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Abstract
We give the first dimension-efficient algorithms for learning Rectified Linear Units (ReLUs), which
are functions of the form x 7→ max(0, w · x) with w ∈ Sn−1. Our algorithm works in the
challenging Reliable Agnostic learning model of Kalai et al. (2012) where the learner is given
access to a distribution D on labeled examples but the labeling may be arbitrary. We construct
a hypothesis that simultaneously minimizes the false-positive rate and the loss on inputs given
positive labels by D, for any convex, bounded, and Lipschitz loss function.

The algorithm runs in polynomial-time (in n) with respect to any distribution on Sn−1 (the unit
sphere in n dimensions) and for any error parameter ε = Ω(1/ log n) (this yields a PTAS for a
question raised by F. Bach on the complexity of maximizing ReLUs). These results are in contrast
to known efficient algorithms for reliably learning linear threshold functions, where εmust be Ω(1)
and strong assumptions are required on the marginal distribution.

We can compose our results to obtain the first set of efficient algorithms for learning constant-
depth networks of ReLU with fixed polynomial-dependence in the dimension. For depth-2 net-
works of sigmoids, we obtain the first algorithms that have a polynomial dependency in all param-
eters.

Our techniques combine kernel methods and polynomial approximations with a “dual-loss”
approach to convex programming. As a byproduct we obtain a number of applications including the
first set of efficient algorithms for “convex piecewise-linear fitting” and the first efficient algorithms
for noisy polynomial reconstruction of low-weight polynomials on the unit sphere.
Keywords: ReLU, agnostic learning, reliable, kernel methods

1. Introduction

Let X = Sn−1, the set of all unit vectors in Rn, and let Y = [0, 1]. We define a ReLU (Rectified
Linear Unit) to be a function f(x) : X → Y equal to max(0, w · x) where w ∈ Sn−1 is a
fixed element of Sn−1 and w · x denotes the standard inner product.1 The ReLU is a key building
block in the area of deep nets, where the goal is to construct a network or circuit of ReLUs that
“fits” a training set with respect to various measures of loss. Recently, the ReLU has become the

1Throughout this manuscript, bold lower case variables denote vectors. Unbolded lower case variables denote real
numbers.
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“activation function of choice” for practitioners in deep nets, as it leads to striking performance in
various applications (LeCun et al., 2015).

There has been much recent work on understanding the computational complexity of deep neu-
ral networks, e.g., Livni et al. (2014); Sedghi and Anandkumar (2014); Janzamin et al. (2015);
Zhang et al. (2015, 2016a,b), but some of the simplest issues regarding computational complexity
remain open.

One point of this paper is to note that the computational complexity of learning even a single
ReLU is still open! Our main result is that, without making any distributional assumptions, a ReLU
can be learned in fixed polynomial-time in the dimension, regardless of the error parameter ε. The
main drawback of our result for learning a ReLU is that in terms of the accuracy parameter, we only
obtain a PTAS, as the dependence on ε is 2O(1/ε). In Section 5, we give a simple reduction showing
that learning a single ReLU with respect to distributions on {0, 1}n is as hard as learning sparse
parities with noise. Subsequent to the posting of our work, Bartlett et al. (2017) observed that this
reduction also rules out polynomial-time algorithms for agnostically learning a ReLU with respect
to distributions on Sn−1 when ε = 1/poly(n) by scaling down from the Boolean cube to the unit
sphere. The exact range of ε for which a polynomial-time algorithm is achievable remains open.

In more detail, we provide the first set of efficient algorithms for learning a ReLU. The al-
gorithms succeed with respect to any distribution D on Sn−1, tolerate arbitrary labelings (equiva-
lently viewed as adversarial noise, and often referred to as the “non-realizable” setting), and run
in polynomial-time for any error parameter ε = Ω(1/ log n). Further, our algorithms achieve re-
liability, a natural notion for ReLU learning that we describe in Section 1.1. This is in contrast
to the problem of learning threshold functions, i.e., functions of the form sign(w · x), where only
computational hardness results are known (unless stronger assumptions are made on the problem).

To put our results in further context, recall the following two fundamental machine-learning
problems:

Problem 1 (Ordinary Least Squares Regression) LetD be a distribution on Sn−1× [0, 1]. Given
i.i.d. examples drawn from D, find w ∈ Sn−1 that minimizes E(x,y)∼D[(w · x− y)2].

Problem 2 (Agnostically Learning a Threshold Function) Let D be a distribution on Sn−1 ×
{−1, 1}. Given i.i.d. examples drawn from D, find w ∈ Sn−1 that approximately minimizes
Pr(x,y)∼D[sign(w · x) 6= y].

The term agnostic above refers to the fact that the labeling on {−1, 1} may be arbitrary. In
this work, we relax the notion of success to improper learning, where the learner may output any
polynomial-time computable hypothesis achieving a loss that is within ε of the optimal solution
from the concept class.

Taken together, these two problems are at the core of many important techniques from modern
Machine Learning and Statistics. It is well-known how to efficiently solve ordinary least squares and
other variants of linear regression; we know of multiple polynomial-time solutions, all extensively
used in practice (Rigollet, 2015). In contrast, Problem 2 is thought to be computationally intractable
due to the many existing hardness results in the literature (Daniely, 2016; Kalai et al., 2008; Klivans
and Sherstov, 2009; Feldman et al., 2009).

The ReLU is a hybrid function that lies “in-between” a linear function and a threshold function
in the following sense: restricted to inputs x such that w · x > 0, the ReLU is linear, and for inputs
x such that w · x ≤ 0, the ReLU thresholds the value w · x and simply outputs zero. In this sense,
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we could view the ReLU as a “one-sided” threshold function. Since learning a ReLU has aspects
of both linear regression and threshold learning, it is not straightforward to identify a notion of loss
that captures both of these aspects.

1.1. Reliably Learning Real-Valued Functions

We introduce a natural model for learning ReLUs inspired by the Reliable Agnostic learning model
that was introduced by Kalai et al. (2012) in the context of Boolean functions. The goal will be to
minimize both the false positive rate and a loss function (for example, square-loss) on points the
distribution labels non-zero. In this work, we give efficient algorithms for learning a ReLU over the
unit sphere with respect to any loss function that satisfies mild properties (convexity, monotonicity,
boundedness, and Lipschitz-ness).

The Reliable Agnostic model is motivated by the Neyman-Pearson criteria, and is intended to
capture settings in which false positive errors are more costly than false negative errors (e.g., spam
detection) or vice versa. We observe that the asymmetric manner in which the Reliable Agnostic
model (Kalai et al., 2012) treats different types of errors naturally corresponds to the one-sided
nature of a ReLU. In particular, there may be settings in which mistakenly predicting a positive
value instead of zero carries a high cost.

As a concrete example, imagine that inputs are comments on an online news article. Suppose
that each comment is assigned a numerical score of quality or appropriateness, where the true scor-
ing function is reasonably modeled by a linear function of the features of the comment. The news-
paper wants to implement an automated system in which comments are either a) rejected outright
if the score is below a threshold or b) posted in order of score, possibly after undergoing human
review.2 In this situation, it may be costlier to post (or subject to human review) a low-quality or in-
appropriate comment than it is to automatically reject a comment that is slightly above the threshold
for posting.

More formally, for a function h and distribution D over Rn × [0, 1] define the following losses

L=0(h;D) = Pr
(x,y)∼D

[h(x) 6= 0 ∧ y = 0]

L>0(h;D) = E
(x,y)∼D

[`(h(x), y) · I(y > 0)].

Here, ` is a desired loss function, and I(y > 0) equals 0 if y ≤ 0 and 1 otherwise. These two
quantities are respectively the false-positive rate and the expected loss (under `) on examples for
which the true label y is positive.3

Let C be a class of functions mapping Sn−1 to [0, 1] (e.g., C may be the class of all ReLUs). Let
C+ = {c ∈ C | L=0(c;D) = 0}. We say C is reliably learnable if there exists a learning algorithm
A that (with high probability) outputs a hypothesis that 1) has at most ε false positive rate and 2)
on points with positive labels, has expected loss that is within ε of the best c from C+. That is,
the hypothesis must be both reliable and competitive with the optimal classifier from the class C+

(agnostic).
2For example, The New York Times recently announced that they are moving to a hybrid comment moderation

system that combines human and automated review (Etim, 2016).
3We restrict Y = [0, 1] as it is a natural setting for the case of ReLUs. However, our results can easily be extended

to larger ranges.
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1.2. Statements of Our Main Results

We can now state our main theorem giving a poly-time algorithm (in n, the dimension) for reliably
learning any ReLU.

All of our results hold for loss functions ` that satisfy convexity, monotonicity, boundedness, and
Lipschitz-ness. For brevity, we avoid making these requirements explicit in the theorem statements
of this introduction, and we omit the dependence of the runtime on the failure probability δ of
the algorithm or on the boundedness and Lipschitz parameters of the loss function. All theorem
statements in subsequent sections do state explicitly to what class of loss functions they apply, as
well as the runtime dependence on these additional parameters.

Theorem 3 Let C = {x 7→ max(0,w · x) : ‖w‖2 ≤ 1} be the class of ReLUs with weight vectors
w satisfying ‖w‖2 ≤ 1. There exists a learning algorithm A that reliably learns C in time 2O(1/ε) ·
nO(1).

Remark 4 We can obtain the same complexity bounds for learning ReLUs in the standard agnostic
model with respect to the same class of loss functions. This yields a PTAS (polynomial-time approx-
imation scheme) for an optimization problem regarding ReLUs posed by Bach (2014). See Section
3.4 for details.

For the problem of learning threshold functions, all known polynomial-time algorithms require
strong assumptions on the marginal distribution (e.g., Gaussian (Kalai et al., 2008) or large-margin
(Shalev-Shwartz et al., 2011)). In contrast, for ReLUs, we succeed with respect to any distribution
on Sn−1. We leave open the problem of improving the dependence of Theorem 3 on ε. We note
that for the problem of learning threshold functions—even assuming the marginal distribution is
Gaussian—the run-time complexity must be at least nΩ(log 1/ε) under the widely believed assump-
tion that learning sparse parities is hard (Klivans and Kothari, 2014). Further, the best known algo-
rithms for agnostically learning threshold functions with respect to Gaussians run in time nO(1/ε2)

(Kalai et al., 2008; Diakonikolas et al., 2010). Contrast this to our result for learning ReLUs, where
we give polynomial-time algorithms even for ε as small as 1/ log n.

We can compose our results to obtain efficient algorithms for small-depth networks of ReLUs.
For brevity, here we state results only for linear combinations of ReLUs (which are often called
depth-two networks of ReLUs, see, e.g., Eldan and Shamir (2016)). Formal results for other types
of networks can be found in Section 4.

Theorem 5 Let C be a depth-2 network of ReLUs with k hidden units. Then C is reliably learnable
in time 2O(

√
k/ε) · nO(1). 4

The above results are perhaps surprising in light of the hardness result due to Livni et al. (2014)
who showed that for X = {0, 1}n, learning the difference of even two ReLUs is as hard as learning
a threshold function.

Our results also extend to networks of sigmoids where we achieve polynomial dependence on
all parameters, including ε. Livni et al. (2014) state an incomparable result for the same networks
but with superpolynomial runtime in n (additionally their setting is the Boolean cube instead of the
unit sphere).

4A recent manuscript due to Arora et al. (2016) considers the complexity of training depth-2 networks of ReLUs
with k hidden units on a sample of size m. They give a proper learning algorithm that runs in time 2kmnkpoly(m,n, k).
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Theorem 6 Let C be a depth-2 network of sigmoids with k hidden units. Then C is reliably learnable
in time O(

√
k/ε) · nO(1).

We also obtain results for noisy polynomial reconstruction on the sphere (equivalently, agnosti-
cally learning a polynomial) with respect to a large class of loss functions:

Theorem 7 Let C be the class of polynomials p : Sn−1 → [−1, 1] in n variables such that the total
degree of p is at most d, and the sum of squares of coefficients of p (in the standard monomial basis)
is at mostB. Then C is agnostically learnable under any (unknown) distribution over Sn−1×[−1, 1]
in time poly(n, d,B, 1/ε).

Andoni et al. (2014) were the first to give efficient algorithms for noisy polynomial reconstruc-
tion over non-Boolean domains. In particular, they gave algorithms that succeed on the unit cube
but require an underlying product distribution and do not work in the agnostic setting (they also run
in time exponential in the degree d).

At a high level the proofs of both Theorem 3 and 7 follow the same outline, but we do not know
how to obtain one from the other.

1.3. Applications to Convex Piecewise Regression

We establish a novel connection between learning networks of ReLUs and a broad class of piecewise-
linear regression problems studied in machine learning and optimization. The following problem
was defined by Magnani and Boyd (2009) as a generalization of the well-known MARS (multivari-
ate adaptive regression splines) framework due to Friedman (1991):

Problem 8 (Convex Piecewise-Linear Regression: Max k-Affine) Let C be the class of functions
of the form f(x) = max(w1 · x, . . . ,wk · x) with w1, . . . ,wk ∈ Sn−1 mapping Sn−1 to R. Let D
be an (unknown) distribution on Sn−1× [−1, 1]. Given i.i.d. examples drawn fromD, output h such
that E(x,y)∼D[(h(x)− y)2] ≤ minc∈C E(x,y)∼D[(c(x)− y)2] + ε .

Applying our learnability results for networks of ReLUs, we obtain the first polynomial-time
algorithms for solving the above max-k-affine regression problem and the sum of max-2-affine re-
gression problem when k = O(1). Boyd and Magnani specifically highlight the case of k = O(1)
and provide a variety of heuristics; we obtain the first provably efficient results.

Theorem 9 There is an algorithm A for solving the convex piecewise-linear fitting problem (cf.
Definition 8) in time 2O((k/ε)log k) · nO(1).

We can also use our results for learning networks of ReLUs to learn the so-called “leaky ReLUs”
and “parameterized” ReLUs (PReLUs); see Section 4.3 for details. We obtain these results by
composing various “ReLU gadgets,” i.e., constant-depth networks of ReLUs with a small number
of bounded-weight hidden units.
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1.4. Hardness

We also prove the first hardness results for learning a single ReLU via simple reductions to the prob-
lem of learning sparse parities with noise. These results highlight the difference between learning
Boolean and real-valued functions and justify our focus on (1) input distributions over Sn−1 and (2)
learning problems that are not scale invariant (for example, learning a linear threshold function over
the Boolean domain is equivalent to learning over Sn−1 in the distribution-free setting).

Theorem 10 Let C be the class of ReLUs over the domain X = {0, 1}n. Then any algorithm for
reliably learning C in time g(ε) · poly(n) for any function g will give a polynomial time algorithm
for learning ω(1)-sparse parities with noise (for any ε = O(1)).

Efficiently learning sparse parities (of any superconstant length) with noise is considered one
the most challenging problems in theoretical computer science.

1.5. Our Technical Contribution: Achieving Reliability

We stress that the main technical contribution of this work is achieving reliability by combining
ideas from convex programming and Rademacher complexity with kernel methods. We give a high
level outline of this approach below.

Although kernel methods have been used in prior work to learn halfspaces under distributional
assumptions (Kalai et al. (2008); Shalev-Shwartz et al. (2011)), the applicability of kernel methods
to deep-learning architectures is still not well understood (certainly in contrast to the multitude of
papers on the performance of gradient descent e.g., Kawaguchi (2016)). This is in large part because
of the wide range of kernel functions/feature mappings to choose from (for example, our choice of
the multinomial kernel is crucial to obtain our results on noisy polynomial reconstruction).

As far as we know, a straightforward application of kernel methods with a cleverly chosen
feature map could learn ReLUs in polynomial-time in all the parameters.

Now we describe a high-level overview of our proof. Let C be the class of all ReLUs, and
let S = {(x1, y1), . . . , (xm, ym)} be a training set of examples drawn i.i.d. from some arbitrary
distribution D on Sn−1 × [−1, 1]. To obtain our main result for reliably learning a single ReLU (cf.
Theorem 3), our starting point is Optimization Problem 1 below.

Optimization Problem 1

minimize
w

∑
i:yi>0

`(yi,max(0,w · xi))

subject to max(0,w · xi) = 0 for all i such that yi = 0

‖w‖2 ≤ 1

In Optimization Problem 1, ` denotes the loss function used to define L>0. Using standard gen-
eralization error arguments, it is possible to show that (for reasonable choices of `) if w is an optimal
solution to Optimization Problem 1 when run on a polynomial size sample (x1, y1), . . . , (xm, ym)
drawn from D, then it is sufficient to output the hypothesis h(x) := max(0,w · x). Unfortunately
Optimization Problem 1 is not convex in w, and hence it may not be possible to find an optimal
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solution in polynomial time. Instead, we will give an efficient approximate solution that will suffice
for reliable learning.

Our starting point will be to prove the existence of low-degree, low-weight polynomial approx-
imators for every c ∈ C. The polynomial method has a well established history in computational
learning theory (e.g., Kalai et al. (2008) for agnostically learning halfspaces under distributional
assumptions), and we can apply classical techniques from approximation theory and recent work
due to Sherstov (2012) to construct low-weight, low-degree approximators for any ReLU.

We can then relax Optimization Problem 1 to the space of low-weight polynomials and follow
the approach of Shalev-Shwartz et al. (2011) who used tools from Reproducing Kernel Hilbert
Spaces (RKHS) to learn low-weight polynomials efficiently (Shalev-Shwartz et al. focused on a
relaxation of the 0/1 loss for halfspaces).

The main challenge is to obtain reliability; i.e., to simultaneously minimize the false-positive
rate and the loss dictated by the objective function. To do this we take a “dual-loss” approach and
carefully construct two loss functions that will both be minimized with high probability. Proving
that these losses generalize for a large class of objective functions is subtle and requires “clipping”
in order to apply the appropriate Rademacher bound. Our final output hypothesis is max(0, h)
where h is a “clipped” version of the optimal low-weight, low-degree polynomial on the training
data, appropriately kernelized.

Our learning algorithms for networks of ReLUs are obtained by generalizing a composition
technique due to Zhang et al. (2016a), who considered networks of “smooth” activation functions
computed by power series (we discuss this in greater detail in 1.6 below, and in Section 4). Using a
sequence of “gadget” reductions, we then show that even small-size networks of ReLUs are surpris-
ingly powerful, yielding the first set of provably efficient algorithms for a variety of piecewise-linear
regression problems in high dimension.

1.6. Comparison of Our Algorithms to Shalev-Shwartz et al. (2011) and Zhang et al. (2016a)

While we build on the algorithmic techniques of Shalev-Shwartz et al. (2011) and Zhang et al.
(2016a), our algorithms depart from prior work in the following manner.

Zhang et al. (2016a) give algorithms for learning neural networks via composition of kernels.
More precisely, they observe that it is possible to compose the kernel used in Shalev-Shwartz et al.
(2011) to obtain results for neural networks where the activation functions are exactly computed by
a power series with bounded coefficients. Because the ReLU is not differentiable at 0, and thus not
computed by a power series, Zhang et al. (2016a) prove learning results for “ReLU-like” activations
and not ReLUs. It is not clear whether there is a formal relationship between ReLU-like activations
and actual ReLUs.

In contrast to exact computation by power series, our algorithms use the notion of approximation
by low-weight, low-degree polynomials. This subtle but important difference enables us to use
tools from approximation theory to obtain results for the actual ReLU function, even though it is
not smooth. In addition, for the case of depth-2 networks of sigmoids, this underlies our ability
to obtain learning algorithms with runtime that is polynomial in the number of hidden units (cf.
Corollary 37), rather than exponential as in Zhang et al. (2016a).

Moreover, the kernel used by Shalev-Shwartz et al. (2011) and Zhang et al. (2016a) will prov-
ably give exponentially worse bounds (in the degree) for the results on noisy polynomial reconstruc-
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tion that we obtain (cf. Theorem 7). The technical reason that this statement is true is discussed in
Remark 18.

2. Preliminaries

2.1. Notation

The input space is denoted by X and the output space by Y . In most of this paper, we consider
settings in which X = Sn−1, the unit sphere in Rn,5 and Y is either [0, 1] or [−1, 1]. Let Bn(0, r)
denote the origin centered ball of radius r in Rn.

We denote vectors by boldface lowercase letters such as w or x, and w · x denotes the standard
scalar (dot) product. By ‖w‖ we denote the standard `2 (i.e., Euclidean) norm of the vector w;
when necessary we will use subscripts to indicate other norms. If f : Sn−1 → R is a real-valued
function over the unit sphere, we say that a multivariate polynomial p is an ε-approximation to f if
|p(x)− f(x)| ≤ ε for all x ∈ Sn−1. For a natural number n ∈ N, [n] = {0, 1, . . . , n}.

2.2. Concept Classes

Neural networks are composed of units—each unit has some x ∈ Rn as input (for some value of n,
and x may consist of outputs of other units) and the output is typically a linear function composed
with a non-linear activation function, i.e., the output of a unit is of the form f(w ·x), where w ∈ Rn
and f : R→ R.

Definition 11 (Rectifier) The rectifier (denoted by σrelu) is an activation function defined as σrelu(x) =
max(0, x).

Definition 12 (ReLU(n,W )) For w ∈ Rn, let reluw : Rn → R denote the function reluw(x) =
max(0,w · x). Let W ∈ R+; we denote by ReLU(n,W ) the class of rectified linear units defined
by {reluw | w ∈ Bn(0,W )}.

Our results on reliable learning focus on the class ReLU(n, 1). We define networks of ReLUs
in Section 4, where we also present results on agnostic learning and reliable learning of networks of
ReLUs.

Definition 13 (P(n, d,B)) Let B ∈ R+, n, d ∈ N. We denote by P(n, d,B) the class of n-variate
polynomials p of total degree at most d such that the sum of the squares of the coefficients of p in
the standard monomial basis is bounded by B.

2.3. Learning Models

We consider two learning models in this paper. The first is the standard agnostic learning model (Kearns
et al., 1994; Haussler, 1992) and the second is a generalization of the reliable agnostic learning
framework (Kalai et al., 2012). We describe these models briefly; the reader may refer to the origi-
nal articles for further details.

5All of our algorithms would also work under arbitrary distributions over the unit ball.
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Definition 14 (Agnostic Learning (Kearns et al., 1994; Haussler, 1992)) We say that a concept
class C ⊆ YX is agnostically learnable with respect to loss function ` : Y ′ × Y → R+ (where
Y ⊆ Y ′), if for every δ, ε > 0 there exists a learning algorithm A that for every distribution D over
X × Y satisfies the following. Given access to examples drawn from D, A outputs a hypothesis
h : X → Y ′, such that with probability at least 1− δ,

E(x,y)∼D[`(h(x), y)] ≤ min
c∈C

E(x,y)∼D[`(c(x), y)] + ε. (1)

Furthermore, if X ⊆ Rn and s is a parameter that captures the representation complexity (i.e.,
description length) of concepts c in C, we say that C is efficiently agnostically learnable to error ε if
A can output an h satisfying Equation (1) with running time polynomial in n, s, and 1/δ.6

Next, we formally describe our extension of the reliable agnostic learning model introduced by
Kalai et al. (2012) to the setting of real-valued functions (see Section 1 for motivation). Suppose the
data is distributed according to some distributionD over X × [0, 1]. For Y ′ ⊇ [0, 1], let h : X → Y ′
be some function and let ` : Y ′ × [0, 1] → R+ be a loss function. We define the following two
losses for f with respect to the distribution D:

L=0(h;D) = Pr
(x,y)∼D

[h(x) 6= 0 ∧ y = 0] (2)

L>0(h;D) = E(x,y)∼D[`(h(x), y) · I(y > 0)], (3)

where I(y > 0) is 1 if y > 0 and 0 otherwise. In words, L=0 considers the zero-one loss on points
where the target y equals 0 and L>0 considers the loss (or risk) when y > 0. Both of these losses are
defined with respect to the distribution D, without conditioning on the events y = 0 or y > 0. This
is necessary to make efficient learning possible—if the probability of the events y = 0 or y > 0 is
too small, it is impossible for learning algorithms to make any meaningful predictions conditioned
on those events.

Definition 15 (Reliable Agnostic Learning) We say that a concept class C ⊆ [0, 1]X is reliably
agnostically learnable (reliably learnable for short) with respect to loss function ` : Y ′ × [0, 1] →
R+ (where [0, 1] ⊆ Y ′), if the following holds. For every δ, ε > 0, there exists a learning algorithm
A such that, for every distribution D over X × [0, 1], when A is given access to examples drawn
from D, A outputs a hypothesis h : X → Y ′, such that with probability at least 1− δ, the following
hold:

(i) L=0(h;D) ≤ ε, (ii) L>0(h;D) ≤ min
c∈C+(D)

L>0(c;D) + ε,

where C+(D) = {c ∈ C | L=0(c;D) = 0}. Furthermore, if X ⊆ Rn and s is a parameter
that captures the representation complexity of concepts c in C, we say that C is efficiently reliably
agnostically learnable to error ε if A can output an h satisfying the above conditions with running
time that is polynomial in n, s, and 1/δ.6

6The error parameter ε is purposely omitted from the definition of efficiency; in our results we will explicitly state
the dependence on ε and for what ranges of ε the running time remains polynomial in the remaining parameters.
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2.3.1. LOSS FUNCTIONS

We have defined agnostic and reliable learning in terms of general loss functions. Below we describe
certain properties of loss functions that are required in order for our results to hold. Let Y denote
the range of concepts from the concept class; this will typically be [−1, 1] or [0, 1]. Let Y ′ ⊇ Y . We
consider loss functions of the form, ` : Y ′ × Y → R+ and define the following properties:

• We say that ` is convex in its first argument if for every y ∈ Y the function `(·, y) is convex.

• We say that ` is monotone if for every y ∈ Y , if y′′ ≤ y′ ≤ y, then `(y′, y) ≤ `(y′′, y) and if
y ≤ y′ ≤ y′′, `(y′, y) ≤ `(y′′, y). Note that this is weaker than requiring that |y′−y| ≤ |y′′−y|
implies `(y′, y) ≤ `(y′′, y). This latter condition is not satisfied by several commonly used
loss functions, e.g., hinge loss.

• We say that ` is b-bounded on the interval [u, v], if for every y ∈ Y , `(y′, y) ≤ b for y′ ∈ [u, v].

• We say that ` is L-Lipschitz in interval [u, v], if for every y ∈ Y , `(·, y) is L-Lipschitz in the
interval [u, v].

The results presented in this work hold for loss functions that are convex, monotone, bounded
and Lipschitz continuous in some suitable interval. (Monotonicity is not strictly a requirement for
our results, but the sample complexity bounds may be worse for non-monotone loss functions; we
point this out when relevant.) These restrictions are quite mild, and virtually every loss function
commonly considered in (convex approaches to) machine learning satisfy these conditions. For
instance, when Y = Y ′ = [0, 1], it is easy to see that any `p loss function is convex, monotone,
bounded by 1 and p-Lipschitz for p ≥ 1.

2.4. Kernel Methods

We make use of kernel methods in our learning algorithms. For completeness, we define kernels
and a few important results concerning kernel methods. The reader may refer to Hofmann et al.
(2008) (or any standard text) for further details.

Any function K : X × X → R is called a kernel (Mercer, 1909). A kernel K is symmetric if
K(x,x′) = K(x′,x), ∀x,x′ ∈ X ; K is positive definite if ∀n ∈ N, ∀x1, . . . ,xn ∈ X , the n × n
matrix K, where Ki,j = K(xi,xj), is positive semi-definite. For any positive definite kernel, there
exists a Hilbert space H equipped with an inner product 〈·, ·〉 and a function ψ : X → H such that
∀x,x′ ∈ X ,K(x,x′) = 〈ψ(x), ψ(x′)〉. We refer to ψ as the feature map for K.

By convention, we will use · to denote the standard inner product in Rn and 〈·, ·〉 for the inner
product in a Hilbert SpaceH. WhenH = Rn for some finite n, we will use 〈·, ·〉 and · interchange-
ably.

We will use the following variant of the polynomial kernel:

Definition 16 (Multinomial Kernel) Defineψd : Rn → RNd , whereNd = 1+n+· · ·+nd, indexed
by tuples (k1, . . . , kj) ∈ [n]j for each j ∈ {0, 1, . . . , d}, where the entry of ψd(x) corresponding to
tuple (k1, . . . , kj) equals xk1 · · ·xkj . (When j = 0 we have an empty tuple and the corresponding
entry is 1.) Define kernel MKd via:

MKd(x,x
′) = 〈ψd(x), ψd(x

′)〉 =

d∑
j=0

(x · x′)j .

10
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Also defineHMKd
to be the corresponding Reproducing Kernel Hilbert Space (RKHS).

Observe that MKd is the sum of standard polynomial kernels (cf. Wikipedia (2016b)) of degree
i for i ∈ [d]. However, the feature map conventionally used for a standard polynomial kernel has
only

(
n+d
d

)
entries and, under that definition involves coefficients of size as large as dΘ(d). The

feature map ψd used by MKd avoids these coefficients by using Nd entries as defined above (that is,
entries of ψd(x) are indexed by ordered subsets of [n], while entries of the standard feature map are
indexed by unordered subsets of [n].)

Let q : Rn → R be a multivariate polynomial of total degree d. We say that a vector v ∈ HMKd

represents q if q(x) = 〈v, ψd(x)〉 for all x ∈ Sn−1. Note that although the feature map ψd is fixed,
a polynomial q will have many representations v as a vector in HMKd

. Furthermore, observe that
the Euclidean norm, 〈v,v〉, of these representations may not be equal.

The following example will play an important role in our algorithms for learning ReLUs. Let
w ∈ Rn and let p(t) be a univariate degree-d equal to

∑d
i=0 βit

i be given. Define the multivariate
polynomial pw(x) := p(w · x).

Consider the representation of pw as an element ofHMKd
defined as follows: the entry of index

(k1, . . . , kj) ∈ [n]j of the representation equals βj ·
∏j
i=1wki for j ∈ [d]. Abusing notation, we

use pw to denote both the multivariate polynomial and the vector in HMKd
. The following lemma

establishes that pw ∈ HMKd
is indeed a representation of the polynomial pw, and gives a bound on

〈pw, pw〉. The proof follows an analysis applied by Shalev-Shwartz et al. (2011, Lemma 2.4) to a
different kernel (cf. Remark 18 below).

Lemma 17 Let p(t) =
∑d

i=0 βit
i be a given univariate polynomial with

∑d
i=1 β

2
i ≤ B. For w

such that ‖w‖ ≤ 1, consider the polynomial pw(x) := p(w · x). Then pw is represented by the
vector pw ∈ HMKd

defined above. Moreover, 〈pw, pw〉 ≤ B.

Proof To see that pw(x) = 〈pw, ψd(x)〉 for all x ∈ Rn, observe that

pw(x) = p(w · x) =

d∑
i=0

βi · (w · x)i

=
d∑
i=0

∑
(k1,...,ki)∈[n]i

βi · wk1 · · · · · wki · xk1 · · · · · xki

= 〈pw, ψd(x)〉.

Furthermore, we can compute

〈pw, pw〉 =

d∑
i=0

∑
(k1,...,ki)∈[n]i

β2
i · w2

k1 · · · · · w
2
ki

=
d∑
i=0

β2
i ·

∑
k1∈[n]

w2
k1 · · · · ·

∑
ki∈[n]

w2
ki

=

d∑
i=0

β2
i ‖w‖2i2 =

d∑
i=0

β2
i ≤ B.

11
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Remark 18 Shalev-Shwartz et al. (2011) proved a bound on the Euclidean norm of represen-
tations of polynomials of the form p(w · x) in the RKHS corresponding to the kernel function
K(x,y) = 1

1− 1
2
〈x,y〉 . This allowed them to represent functions computed by power series, as op-

posed to polynomials of (finite) degree d. However, for degree d polynomials, the use of their kernel
results in a Euclidean norm bound that is a factor of 2d worse than what we obtain from Lemma 17.
This difference is central to our results on noisy polynomial reconstruction in Section 3.5, where we
address this issue in more technical detail.

2.5. Generalization Bounds

We make use of the following standard generalization bound for hypothesis classes with small
Rademacher complexity. Readers unfamiliar with Rademacher complexity may refer to the paper
of Bartlett and Mendelson (2002).

Theorem 19 (Bartlett and Mendelson (2002)) Let D be a distribution over X × Y and let ` :
Y ′ × Y (where Y ⊆ Y ′ ⊆ R) be a b-bounded loss function that is L-Lispschitz in its first argu-
ment. Let F ⊆ (Y ′)X and for any f ∈ F , let L(f ;D) := E(x,y)∼D[`(f(x), y)] and L̂(f ;S) :=
1
m

∑m
i=1 `(f(xi), yi), where S = ((x1, y1), . . . , (xm, ym)) ∼ Dm. Then for any δ > 0, with prob-

ability at least 1 − δ (over the random sample draw for S), simultaneously for all f ∈ F , the
following is true:

|L(f ;D)− L̂(f ;S)| ≤ 4 · L · Rm(F) + 2 · b ·
√

log(1/δ)

2m

whereRm(F) is the Rademacher complexity of the function class F .

We will combine the following two theorems with Theorem 19 above to bound the generaliza-
tion error of our algorithms for agnostic and reliable learning.

Theorem 20 (Kakade et al. (2008)) Let X be a subset of a Hilbert space equipped with inner
product 〈·, ·〉 such that for each x ∈ X , 〈x,x〉 ≤ X2, and letW = {x 7→ 〈x,w〉 | 〈w,w〉 ≤ W 2}
be a class of linear functions. Then it holds that

Rm(W) ≤ X ·W ·
√

1

m
.

The following result as stated appears in Bartlett and Mendelson (2002) but is originally at-
tributed to Ledoux and Talagrand (1991).

Theorem 21 (Bartlett and Mendelson (2002); Ledoux and Talagrand (1991)) Let ψ : R → R
be Lipschitz with constant Lψ and suppose that ψ(0) = 0. Let Y ⊆ R, and for a function f ∈ YX ,
let ψ◦f denote the standard composition of ψ and f . Finally, for F ⊆ YX , let ψ◦F = {ψ◦f : f ∈
F}. It holds thatRm(ψ ◦ F) ≤ 2 · Lψ · Rm(F).

12
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2.6. Approximation Theory

First, we show that the rectifier activation function σrelu(x) = max(0, x) can be ε-approximated
using a polynomial of degree O(1/ε). This result follows using Jackson’s theorem (see, e.g., New-
man (1964)). For convenience in later proofs, we will require that in fact the polynomial also takes
values in the range [0, 1] on the interval [−1, 1]. Of course, this is achieved easily starting from the
polynomial obtained from Jackson’s theorem and applying elementary transformations.

Lemma 22 Let σrelu(x) = max(0, x) and ε ∈ (0, 1). There exists a polynomial p of degreeO(1/ε)
such that for all x ∈ [−1, 1], |σrelu(x)− p(x)| ≤ ε and p([−1, 1]) ⊆ [0, 1].

Proof We can express σrelu(x) = max(0, x) as σrelu(x) = (x + |x|)/2. We know from Jackson’s
Theorem (Newman, 1964) that there exists a polynomial p̃ of degree O(1/ε) such that for all x ∈
[−1, 1], ||x| − p̃(x)| ≤ ε

2−ε . Consider the polynomial p̄(x) = p̃(x)+x
2 , which satisfies for any

x ∈ [−1, 1],

|σrelu(x)− p̄(x)| =
∣∣∣∣ |x|+ x

2
− p̃(x) + x

2

∣∣∣∣ =

∣∣∣∣ |x| − p̃(x)

2

∣∣∣∣ ≤ ε

2(2− ε)
.

Finally, let p(x) = 2−ε
2 (p̄(x)− 1

2) + 1
2 . We have for x ∈ [−1, 1],

|σrelu(x)− p(x)| = ε

2
|σrelu(x)|+ 2− ε

2
|σrelu(x)− p̄(x)|+ 1

2

∣∣∣∣2− ε2
− 1

∣∣∣∣ ≤ ε.
Furthermore, it is clearly the case that p([−1, 1]) ⊆ [0, 1].

We remark that a consequence of the linear relationship between σrelu(x) and |x| is that the
degree given by Jackson’s theorem is essentially the lowest possible (Newman, 1964). Lemma 22
asserts the existence of a (relatively) low-degree approximation p to the rectifier activation function
σrelu. We will also require a bound on the sum of the squares of the coefficients of p. Even though
Lemma 22 is non-constructive, we are nonetheless able to obtain such a bound below via standard
interpolation methods.

Lemma 23 Let p(t) =
∑d

i=0 βit
i be a univariate polynomial of degree d. Let M be such that

max
t∈[−1,1]

|p(t)| ≤M . Then
d∑
i=0

β2
i ≤ (d+ 1) · (4e)2d ·M2.

Proof Lemma 4.1 from Sherstov (2012) states that for any polynomial satisfying the conditions in
the statement of the lemma, the following holds for all i ∈ {0, . . . , d}:

|βi| ≤ (4e)d max
j=0,...,d

∣∣∣∣p( jd
)∣∣∣∣ .

We then have that
d∑
i=0

β2
i =

d∑
i=0

|βi|2 ≤ (d+ 1) · (4e)2d ·M2.

13
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Theorem 24 Let C = ReLU(n,W ) (for W ≥ 1) and ε ∈ (0, 1). Let X = Sn−1. For x,x′ ∈
X , consider the kernel MKd, with HMKd

and ψd the corresponding RKHS and feature map (cf.
Definition 16). Then for every w ∈ Rn with ‖w‖ ≤ W , there exists a multivariate polynomial pw
of degree at most O(W/ε), such that, for every x ∈ Sn−1, |reluw(x) − pw(x)| ≤ ε. Furthermore,
pw(Sn−1) ⊆ [0,W ] and pw when viewed as a member ofHMKd

as described in Section 2.4, satisfies
〈pw, pw〉 ≤W 2 · 2O(W/ε).

Proof Let p be the univariate polynomial of degree d = O(W/ε) given by Lemma 22 that satisfies
|p(x) − σrelu(x)| ≤ ε

W for x ∈ [−1, 1]. Let p(x) =
∑d

i=0 βi · xi; then by Lemma 23, we have∑d
i=0 β

2
i ≤ (d+ 1) · (4e)2d = 2O(W/ε) (as |p(x)| ≤ 1 for x ∈ [−1, 1]).

Let q be the univariate polynomial defined as q(x) = W · p(x/W ) for W > 1. The degree of q
is d, the same as that of p, and if αi are the coefficients of q, we have

∑d
i=0 α

2
i ≤W 2 ·

∑d
i=0 β

2
i ≤

W 2 · 2O(W/ε) = 2O(W/ε) (since W > 1). Let pw(x) = q(w · x). Note that |pw(x)− reluw(x)| =
|W · p(w · x/W ) −W · relu(w/W )(x)| ≤ ε and pw(Sn−1) ⊆ q([−1, 1]) ⊆ [0,W ]. Finally, by
applying Lemma 17, we get that 〈pw, pw〉 ≤W 2 · 2O(W/ε).

3. Reliably Learning the ReLU

In this section, we focus on the problem of reliably learning a single rectified linear unit with weight
vectors of norm bounded by 1, i.e., the concept class ReLU(n, 1). Specifically, our goal is to
prove Theorem 3 from Section 1.2. Below we describe the algorithm and then give a full proof of
Theorem 3.

3.1. Overview of the Algorithm and Its Analysis

In order to reliably learn ReLUs, it would suffice to solve Optimization Problem 1 (see Section
1). This mathematical program, however, is not convex; hence, we consider a suitable convex
relaxation.

The convex relaxation optimizes over polynomials of a suitable degree. Theorem 24 shows that
any concept in ReLU(n, 1) can be uniformly approximated to error ε by a degree O(1/ε) polyno-
mial. It will be more convenient to view this polynomial as an element of the RKHSHMKd

defined
in Definition 16. Recall that the corresponding kernel is MKd(x,x

′) =
∑d

i=0(x · x′)i and the fea-
ture map is denoted ψd. Thus, instead of minimizing over w directly as in Optimization Problem 1,
Optimization Problem 2 (below) minimizes over v ∈ HMKd

of suitably bounded norm. In particu-
lar, we know that for any w, the corresponding polynomial pw that ε-approximates max(0,w · x),
when viewed as an element of HMKd

, satisfies 〈pw, pw〉 ≤ B = 2O(1/ε) (see Theorem 24). Recall
that 〈pw, ψd(x)〉 = pw(x). Thus, we have the following optimization problem:

14
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Optimization Problem 2

minimize
v∈HMKd

∑
i: yi>0

`(〈v, ψd(xi)〉, yi)

subject to 〈v, ψd(xi)〉 ≤ ε for all i such that yi = 0

〈v,v〉 ≤ B

Clearly, if w is a feasible solution to Optimization Problem 1, then the corresponding element
pw ∈ HMKd

is a feasible solution to Optimization Problem 2. We consider the value of the program
for the feasible solution pw. For every x ∈ Sn−1, pw(x) = 〈pw, ψd(x)〉 ∈ [0, 1]. Assuming that
the loss function ` is L-Lipschitz in its first argument in the interval [0, 1], we have∣∣∣∣∣∣

∑
i: yi>0

`(reluw(x), yi)−
∑
i: yi>0

`(〈pw, ψd(x)〉, yi)

∣∣∣∣∣∣ ≤ |{i | yi > 0}| · L · ε.

Thus, an optimal solution to Optimization Problem 2 achieves a loss on the training data that is
within |{i | yi > 0}| · L · ε of that achieved by the optimal solution to Optimization Problem 1.

While Optimization Problem 2 is convex, it is still not trivial to solve efficiently. For one, the
RKHS HMKd

has dimension nΘ(d). However, materializing such vectors explicitly requires nΘ(d)

time, and Theorem 3 promises a learning algorithm with runtime 2O(1/ε) · nO(1) � nO(d). As in
Shalev-Shwartz et al. (2011), we apply the Representer Theorem (see e.g., Cristianini and Shawe-
Taylor (2000)), to guarantee that Optimization Problem 2 can be solved in time that is polynomial
in the number of samples used.

The Representer Theorem states that for any vector v, there exists a vector vα =
∑m

i=1 αiψd(xi)
for α1, . . . , αm ∈ R such that the loss function of Optimization Problem 2 subject to the constraint
〈v,v〉 ≤ B does not increase when v is replaced with vα. Crucially, we may further constrain these
vectors vα to obey the inequality 〈vα, ψd(xi)〉 ≤ ε for all i such that yi = 0. Thus, Optimization
Problem 2 can be reformulated in terms of the variable vectorααα = (α1, . . . , αm). This mathematical
program is described as Optimization Problem 3 below.

Optimization Problem 3

minimize
ααα∈Rm

∑
i:yi>0

`

 m∑
j=1

αjMKd(xj ,xi), yi


subject to

m∑
j=1

αj ·MKd(xj , xi) ≤ ε for all i such that yi = 0

m∑
i,j=1

αi · αj ·MKd(xi, xj) ≤ B

15
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Let K denote the m×m Gram matrix whose (i, j)th entry is MKd(xi,xj). Using the notation
ααα = (α1, . . . , αm), the last constraint is equivalent to αααTKααα ≤ B. As MKd � 0, this defines a
convex subset of Rm. The remaining constraints are linear in ααα and whenever the loss function ` is
convex in its first argument, the resulting program is convex. Thus, Optimization Problem 3 can be
solved in time polynomial in m.

3.2. Description of the Output Hypothesis

Let ααα∗ denote an optimal solution to Optimization Problem 3 and let f(·) =
∑m

i=1 α
∗
iMKd(xi, ·).

To obtain strong bounds on the generalization error of our hypothesis, our algorithm does not simply
output f itself. The obstacle is that, although f (viewed as an element of HMKd

) satisfies 〈f, f〉 ≤
B, the best bound we can obtain on |f(x)| = |〈f,x〉| for x ∈ Sn−1 is

√
B by the Cauchy-Schwartz

inequality. Observe that for many commonly used loss functions, such as the squared loss, this
may result in a very poor Lipschitz constant and bound on the loss function, when applied to f
in the interval [−

√
B,
√
B] (recall that the only bound we have is B = 2O(1/ε)). Hence, a direct

application of standard generalization bounds (cf. Section 2.5) yields a very weak bound on the
generalization error of f itself. For example, suppose y ∈ {0, 1} and consider the loss function
`(y′, y) = exp (−y′(2y − 1) + 1) − 1 if y′(2y − 1) ≤ 1 and `(y′, y) = 0 otherwise (this loss
function is like the hinge loss, but the linear side is replaced by an exponential). The Lipschitz
constant of ` on the interval [−

√
B,
√
B] is exponentially large in B, which would lead to a sample

complexity bound that is doubly-exponentially large in 1/ε.
To address this issue, we will “clip” the function to always output a value between [0, 1]:

Definition 25 Define the function clipa,b : R → [a, b] as follows: clipa,b(x) = a for x ≤ a,
clipa,b(x) = x for a ≤ x ≤ b and clipa,b(x) = b for b ≤ x.

The hypothesis h output by our algorithm is as follows.

h(x) =

{
0 if clip0,1(f(x)) ≤ 2 · ε
clip0,1(f(x)) otherwise.

We use a fact due to Ledoux and Talagrand on the Rademacher complexity of composed function
classes (Theorem 21) to bound the generalization error. Clipping comes at a small cost, in the
sense that it forces us to require that the loss function be monotone. However, we can handle non-
monotone losses if the output hypothesis is not clipped, albeit with sample complexity bounds that
depend polynomially on the Lipschitz-constant and bound of the loss in the interval [−

√
B,
√
B] as

opposed to [0, 1].

3.3. Formal Version of Theorem 3 and Its Proof

The rest of this section is devoted to the proof of Theorem 3 (or, more precisely, its formal variant
Theorem 26 below, which makes explicit the conditions on the loss function ` that are required
for the theorem to hold). In particular, we show that whenever the sample size m is a sufficiently
large polynomial in 2O(1/ε), n, and log(1/δ), the hypothesis h output by the algorithm satisfies
L=0(h;D) = O(ε) and L>0(h;D) ≤ minc∈C+(D) L>0(c) + O(ε), where C+(D) = {reluw ∈
ReLU(n, 1) | L=0(reluw;D) = 0}. Rescaling ε appropriately completes the proof of Theorem 26.
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Theorem 26 (Formal Version of Theorem 3) Let X = Sn−1 and Y = [0, 1]. The concept class
ReLU(n, 1) is reliably learnable with respect to any loss function that is convex, monotone, and
L-Lipschitz and b-bounded in the interval [0, 1]. The sample complexity and running time of the
algorithm is polynomial in n, b, log(1/δ) and 2O(L/ε). In particular, ReLU(n, 1) is learnable in
time polynomial in n, b and log(1/δ) up to error ε ≥ ε0 = Θ(L/ log(n)), where L is the Lipschitz
constant of the loss function in the interval [0, 1].

Proof In order to prove the theorem, we need to bound the following two losses for the output
hypothesis h.

L=0(h;D) = Pr
(x,y)∼D

[h(x) 6= 0 ∧ y = 0] (4)

L>0(h;D) = E(x,y)∼D[`(h(x), y) · I(y > 0)] (5)

First, we analyze L=0(h;D); in order to analyze this loss, it is useful to consider a slightly
different loss function that is (1/ε)-Lipschitz in its first argument, `ε-zo(y′, y). We define this loss
separately for the case when y > 0 and y = 0. For y > 0, we define `ε-zo(y′, y) := 0 for all y′. For
y = 0, we define

`ε-zo(y′, 0) :=


0 if y′ ≤ ε
y′−ε
ε if ε < y′ ≤ 2 · ε

1 if 2 · ε < y′.

For f : X → Y , let Lε-zo(f ;D) := E(x,y)∼D[`ε-zo(f(x), y)]. Let d = O(1/ε) be such that
Theorem 24 applies for the class ReLU(n, 1), and ψd and HMKd

the corresponding feature map
and Hilbert space. Define FB ⊂ HMKd

as the set of all f ∈ HMKd
such that 〈f, f〉 ≤ B. Observe

that for all x ∈ X = Sn−1, 〈ψd(x), ψd(x)〉 ≤
∑d

i=0(x · x)i = d + 1. Moreover, the function
clip0,1 : R → [0, 1] satisfies, clip0,1(0) = 0, and clip0,1 is 1-Lipschitz. Thus, Theorems 20 and 21
imply the following:

Rm(FB) ≤
√

(d+ 1) ·B
m

, (6)

Rm(clip0,1 ◦ FB) ≤ 2 ·
√

(d+ 1) ·B
m

(7)

The loss function `ε-zo is (1/ε)-Lipschitz in its first argument and 1-bounded on all of R, so in
particular in the interval [0, 1]; the loss function ` (used for L>0) is L-Lipschitz in its first argument
and b-bounded in the interval [0, 1] (by assumption in the theorem statement). We assume the
following bound on m (note that it is polynomial in all the required factors):

m ≥ 1

ε2

(
8 max{L, ε−1}

√
(d+ 1) ·B + max{b, 1} ·

√
2 log

1

δ

)2

. (8)

Representative Sample Assumption: In the rest of the proof we assume that for the sample S ∼
Dm used in the algorithm, it is the case that for loss functions `ε-zo and ` and for all f ∈ FB , the
following hold:

|Lε-zo(f ;D)− L̂ε-zo(f ;S)| ≤ ε (9)
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|L>0(clip0,1 ◦ f ;D)− L̂>0(clip0,1 ◦ f ;S)| ≤ ε (10)

Theorems 19, 20 and 21 together with the bounds on the Rademacher complexity given by (6)
and (7) and the facts that `ε-zo is 1/ε-Lipschitz and 1-bounded on R and that ` is L-Lipschitz and
b-bounded on [0, 1], imply that for m satisfying (8), this is the case with probability at least 1− 2δ;
we allow the algorithm to fail with probability 2δ.

Now consider the following to bound L=0(h;D). From here on, f denotes the solution to the
optimization problem in the algorithm.

L=0(h;D) = Pr
(x,y)∼D

[h(x) > 0 ∧ y = 0]

≤ E(x,y)∼D[`ε-zo(f(x), y)] (11)

= Lε-zo(f ;D)

≤ L̂ε-zo(f ;S) + ε ≤ ε, (12)

Above in (11), we use the fact that for any x such that h(x) > 0, it must be the case that f(x) > 2 ·ε
and hence if h(x) > 0 and y = 0, then `ε-zo(f(x), y) = 1. Inequality (12) holds under the
representative sample assumption using (9) (note that we have already accounted for the fact that
the algorithm may fail with probability O(δ)).

Next we give bounds on L>0(h;D). We observe that for a loss function ` that is convex in its
first argument, monotone, L-Lipschitz, and b-bounded in the interval [0, 1], the following holds for
any y ∈ (0, 1]:

`(h(x), y) ≤ `(clip0,1(f(x)), y) + 2εL (13)

Clearly, whenever f(x) > 2ε or f(x) < 0, the above statement is trivially true. If f(x) ∈ [0, 2ε]
the statement follows from the L-Lipschitz continuity of `(·, y) in the interval [0, 1].

Let w ∈ Rn be such that L=0(reluw;D) = 0 and let pw be the corresponding polynomial
ε-approximation inHMKd

(cf. Theorem 24). Then consider the following:

L>0(h;D) = E(x,y)∼D [`(h(x), y) · I(y > 0)]

≤ E(x,y)∼D
[
`(clip0,1(f(x)), y) · I(y > 0)

]
+ 2εL (14)

= L>0(clip0,1(f);D) + 2εL

≤ L̂>0(clip0,1(f);S) + ε+ 2εL (15)

≤ L̂>0(f ;S) + ε+ 2εL (16)

≤ L̂>0(pw;S) + ε+ 2εL (17)

= L̂>0(clip0,1 ◦ pw;S) + ε+ 2εL (18)

≤ L>0(clip0,1 ◦ pw;D) + 2ε+ 2εL (19)

≤ L>0(pw;D) + 2ε+ 2εL (20)

≤ L>0(reluw;D) + 2ε+ 3εL (21)

Step (14) is obtained simply by applying (13). Step (15) follows using the representative sample
assumption using (10). Step (16) follows by the monotone property of `(·, y); in particular, it must
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always be the case that either y ≤ clip0,1(f(x)) ≤ f(x) or f(x) ≤ clip0,1(f(x)) ≤ y; thus
`(clip0,1(f(x)), y) ≤ `(f(x), y). Step (17) follows from the fact that f is the optimal solution to
Optimization Problem 3 and pw is a feasible solution. Steps (18) and (20) use the fact that clip0,1 ◦
pw = pw as pw(Sn−1) ⊆ [0, 1]. Step (19) follows under the representative sample assumption
using (10). And finally, Step (21) follows as both reluw(x) ∈ [0, 1] and pw(x) ∈ [0, 1] for x ∈
Sn−1, |pw(x)− reluw(x)| ≤ ε and the L-Lipschitz continuity of ` in the interval [0, 1].

As the argument holds for any w ∈ Sn−1 satisfying L=0(reluw;D) = 0 this completes the
proof of theorem by rescaling ε to ε/(2 + 3L) and δ to δ/2.

DISCUSSION: DEPENDENCE ON THE LIPSCHITZ CONSTANT

Theorem 26 gives a sample complexity and running time bound that is polynomial on 2O(L/ε) (in
addition to being polynomial in other parameters). Recall that, here, L is the Lipschitz constant of
the loss function ` on the interval [0, 1]. For many loss functions, such as `p-loss for constant p,
hinge loss, logistic loss, etc., the value of L is a constant. Nonetheless, it is instructive to examine
why we obtain such a dependence L, and identify some restricted settings in which this dependence
can be avoided.

The dependence of our running time and sample complexity bounds onL arises due to Steps (13)
and (21) in the proof of Theorem 26, where the excess error compared to the optimal ReLU is
bounded above by O(Lε). This requires us to start with a polynomial that is an O(ε/L)-uniform
approximation to the σrelu activation function, to ensure excess error at most ε. We showed that
such an approximating polynomial exists, with degree O(L/ε) and with coefficients whose squares
sum to 2O(L/ε).

It is sometimes possible to avoid this exponential dependence on L in the setting of agnostic
learning (as opposed to reliable learning). Indeed, in the case of agnostic learning there is no need
to threshold the output at 2ε (this thresholding contributed 2εL to our bound on the excess error
established in Inequality (13)); simply clipping the output to be in the range of Y suffices.

3.4. An Implication for Learning Convex Neural Networks

In a recent work, Bach (2014) considered convex relaxations of optimization problems related to
learning neural networks with a single hidden layer and non-decreasing homogeneous activation
function.7 One specific problem raised in his paper Bach (2014, Sec. 6) is understanding the
computational complexity of the following problem.

Problem 27 (Incremental Optimization Problem (Bach, 2014)) Let 〈(xi, yi)〉mi=1 ∈ (Sn−1 ×
[−1, 1])m. Find a w ∈ Sn−1 that maximizes 1

m

∑m
i=1 yi · reluw(xi).

While Bach (2014) considers the setting where yi ∈ R, rather than [−1, 1], we focus on the case
when yi ∈ [−1, 1]. The problem as posed above is an optimization problem on a finite dataset that
requires the output solution to be from a specific class, in this case a ReLU. In our setting, this can be
rephrased as a (proper) learning problem where the goal is to output a hypothesis that has expected
loss, defined by `(y′, y) = −y′ · y, not much larger than the best possible ReLU, given access to
draws from a distribution over Sn−1× [−1, 1]. Here, we relax this goal to improper learning, where

7His setting allows potentially uncountably many hidden units along with a sparsity-inducing regularizer.
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the algorithm is permitted to output a hypothesis that is not itself a ReLU. The same approach as
used in the proof of Theorem 26 can be used to give a polynomial-time approximation scheme for
approximately solving this problem to within ε of optimal, in time 2O(1/ε) · nO(1).

We describe the modified algorithm and the minor differences in the proof below.

Optimization Problem 4

minimize
ααα∈Rm

m∑
i=1

`

 m∑
j=1

αjMKd(xj ,xi), yi


subject to

m∑
i,j=1

αiαjMKd(xi,xj) ≤ B

The loss function used is `(y′, y) = −y′y. Let ααα∗ denote an optimal solution to Optimization
Problem 4 and let f(·) =

∑m
i=1 α

∗
iMKd(xi, ·). In Problem 27, there is no reliability required and

hence we do not threshold negative (or sufficiently small positive) values as was done in Section 3.2.
Likewise, we do not clip the function f ; this is because while the loss function `(y′, y) = −y′y is
indeed convex in its first argument, 1-Lipschitz on R, and

√
B-bounded on the interval [−

√
B,
√
B]

(for y ∈ [−1, 1]; note that |f(x)| ≤ |〈f, ψd(x)〉| ≤
√
B by the Cauchy-Schwartz inequality), it is

very much not monotone. Thus, it is no longer the case that clip−1,1(f) is a better hypothesis than
f itself. We observe that the proof of Theorem 26 only makes use of the monotone nature of ` to
conclude that expected loss of clip0,1 ◦ f is less than that of f . As we no longer output a clipped
hypothesis, this is not necessary.

Theorem 28 Given i.i.d. examples (xi, yi) drawn from an (unknown) distribution D over Sn−1 ×
[−1, 1], there is an algorithm that outputs a hypothesis h such that E(x,y)∼D[−y·h(x)] ≤ minw∈Sn−1

E(x,y)∼D[−y · reluw(x)] + ε. The algorithm runs in time 2O(1/ε) · nO(1).

3.5. Noisy Polynomial Reconstruction over Sn−1

In the noisy polynomial reconstruction problem, a learner is given access to examples drawn from a
distribution and labeled according to a function f(x) = p(x)+w(x) where p is a polynomial and w
is an arbitrary function (corresponding to noise). We will consider a more general scenario, where
a learner is given sample access to an arbitrary distribution D on Sn−1 × [−1, 1] and must output
the best fitting polynomial with respect to some fixed loss function. We say that the reconstruction
is proper if, given a hypothesis h encoding a multivariate polynomial, we can obtain any coefficient
of our choosing in time polynomial in n.

Note that noisy polynomial reconstruction as defined above is equivalent to the problem of
agnostically learning multivariate polynomials. We give an algorithm for noisy polynomial recon-
struction whose runtime is poly(B,n, d, 1/ε), whereB is an upper bound on the sum of the squared
coefficients of the polynomial in the standard monomial basis. Throughout this section, we refer to
the sum of the squared coefficients of p as the weight of p.

Analogous problems over the Boolean domain are thought to be computationally intractable.
Andoni et al. (2014) were the first to observe that over non-Boolean domains, the problem admits
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some non-trivial solutions. In particular, they gave an algorithm that runs in time poly(B,n, 2d, 1/ε)
with the requirement that the underlying distribution be a product distribution over the unit cube (and
that the noise function is structured).

Consider a multivariate polynomial p of degree d such that the sum of the squared coefficients
is bounded by B. Denote the coefficient of monomial xi11 · · ·xinn by β(i1, . . . , in) for (i1, . . . , in) ∈
{0, . . . , d}n. We have

p(x) =
∑

(i1,...,in)∈{0,...,d}n
ii+···+in≤d

β(i1, . . . , in)xi11 · · ·x
in
n (22)

such that ∑
(i1,...,in)∈{0,...,d}n

ii+···+in≤d

β(i1, . . . , in)2 ≤ B.

LetM be the map that takes an ordered tuple (k1, . . . , kj) ∈ [n]j for j ∈ [d] to the tuple (i1, . . . , in) ∈
{0, . . . , d}n such that xk1 · · ·xkj = xi11 · · ·xinn . Let C(i1, . . . , in) be the number of distinct order-
ings of the ij’s for j ∈ {0, . . . , n}; C(i1, . . . , in) which can be computed from the multinomial
theorem (cf. Wikipedia (2016a)). Observe that the number of tuples that M maps to (i1, . . . , in) is
precisely C(i1, . . . , in).

Recall that HMKd
denotes the RKHS from Definition 16. Observe that the polynomial p from

Equation (22) is represented by the vector vp ∈ HMKd
defined as follows. For j ∈ [d], entry

(k1, . . . , kj) of vp equals
β (M (k1, . . . , kj))

C (M (k1, . . . , kj))
.

It is easy to see that vp as defined represents p. Indeed,

〈vp, ψd(x)〉 =

d∑
j=0

∑
(k1,...,kj)∈[n]j

β (M (k1, . . . , kj))

C (M (k1, . . . , kj))
xk1 · · ·xkj

=
d∑
j=0

∑
(i1,...,in)∈{0,...,d}n

ii+···+in=j

C (i1, . . . , in)
β (i1, . . . , in)

C (i1, . . . , in)
xi11 · · ·x

in
n = p(x).

Furthermore, we can compute,

〈vp,vp〉 =

d∑
j=0

∑
(k1,...,kj)∈[n]j

β (M (k1, . . . , kj))
2

C (M (k1, . . . , kj))
2

=
d∑
j=0

∑
(i1,...,in)∈{0,...,d}n

ii+···+in=j

C (i1, . . . , in)
β (i1, . . . , in)2

C (i1, . . . , in)2

≤
d∑
j=0

∑
(i1,...,in)∈{0,...,d}n

ii+···+in=j

β (i1, . . . , in)2 ≤ B.
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Overview of the Algorithm. Let C be the class of all multivariate polynomials and let S =
{(x1, y1), . . . , (xm, ym)} be a training set of examples drawn i.i.d. from some arbitrary distri-
bution D on Sn−1 × [−1, 1]. Similar to Optimization Problem 2 in Section 3.1, we wish to solve
Optimization Problem 5 below.

Optimization Problem 5

minimize
v∈HMKd

m∑
i=1

`(〈v, ψd(xi)〉, yi)

subject to 〈v,v〉 ≤ B

Notice from the previous analysis, a degree d polynomial p can be represented as a vector
vp ∈ HMKd

such that p(x) = 〈vp, ψd(x)〉 for all x ∈ Sn−1, and 〈vp,vp〉 ≤ B. Thus, vp is a
feasible solution to Optimization Problem 5. Optimization Problem 5 can easily be solved in time
poly(nd), but this runtime is not polynomial in B and n. Instead, just as in Section 3.1, we use
the Representer Theorem to solve Optimization Problem 5 in time that is polynomial in the number
of samples used. Specifically, the Representer Theorem states that there is an optimal solution to
Optimization Problem 5 of the form v =

∑m
i=1 αiψd(xi) for some values α1, . . . , αm ∈ R. Thus,

Optimization Problem 5 can be reformulated in terms of the variable vector ααα = (α1, . . . , αm).
This mathematical program is described as Optimization Problem 6 below.

Optimization Problem 6

minimize
ααα∈Rm

m∑
i=1

`

 m∑
j=1

αjMKd(xj ,xi), yi


subject to

m∑
i,j=1

αi · αj ·MKd(xi, xj) ≤ B

Via a standard analysis identical to that of Section 3.1, Optimization Problem 6 is a convex
program and can be solved in time polynomial in m, n, and d. Let ααα∗ denote an optimal solution
to Optimization Problem 6 and let f(·) =

∑m
i=1 α

∗
iMKd(xi, ·). The hypothesis h output by our

algorithm is as follows.
h(x) = clip−1,1(f(x)).

Observe that h ∈ clip−1,1 ◦ C.

3.6. Proper Learning

As discussed in Section 3.2, we require clipping to avoid a weak bound on the generalization error
for general loss functions. If, however, we consider learning with respect to any `p loss for constant
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p ≥ 1, it can be shown that we can do without clipping (with only a polynomial factor increase in
sample complexity). In this case, the learner h = f is a proper learner in the following sense. Re-
calling the feature map ψd associated with MKd from Definition 16, we can compute the coefficient
β(I) for I = (i1, . . . , in) ∈ {0, . . . , d}n corresponding to the monomial xi11 · · ·xinn .

β(I) =

m∑
i=1

α∗i
∑

k1,...,kj∈[n]j

j∈{0,...,d}
M(k1,...,kj)=(i1,...,in)

(xi)k1 · · · (xi)kj =

m∑
i=1

α∗iC (i1, . . . , in) (xi)
i1
1 · · · (xi)

in
n

Observe that the above can be easily computed since we know xi for all i ∈ [m], and the function C
can be efficiently computed as discussed before using the multinomial theorem. Hence, the hypoth-
esis is itself a polynomial of degree at most d, any desired coefficient of which can be computed
efficiently.

3.7. Formal Version of Theorem 7 and Its Proof

The rest of this section is devoted to the proof of Theorem 7 (or, more precisely, its formal variant
Theorem 29 below, which makes explicit the conditions on the loss function ` that are required for
the theorem to hold). In particular, we show that whenever the sample size m is a sufficiently large
polynomial in d, n, B, 1/ε, and log(1/δ), the hypothesis h output by the algorithm satisfies

E
(x,y)∼D

[`(h(x), y)] ≤ opt + ε.

where opt is the error of the best fitting multivariate polynomial p of degree d whose sum of squares
of coefficients is bounded by B.

Theorem 29 (Formal Version of Theorem 7) LetP(n, d,B) be the class of polynomials p : Sn−1 →
[−1, 1] in n variables such that the total degree of p is at most d, and the sum of squares of coef-
ficients of p (in the standard monomial basis) is at most B. Let ` be any loss function that is
convex, monotone, and L-Lipschitz and b-bounded in the interval [−1, 1]. Then poly(n, d,B) is
agnostically learnable under any (unknown) distribution over Sn−1 × [−1, 1] with respect to the
loss function ` in time poly(n, d,B, 1/ε, L, b, log 1

δ ). The learning algorithm is proper if the loss
function ` is the `p loss function for constant p > 0.

Proof In order to prove the theorem, we need to bound

L(h;D) = E(x,y)∼D[`(h(x), y)].

We know that for all x ∈ Sn−1, 〈ψd(x), ψd(x)〉 = d + 1. Moreover, letting vp be the cor-
responding element of the RKHS for polynomial p ∈ C, we know from previous analysis that
〈vp,vp〉 ≤ B. In addition, the function clip−1,1 : R → [−1, 1] satisfies clip−1,1(0) = 0, and
clip−1,1 is 1-Lipschitz. Thus, Theorems 20 and 21 imply the following:

Rm(C) ≤
√

(d+ 1) ·B
m

, (23)

Rm(clip−1,1 ◦ C) ≤ 2 ·
√

(d+ 1) ·B
m

. (24)
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By assumption, ` is L-Lipschitz in its first argument and b-bounded in the interval [−1, 1]. We
assume the following bound on m (note that it is polynomial in all the required factors):

m ≥ 1

ε2

(
8max{L, ε−1}

√
(d+ 1) ·B + max{b, 1} ·

√
2 log

1

δ

)2

. (25)

In the rest of the proof we assume that for every f ∈ P(n, d,B), the following hold:

|L(f ;D)− L̂(f ;S)| ≤ ε. (26)

|L(clip−1,1 ◦ f ;D)− L̂(clip−1,1 ◦ f ;S)| ≤ ε. (27)

Using Theorem 19 together with the bounds on Rademacher complexity given by (23) and (24) and
the L-Lipschitz continuity in its first argument and b-boundedness of ` on the interval [−1, 1], we
get that the above inequalities hold with probability at least 1 − 2δ. We let the algorithm fail with
probability 2δ.

Now consider the following to bound L(h;D). Letting p be any polynomial in P(n, d,B),

L(h;D) ≤ L̂(h;S) + ε (28)

≤ L̂(f ;S) + ε (29)

≤ L̂(p;S) + ε (30)

≤ L(p;D) + 2 · ε (31)

Above in (28), we appeal to (27). In (29), we use the fact thatD is a distribution over Sn−1×[−1, 1],
and ` is monotone. In (30), we use the fact that the coefficient vector of p is a feasible solution to
Optimization Problem 5, and Optimization Problem 6 is a reformulation of Optimization Problem
5. Finally, in (31), we appeal (26).

The theorem now follows by replacing ε with ε/2, δ with δ/2, and observing that the algorithm
runs in time poly(m) = poly(n, d,B, 1/ε, L, b, log 1

δ ).

4. Networks of ReLUs

In this section, we extend learnability results for a single ReLU to network of ReLUs. Our results
in this section apply to the standard agnostic model of learning in the case that the output is a linear
combination of hidden units. If our output layer, however, is a single ReLU, then our results can be
extended to the reliable setting using similar techniques from Section 3.

We will use the same framework as Zhang et al. (2016a), who showed how to learn networks
where the activation function is computed exactly by a power series (with bounded sum of squares
of coefficients B) with respect to loss functions that are bounded on a domain that is a function of
B. Their algorithm works by repeatedly composing the kernel of Shalev-Shwartz et al. (2011) and
optimizing in the corresponding RKHS.

Note, however, that since σrelu is not differentiable at 0, there is no power series for σrelu, and
the approach of Zhang et al. (2016a) cannot be used; their work applies to a smooth activation
function that has a shape that is “Sigmoid-like” or “ReLU-like,” but is not a good approximation to
σrelu in a precise mathematical sense.
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We generalize their results to activation functions that are approximated by polynomials. This
allows us to capture many classes of activation functions including ReLUs. Our clipping technique
also allows us to work with respect to a broader class of loss functions.

Our results for learning networks of ReLUs have a number of new applications. First, we give
the first efficient algorithms for learning “parameterized” ReLUs and “leaky” ReLUs. Second, we
obtain the first polynomial-time approximation schemes for convex piecewise-linear regression (see
Section 4.5 for details). As far as we are aware, there were no provably efficient algorithms known
for these types of multivariate piecewise-linear regression problems.

4.1. Notation

We use the following notation of Zhang et al. (2016a). Consider a network with D hidden layers
and an output unit (we assume that the output is one-dimensional). Let σ : R → R denote the
activation function applied at each unit of all the hidden layers. Let n(i) denote the number of units
in hidden layer i with n(0) = n (i.e., input dimension) and w(i)

jk be the weight of the edge between

unit j in layer i and unit k in layer i+ 1. We define, y(i)
j to be the function that maps x ∈ X to the

output of unit j in layer i,

y
(i)
j (x) = σ

n(i−1)∑
k=1

w
(i−1)
jk · y(i−1)

k (x)

 ,

where y(0)
j (x) = x for all j. We similarly define h(i)

j to be the function that maps x ∈ X to the
input of unit j in layer i+ 1:

h
(i)
j (x) =

n(i)∑
k=1

w
(i)
jk · y

(i)
k (x).

Finally, we define the output of the network as a function N : Rn → R as

N (x) =

n(D)∑
k=1

w
(D)
1k · y

(D)
k (x).

For a better understanding of the above notation, consider a fully-connected network N1 with a
single hidden layer (these are also known as depth-2 networks) consisting of k units:

N1 : x 7→
k∑
i=1

uiσ(wi · x).

In this case, output of unit i ∈ [k] in the hidden layer is y(1)
i (x) = σ(wi · x) and the input to the

same unit is h(0)
i (x) = wi · x.

We consider a class of networks with edge weights of bounded `1 or `2 norm. The class is
formalized as follows.

Definition 30 (Weight-bounded Networks) Let N [σ,D,W,M ] be the class of fully-connected
networks with D hidden layers and σ as the activation function. Additionally, the weights are
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constrained such that
∑n

j=1(w
(0)
ij )2 ≤ M2 for all units i in layer 0 and

∑n(i)

k=1 |w
(i)
jk | ≤ W for all

units j in all layers i ∈ {1, . . . , D}. Also, the inputs to each unit are bounded in magnitude by M ,
i.e., h(l)

j (x) ∈ [−M,M ] with M ≥ 1 for each l < D and j = 1, . . . , n(l+1).

We consider activation functions which can be approximated by polynomials with sum of
squares of coefficients bounded. We term them low-weight approximable activation functions, for-
malized as follows.

Definition 31 (Low-weight Approximable Functions) For activation function σ : R → R, for
ε ∈ (0, 1), M ≥ 1, B ≥ 1, we say that a polynomial p(t) =

∑d
i=1 βit

i is a degree d, (ε,M,B)-
approximation to σ if for every t ∈ [−M,M ], |σ(t)− p(t)| ≤ ε and furthermore,

∑d
i=0 2iβ2

i ≤ B.

4.2. Approximate Polynomial Networks

We first bound the error incurred when each activation function is replaced by a corresponding
low-weight polynomial approximation.

Theorem 32 (Approximate Polynomial Network) Let σ be an activation function that is 1-Lipschitz8

and such that there exists a degree d polynomial p that is a ( ε
WDD

, 2M,B) approximation for
σ, with ε ∈ (0, 1), with d,M,B ≥ 1. Then, for all N ∈ N [σ,D,W,M ], there exists N̄ ∈
N [p,D,W, 2M ] such that

sup
x∈Sn−1

∣∣N (x)− N̄ (x)
∣∣ ≤ ε.

Proof Let N ∈ N [σ,D,W,M ] and let N̄ ∈ N [p,D,W,M ] be such that it has the same structure
and weights as N with the activation replaced with p. For N let h(i)(x) be the inputs to layer i+ 1
and y(i)(x) be the outputs of layer i as defined previously. Correspondingly, for N̄ let h̄(i)(x) be
the inputs to layer i+ 1 and ȳ(i)(x) be the outputs of layer i. We prove by induction on layer i that
for all units j of layer i,

sup
x∈Sn−1

∣∣∣h(i)
j (x)− h̄(i)

j (x)
∣∣∣ ≤ iε

WD−iD
. (32)

For layer i = 0, we have h(0)
j (x) = h̄

(0)
j (x) = w(0)

j · x ∈ [−M,M ] which trivially satisfies
(32). Now, we prove that the desired property holds for layer l, assuming the following holds for
layer l − 1. We have for all units j in layer l − 1,

sup
x∈Sn−1

∣∣∣h(l−1)
j (x)− h̄(l−1)

j (x)
∣∣∣ ≤ (l − 1)ε

WD−l+1D
. (33)

Note that this implies that
∣∣∣h̄(l−1)
j (x)

∣∣∣ ≤ ∣∣∣h(l−1)
j (x)

∣∣∣+ (l−1)ε
WD−l+1D

≤ 2M . Here the second inequality
follows from the assumption that inputs to each unit are bounded by M and ε < 1. We have for all
x and j,

∣∣∣h(l)
j (x)− h̄(l)

j (x)
∣∣∣ =

∣∣∣∣∣∣
n(l)∑
k=1

w
(l)
jk · σ

(
h

(l−1)
k (x)

)
−

n(l)∑
k=1

w
(l)
jk · p

(
h̄

(l−1)
k (x)

)∣∣∣∣∣∣
8Note that this is not a restriction, as we have not explicitly constrained the weights W . Thus, to allow a Lipschitz

constant L, we simply replace W by WL.
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=
n(l)∑
k=1

∣∣∣w(l)
jk

∣∣∣ ∣∣∣σ (h(l−1)
k (x)

)
− p

(
h̄

(l−1)
k (x)

)∣∣∣
≤

n(l)∑
k=1

∣∣∣w(l)
jk

∣∣∣ (∣∣∣σ (h(l−1)
k (x)

)
− σ

(
h̄

(l−1)
k (x)

)∣∣∣+
ε

WDD

)
(34)

≤
n(l)∑
k=1

∣∣∣w(l)
jk

∣∣∣ (∣∣∣h(l−1)
k (x)− h̄(l−1)

k (x)
∣∣∣+

ε

WDD

)
(35)

≤
n(l)∑
k=1

∣∣∣w(l)
jk

∣∣∣ ( (l − 1)ε

WD−l+1D
+

ε

WDD

)
(36)

= ‖w(l)
j ‖1

l · ε
WD−l+1D

≤ l · ε
WD−lD

(37)

Step (34) follows since h̄(l−1)
j (x) ∈ [−2M, 2M ] and p uniformly ε

WDD
-approximates σ in [−2M, 2M ].

Step (35) follows from σ being 1-Lipschitz. Step (36) follows from (33). Finally Step (37) follows
from ‖w(l)

j ‖1 ≤W which is given. This completes the inductive proof.

We conclude by noting that N (x) = h
(D)
1 (x) and N̄ (x) = h̄

(D)
1 (x). Thus, from above we get,

sup
x∈Sn−1

∣∣N (x)− N̄ (x)
∣∣ = sup

x∈Sn−1

∣∣∣h(N)
1 (x)− h̄(N)

1 (x)
∣∣∣ ≤ ε.

This completes the proof.

Given the above transformation to a polynomial network and associated error bounds, we apply
the main theorem of Zhang et al. (2016a) combined with the clipping technique from Section 3 to
obtain the following result:

Theorem 33 (Learnability of Neural Network) Let σ be an activation function that is 1-Lipschitz8

and such that there exists a degree d polynomial p that is an ( ε
(L+1)·WD·D , 2M,B) approximation

for σ, for d,B,M ≥ 1. Let ` be a loss function that is convex, L-Lipschitz in the first argument, and
b bounded on [−2M ·W, 2M ·W ]. Then there exists an algorithm that outputs a predictor f̂ such
that with probability at least 1−δ, for any (unknown) distributionD over Sn−1× [−M ·W,M ·W ],

E(x,y)∼D[`(f̂(x), y)] ≤ min
N∈N [σ,D,W,M ]

E(x,y)∼D[`(N (x), y)] + ε.

The time complexity of the above algorithm is bounded by nO(1) · BO(d)D−1 · log(1/δ), where d is
the degree of p, and B is a bound on

∑d
i=0 2iβ2

i (see Defn. 31).

Proof From Theorem 32 we have that for all N ∈ N [σ,D,W,M ], there is a network N̄ ∈
N [p,D,W,M ] such that

sup
x∈Sn−1

∣∣N (x)− N̄ (x)
∣∣ ≤ ε

L+ 1
.
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Since the loss function ` is L-Lipschitz, this implies that

`(N̄ (x), y)− `(N (x), y) ≤ L · |N̄ (x)−N (x)| ≤ L

L+ 1
· ε. (38)

LetNmin = arg minN∈N [σ,D,W,M ] E(x,y)∼D[`(N (x), y)]. By the above, we get that there exists
N̄min ∈ N [p,D,W,M ] such that

min
N̄∈N [p,D,W,M ]

E(x,y)∼D[`(N̄ (x), y)] ≤ E(x,y)∼D[`(N̄min(x), y)]

≤ E(x,y)∼D[`(Nmin(x), y)] + L · ε

= min
N∈N [σ,D,W,M ]

E(x,y)∼D[`(N (x), y)] +
L

L+ 1
· ε.

Now from Zhang et al. (2016a, Theorem 1), we know that there exists an algorithm that outputs
a predictor f̂ such that with probability at least 1− δ for any distribution D

E(x,y)∼D[`(f̂(x), y)] ≤ min
N̄∈N [p,D,W,M ]

E(x,y)∼D[`(N̄ (x), y)] +
ε

L+ 1
.

For loss functions that take on large values on the range of the predictor, we instead output
the clipped version of the predictor clip(f̂) in order to satisfy the requirements of the Rademacher
bounds (as in Section 3).

The runtime of the algorithm is poly(n, (L+1)/ε, log(1/δ), HD(1)), whereH(a) =
√∑d

i=0 2iβia2i,

and H(D) is obtained by composing H with itself D times. By simple algebra, we conclude that
HD(1) is bounded by BO(d)D−1

.
Combining the above inequalities, we have

E(x,y)∼D[`(f̂(x), y)] ≤ min
N∈N [D,W,M,σrelu]

E(x,y)∼D[`(N (x), y)] + ε.

This completes the proof.

We can now state the learnability result for ReLU networks as follows.

Corollary 34 (Learnability of ReLU Network) There exists an algorithm that outputs a predic-
tor f̂ such that with probability at least 1− δ for any distribution D over Sn−1× [−M ·W,M ·W ],
and loss function ` which is convex, L-Lipschitz in the first argument, and b bounded on [−2M ·
W, 2M ·W ],

E(x,y)∼D[`(f̂(x), y)] ≤ min
N∈N [D,W,M,relu]

E(x,y)∼D[`(N (x), y)] + ε.

The time complexity of the above algorithm is bounded by nO(1) · 2((L+1)·M ·WD·D·ε−1)D · log(1/δ).

The proof of the corollary follows from applying Theorem 33 for the activation function σrelu since
σrelu is 1-Lipschitz and low-weight approximable (from Theorem 22 and 23). We obtain the follow-
ing corollary specifically for depth-2 networks.
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Corollary 35 Depth-2 networks with k hidden units and activation function σrelu such that the
weight vectors have `2-norm bounded by 1 are agnostically learnable over Sn−1× [−

√
k,
√
k] with

respect to loss function ` which is convex, O(1)-Lipschitz in the first argument, and b bounded on
[−2
√
k, 2
√
k] in time nO(1) · 2O(

√
k/ε) · log(1/δ).

The proof of the corollary follows from setting L = O(1), D = 1, M = 1 and W =
√
k in

Theorem 34. W =
√
k follows from bounding the `1-norm of the weights given a bound on the

`2-norm.
We remark here that the above analysis holds for fully-connected networks with activation func-

tion σsig(x) = 1
1+e−x (Sigmoid function). Note that σsig is 1-Lipschitz. The following lemma due

to Livni et al. (2014, Lemma 2) exhibits a low degree polynomial approximation for σsig. It is in
turn based on a result of Shalev-Shwartz et al. (2011, Lemma 2).

Lemma 36 (Livni et al. (2014)) For ε ∈ (0, 1), there exists a polynomial p(a) =
∑d

i=1 βia
i for

d = O(log(1/ε)) such that for all a ∈ [−1, 1], |p(a)− σsig(a)| ≤ ε.

Let p(a) =
∑d

i=1 βia
i be the uniform ε-approximation σsig which is guaranteed to exist by the

above lemma. Using a similar trick as in Lemma 22, we can further bound p([−1, 1]) ⊆ [0, 1].
Also, using Lemma 23, we can show that

∑d
i=0 2iβ2

i is bounded by (1/ε)O(1). This shows that σsig

is low-weight approximable.
Using Theorem 33, we state the following learnability result for depth-2 sigmoid networks.

Corollary 37 Depth-2 networks with k hidden units and sigmoidal activation function such that
the weight vectors have `2-norm bounded by 1 are agnostically learnable over Sn−1 × [−

√
k,
√
k]

with respect to loss function ` which is convex, O(1)-Lipschitz in the first argument, and b bounded
on [−2

√
k, 2
√
k] in time poly(n, k, 1/ε, log(1/δ)).

Observe that the above result is polynomial in all parameters. Livni et al. (cf. Livni et al. (2014,
Theorem 5)) state an incomparable result for learning sigmoids: their runtime is superpolynomial
in n for L = ω(1), where L is the bound on `1-norm of the weight vectors (L may be as large as√
k in the setting of Corollary 37). They, however, work over the Boolean cube (whereas we are

working over the domain Sn−1).

4.3. Application: Learning Parametric Rectified Linear Unit

A Parametric Rectified Linear Unit (PReLU) is a generalization of ReLU introduced by He et al.
(2015). Compared to the ReLU, it has an additional parameter that is learned. Formally, it is defined
as

Definition 38 (Parametric Rectifier) The parametric rectifier (denoted by σPReLU) is an activation
function defined as

σPReLU(x) =

{
x if x ≥ 0

a · x if x < 0

where a is a learnable parameter.

Note that we can represent σPReLU(x) = max(0, x) − a · max(0,−x) = σrelu(x) − a · σrelu(−x)
which is a depth-2 network of ReLUs. Therefore, we can state the following learnability result for
a single PReLU parameterized by a weight vector w based on learning depth-2 ReLU networks.

29



GOEL KANADE KLIVANS THALER

Corollary 39 Let PReLU with the parameter a be such that |a| is bounded by a constant and the
weight vector w has 2-norm bounded by 1. Then, PReLU is agnostically learnable over Sn−1 with
respect to any O(1)-Lipschitz loss function in time nO(1) · 2O(1/ε) · log(1/δ).

The proof of the corollary follows from setting L = 1, D = 1, M = 1 and W = O(1) in Theorem
34.

The condition that |a| be bounded by 1 is reasonable as in practice the value of a is very rarely
above 1 as observed by He et al. (2015). Also note that Leaky-ReLUs (Maas et al., 2013) are PRe-
LUs with fixed a (usually 0.01). Hence, we can agnostically learn them under the same conditions
using an identical argument as above. Note that a network of PReLU can also be similarly learned as
a ReLU by replacing each ReLU in the network by a linear combination of two ReLUs as described
before.

4.4. Application: Learning the Piecewise Linear Transfer Function

Several functions have been used to relax the 0/1 loss in the context of learning linear classifiers.
The best example is the sigmoid function discussed earlier. Here we consider the piecewise linear
transfer function. Formally, it is defined as

Definition 40 (Piecewise Linear Transfer Function) TheC-Lipschitz piecewise linear transfer func-
tion (denoted by σpw) is an activation function defined as

σpw(x) = max

(
0,min

(
1

2
+ Cx, 1

))
.

Note that we can represent σpw(x) = max
(
0, 1

2 + Cx
)
−max

(
0,−1

2 + Cx
)

= σrelu

(
1
2 + Cx

)
−

σrelu

(
−1

2 + Cx
)

which is a depth-2 network of ReLU. Therefore, we can state the following learn-
ability result for a piecewise linear transfer function parameterized by weight vector w following a
similar argument as in the previous section.

Corollary 41 The class of C-Lipschitz piecewise linear transfer functions parametrized by weight
vector w with 2-norm bounded by 1 is agnostically learnable over Sn−1 with respect to any O(1)-
Lipschitz loss function in time nO(1) · 2O(C/ε) · log(1/δ).

The proof of the corollary follows from setting L = 1, D = 1, M = 1 and W = O(L) in Theorem
34.

Shalev-Shwartz et al. (2011) in Appendix A solved the above problem for l1 loss and gave
a running time with dependence on C, ε as poly

(
exp

(
C2

ε2
log
(
C
ε

)))
. Our approach gives an

exponential improvement in terms of Cε and works for general constant Lipschitz loss functions.

4.5. Application: Convex Piecewise-Linear Fitting

In this section we can use our learnability results for networks of ReLUs to give polynomial-time
approximation schemes for convex piecewise-linear regression (Magnani and Boyd, 2009). These
problems have been studied in optimization and notably in machine learning in the context of Multi-
variate Adaptive Regression Splines (Friedman, 1991). Note that these are not the same as univari-
ate piecewise or segmented regression problems, for which polynomial-time algorithms are known.

30



RELIABLY LEARNING THE RELU IN POLYNOMIAL TIME

w1 · x

w2 · x

σrelu

σrelu

σrelu

output

Figure 1: Representation of max(w1 ·x,w2 ·x) as a depth-2 ReLU network. Note that solid edges
represent a weight of 1, dashed edges represent a weight of -1, and the absence of an edge
represents a weight of 0.

Although our algorithms run in time exponential in k (the number of affine functions), we note that
no provably efficient algorithms were known prior to our work even for the case k = 2.9

The key idea will be to reduce piecewise regression problems to an optimization problem on
networks of ReLUs using simple ReLU “gadgets.” We formally describe the problems and describe
the gadgets in detail.

4.5.1. SUM OF MAX 2-AFFINE

We start with a simple class of convex piecewise linear functions represented as a sum of a fixed
number of functions where each of these functions is a maximum of 2 affine functions. This is
formally defined as follows.

Definition 42 (Sum of k Max 2-Affine Fitting (Magnani and Boyd, 2009)) Let C be the class of
functions of the form f(x) =

∑k
i=1 max(w2i−1 · x,w2i · x) with w1, . . . ,w2k ∈ Sn−1 mapping

Sn−1 to R. Let D be an (unknown) distribution on Sn−1 × [−k, k]. Given i.i.d. examples drawn
fromD, for any ε ∈ (0, 1) find a function h (not necessarily in C) such that E(x,y)∼D[(h(x)−y)2] ≤
minc∈C E(x,y)∼D[(c(x)− y)2] + ε.

It is easy to see that max(a, b) = max(0, a − b) + max(0, b) − max(0,−b) = σrelu(a − b) +
σrelu(b) − σrelu(−b) where σrelu(a) = max(0, a). This is simply a linear combination of ReLUs.
We can thus represent max(w1 · x,w2 · x) as a depth-2 network (see Figure 1). Adding copies of
this, we can represent a sum of k max 2-affine functions as a depth-2 network NΣ with 3k hidden
units and activation function σrelu satisfying the following properties,

• ‖w(0)
j ‖ ≤ 2

• ‖w(1)
1 ‖1 ≤ 3k

• Each input to each unit is bounded in magnitude by 2.
9Boyd and Magnani (Magnani and Boyd, 2009) specifically focus on the case of small k, writing “Our interest,

however, is in the case when the number of terms k is relatively small, say no more than 10, or a few 10s.”
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The first property holds as ‖w(0)
j ‖ ≤ max(‖w2j−1 − w2j‖, ‖w2j−1‖, ‖w2j‖) ≤ ‖w2j−1‖ +

‖w2j‖ ≤ 2 using the triangle inequality. The second holds because each of the k max sub-networks
contributes 3 to ‖w(1)

1 ‖1. The third is implied by the fact that each input to each unit is bounded by
|max(w1 · x,−w1 · x, (w1 −w2) · x)| ≤ 2.

Theorem 43 Let C be as in Definition 42, then there is an algorithm A for solving sum of k max
2-affine fitting problem in time nO(1)2O((k2/ε)) log(1/δ).

Proof As per our construction, we know that there exists a network NΣ with activation function
σrelu and 1 hidden layer such that ‖w(0)

j ‖2 ≤ 2 and ‖w(1)
1 ‖1 ≤ 3k. Also, input to each unit is

bounded in magnitude by 2. Thus, using Theorem 34 with K = 1, M = 2 and W = 3k we
get that there exists an algorithm that solves the sum of k max 2-affine fitting problem in time
nO(1) · 2(O(k2/ε)) · log(1/δ).

4.5.2. MAX k-AFFINE

In this section, we move to a more general convex piecewise linear function represented as the
maximum of k affine functions. This is formally defined as follows.

Definition 44 (Max k-Affine Fitting (Magnani and Boyd, 2009)) Let C be the class of functions
of the form f(x) = max(w1·x, . . . ,wk·x) with w1, . . . ,wn ∈ Sn−1 mapping Sn−1 to R. LetD be a
distribution on Sn−1×[−1, 1]. Given i.i.d. examples drawn fromD, for any ε ∈ (0, 1) find a function
h (not necessarily in C) such that E(x,y)∼D[(h(x)− y)2] ≤ minc∈C E(x,y)∼D[(c(x)− y)2] + ε.

Note that this form is universal since any convex piecewise-linear function can be expressed as a
max-affine function, for some value of k. However, we focus on bounded k and give learnability
bounds in terms of k.

Observe that max k-affine can be expressed in a complete binary tree structure of height dlog ke
with a max operation at each unit and wi · x for i ∈ [k] at the k leaf units (for example, see Figure
2). Note that if k is not a power of 2, then we can trivially add leaves with value w1 · x and make it
a complete tree.

Thus, the class of convex piecewise linear functions can be expressed as a network of ReLUs
with dlog ke hidden layers by replacing each max unit in the tree by 3 ReLUs and adding an output
unit. See Figure 3 for the construction for k = 4.

More formally, we have a network Nmax with dlog ke hidden layers and one output unit with
σrelu as the activation function. Hidden layer i has 3 · 2dlog ke−i units. The weight vectors for the
units in the first hidden layer are

w
(0)
3j−m =


w2j −w2j−1 m = 0

w2j−1 m = 1

−w2j−1 m = 2
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w1 · x

w2 · x

w3 · x

w4 · x

max

max

max

Figure 2: Tree structure for evaluating max k-affine with k = 4.

w1 · x

w2 · x

w3 · x

w4 · x

σrelu

σrelu

σrelu

σrelu

σrelu

σrelu

σrelu

σrelu

σrelu

output

Figure 3: Network with σrelu for evaluating max k-affine with k = 4. Note that solid edges rep-
resent a weight of 1, dashed edges represent a weight of -1 and the absence of an edge
represents a weight of 0.
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for j ∈ [3 · 2dlog ke−1]. Further, the weight vectors input to hidden layer i ∈ {2, . . . , dlog ke} of the
network are

w
(i−1)
3j−m =


e6j + e6j−1 − e6j−2 − (e6j−3 + e6j−4 − e6j−5) m = 0

e6j−3 + e6j−4 − e6j−5 m = 1

−(e6j−3 + e6j−4 − e6j−5) m = 2.

for j ∈ [3 · 2dlog ke−i+1]. Note, ei refers to the vector with 1 at position i and 0 everywhere else.
Finally the weight vector for the output unit is w(dlog ke)

1 = e1 + e2 − e3. The following properties
of Nmax are easy to deduce.

• ‖w(0)
j ‖2 ≤ 2

• ‖w(i)
j ‖1 ≤ 6 for i ∈ [dlog ke]

• The input to each unit is bounded by 2.

Here, the first and third conditions are the same conditions as in the previous section. The second
holds by the values of the weights defined above. Using the above construction, we obtain the
following result.

Theorem 45 Let C be as in Definition 44, then there is an algorithmA for solving the max k-affine
fitting problem in time nO(1) · 2O(k/ε)dlog ke · log(1/δ).

Proof As per our construction, we know that there exists a network Nmax with activation function
σrelu and dlog ke hidden layers such that ‖w(0)

j ‖2 ≤ 2 and ‖w(i)
j ‖1 ≤ 6 for i ∈ [dlog ke]. Also,

input to each unit is bounded by 2. Thus, using Theorem 34 with D = [dlog ke], M = 2 and
W = 6, we get that there exists an algorithm that solves the max k-affine problem in the required
time.

5. Hardness of Learning ReLU

We also establish the first hardness results for learning a single ReLU with respect to distributions
supported on the Boolean hypercube ({0, 1}n). The high-level “takeaway” from our hardness results
is that learning functions of the form max(0,w · x) where |w · x| ∈ ω(1) is as hard as solving
notoriously difficult problems in computational learning theory. This justifies our focus in previous
sections on input distributions supported on Sn−1 and indicates that learning real-valued functions
on the sphere is one avenue for avoiding the vast literature of hardness results on Boolean function
learning.

To begin, we recall the following problem from computational learning theory widely thought
to be computationally intractable.

Definition 46 (Learning Sparse Parity with Noise) Let χS : {0, 1}n → {0, 1}n be an unknown
parity function on a subset S, |S| ≤ k, of n inputs bits (i.e., any input, restricted to S, with an odd
number of ones is mapped to 1 and 0 otherwise). Let Ck be the concept class of all parity functions
on subsets S of size at most k. Let D be a distribution on {0, 1}n × {−1, 1} and define
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opt = min
χ∈Ck

Pr
(x,y)∼D

[χ(x) 6= y].

The Sparse Learning Parity with Noise problem is as follows: Given i.i.d. examples drawn from
D, find h such that Pr(x,y)∼D[h(x) 6= y] ≤ opt + ε.

Our hardness assumption is as follows:

Assumption 47 For every algorithm A that solves the Sparse Learning Parity with Noise problem,
there exists ε = O(1) and k ∈ ω(1) such that A requires time nΩ(k).

Any algorithm breaking the above assumption would be a major result in theoretical computer
science. The best known algorithms due to Blum et al. (2003) and Valiant (2015) run in time
2O(n/ logn) and n0.8k, respectively. Under this assumption, we can rule out polynomial-time algo-
rithms for reliably learning ReLUs on distributions supported on {0, 1}n.

Theorem 48 Let C be the class of ReLUs over the domain X = {0, 1}n with the added restriction
that ‖w‖1 ≤ 2k. Any algorithm A for reliably learning C in time g(ε) · poly(n) for any function g
will give a polynomial time algorithm for learning sparse parities with noise of size k for ε = O(1).

Proof We will show how to use a reliable ReLU learner to agnostically learn conjunctions on
{0, 1}n and use an observation due to Feldman and Kothari (2015) who showed that agnostically
learning conjunctions is harder than the Sparse Learning Parity with Noise problem. Let COk be
the concept class of all Boolean conjunctions of length at most k.

Notice that for the domain X = {0, 1}n, the conjunction of literals x1, . . . , xk can be computed
exactly as max(0, x1 + · · ·+xk− (k− 1)). Fix an arbitrary distribution D on {0, 1}n×{0, 1} and
define

opt = min
c∈COk

Pr
(x,y)∼D

[c(x) 6= y].

Kalai et al. (2008, Theorem 5) observed that in order output a hypothesis h with error opt+ ε it
suffices to minimize (to within ε) the following quantity:

opt1 = min
c∈COk

E(x,y)∼D[|c(x)− y]|.

Consider the following transformed distribution D′ on {0, 1}n × {ε, 1 + ε} that adds a small
positive ε to every y output by D. Note that this changes opt1 by at most ε. Further, all labels in D′
are now positive. Since every c ∈ COk is computed exactly by a ReLU, and the reliable learning
model demands that we minimize L>0(h;D′) over all ReLUs, algorithm A will find an h such that
E(x,y)∼D′ [|h(x)− y|] ≤ opt1 + ε ≤ opt + 2ε. By appropriately rescaling ε, we have shown how to
agnostically learn conjunctions using reliable learner A. This completes the proof.

The above proof also shows hardness of learning ReLUs agnostically. Note the above hardness
result holds if we require the learning algorithm to succeed on all domains where |(w ·x)| can grow
without bound with respect to n:
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Corollary 49 Let A be an algorithm that learns ReLUs on all domains X ⊆ Rn where (w · x)
may take on values that are ω(1) with respect to the dimension n. Then any algorithm for reli-
ably learning C in time g(ε) · poly(n) will break the Sparse Learning Parity with Noise hardness
assumption.

Finally, we point out Kalai et al. (2012) proved that reliably learning conjunctions is also as hard
as PAC Learning DNF formulas. Thus, by our above reduction, any efficient algorithm for reliably
learning ReLUs would give an efficient algorithm for PAC learning DNF formulas (again this would
be considered a breakthrough result in computational learning theory).

6. Conclusions and Open Problems

We have given the first set of efficient algorithms for ReLUs in a natural learning model. ReLUs
are both effective in practice and, unlike linear threshold functions (halfspaces), admit non-trivial
learning algorithms for all distributions with respect to adversarial noise. We “sidestepped” the
hardness results in Boolean function learning by focusing on problems that are not entirely scale-
invariant with respect to the choice of domain (e.g., reliably learning ReLUs). The obvious open
question is to improve the dependence of our main result on 1/ε. We can handle ε = 1/ log n, and
as mentioned in the introduction, ε = 1/poly(n) seems difficult. Is it possible to obtain a run-time
of poly(n, k) · 2O(1/ε) for depth-2 networks of ReLUs with k hidden units?
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