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Abstract
The abundance of unlabeled data makes semi-supervised learning (SSL) an attractive approach for
improving the accuracy of learning systems. However, we are still far from a complete theoretical
understanding of the benefits of this learning scenario in terms of sample complexity. In particu-
lar, for many natural learning settings it can in fact be shown that SSL does not improve sample
complexity. Thus far, the only case where SSL provably helps, without compatibility assumptions,
is a recent combinatorial construction of Darnstädt et al. (2013). Deriving similar theoretical guar-
antees for more commonly used approaches to SSL remains a challenge. Here, we provide the
first analysis of manifold based SSL, where there is a provable gap between supervised learning
and SSL, and this gap can be arbitrarily large. Proving the required lower bound is a technical
challenge, involving tools from geometric measure theory. The algorithm we analyze is similar
to subspace clustering, and thus our results demonstrate that this method can be used to improve
sample complexity.

1. Introduction

Supervised learning is a powerful framework in machine learning, both from a theoretical and prac-
tical standpoint. However, it is clear there is much to be gained from using unlabeled data in
learning, as the volume of unlabeled data is several orders of magnitude larger than labeled data.
The semi-supervised learning (SSL) setting (Chapelle et al., 2006) is further motivated by the fact
that humans can learn from relatively weak supervision.

From a learning theoretic perspective, supervised learning (SL) is quite well understood, in
terms of setting lower and upper bounds on the sample complexity of learning a given hypothesis
class (e.g., see Devroye et al., 1996). For semi-supervised learning, the situation is not as clear.
Arguably the most interesting question in this context is how an SSL learner can exploit unlabeled
data to reduce its labeled sample complexity. In this work we describe an SSL learner with provable
upper and lower bounds, that demonstrate the clear effect of using unlabeled data. Most previous
work mainly focused on obtaining bounds under so called compatibility assumptions on the relation
between true target function and distribution (e.g., see Balcan and Blum, 2010). Here we prove that
SSL can be effective without making such assumptions.

One of the most wide-spread approaches to semi-supervised learning, and our focus in this pa-
per, is the class of manifold based methods. In these, the data is assumed to lie on a low dimensional
manifold (e.g., Riemannian), and the classifier is constrained to be smooth on this manifold. There
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are many instantiations of this idea, but all share the assumption that proximity on a manifold im-
plies similar classification (e.g., see Belkin and Niyogi, 2004; Blum and Chawla, 2001; Lafferty
et al., 2004; Rifai et al., 2011; Altun et al., 2006; Yang et al., 2016).1

The intuition behind SSL approaches is that knowledge of the feature distribution should re-
duce the need for labeled data. Presumably, this should result in sample complexity bounds which
demonstrate that learning with SSL reduces the sample complexity of supervised learning. How-
ever, despite years of research, such results for manifold based learning have still not been obtained.
A key technical difficulty in this context is to show that a supervised learner cannot effectively ex-
ploit the same structure learned by the SSL learner. While in the strictly supervised setting such
lower bounds are fairly standard using the probabilistic method (e.g., see Devroye et al., 1996) they
are considerably more complex in the SSL case, as discussed later.

Here we provide the first sample complexity analysis of a manifold based SSL learner. Specifi-
cally, we show that for a hypothesis class based on algebraic manifolds, SSL has unboundedly better
sample complexity than SL. Such results are rare in the literature, and in fact it was hypothesized
by Ben-David et al. (2008) that they are inherently unachievable. However, Darnstädt et al. (2013)
recently gave a discrete-structured hypothesis class where such a gap also exists. Our example is in
a geometric setting and our learner is closer in spirit to methods that perform unsupervised feature
learning and attempt to construct a new representation of the data.

Our SSL algorithm is similar to subspace clustering algorithms such as Vidal (2010) and El-
hamifar and Vidal (2009). In these, one models a set of points as a union of hyperplanes. Here we
show that such an approach can serve as a component of a provably effective SSL scheme.

Our proof techniques involve technical novelties that might be of independent interest. Namely,
a combination of the coarea formula and a probabilistic argument. Together, they can be used to
derive distribution dependent lower bounds for supervised learning, in a continuous feature space.

Finally, we complement our theoretical findings with a synthetic experiment that demonstrates
the sample complexity gap.

2. Related Work

We briefly review relevant sample complexity results in SSL (see also Zhu, 2006, for a survey
on theory and practice of SSL). Such results typically require some compatibility assumptions, as
discussed below.

Under certain generative assumptions on the joint distribution of features and labels, one can
demonstrate positive results. For example Castelli and Cover (1995) analyze the mixture of Gaus-
sians case, and demonstrate a significant effect for observing unlabeled data. This analysis is refined
in Singh et al. (2009) and Azizyan et al. (2013) where finite sample complexity bounds are pro-
vided. We stress that all these works assume that the true distribution over input features x (denoted
by P (X) in what follows), and the true target function are compatible. In other words, only certain
pairs of distributions and functions are allowed. Our paper deals with a worst case analysis where no
such assumptions are made. Namely, we assume that the hypothesis class is fixed and independent
of P (X).

Compatibility assumptions are also employed in Niyogi (2008), who constructs a collection of
problems where an SSL provably outperforms an SL learner. The construction makes a strong com-

1. Other methods, such as PCA or more recent autoencoders (Kingma and Welling, 2014) also seek a low dimensional
representation of the input, but do not explicitly enforce classifier smoothness.
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patibility assumption, which significantly reduces the need for labeled data. Another positive result
was provided in Ben-David and Urner (2014). They showed that when labeling is deterministic, an
algorithm can benefit from unlabeled data if the true target function is not realizable.

So far most of the theoretical analysis of SSL has relied on the assumption that the unlabeled
distribution reveals some information about the target function. This approach has been elegantly
formulated in Balcan and Blum (2010) who analyze sample complexity bounds of empirical risk
minimization schemes that use compatibility information. Intuitively, knowledge about the labeled
distribution allows one to reduce the size of the hypothesis space to search over, resulting in better
sample complexity.

Perhaps surprisingly, there has also been a flurry of negative results on SSL (Ben-David et al.,
2008; Lafferty and Wasserman, 2007; Rigollet, 2006). These show that in many settings SSL has
no sample complexity advantage over a supervised learner. Even more surprisingly, Cozman et al.
(2003) demonstrate a case where SL can be superior to SSL.

The work that is closest to ours is Darnstädt et al. (2013), which constructs an example where
unlabelled data helps in classification, without using compatibility assumptions. Specifically, the
authors consider a discrete domain, and show that for any class there exists some distribution where
the learner benefits from unlabelled data. While the work of Darnstädt et al. (2013) nicely demon-
strates that one can benefit from unlabelled data, the distributions over X for which this result holds
do not map to a geometrically intuitive structure. This is precisely where our motivation and tech-
nique markedly differ from Darnstädt et al. (2013). Namely, we consider classification functions
and distributions that have a clear geometric interpretation, and are closely related to manifold based
SSL methods. Specifically, the distributions we consider are inherently continuous in that any spe-
cific x will always have measure zero, in contrast to Darnstädt et al. (2013), where this will not be
the case.

Our construction and algorithm rely on algebraic manifolds. These have been studied in sev-
eral machine learning and statistics related works (e.g., Király et al., 2012; Gibilisco, 2010; Drton
et al., 2008; Watanabe, 2009). Unsupervised learning of algebraic sets was suggested in Vidal et al.
(2005). These were developed further within the subspace clustering approach, resulting in elegant
algorithms and recovery results, such as Elhamifar and Vidal (2009). A related line of work (Livni
et al., 2013; Heldt et al., 2009) suggested algorithms that approximate the support of a distribution
using an algebraic set. They showed that estimating this algebraic set can be a tractable task but did
not devise an algorithm for exploiting unlabeled data.

3. Problem setup

In the standard supervised learning setting a labeled sample of m points is provided. In semi-
supervised learning one is additionally provided with a set of unlabeled points. To simplify analysis
we assume that the full distribution over X is provided (Section 6 addresses the more realistic
version of a finite set of unlabeled points). The corresponding SSL algorithm is defined below. We
use binary classification for simplicity, with labels Y = {−1, 1}.

Definition 1 (SL and SSL) A semi-supervised learning algorithm B is a function which receives a
labeled sample {xi, yi}mi=1 (where xi ∈ X, yi ∈ Y ) and a distribution P (X) over X , and returns a
classification rule h : X → Y .

A supervised learning algorithm A takes only {xi, yi}mi=1 as input, and returns a classification
rule.
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Intuitively, SSL is helpful if after having seen the unlabeled data, we can achieve a certain ac-
curacy with much fewer labeled examples than needed without the unlabeled data. To quantify this
effect, we next follow Ben-David et al. (2008) and provide several definitions of the relative sample
complexity of SL and SSL. Before providing those, we note that a notion of SL-SSL gap cannot
be completely distribution free, since the distribution used for SL lower bounds (i.e., the uniform
distribution over a shattered set. See Vapnik (1998)) can be used to obtain the same lower bounds
for SSL. Thus, Ben-David et al. (2008) define SSL to be effective when there exists a distribution
such that the sample complexity of SSL is bounded away from that of SL. This is reflected in the
two definitions below, which follow Ben-David et al. (2008).

Definition 2 (Sample complexity (SL and SSL)) For a class H of hypotheses, the sample com-
plexity of a semi-supervised algorithmB with respect to P (X,Y ) (the data generating distribution),
is a mapping from ε > 0 and δ > 0 to N such that

m(B,H, P, ε, δ) = min

{
m :∈ N : P

S∼Pm

[
errP (B(S, P (X)))− inf

h∈H
errP (h) > ε

]
< δ

}
. (1)

Where P (X) is the marginal X distribution of P (X,Y ) and errP (h), is the generalization error of
hypothesis h under distribution P .

The sample complexity of a supervised learning algorithm with respect to P (X,Y ) is defined simi-
larly, but without the dependence of the algorithm on P .

Given a distribution P (X) over X and a hypothesis h, denote by Ph the extension of P to a
distribution overX×Y that is consistent with h. The following measure for evaluating performance
for SSL is similar to that of Ben-David et al. (2008):

Definition 3 A semi-supervised algorithm B is said to benefit from unlabeled data with respect to
the hypothesis class H and distribution class P if for every constant c and supervised algorithm A
there is a distribution P ∈ P , ε and δ such that:

sup
h∈H

m(A,H, Ph, 2ε, δ) > c · sup
h∈H

m(B,H, Ph, ε, δ),

In other words, an SSL algorithm B is good if it has strictly better sample complexity than any
SL algorithm A, as demonstrated by a particular distribution P (X). As mentioned above, it was
hypothesized in Ben-David et al. (2008)2 that no such SSL algorithms exists. However, Darnstädt
et al. (2013) provided such an example, in a discrete setting. In what follows we provide a geometric
setting, and its analysis.

Our focus is mainly on geometric settings, where a learner wishes to exploit the manifold struc-
ture of the data in order to benefit from unlabeled data. Therefore we mainly focus on benefit when
the class of non-discrete distributions (i.e. distributions where each point in Euclidean space has
probability 0) is considered. We will denote the class of non-discrete distributions by P∗.

2. We note that, similar to Darnstädt et al. (2013) we allow, due to technicalities, the SL learner to be less accurate by a
factor of 2. For the motivation and discussion we refer the reader to (Darnstädt et al., 2013; Darnstädt, 2015)
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3.1. The Hypothesis Class of Algebraic Sets

The hypothesis class we consider has a simple geometric structure, as described next. We first recall
the definition of algebraic sets. An algebraic set is a set in Rm that corresponds to the common
zeros of some finite set of multivariate polynomials. Up to some singularities, algebraic sets are
in fact manifolds (Hartshorne, 1977). Simple examples of algebraic sets are spheres, cylinders,
hyperplanes etc.

We consider the hypothesis class Halg corresponding to algebraic sets. In other words each
h ∈ H is defined by a finite set of polynomials, and h(x) = 1 if all polynomials vanish at x.
Geometrically, each hypothesis is defined by a specific manifold, and all positively labeled points
reside on that manifold. This is defined formally below.

Definition 4 (The hypothesis class of algebraic sets) A set V ⊂ Rm is called an algebraic set if
it is the locus of zeros of a collection of multivariate polynomials. The hypothesis class of algebraic
setsHalg consists of all hypotheses hV where V is an algebraic set and hV (x) = 1 iff x ∈ V .

3.2. Main Results

Our main result is that there exists an SSL algorithm for the hypothesis classHalg, which can benefit
from unlabeled data, as defined in Definition 3. The following theorem provides a version of the
result for the realizable case.

Theorem 5 LetHalg be the hypothesis class of algebraic sets. Then there is a semi-supervised al-
gorithm that benefits from unlabeled data w.r.t. Halg and P∗. Specifically, there is a semi-supervised
learner B such that for every constant c, ε, δ and supervised learner A, there is a distribution
P ∈ P∗ such that:

sup
h∈Halg

m(B,Halg, Ph, ε, δ) <
2

ε
log

2

δ
(2)

and
sup

h∈Halg

m(A,Halg, Ph, 2ε, δ) > c
2

ε
log

2

δ
(3)

We can prove a similar result for the agnostic (i.e., non-realizable) case (with ε2 instead of ε on the
RHS). The techniques are similar, so we focus on the realizable case for simplicity.

3.3. The class Pk and hypothesis class Gd
The first part of our main theorem states that there exists an SSL algorithmB that can learn with the
sample complexity upper bounded in Equation 2. As a first step we will need to define a family of
distributions for which our upper bounds apply. For proving the lower bound, it will suffice to use a
hypothesis from a restricted hypothesis class Gd ⊆ Halg, described in Definition 7.

Our proposed distributions P (X) rely on the existence of a particular type of algebraic sets
called irreducible algebraic sets (e.g., see Šafarevič, 1994). An algebraic set U is said to be ir-
reducible if it is not a proper union of two different algebraic sets. More formally, for every two
algebraic sets M and V such that U = M ∪ V we have U = V or U = M . Every algebraic
set can be decomposed into a finite union of irreducible components, and vice versa the union of
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irreducible algebraic set results in an algebraic set. Figure 1(a) and Figure 1(b) show an example of
an algebraic set and its irreducible components.

We next define the class of distributions for which our bounds will be demonstrated.

Definition 6 The class Pk of distributions consists of all distributions P (X) such that there are k
irreducible algebraic sets V1, . . . , Vk with the following property: For every irreducible algebraic
set U with P (U) > 0 we have that for some J ⊆ [1, . . . , k] ∪j∈JVi ⊆ U and further P (U) =
P (∪j∈JVi). We call V1, . . . , Vk the irreducible components of the distribution P .

The class Pk roughly corresponds to unions of irreducible algebraic sets. The definition might
seem restrictive, but it is in fact highly expressive and under very mild conditions on a distribution,
it will belong to Pk for some k. From our perspective, the crucial property of irreducible sets is that
the intersection of two distinct irreducible algebraic sets U and V will be either U , V or a manifold
of strictly lower dimension. In Figure 1(c) we depict the intersection of a hyperplane and a torus
which leads to a manifold of dimension 1. Under mild conditions on the distribution P , a manifold
of strictly smaller dimension will be a null set and so will have measure zero. Hence, in the example
depicted, any irreducible algebraic set U that does not contain the blue torus or the red heart shape,
will in fact have measure zero, as required from the definition of P2.

We next introduce a class of hypotheses which will be used for proving the lower bound in
Equation 3.

Definition 7 The hypothesis class Gd of polynomial graphs up to degree d over the domain R2

consists of all hypotheses of the form

hp(x1, x2) = 1⇔ p(x1) = x2.

for some univariate polynomial p of degree at most d.

The class Gd is a subset of Halg.3 Thus it suffices to prove the bound in Equation 3 by restricting h
in Gd, for some d. Also, note that by considering the first two coordinates a Euclidean space Rr, we
can naturally embed Gd in any domain Rr and our results are therefore not restricted to the plane.

In what follows we prove the upper and lower bounds in Theorem 5. In Section 4, we show that
any distribution in P2 results in the upper bound of Equation 2. Then in Section 5 we show that
there exist distributions in P2 that result in the lower bound of Equation 3. These two facts then
imply Theorem 5.

4. Upper Bound for the Semi-supervised Learner

We turn to describing the SSL algorithm B which achieves the upper bound in Equation 2. The
algorithm can be explained via the example in Figure 1(c), where we assume that the marginal
distribution is supported on the torus and heart shapes. This marginal distribution will belong to P2

(see Definition 6). Now, assume that the learner observes two positive labeled points on each of the
yellow circles and one negative point on the heart-shape. There are many h ∈ Halg that agree with
the observed labels. For example the hyperplane shown in Figure 1(c) also achieves zero training

3. This follows since sets in Gd correspond to vanishing points of the polynomial p(x1)−x2, where p is as in the above
definition.
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error. However, given the known distribution P (X) we realize that the hyperplane will have zero
probability (regardless of class) and thus it wouldn’t make sense to choose this h. Indeed, the only
reasonable choice in this setting is to choose h that corresponds to the blue torus. To summarize, B
proceeds as follows: it first decomposes P (X) into irreducible components. Then, upon observing
the labeled sample, it considers h ∈ Halg that are unions of these components, and chooses the one
with minimum training error.

Figure 1(c) also highlights why a supervised learner is bound to have much worse error than B.
Since any supervised learning algorithm is oblivious to P (X), it has no way of preferring the blue
torus, and will thus unavoidably have high generalization error.

Below we formally state algorithm B and the corresponding guarantee.

Definition 8 (Pk-ERM Algorithm) A semi-supervised algorithm B is said to be a Pk-ERM if
given P ∈ Pk with irreducible components V1, . . . , Vk and a finite labeled sample S = {xi, yi}mi=1,
the algorithm considers the following class of hypotheses

HP = {hU : U = ∪j∈JVj J ⊆ {1, . . . , k}}

and returns hU that minimizes the empirical error, i.e.

B(S, P ) = arg min
hU∈Hp

|{hU (xi) 6= yi : (xi, yi) ∈ S}|

Theorem 9 Let H ⊆ Halg and Let P ∈ Pk. Any Pk-ERM algorithm B has the following sample
complexity bound with respect to P in the realizable case:

sup
h∈H

m(B,H, ε, δ, Ph) <
k

ε
log

2

δ
,

Proof Let P ∈ Pk with corresponding components V = ∪ki=1Vi. For every U , we have that for
some J ⊆ [1, . . . , k] , except for a P -null set:

U = ∪i∈JU ∩ Vi = ∪i∈JVi.

We conclude that for every U there is a hypothesis in HP that minimizes the generalization error
over PU . Note that there are exactly 2k hypotheses in HP and a Pk- ERM algorithm is an ERM
algorithm over this finite hypothesis class. Our result now follows from standard sample complexity
results for learning finite hypothesis classes.

5. Lower bound for Supervised Learner

We now turn to discuss our lower bound guarantees in Equation 3. To prove the result, we need
to show that for every supervised learner A and constants ε, δ there is a distribution P ∈ P2 and a
hypothesis h ∈ Halg such that m(A,Halg, Ph, ε, δ) is arbitrarily large. We will show this by first
proving a lower bound on the expected error of A, and then use a standard argument to obtain a
lower bound on the sample complexity.

7
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(a) An algebraic set (b) The components (c) Intersection of algebraic sets

Figure 1: (a) An algebraic set in R3. It is the union of five irreducible algebraic sets: two cylinders,
two tori and a heart shape. (b) The five irreducible components. The decomposition is
unique and well defined. (c) An algebraic set (torus and heart shape) intersecting a distinct
irreducible algebraic set (hyperplane). The intersection is a 1-dimensional manifold (two
circles) of strictly lower dimension. Under weak assumptions on the distribution, this is
a null set.

To illustrate the main challenges let us return to the classical lower bound and see why this proof
strategy is not applicable in our setting. For lower bounds based on VC dimension (see for example
Devroye et al., 1996) one considers a set of k shattered points, and then invokes a probabilistic
argument, where a sample and a hypothesis h are drawn independently. It is then easy to show that
without observing O(k) points, the supervised learner will fail in expectation.

Such an argument cannot work in our setting, since the distribution P (X) is fixed and known.
Any lower bound that is true for a fixed distribution P , must also apply to a semi-supervised learner.
Indeed, for any semi-supervised learner B and distribution P , we can always define a supervised
learner A(S) = B(S, P ) that has the same guarantees as B w.r.t P . One can indeed verify that a
uniform distribution over k points is in Pk and hence our upper bound for SSL and lower bound for
SL would coincide.

In order to truly achieve a lower bound, not only does the hypothesis h need to be chosen
randomly, but the marginal distribution P (X) should also be chosen randomly, so as to show that
there is at least one bad distribution for the supervised learner. Perhaps the simplest way to try
and generate such a process is to choose several components (e.g., the five components depicted in
Figure 1(b)), and then randomly choose two out of these which will be used to define a distribution in
P (X) ∈ P2 (e.g, corresponding to the uniform distribution over the two components). This simple
strategy will however not work. To see why, consider a learner A which “knows” the sampling
process. Then once A observes an example on a component, it will identify the component, and
will quickly have full information about the components of P (X).4

To correct the above strategy, the process as a whole, should be “rich” enough, so that with
a limited sample, the learner cannot identify the marginal distribution. A further complication is
that h and P (X) cannot be chosen independently, since if h doesn’t share components with the
irreducible components of P all labels are negative (a case which a supervised learner can learn
very quickly).

4. Unless the sample contains a point in the intersection, but these have zero probability.
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To summarize, proving the lower bound requires some random process for picking an unlabeled
sample and its labels. This process needs to be broken into two parts – first a random algebraic set
is chosen, and then labeled data on this surface is generated according to a distribution supported
on this surface. This is not trivial in our continuous setting, as it results in certain high dimensional
integrals. To evaluate these we use the coarea formula (see below), which essentially allows writing
a stochastic process as a double integral, over the image and pre-image of a function F .

5.1. The Coarea Formula

For the following theorem see, for example, in Krantz and Parks (2008) (Corollary 5.2.6):

Theorem 10 [Coarea Formula] If F : Rm → Rn is Lipschitzian and m > n, then for any measur-
able set K and a measurable function g : Rm → R∫

K
g(z)JF (z)dλm =

∫
Rn

[∫
F−1(w)∩K

g(z)dHm−n

]
dλn(w) (4)

where Hm−n is the m−n dimensional Hausdorff measure in Rm, λk is the Lebesgue measure over
Rk, F−1(w) is the pre image of w under F and:

JF (z) =
√

det (DF (z) ·DF (z)>)

where DF (z) is the Jacobian matrix of F .

The theorem essentially shows how to break down an integral of a function g(z) on Rm into a
double integral over Rn and Rm−n. The double integral first integrates over w ∈ Rn and then over
the pre image of w under F . The factor JF acts as the appropriate volume element.

We next rewrite the coarea formula in terms of probability measures. Let F : K → Rn, be a
Lipschitz function defined on a subset K ⊂ Rm. Applying Kirszbraun’s Theorem we may assume
that F is defined on the whole space and is Lipschitzian and we can apply the coarea formula to F
in the domain K.

Let us denote by PF the probability measure whose density function is given by JF . Namely:

PF (A) =

∫
K∩A JF (z)dz∫
K JF (z)dz

PF induces a distribution on w ∈ Rn that by abuse of notation we also denote by PF . Specifically
for every W ⊂ Rn:

PF (W ) = PF (F−1(W )) = PF ({x : F (x) ∈W}).

Applying the coarea formula to g(z) = χF−1(W ) we can write:

PF (W ) =
1∫

K JF (z)dz

∫
W

[∫
F−1(w)∩K

dHm−n

]
dλn(w).

9
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Additionally for each w let us denote by PF (·|w) the probability measure that is supported on
F−1(w) ∩K and is given by

PF (A|w) =

∫
F−1(w)∩K∩A dH

m−n∫
F−1(w)∩K dHm−n .

With these notations we can rewrite the coarea formula as follows

E
z∼PF

[g(z)] = E
w∼PF

[
E

z∼PF (·|w)
[g(z)]

]
(5)

5.2. Lower Bound – Main Statement and Proof Sketch

Let A : ((x1, y1), . . . , (xn, yn))→ {−1, 1} be some supervised algorithm. Given a labeled sample
set Sn = ((x1, y1), . . . , (xn, yn)) and a test point (x, y) we will denote by χA(Sn, (x, y)) the error
made by A on the test point when learning from the sample Sn. Namely

χA(Sn, (x, y)) =

{
1 A(Sn)[x] 6= y

0 else
.

As stated, using standard techniques we can bound the sample complexity by first bounding the
expected error of a supervised learner. Specifically, our lower bound will follow immediately from
the following statement:

Theorem 11 For every learner A and integer N there is a P ∈ P2 and a hypothesis V1 ∈ GN ⊂
Halg such that for every n:

E
Sn∼PV1

E
(x,y)∼PV1

[χA(Sn, (x, y)] ≥ 1

4

(
1− n2 − n

2N

)
As mentioned earlier, the proof of the theorem is carried through a probabilistic argument, where
the main tool is Equation 5. A complete proof is provided in Appendix B. Here we outline the proof
(see also Figure 2). As a preliminary step, to apply the coarea formula, we will first need to define
a set of functions Fy (one for every y ∈ {−1, 1}N ) and family of parametrized pairs of irreducible
algebraic sets {(V w

1 , V
w
−1)}w∈RN that will satisfy

F−1
y (ω) = V ω

y1 × . . .× V
ω
yN
. (6)

Thus, given a sample SN , if we define F (SN ) = Fy(x1, . . . ,xN ) then the preimage of a pair of
algebraic sets is exactly all samples drawn from the pair, consistent with the labeling.

Once this is established, the proof follows a two step argument:

Step 1: We define a random process where we pick random points z(N) = {z1, . . . ,zN} and a
random labeling y1, . . . , yN . The points z(N) will actually not be IID, but a bound for the IID
case can be derived from this process (see comment following step 2).

We then let `n(z(N),y) measure the expected loss on a random subsample of size n− 1 and
a test point. Specifically:

`n(z(N);y) = E
t1,...,tn∼[N ]

[χA (Sn−1, (zt1 , y1)))] , Sn−1 = ((zt2 , yt2), . . . , (ztn , ytn), ).

10
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We next lower bound the expected loss, Ey∼UEz(N)∼PFy

[
`n(z(N),y)

]
. For the lower bound

we exploit the fact that labels and samples were chosen arbitrarily (this is more challenging
than the standard supervised lower bound since the distribution of the samples does depend
on the y. However, by properties of Fy we can still prove a lower bound) .

Step 2: We now exploit Equation 5 to show that Step 1 is equivalent to the following process. First,
draw ω and y (according to some distribution). Next, draw vectors z(N) such thatFy(z(N)) =
ω. Note that Equation 6 states that Fy(z(N)) = ω implies zk ∈ V ω

yk
. In other words, the

inner process (of picking z(N) from the preimage of ω) is a process where we pick points on
algebraic sets: positive from V ω

1 and negatives from V ω
−1.

This equivalence then implies (via the standard probabilistic method argument) that there
exists a hypothesis h ∈ Halg (namely V ω

1 for some ω) and a distribution P (X) ∈ P2 (namely
some distribution with support V ω

1 ∪ V ω
−1) such that if we learn these with A, we will not be

able to generalize.

The above process may generate sample points that are not distributed IID. Since generalization
bounds require IID sampling, as a final step we relate the above expected error to that of the corre-
sponding IID sample.

Theorem 11 refers to the expected generalization error over training samples. This can be con-
verted to the result in Equation 3 via standard arguments. See details in section B.4.

Figure 2: An illustration of the construction used for the lower bound proof. We consider two sampling
procedures, and show their equivalence. In the first procedure we assign a random label to each
of the N balls in the picture, and then sample N points from the N balls (one from each ball).
These points are then assigned the corresponding labels, and the learner A is given a subsample
of size n out of these as a training set (these are the blue and red stars in the picture). The
resulting hypothesis is applied to another point (the black star in the picture) and the expected
loss is measured. This procedure will result in a large error. We next use the coarea formula to
show equivalence to a second procedure, which is used to show the lower bound. In the second
procedure, two curves are sampled such that they pass through all N balls. One of the curves is
assigned label +1 and the other −1. Next, n points are sampled from the balls (on the curves),
andA learns from those. By showing that the two procedures are equivalent, we can conclude that
there exist an input distribution P (X) ∈ P2 and a hypothesis h ∈ Halg which cannot be learned
by A.

6. A Practical Algorithm

The SSL algorithm B described earlier has two main steps: find the irreducible components of
P (X) and find a hypothesis minimizing error on those. To turn it into a practical algorithm two
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issues need to be addressed. First, our analysis assumed the distribution P (X) is given explicitly ,
but in practice we only learn about it from observing a set of unlabelled points sampled from P (X).
Second, even if we know P (X), factoring a distribution into irreducible components is notoriously
difficult (Wang, 1992). Below we argue that in practice both problems can be circumvented, under
certain assumptions, by employing ideas from subspace clustering (e.g., see Vidal et al., 2005; Vidal,
2010; Parsons et al., 2004; Elhamifar and Vidal, 2009).

Subspace clustering is defined as the problem of decomposing a set of points into k disjoint
linear subspaces. The problem is generally hard, even assuming the data indeed corresponds to
such k subspaces. However, under certain assumptions there are efficient algorithms with statistical
recovery guarantees. For example, the semi-random subspace clustering model in Soltanolkotabi
et al. (2012) assumes the following generative process: k subspaces S1, . . . , Sk are chosen and
points are sampled IID from the union of these linear subspaces. The aim of a subspace clustering
algorithm is to recover the subspaces S1, . . . , Sk. Under a uniform distribution assumption, Park
et al. (2014) then provide an efficient algorithm to recover the underlying subspaces. See also
Soltanolkotabi et al. (2014) for another subspace clustering algorithm with recovery guarantees.

To relate the problem of subspace clustering to our model, let us start with the simple case
where P (X) is a distribution in Pk and the associated components V1 ∪ V2 ∪ . . . ∪ Vk are all linear
subspaces. By definition a sample drawn from P will result in an IID randomly generated sample
as required in the semi-random subspace clustering model. To apply a Pk–ERM algorithm, we
only need to recover the irreducible components V1, . . . , Vk, which is exactly the task of a subspace
clustering algorithm. Thus, subspace clustering is in fact a particular case of our setting, where one
assumes that the algebraic sets are linear subspaces. A subspace clustering algorithm simultaneously
addresses the two practical issues mentioned above by directly factoring P (X) as required by our
SSL algorithm.

Although subspace clustering is applied to linear subspaces, it may be readily applied to al-
gebraic sets via the standard approach of expanding the space of features with all monomials of
the degree of the polynomials underlying the algebraic sets (Vidal et al., 2005). For example
the algebraic set corresponding to a circle x2

1 + x2
2 − 1 = 0 is a linear subspace in the feature

space
[
x1, x2, x1x2, x

2
1, x

2
2, 1
]
. In the same way, a union of algebraic sets will correspond to a

union of linear subspaces in the expanded feature space. The task of decomposing the unlabeled
data into algebraic sets is thus reduced to subspace clustering in the new feature space of dimen-
sion md where d is the total degree of generating polynomials. Specifically, for every d we let
Ωd := {ω ∈ Nm :

∑
ωi ≤ d} and let φd(x) ∈ RΩd be the embedding into monomial space, i.e.

(φd(x))ω :=
∏
xωi
i . Then, via the embedding φd, the task of finding algebraic sets V1, . . . , Vk with

generators of total degree d is reduced to the task of subspace clustering in dimension md.
The above monomial expansion seems to require exponential time and space. However, a stan-

dard kernel trick can be employed, resulting in runtime polynomial in d. This follows from the fact
that subspace clustering algorithms such as Soltanolkotabi et al. (2014) rely only on dot products
and can thus be “kernelized” avoiding the need for explicit calculation in monomial space..

To summarize: the practical version of our SSL algorithm is to first run a kernelized subspace
clustering algorithm on the unlabeled points. This will find the irreducible components of P (X).
Next, we just need to assign the labeled points to these components and run the Pk–ERM. This
method can always be used, but we note that it will provably recover the underlying components
only if P (X) satisfies the conditions in the corresponding subspace clustering algorithms.

12
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7. Discussion

We present a learning setting where classes correspond to algebraic sets, and SSL is arbitrarily better
than SL.

As mentioned earlier, one of the main approaches to analyzing SSL is via the notion of com-
patibility. In Balcan and Blum (2010) a notion of compatibility χ : H × X → {0, 1} is defined
as a function from a hypothesis and a sample point to {0, 1}. Denoting the expected compatibility
by χ(f, P ) = Ex∼P [χ(f, x)], the unlabeled error rate of f with P is defined as 1 − χ(f, P ). As
an example, a classifier f may have high compatibility with P if its separator passes through low
density regions of P .

Though in our model we do not consider a compatibility notion, our results can be cast to
this model by considering a degenerate compatibility notion χ(f, x) = 1. Within this framework,
our work demonstrates a setting where the learning rate of the SSL is arbitrarily better than that
of any SL learner. Balcan and Blum (2010) studied two types of bounds in the context of SSL.
The first is uniform convergence bounds which rely on the convergence of the empirical risk to
the generalization error uniformly over all concepts that are compatible. The second is ε–cover
bounds which rely on replacing the original class with a smaller class that can ε–approximate any
compatible concept (in expectation, w.r.t the marginal distribution). Our analysi relies on an ε–cover
bound (as demonstrated, for the given marginal distribution: every concept is equivalent to some
concept in the smaller class HP ).

Another interesting feature of our result is its implication to VC bounded classes. Our result
demonstrates a class with unbounded VC dimension for which the benefit can be arbitrarily large.
It is known that for VC bounded classes the benefit cannot be arbitrarily large. Specifically, for VC
bounded classes Darnstädt et al. (2013) showed that the benefit can be at most order ofO(VC–dim).
Whether this bound is tight was left as an unresolved question.

Our construction in Theorem 11 shows that for a fixed ε > 0, say, ε0 = 1
8 , we can choose

a concept from a class of VC-dimension N , for which any SL learner needs to observe at least
O(
√
N) examples in order to achieve ε0 accuracy. In contrast the SSL learner needs to observe

O(1) examples. This means that we can have benefit of at least Ω(
√

VC-dim), for fixed ε0. Previous
construction by Darnstadt et al. relied on Borell-Cantelli Lemma and it is not immediate to relate
the result to a finite VC class. It would be interesting to further close the asymptotic gap for finite
VC classes.

8. Synthetic Experiment

In the experiments below we employ the subspace clustering method of Soltanolkotabi et al. (2014).
We consider a toy example involving two algebraic sets: a torus and a cylinder (see Figure 3(a)).
Both sets are defined by polynomial equations of total degree 4. Subspace clustering in monomial
space was used to divide the labeled data into two subspaces and extract a basis for vanishing
polynomials of total degree d.

In the case of P ∈ P2 there is a particularly simple method to learn HP : Let V1 = {x :
p1(x), . . . , p`1(x) = 0} and V2 = {x : q1(x), . . . , q`2(x) = 0} be the algebraic support. Then the
two classes are separable in the feature space:

x→
(
p2

1(x), . . . p2
`1(x), q2

1(x), . . . q2
`2(x)

)
(7)
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Figure 3: The Subspace clustering performed by the Robust SSC procedure, with different noise
levels. Figure 3(a) illustrates the two real components from which the data was generated.

Indeed by taking ∑
q2
i (x)−

∑
p2
i (x) (8)

for any x ∈ V1 we have that all pi’s are zero, and there exists a j such that qj(x) 6= 0. Hence, the
overall sum in Equation 8 will be positive on V1 and negative on V−1.

More generally, the classHP can be learned by learning a linear classifier over the feature space
in Equation 7. Thus, after extracting the vanishing polynomials, we embedded as suggested in the
corresponding feature space and performed linear classification.

Our supervised learner for comparison was chosen to be an SVM with polynomial kernels up
to degree 8 (as it will have the same expressive power as our SSL learner). To verify the robustness
to noise of our approach, we also tested the effect of adding noise. The learning curve is shown in
Figure 4. It can be seen that our SSL algorithm indeed learns with fewer samples, in agreement with
Theorem 5. In the high noise case (σ2 = 0.1) the subspace clustering algorithm often fails, and as
a result the gap in sample complexity is smaller.

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful
comments. This work was supported by the Eric and Wendy Schmidt Fund for Strategic Inno-
vation, a Google Research Award, the Blavatnik Computer Science Research Fund, and the Intel
Collaborative Research Institute for Computational Intelligence (ICRI-CI).

14



EFFECTIVE SEMI-SUPERVISED LEARNING ON MANIFOLDS

20 40 60 80 100 120 140
60

65

70

75

80

85

90

95

100

105

labeled sample size

A
cc

ur
ac

y

 

 

σ2=0

σ2= 0.01

σ2=0.1

Figure 4: Supervised Learner vs. Semi Supervised Learner. Solid lines are SSL, dashed lines are
SL. We measure accuracy as a function of labeled sample size. The SSL algorithm was
based on subspace clustering, as described in Section 8.
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Appendix A. Preliminaries

In this section we develop the main properties of algebraic sets that will be needed in order to
extract lower bounds. We first recall the definitions of irreducible algebraic sets and irreducible
components:

Definition 12 (irreducible algebraic set) An algebraic set V is said to be irreducible if for any
decomposition V = U ∪M where U and M are also algebraic sets, we must have U = V or
V = M .
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Definition 13 (irreducible component) An irreducible algebraic set V is called an irreducible
component of an algebraic set U , if U = V or U = V ∪ M where M is an algebraic set dis-
tinct from U .

A.1. Dimension of Algebraic Sets

We begin by defining the dimension of an algebraic set which is roughly the manifold’s dimension:

Definition 14 (Dimension of the tangent space) For an algebraic set V ⊆ Rm and p ∈ V :

d = rankp(V ) (9)

is the maximal number of polynomials f1, . . . , fd such that f1, . . . , fd vanish on V (i.e for all v ∈ V
and i = 1 . . . , d we have fi(v) = 0) such that the Jacobian matrix

(
∂fi(p)
∂xj

)
i,j

has rank d. The

number m− rankp(V ) is called the dimension of the tangent space at at a point p of V .

Definition 15 (Dimension of an algebraic set) The dimension of an irreducible algebraic set V is

dimV = m−max{rankp(V ) : p ∈ V }.

The dimension of an algebraic set is the maximum dimension of its irreducible components.

In general, for any differentiable function f : Rm → Rn withm ≥ n, at any value r, if f(x) = r and
the Jacobian matrix of f has full rank, then locally at x the preimage f−1(r) is am−n dimensional
manifold. Recall that V is the preimage of 0 under a mapping [f1, . . . , fd] of polynomials, and it
is a manifold in Rm. At any non-singular point, the dimension of the tangent plane at point p of V
coincide with the dimension of V , if V is irreducible.

A.2. Real Algebraic Sets and Their Structure

The following facts follow from Lemmas 6,7,8 in Whitney (1957) and the correctness of these
statements in the complex case (see for example Šafarevič (1994)).

Fact A.1 If V is an irreducible algebraic set and U is a proper sub algebraic set (i.e. U is an
algebraic set and U ( V ) then U has a strictly lower dimension.

Fact A.2 Every strictly descending chain of algebraic sets is finite i.e. if

U1 ⊇ U2 ⊇ U3 ⊇ . . . .

Then for some m we have
Um = Um+1 = Um+2 = . . . .

Also the following fact can be found for example in Šafarevič (1994)

Fact A.3 If U and V are two algebraic sets then also U ∪ V is an algebraic set and, U ∩ V is also
an algebraic set. In fact, even infinite intersection of algebraic sets results in an algebraic set
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Corollary 16 Let P be a distribution over Rm. Then there exists a unique minimal (with respect to
the inclusion ordering) algebraic set V such that P (V ) = 1.

Proof Start with V1 = Rm. Assume there is an algebraic set V2 ( V1 such that P (V2) = 1. Define
inductively for each m an algebraic set Vm+1 ( Vm such that P (Vm+1) = 1. Since every such
chain needs to be finite (by Fact A.2 above), we must end with some m such that P (Vm) = 1 and
for every proper sub algebraic set P (Vm+1) 6= 1.

As for uniqueness, let U and V be two minimal algebraic sets with P (U) = P (V ) = 1, then
P (U ∩ V ) = 1. But U ∩ V is also an algebraic set. By minimality U ∩ V cannot be a proper subset
of V and we get U = V .

Definition 17 (Algebraic support) Let P be a probability measure, and V the minimal algebraic
set that supports P . We call V the algebraic support of P .

Definition 18 (Non degenerate distributions) Let P be a probability measure, and V its alge-
braic support. P is said to be non-degenerate if for every algebraic set U , if P (U) > 0 then
dimU ≥ dimV .

Another interesting corollary of Fact A.2 is that we can always decompose an algebraic set into
finite irreducible components. Indeed if V is not irreducible we can write it as V = V1 ∪M1. If
M1 is irreducible, we are finished, if not then we can decompose M1 = V2 ∪M2. Again we get a
strictly decreasing chain V ⊇ M ⊇ M1 ⊇ M2 ⊇ . . . since this process must be finite we can get a
finite decomposition. We will see that semi-supervised learnability of an algebraic set is a function
of the number of irreducible components of the algebraic support of P .

Theorem 19 Let P be a non degenerate distribution with algebraic support V = ∪ki=1Vi, where
Vi are the irreducible components of V . then P ∈ Pk.

Proof LetH be an algebraic set with P (H) > 0 since P (V ) = 1 we can assume thatH = H∩V =
∪ki=1H ∩ Vi := ∪ki=1Hi For each i whenever dim(Hi) < dim(Vi), since dim(Vi) < dim(V ) we
have that P (Hi) = 0. Let J ⊆ [1, . . . , k] be the indices of all Hj’s such that dim(Hj) = dim(Vj).
But since Vj are irreducbile, if dim(Hj) = dim(Vj) thenHj = Vj . It follows that except for maybe
a null set H = ∪j∈JVj .

Appendix B. Proof for Theorem 11

We begin along the lines of Section 5.2. The first objective is to construct a function F that
“chooses” our support.

B.1. Defining F

In this section we prove the following Lemma:
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Lemma 20 For every N and m there exists a set B ⊂ RN×m of the form:

B = B1 ×B2 × . . .×BN ⊆ Rm × Rm . . .× Rm,

a family of distinct pairs irreducible algebraic sets {V ω
1 , V

ω
−1}ω∈RN and a family of functions

{Fy}y⊆{−1,1}N , Fy : B → RN such that:

1. For every ω:
F−1
y (ω) =

(
V ω
y1 × V

ω
y2 × . . .× V

ω
yN

)
∩ B.

2. For every z(N) ∈ B:

min
y
JFy(z(N)) ≥ 1

2
max
y

JFy(z(N)).

Further V ω
1 ∈ GN for every ω.

We will need the following Lemma whose proof is somewhat technical and we defer to Section B.7.

Lemma 21 For every α ∈ Rk and β ∈ R with β, αi 6= 0 the set of real zeros of the following
polynomial is an irreducible algebraic set:

p(t1, t2) = βt2 −
k∑
i=1

αit
i
1.

Proof [proof of Lemma 20] We define the function Fy (z(N)) that is parametrized by a labeling
vector. First, we define a matrixM(z(N)) ∈MN×N such that(

M(z(N))
)
i,j

= zj−1
i,1 ,

where zi,1 is the first coordinate of sample number i. Next we define a vector v(z(N),y) that is
dependent on both sample and labels.

v(z(N),y) =

 y1z1,2

. . .
ynzn,2


where as before zi,2 is the second coordinate of the i-th example. Finally, we let Fy (z(N)) ∈ RN
be the solution of the linear equation:

M(z(N))α = −v(z(N),y)

Namely,
Fy (z(N)) = −M−1(z(N))v(z(N),y) (10)

For every ω = ω1, . . . , ωN define for e ∈ {−1, 1}

V ω
e = {x ∈ Rm : ex2 −

N∑
k=1

ωkx1
k−1 = 0}
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We begin by constructing an open set A such that:

F−1
y (ω) ∩ A = V ω

y1 × V
ω
y2 , . . . , V

ω
yn−1
× V ω

yn ∩ A. (11)

We then refine it to have that 2 holds too.
By Lemma 21 the set U = {ω : V ω

e is an irreducible algebraic set} is an open set. Further,
since Fy are continuous we have that F−1

y (U) is also open for every y. Also note that for every
z(N) such that zi,1 6= zj,1 for all i 6= j, we have that M(z(N)) is non-singular5. Therefor if we let

A = ∩yF−1(U) ∩ {z(N) : M(z(N)) is non singular}

then A is an open set.
Next, by definition of F we have that Equation 11 holds. Indeed, for any x(N) in the mentioned

product, we know that ω is a solution to the linear equation defined byM and v, hence Fy(x(N)) =
ω, similarly if Fy(x(N)) = ω we have the reverse implication.

Next, we turn to define a set B in the domain of Fy for which item 2 will hold if we restrict Fy

to B. Our claim will follow from the following equation whose proof is somewhat technical and is
deferred to Section B.7

JFy (z(N)) =
1

detM(z(N))

N∏
k=1

√√√√√
 N∑
j=1

jωjzk,2j−1

2

+ 1. (12)

By the adjugate formula we have that: ω = 1
detM(z(N))

adjM(z(N))v[z(N),y] (where adjM is the

adjugate matrix of M ). The main observation is that JFy(z(N)) is continuous in any environment
where detM(z(N)) 6= 0, and that if zi,2 = 0 for all i we have

JFy1
(z(N))

JFy2
(z(N))

= 1

Finally, by continuity we can pick small balls around some zi,2 6= 0 but close to 0, contained in A
such that for every y1 and y2:

JFy1
(z(N))

JFy2
(z(N))

≥ 1

2
.

Since B ⊆ A we have B ∩ A = B and by Equation 11:

F−1
y (ω) ∩ B = V ω

y1 × V
ω
y2 , . . . , V

ω
yn−1
× V ω

yn ∩ B.

Finally note that since for every z(N) ∈ B we have zi,2 6= 0 we must have that for ω = Fy(z(N))
implies, V ω

−1 6= V ω
1 (Because V ω

1 = V ω
−1 implies by definition that for every x ∈ V ω

1 , x2 = 0).
Hence, as promised V ω

1 and V ω
−1 are distinct.

Throughout the next sections we fixN , the mappings Fy, the set B and the family of irreducible
sets {(V ω

1 , V
ω
−1)}ω∈RN .

5. Note that M(z(N)) is a Vandermonde matrix, hence unless two coordinates are equal it will be non-singular
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B.2. Defining a random process with lower bound on expected error

First, given a fixed sample z(N) = z1, . . . ,zN and labeling y let us define the following ran-
dom process: we randomly pick n indices t1, . . . , tn and consider the sample set of size n − 1
Sn−1(z(N), t, ŷ) = (zt2 , yt2), (zt3 , yt3), . . . (ztn , ytn) and a test point (zt1 , yt1). We let:

`n(z(N);y) = Et

(
χA

(
Sn−1(z(N), t, ŷ), (zt1 , ŷ1)

))
.

In this section we prove the following result:

Lemma 22 Fix N and let B, {V ω
1 , V

ω
−1}ω∈RN , {Fy}y∈{−1,1}N be as in Lemma 20.

For every A and n < N there are ω and y such that: If we consider a random process where
we randomly pick a sample (z1, . . . ,zN ) according to the distribution PFy(·|ω) then

E
[
`n(z(N),y)

]
≥ 1

4

Proof The proof is via a probabilistic argument, we begin by lower bounding the expectation w.r.t
a distribution that picks labeling randomly and uniformly. We claim that

EyEz(N)∼PFy

[
`n(z(N),y)

]
≥ 1

4
(13)

Indeed, fix z(N), t and y2, . . . , yn.

1

2

∑
y1∈{−1,1}

(
χA(Sn−1, (zt1 , yt1))JFŷ(z(N))

)
≥ 1

2
min
y1

JFŷ(z(N)) ≥ (14)

1

4

(
min
y1

JFŷ(z(N)) + min
y1

JFŷ(z(N))

)
≥ 1

4

(
1

2
JF1,y2,...,yn(z(N)) +

1

2
JF−1,y2,...,yn(z(N))

)
=

1

4
Ey1

(
JFŷ(z(N))

)
.

Since this holds for every z(N),t and y2, . . . , yn, by integrating on both sides, the statement follows
from the definition of PFy .

It follows that for some fixed sequence of labeling:

Ez(N)∼PFy

[
`n(z(N),y)

]
≥ 1

4

The statement in now an immediate corollary of Equation 5. Indeed we have that there is
ω ∈ RN such that:

Ez(N)∼PFy (·|ω)

[
`n(z(N),y)

]
≥ 1

4

Let us return to the random process depicted in Lemma 22: We pick representatives zi from each
ball Bi, then we randomly pick n representatives and measure the expected error when the learner
observes the last n − 1 representatives and is tested on the first representative. We’ve produced a
lower bound on the expected error when samples are drawn according to this process. We now relate
this expected error to the expected error when sample is picked IID on the same support, which will
conclude the proof.
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B.3. Lower bound for IID sample

So far we have shown that under a certain distribution on the sample, which is not necessarily IID,
we can lower bound the expected error, we now wish to relate this to a process where we pick the
sample IID. This section is dedicated to proof of the following statement:

Theorem 23 For every supervised algorithm A and N , there is a non-degenerate distribution
P (·|V ω

1 ∪V ω
−1) such that if we randomly pick an IID sample (z1, . . . , zn) according to P (·|V ω

1 ∪V ω
−1)

and produce a sample Sn−1 = (x1, y1), . . . , (xn, yn) where yi = 1 iff xi ∈ V ω
1 then:

E
Sn−1∼P (·|V ω

1 ∪V ω
−1)

E
(x,y)∼P (·|V ω

1 ∪V ω
−1)

[χA(Sn−1, (x, y))] >
1

4

(
1− n2 − n

N

)
The statement will follow immediately from Lemma 22 and the following claim:

Lemma 24 Let P be a distribution over labeled samples (x, y) with the following property:

1. P is supported on the union of N disjoint sets B1, . . . , BN (i.e. Bi ∩Bj = ∅ if i 6= j)

2. For each set Bi we have that P (y = 1|{xi ∈ Bi}) = 1 or P (y = −1|{xi ∈ Bi}) = 1.

3. We have P ({x ∈ B1}) = P ({x ∈ B2}) = . . . = P ({x ∈ BN}) = 1
N .

Let z(N) be a random variable such that zi ∈ Bi is distributed according to P (·|Bi). Let t be
a random variable of a subset of n elements out of N without repetition (drawn uniformly). Let
Sn−1(z(N), t) = ((zt2 , y2), . . . , (ztn , yn)) where yi = 1 iff P (y = 1|Bti) = 1. If

E
z(N)

[
`n(z(N),y)

]
> a

then when we pick n IID elements according to P we have:

E
Sn−1∼P

E
(x,y)∼P

[χA(Sn−1, (x, y))] >

(
1− n2 − n

2N

)
a

Proof Consider the event E of picking a IID sample points ((z1, y1), . . . , (zn, yn)) according to
P and having each zi belong to a set Bki such that ki 6= kj for every i 6= j. It is easy to see that
choosing a sample set according to the distribution P (·|E) is exactly the random process described
in the statement. Now for any positive random variable we have Ex∼P (X) ≥ P (E) ·Ex∼P (·|E)(X)

so it is enough to show that 1 − P (E) ≤ n2−n
2N . Now since the sets have uniform probability, we

can bound the probability that two points come from the same set as follows: pick n IID points out
of N points, and let Xi,j be a random variable such that Xi,j = 1 if ni = nj . The expected number

of repetitions when drawing n points out of N points is E
[∑

i<j Xi,j

]
= n2−n

2N . By Markov’s
inequality:

P (
∑
i<j

Xi,j ≥ 1) ≤ n2 − n
2N

.

23



GLOBERSON LIVNI SHALEV-SHWARTZ

Proof [proof of Theorem 23] For each A and N we pick V ω
1 , V ω

−1 and y as in Lemma 22 and draw
points according to the distribution PFy(·|ω). Now we consider a distribution P (·|V ω

1 ∪V ω
−1) where

we randomly pick a ball Bi and then pick points zi according to PFy(·|ω) conditioned on zi ∈ Bi.
Clearly P (·|V ω

1 ∪ V ω
−1) has the properties described in Lemma 24, and the random process that

is induced by gives rise to PFy(·|ω) which is lower bounded by 1
4 .

Finally, recall that P (·|ω) is supported on B1 ∩ V ω
y1
× B2 ∩ V ω

y2
× . . . × BN ∩ V ω

yN
and is

comparable to the N · m − N Hausdorff measure. This in turn means that P (·|V ω
1 ∪ V ω

−1) is
comparable to the m− 1 Hausdorff measure and no manifold of strictly lower dimension will have
positive measure, hence it is non degenerate.

B.4. Proof of Theorem 11

We are now ready to complete the proof of Theorem 11. By observing that for every ω we have
that V ω

1 ∈ GN and that P (·|V ω
1 ∪ V ω

−1) is supported on two irreducible algebraic sets and is non
degenerate hence , by Theorem 19 in P2, the statement is a direct consequence of Theorem 23.

B.5. Sample Complexity Lower Bounds

We now translate Theorem 11 to lower bounds on sample complexity:

Theorem 25 For every constant C and a supervised algorithm A there is a distribution P ∈ P2,
N and a hypothesis hV h ∈ GN such that for ε < 1

8 and δ < 1
9

m(A,GN , PhV , ε, δ, ) > C

Proof Pick N such that (1 − 1√
N

)1
4 >

2
9 and 4

√
N > C. For every learner A we can construct a

distribution P ∈ P2 and a hypothesis V ∈ GN such that, with n < 4
√
N examples we have

E [χA(Sn, (x, y)] > (1− 1√
N

)
1

4
>

2

9

But if with probability 8
9 we have error smaller than 1

8 the expected error will be smaller than

E [χA] <
1

9
+

1

9
<

2

9

B.6. Final comments and proof of main result

Finally, we relate our theorems to the main results. Corrolary 25 demonstrates that there is a dis-
tribution in P ∈ P2 where the sample complexity of a supervised learner can be arbitrarily large,
in particular larger than the bounds in Equation 3. As a semi-supervised learner B we choose any
P2-ERM algorithm. B is then guaranteed by Theorem 9 and the fact that P ∈ P2 to achieve the
bounds in Equation 2. This proves Theorem 5. We mention that the lower bound holds in particular
for the agnostic case, and upper bounds for the agnostic case are derived in a similar manner as in
the realizable case, thus we can also demonstrate that a P2-ERM algorithm benefits agnostically.
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B.7. Leftover proofs

B.7.1. PROOF OF LEMMA 21

Let V = {x : p(x1, x2) = 0}. Suppose we can write V = V1 ∪ V2. Note that there are in-
finitely many points in V (since for every x1 there is some x2 such that p(x1, x2) = 0). wlog we
assume there are infinitely many points in V1. Now, suppose V1 is the set of common roots of the
polynomials p1(t1, t2), . . . , pk(t1, t2). For every i ≤ k we have that for infinitely many points:

pi(x1, f(x1)) = 0,

where f(T ) = 1
β

∑k
i=1 αit

i. Now pi(t, f(t)) is a univariate polynomial with infinitely many zeroes,
hence it must be identically zero and we have that for every (x1, x2) such that f(x1) = x2 we have
pi(x1, x2) = pi(x1, f(x1)) = 0. In other words, the set V is contained in the common roots of
pi(t1, t2) and V ⊆ V1 hence V = V1.

B.7.2. PROOF OF EQUATION 12

We now turn to computing JF . recall that if F (z1, . . . ,zN ) = F1 . . . , FN then we have by defini-
tion:

zi,2 =

N∑
k=1

Fk(z
(n))(zi,1)k

For every i and j we have:

δi,j =

N∑
k=1

∂Fk
∂zj,2

(zi,1)k (15)

and by applying the chain rule we also have

N∑
k=1

∂Fk(z
(n))

∂zj,1
(zi,1)k = −δi,j

N∑
k=1

kFk(z
(n))∂zj,1(zi,1)k−1 (16)

where δi,j =

{
1 i = j

0 i 6= j
. Taken together we have that if DF is a the Jacobian matrix of F , hence

its columns are∇F1 . . .∇Fn and M(z(n)) is a matrix such that (M(z(n))i,k = (zi,1)k then

MDF = W

where W is a matrix whose i-th column is:

wi = e2i − aie(2i−1)+1

where ai =
∑N

k=1 kFk(z
(n))(zi,1)k−1 and {ek}Nk=1 is the standard basis of RN . Next,√

det(MDFDF>M>) =
√

det(M) det(DFDF>) det(M) = det(M)JF.
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On the other hand:

N∏
k=1

√√√√( N∑
k=1

kFk(z(n))zk,2k−1

)2

+ 1. =
√

det(W ) =
√

det(MDFDF>M>)
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