∇`(c, y)〉.
Replacing y by Yk+1 and taking the conditional expectation with respect to Y k

1 , we find that
E[ `(x, Yk+1) |Y k

1 ] − E[ `(c, Yk+1) |Y k
1 ] ≥ 0 with probability 1. As ` elicits Γ, this implies that

c = Γ(Yk+1 |Y k
1 ) with probability 1, and therefore condition (ii) is satisfied.
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Suppose now that y fails to satisfy (i). It follows from Lemma 9 (or the subgradient inequality)
that there exists k ≥ 0, g ∈ Ck, and a subsequence {nr} of the positive integers such that

lim
r→∞

1

nr

nr∑
i=1

〈
g(yi−1i−k)− c,∇`(c, yi)

〉
< 0. (10)

Let {nl} be a further subsequence of {nr} such that µnl,k+1 converges in law to a sequence
(Y1, . . . , Yk+1). It follows from (10) that E

〈
g(Y k

1 )− c,∇`(c, Yk+1)
〉

is non-zero, and therefore
the conditional expectation E[∇`(c, Yk+1) |Y k

1 ] is non-zero with positive probability. Thus there
exists γ ∈ Rd and δ > 0 such that

E[ 〈γ,∇`(c, Yk+1)〉 |Y k
1 ] =

〈
γ,E[∇`(c, Yk+1) |Y k

1 ]
〉

= −δ.

Our assumptions on `(·, ·) ensure that for each compact set K ⊆ Y the supremum

sup
y∈K
|`(x, y)− `(c, y)−∇`(c, y)(x− c)| = o(||x− c||)

as x → c. Replacing y by Yk+1 and x by xα = αγ + c, it follows from the previous two displays
that

E[ `(xα, Yk+1) |Y k
1 ] = E[ `(c, Yk+1) |Y k

1 ] − αδ + o(α).

Thus for α > 0 sufficiently small, we find that E[ `(xα, Yk+1) |Y k
1 ] < E[ `(c, Yk+1) |Y k

1 ]. As `
elicits Γ, condition (ii) fails to hold, and the proof is complete.

Theorem 10 shows that memoryless sequences under a loss ` are characterized by the property
that ` elicits. As a consequence, two losses eliciting the same property have the same family of
memoryless sequences.

Corollary 11 Let X ,Y be subsets of Rd satisfying assumptions A1 and A2, and let `() and `′() be
a loss functions satisfying assumptions A3-A5. If `() and `′() elicit the same property Γ : P → X ,
then a bounded sequence y ∈ YN is memoryless under ` with respect to a vector c ∈ X if and only
if it is memoryless under `′ with respect to c.

The characterization of memoryless sequences in Theorem 10 suggests that the sample paths of
a sequence of Γ-centered random variables should be memoryless under an eliciting loss `. This is
the conclusion of the following result, which we state without proof.

Proposition 12 Let X , Y , and ` be as in Theorem 10, and suppose that ` elicits the property Γ.
Let Y = Y1, Y2, . . . be a Γ-centered sequence of random vectors defined on a common probability
space, and taking values in a fixed, compact subset of Y . Then with probability one Y is memoryless
under `.

In some cases, memoryless sequences exhibit asymptotic behavior similar to that of random
sequences. Suppose for the moment that X ,Y ⊆ R and that ` is a Bregman divergence satisfying
the conditions of Theorem 4. If y is memoryless under ` with respect to 0 then it follows from
Theorems 4 and 10 that for each m ≥ 1 every weak limit (Y1, . . . , Ym) of the m-dimensional
empirical measures of y is a stationary bounded martingale difference sequence. Using this fact,
one may show that y obeys an elementary law of large numbers, namely n−1

∑n
i=1 yi → 0 as n

tends to infinity, and a sliding-block central limit theorem. Details and further discussion can be
found in Nobel (2004).
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4.1. Special case: (mixed) Bregman divergences

Combining Corollary 11 and Theorem 4, we can now see that the `-memoryless sequences, with
constant c = 0, for any convex Bregman divergence ` are those whose weak limits form martingale
difference sequences, thus showing that the results of Nobel (2004) generalize to a wide class of
losses. (Standard martingale differences arise when Y ⊆ R, and are multivariate martingale differ-
ences otherwise.) However, the convexity conditions on ` are somewhat restrictive: while Bregman
divergences `Y(ŷ, y) = G(y)−G(ŷ)− 〈∇G(ŷ), y − ŷ〉 are always convex in y, they are generally
non-convex in ŷ. To remedy this situation, we will work with the class of mixed Bregman diver-
gences, where we replaceG(ŷ)−〈∇G(ŷ), ŷ〉 by the convex conjugate F = G∗ ofG, as these losses
are always convex in the first argument.

Definition 13 Let Y be a convex subset of Rd. Letting F (x) := supy∈Y 〈x, y〉 − G(y) be the
convex conjugate of G, let X := domF = {x ∈ Rd : F (x) < ∞}. The associated mixed
(Bregman) divergence is the loss ` : X × Y → R given by

`X (x, y) = F (x) +G(y)− 〈x, y〉 . (11)

The loss `X (x, y) is convex in x, and is closely related to `Y ; as we now argue, their correspond-
ing memoryless sequences are also closely related. If G is strictly convex and differentiable, and
is a closed convex function, then F is also differentiable, and the gradient maps ∇G and ∇F have
continuous inverses (and are therefore homeomorphisms). Consider a continuous Markov predictor
g : Yk → Y for `Y ; as ∇G is a continuous map, (∇G ◦ g) : Yk → X is a continuous Markov
predictior for `X . Moreover, as ∇G is surjective, every continuous Markov predictor for `X can be
written this way. Conversely, every continuous Markov predictor for `Y takes the form (∇F ◦ g)
for continuous g : Yk → X . Thus, as continuous functions preserve compactness, a bounded se-
quence y is `Y -memoryless with respect to c ∈ Y if and only if y is `X -memoryless with respect to
∇G(c) ∈ X . (This argument extends to any such homeomorphism.)

Putting the above together, we can broaden the scope of Theorem 10 to include any Bregman
divergence `Y(ŷ, y) defined by a strictly convex and differentiable G, even if ` is not convex in ŷ.
In particular, for a bounded sequence y ∈ YN, we have the following:

y is `Y -memoryless with respect to c ∈ Rd
⇐⇒ y is `X -memoryless with respect to∇G(c)

⇐⇒ the weak limits of y are ΓX -centered where ΓX (p) = ∇G(EpY ), with center∇G(c)

⇐⇒ the weak limits of y are ΓY -centered where ΓY(p) = EpY , with center c.

Thus, the conclusion of Theorem 10 extends to any Bregman divergence `Y generated by a strictly
convex, closed, differentiable G : Y → R. In particular, y is `Y -memoryless with respect to 0 ∈ Rd
if and only if the weak limits of y form martingale difference sequences.

5. Application to Prediction Markets

We now apply our results in the setting of prediction markets, which are markets designed to elicit
and aggregate predictions from traders about some future outcome Z in the arena of athletics, fi-
nance, entertainment, or politics. Our conclusion will be that, under the “efficient market hypoth-
esis”, the outcomes are memoryless with respect to the market prices, which further endows them
with stochastic properties. Prediction markets work by offering financial contracts whose payoffs

10
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are contingent in some way on the eventually-observed value of Z; by revealed preference, the
choices of traders in such a market can be interpreted as predictions about Z, and the final prices
of the market can be viewed as an aggregate, or “consensus” belief of the traders (Hanson, 2003;
Wolfers and Zitzewitz, 2004).

Formally, the setting in a prediction market is as follows. The set Z will represent the possible
outcomes, and thus the possible values of Z. The market will support the buying and selling of d
different securities, whose payoff values are each contingent on which outcome z ∈ Z materializes.
In particular, we define the payoffs of these securities by a function φ : Z → Rd, where φi(z)
denotes the payoff of security i upon outcome z. The prediction space X = Rd will represent
vectors of shares in these k securities, which traders can buy and sell. Thus, if a trader holds
a bundle of shares r ∈ X and outcome z ∈ Z materializes, then the trader is owed 〈r, φ(z)〉.
Intuitively, a risk-neutral trader (i.e. one who seeks to maximize expected payoff) who is willing to
buy a bundle r for a cost of c reveals a belief 〈r,Epφ(Z)〉 > c, that is, the trader must believe the
expected value of 〈r, φ(Z)〉 to be greater than c. In this way, the market prices are thought to reflect
the “consensus” belief about the expected value of the securities φ. As an important special case
when |Z| = d, a complete market has φi(z) = 1{z = zi} be the indicator for each element zi ∈ Z ,
and this case the expected value of φ(Z) is simply the distribution p ∈ ∆(Z).

Due to thin market problems, it is common to employ an automated market maker framework,
which is simply a central entity in the market through which all transactions must be made. A popu-
lar mechanism to determine the cost of each purchase is the cost-function-based market, introduced
by Abernethy, Chen, and Wortman Vaughan (2013). Here the cost of purchasing at time t ∈ N a
bundle rt ∈ X of shares is given by C(xt−1 +rt)−C(xt−1), where xt−1 ∈ X is the vector describ-
ing the total number of shares bought and sold of each security up to time t−1, i.e. xt−1 =

∑t−1
i=1 ri.

This procedure is described more formally in Algorithm 1.
Typically one regards the gradient ∇C(x) of C at the current market state x as the market

“price”. The reason is that∇C corresponds to the instantaneous prices of the securities: ∂C(x)/∂xi
is the price per unit of an infinitessimal quantity of security i. One can check that if a trader believes
the outcome to be drawn from some distribution p ∈ ∆(Z), then monotonicity of ∇C implies that
a risk-neutral trader would have an incentive to buy or sell shares until the market state satisfied
∇C(x) = Epφ(Z), as discussed above. In this sense, the market is giving traders incentives to
predict the value of Epφ(Z). For the market to satisfy standard axioms, C must be strictly convex
and differentiable, and∇C(Rd) should be equal toY := relint(conv(φ(Z))), the relative interior of
the convex hull of the security payoffs (Abernethy et al., 2013). This is equivalent to the existence
of a differentiable and strictly convex function G : Y → R with ∇G(Y) = Rd and such that
C(x) = supµ∈Y 〈µ, x〉 −G(µ) (Abernethy et al., 2013; Frongillo and Waggoner, 2017).

Now consider running this market, from initalization to the final outcome revelation, many times
for many events. One can ask, were the final market prices “correct” in each market, in the sense that
the “probability distribution” of the outcome really matched the price? (As mentioned above, this
would mean∇C(x) = Epφ(Z).) In attempting to answer this question one quickly approaches deep
philosophical waters, about the nature of probability and whether or not true randomness exists. A
convenient way out of these waters is to appeal to properties of individual sequences as we do in
this paper. To do so, we will need to translate the cost-function-based market setting to our own.

To capture this prediction market setting, let X = Rd and let Y = {φ(z) : z ∈ Z} ⊆ Rd be the
possible security payoffs. Our loss function will take the form of the mixed Bregman divergence

11
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Market maker initializes state x0 ← 0 ∈ Rd
for all traders t = 1, . . . , T do

Trader t decides to purchase bundle rt ∈ Rd
Market maker updates the state xt ← xt−1 + rt
Trader pays the market maker C(xt)− C(xt−1)

end
Outcome z ∈ Z is revealed and market maker pays 〈rt, φ(z)〉 to trader t = 1, . . . , T

Algorithm 1: The cost-function-based market maker

`(x, y) = C(x) + G(y) − 〈x, y〉, which satisfies assumptions A3-A5 as C is convex and C and G
are continuous by assumption. Note that if the current market state is x∗, and a trader moves the
state to x = x∗ + r by purchasing bundle r, then `(x, y)− `(x∗, y) = C(x∗ + r)−C(x∗)− 〈r, y〉,
which is precisely the net loss of the trader in Algorithm 1, namely the up front cost of bundle r,
minus the eventual payoff of the securities y = φ(z). Now translating Lemma 9, fixing an outcome
sequence z ∈ ZN and set of sequences X ⊆ XN to which the initial market states x∗ belong, we
have

lim inf
n→∞

1

n

n∑
i=1

(C(x∗i + ri)− C(x∗i )− 〈ri, φ(zi)〉) ≥ 0 for all x∗ + r ∈ X (12)

⇐⇒ lim
n→∞

1

n

n∑
i=1

〈ri,∇C(x∗i )− φ(zi)〉 = 0 for all x∗ + r ∈ X , (13)

where now i denotes the run of the market, so that x∗i , ri, and zi represent, respectively, the initial
market state, trader’s purchase, and outcome in the ith run of the market. Thus, one can interpret the
application of Lemma 9 to prediction markets as follows: either the market prices are “calibrated”
with respect to the class of trading algorithms whose outputs belong to X, in the sense of eq. (13),
or some sequence of trades in X can make an infinite profit over the course of these market runs.
For example, if X contains all constant sequences, and x∗ is constant, eq. (13) implies a version of
the law of large numbers in that the average security payoff must approach the initial market price.

Turning now to Theorem 10, we can say something stronger. Note that the loss ` elicits the
property Γ(p) = ∇G(Epφ(Z)), which is the share value whose price matches the expected security
payoffs: ∇C(Γ(p)) = Epφ(Z). From the discussion in Section 4.1, we find that for any sequence
z ∈ ZN, no continuous finite-memory trading strategy can garner infinite profits from a series of
markets initialized at c if and only if the weak limits of the security payoff sequence y = φ(z) are
Γ-centered at the initial price∇C(c). In particular, if 0 ∈ Y then initializing the market prices at 0,
i.e. letting c = ∇G(0), would imply that the weak limits of the security payoffs form a martingale
difference sequence.

Finally, we note that the class of finite-memory trading algorithms is perhaps restrictive in this
setting; ideally, we would allow our trading algorithms to use the entire past history of prices and
outcomes. This immediately becomes problematic, however, as it is difficult to exclude algorithms
that “know” the outcome sequence z. (The restriction to finite-memory and continuity in the defini-
tion of memoryless accomplishes this, at least for some outcome sequences.) Intuitively, one should
allow the outcome sequence to be “independent” of the prediction sequence, but this would betray
our focus on individual sequences. Nonetheless, it is possible that our techniques can be extended to
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such online settings, which could allow for a formal link to similar statements made in the literature
on game-theoretic probability (Shafer and Vovk, 2005; Vovk, 2014).

6. Discussion and Future Work

We have generalized the notion of memoryless sequences of Nobel (2004) to higher dimensions
and differentiable losses. We conclude that memoryless sequences are characterized by the stochas-
tic behavior of their finite dimensional weak limits, and that the the distribution of these limits is
governed by the property elicited by the loss function. In particular, the broad class of Bregman
divergences share the same set of memoryless sequences with squared loss, and their weak limits
form martingale difference sequences. Finally, we showed how these results can show that prices in
prediction markets are calibrated (or traders can make infinite profits).

A promising future direction would be to extend these results to non-differentiable losses, if
possible. This would allow for losses eliciting the median, as all losses eliciting the median, such as
absolute loss `(x, y) = |x−y|, are nondifferentiable (Gneiting, 2011). As mentioned in Section 5, it
would also be interesting to extend our results to a more online setting, where the outcome sequence
can adapt to the predictions adversarially, a setting closer to game-theoretic probability.
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