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Abstract

We prove new upper and lower bounds on the VC-dimension of deep neural networks with the
ReLU activation function. These bounds are tight for almost the entire range of parameters. Letting
W be the number of weights and L be the number of layers, we prove that the VC-dimension is
O(W Llog(W)), and provide examples with VC-dimension Q(W Llog(W/L)). This improves
both the previously known upper bounds and lower bounds. In terms of the number U of non-
linear units, we prove a tight bound ©(WU) on the VC-dimension. All of these results generalize
to arbitrary piecewise linear activation functions.

Keywords: VC-dimension, neural networks, ReLU activation function

Extended abstract. The full version with all the proofs appears as [arXiv:1703.02930, v2].

1. Introduction

Deep neural networks underlie many of the recent breakthroughs in applied machine learning, par-
ticularly in image and speech recognition. These successes motivate a renewed study of these
networks’ theoretical properties.

Classification is one of the learning tasks in which deep neural networks have been particularly
successful, e.g., for image recognition. A natural foundational question that arises is: what are the
generalization guarantees of these networks in a statistical learning framework? An established way
to address this question is by considering VC-dimension, as it is well known that this asymptotically
determines the sample complexity of PAC learning with such classifiers (Vapnik and Chervonenkis,
1971; Blumer et al., 1989).

In this paper, we prove nearly-tight bounds on the VC-dimension of deep neural networks in
which the non-linear activation function is a piecewise linear function with a constant number of
pieces. For simplicity we will henceforth refer to such networks as “piecewise linear networks”.
The most common activation function used in practice is, by far, the rectified linear unit, also
known as ReLU (Goodfellow et al., 2016; LeCun et al., 2015). The ReLU function is defined as
o(x) = max{0, z}, so it is clearly piecewise linear.

It is particularly interesting to consider how the VC-dimension is affected by the various at-
tributes of the network: the number W of parameters (i.e., weights and biases), the number U of
non-linear units (i.e., nodes), and the number L of layers. Among all networks with the same size
(number of weights), is it true that those with more layers have larger VC-dimension?

Such a statement is indeed true, and previously known; however, a tight characterization of how
depth affects VC-dimension was unknown prior to this work.
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Our results. For the definitions of VC-dimension, shattering etc., we refer the reader to Anthony
and Bartlett (1999). Our first main result is a new VC-dimension lower bound that holds even for
the restricted family of ReLLU networks.

Theorem 1 (Main lower bound) There exists a universal constant C such that the following holds.
Given any W, L with W > CL > C?, there exists a ReLU network with < L layers and < W pa-
rameters with VC-dimension > W Llogy(W/L)/C.

Remark. By a rough calculation, we can take C' = 640 but we have not tried to optimize this
constant.

Remark. Our construction can be augmented slightly to give a neural network with linear threshold
and identity activation functions with the same guarantees.

Prior to our work, the best known lower bounds were Q(W L) (Bartlett et al., 1998, Theorem 2)
and Q(W log W) (Maass, 1994, Theorem 1). We strictly improve both bounds to Q(W L log(W/L)).

Our proof of Theorem 1 uses the “bit extraction” technique that was developed by Bartlett et al.
(1998) to prove an Q(WW L) lower bound. We refine their technique in a key way — we partition the
input bits into blocks and extract multiple bits at a time instead of a single bit at a time. This yields
a more efficient bit extraction network, which gains us the additional logarithmic factor that appears
in Theorem 1.

Unfortunately there is a barrier to refining this technique any further. Our next theorem shows
the hardness of computing the mod function, implying that the bit extraction technique cannot yield
a stronger lower bound than Theorem 1. Further discussion of this connection may be found in the
full version.

Theorem 2 Assume there exists a piecewise linear network with W parameters and L layers that
computes a function f : R — R, with the property that |f(z) — (x mod 2)| < 1/2 for all x €
{0,1,...,2™ — 1}. Then we have m = O(Llog(W/L)).

One interesting aspect of the proof is that it does not use Warren’s lemma (Warren, 1968),
which is a mainstay of VC-dimension upper bounds, see Goldberg and Jerrum (1995); Bartlett et al.
(1998); Anthony and Bartlett (1999).

Telgarsky (2016) showed how to construct a function f which satisfies f(x) = (z mod 2)
forx € {0,1,...,2™ — 1} using a neural network with O(m) layers and O(m) parameters. By
choosing m = k3, Telgarsky showed that any function g computable by a neural network with
O(k) layers and O(2*) nodes must necessarily have ||f — g||1 > c for some constant ¢ > 0.
Our Theorem 2 implies a similar statement. In particular, if we choose m = k!'*¢ then for any
function g computable by a neural network with ©(k) layers and O(2*") parameters, there must
existz € {0,1,...,2™ — 1} such that | f(z) — g(x)| > 1/2.

Our next main result is an upper bound on the VC-dimension of neural networks with any
piecewise linear activation function with a constant number of pieces. Recall that ReLU is an
example of a piecewise linear activation function.

Theorem 3 (Main upper bound) Consider a piecewise linear neural network with W parameters
arranged in L layers. Let F be the set of (real-valued) functions computed by this network. Then,
if m = VCDim(sgn(F)) and p is the number of pieces of the activation function, it holds that
m < 4W (L + 1) logy(2eWmp). Asymptotically, this implies VCDim(sgn(F)) = O(W Llog W).
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Remark. After the initial version of this paper was submitted, we have learned that a similar upper
bound of O(W Llog W) for the VC-dimension of piecewise linear neural networks was proved
independently by Bartlett (2017).

Prior to our work, the best published upper bounds were O(W?) (Goldberg and Jerrum, 1995,
Section 3.1) and O(W Llog W + WLQ) (Bartlett et al., 1998, Theorem 1), both of which hold for
piecewise polynomial activation functions; we strictly improve both bounds to O(W L log W) for
the special case of piecewise linear functions.

The proof of Theorem 3 is very similar to the proof of the upper bound for piecewise polynomial
networks in (Bartlett et al., 1998, Theorem 1) but optimized for piecewise linear networks. In
particular, we use a result of Warren (1968).

To compare our upper and lower bounds, let d(W, L) denote the largest VC-dimension of a
piecewise linear network with W parameters and L layers. Theorems 1 and 3 imply there exist
constants ¢, C' such that

c-WLlog(W/L) < d(W,L) < C-WLlogW . (1)

For neural networks arising in practice it would certainly be the case that L is significantly smaller
than W99 in which case our results determine the asymptotic bound d(W, L) = ©(W Llog W).
On the other hand, in the regime L = O(W), which is merely of theoretical interest, we also now
have a tight bound d(W, L) = ©(W L), obtained by combining Theorem 1 with results of Goldberg
and Jerrum (1995). There is now only a very narrow regime, say W% <« L < W, in which the
bounds of (1) are not asymptotically tight, and they differ only in the logarithmic factor.

Our final result is an upper bound for VC-dimension in terms of W and U (the number of non-
linear units, or nodes). It follows from our proof of Theorem 1 that this bound is tight in the case
d=1.

Theorem 4 Consider a neural network with W parameters and U units with activation functions
that are piecewise polynomials of degree at most d. Let F be the set of (real-valued) functions

computed by this network. Then VCDim(sgn(F)) = O(WU log(d + 1)).

The proof of this result appears in the full version. The best known upper bound before our
work was O(W?2), implicitly proven for fixed d in (Goldberg and Jerrum, 1995, Section 3.1). Our
theorem improves this to the tight result O(WU).

The idea of the proof of Theorem 4 is that the sign of the output of a neural network can be
expressed as a Boolean formula where each predicate is a polynomial inequality. Then we apply
(Goldberg and Jerrum, 1995, Theorem 2.2), which gives a bound for the VC-dimension of a class
of Boolean functions that can be expressed using distinct polynomial inequalities.

The proofs of all our results appear in the full version of this paper, see Harvey et al. (2017).

Related Work. The VC-dimension of neural networks with linear threshold functions has been
studied many years ago. Cover (1968) and later (Baum and Haussler, 1989, Corollary 2) proved that
their VC-dimension is O(W log W). The Q(W log W) lower bound of Maass (1994) mentioned
above actually apply to the restricted setting of linear threshold functions, hence giving a tight bound
of ©(W log W) for such networks. For neural networks with linear threshold and identity activa-
tion functions, Bartlett et al. (1998) proved a lower bound of Q(W L). The lower bounds of Maass
(1994) and Bartlett et al. (1998) also hold for our scenario of ReLU networks since linear threshold
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functions can easily be simulated using ReLU functions. We refer the reader to the excellent mono-
graph by Anthony and Bartlett (1999) that covers these and many other theoretical results on neural
networks.

Recently there have been several papers that study neural networks from an approximation the-
ory point of view and aim to understand which functions can be expressed using a neural network of
given a depth and size. There are technical similarities between our work and these. Last year, two
striking papers considered the problem of approximating a deep neural network with a shallower
network. Telgarsky (2016) shows that there is a ReLU network with L layers and U = O(L) units
such that any network approximating it with only O(L!/?) layers must have Q(2L1/3) units; this
phenomenon holds even for real-valued functions. Eldan and Shamir (2016) show an analogous
result for a high-dimensional 3-layer network that cannot be approximated by a 2-layer network
except with an exponential blow-up in the number of nodes.

Very recently, several authors have shown that deep neural networks are capable of approxi-
mating broad classes of functions. Safran and Shamir (2017) show that a sufficiently non-linear C
function on [0, 1% can be approximated with e error in Ly by a ReLU network with O(polylog(1/e))
layers and weights, but any such approximation with O(1) layers requires 2(1/¢) weights. Yarot-
sky (2017) shows that any C™-function on [0, 1] can be approximated with e error in L., by a
ReLU network with O(log(1/¢)) layers and O((%)d/ "log(1/¢€)) weights. Liang and Srikant (2017)
show that a sufficiently smooth univariate function can be approximated with € error in L., by a
network with ReLU and threshold gates with ©(log(1/¢)) layers and O(polylog(1/¢)) weights, but
that Q(poly(1/¢€)) weights would be required if there were only o(log(1/¢)) layers; they also prove
analogous results for multivariate functions. Lastly, Cohen et al. (2016) draw a connection to tensor
factorizations to show that, for non-ReLLU networks, the set of functions computable by a shallow
network have measure zero among those computable by a deep networks.
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