
Proceedings of Machine Learning Research vol 65:1–54, 2017

Submodular Optimization under Noise

Avinatan Hassidim AVINATAN@CS.BIU.AC.IL
Bar Ilan University and Google

Yaron Singer YARON@SEAS.HARVARD.EDU

Harvard University

Abstract
We consider the problem of maximizing a monotone submodular function under noise. Since the
1970s there has been a great deal of work on optimization of submodular functions under various
constraints, resulting in algorithms that provide desirable approximation guarantees. In many ap-
plications, however, we do not have access to the submodular function we aim to optimize, but
rather to some erroneous or noisy version of it. This raises the question of whether provable guar-
antees are obtainable in the presence of error and noise. We provide initial answers by focusing on
the problem of maximizing a monotone submodular function under a cardinality constraint when
given access to a noisy oracle of the function. We show that there is an algorithm whose approx-
imation ratio is arbitrarily close to the optimal 1 − 1/e when the cardinality is sufficiently large.
The algorithm can be applied in a variety of related problems including maximizing approximately
submodular functions and optimization with correlated noise. When the noise is adversarial we
show that no non-trivial approximation guarantee can be obtained.
Keywords: Submodular, optimization, noise

1. Introduction

In this paper we study the effects of error and noise on submodular optimization. A function
f : 2N → R defined on a ground set N of size n is submodular if for any S, T ⊆ N :

f(S ∪ T) ≤ f(S) + f(T)− f(S ∩ T)

Equivalently, submodularity can be defined in terms of a natural diminishing returns property. For
any A,B ⊆ N let fA(B) = f(A ∪B)− f(A), then f is submodular if ∀S ⊆ T ⊆ N, a ∈ N \ T :

fS(a) ≥ fT (a).

In general, submodular functions may require a representation that is exponential in the size of the
ground set and the assumption is that we are given access to a value oracle which given a set S
returns f(S). It is well known that submodular functions admit desirable approximation guarantees
and are heavily used in machine learning, data mining, and mechanism design (see related work).
For the classic problem of maximizing a monotone (i.e. S ⊆ T =⇒ f(S) ≤ f(T)) submodular
function under a cardinality constraint, the greedy algorithm which iteratively adds the element with
largest marginal contribution into the solution obtains a 1 − 1/e approximation Nemhauser et al.
(1978b) which is optimal with polynomially-many queries Nemhauser and Wolsey (1978).

Since submodular functions can be exponentially representative, it seems plausible that they
may be erroneously evaluated. In market design where submodular functions model agents’ valua-
tions for goods, it seems reasonable to assume that agents do not precisely know their valuations. In

c© 2017 A. Hassidim & Y. Singer.

HASSIDIM SINGER

. . .

Figure 1: An instance for which the greedy algorithm fails with access to an oracle with error. In this problem we are
given a family of sets that cover a universe of items, and the goal is to select a fixed number of sets whose
union is maximal. This classic problem is an example of maximizing a monotone submodular function under
a cardinality constraint. In this instance there is one family of setsA depicted on the left where all sets cover
the same two items, and another family of disjoint sets B that each cover a single unique item. Consider an
oracle which evaluates sets as follows. For any combination of sets the oracle evaluates the cardinality of
the union of the subsets exactly, except for a few special cases: For S = A ∪ b ∀A ⊆ A, b ∈ B the oracle
returns f̃(S) = 2, and for S ⊆ A the oracle returns f̃(S) = 2 + δ for some arbitrarily small δ > 0. With
access to this oracle, the greedy algorithm will only select sets in A which may be as bad as linear in the
size of the input. In this example we tricked the greedy algorithm with a 1/3-erroneous oracle, but same
consequences apply to an ε-erroneous oracle for any ε > 0 by planting (1− ε)/ε items in A.

machine learning submodular functions are learned from data, and by design the learning algorithms
produce erroneous versions of the function Goemans et al. (2009); Balcan and Harvey (2011); Bal-
can et al. (2012); Badanidiyuru et al. (2012); Feldman et al. (2013); Feldman and Vondrák (2013);
Du et al. (2014a,b); Feldman and Kothari (2014); Feldman and Vondrák (2015); Balcan (2015).

Can we retain desirable approximation guarantees in the presence of error?

For ε > 0 we say that f̃ : 2N → R is an ε-erroneous oracle of f : 2N → R if for every set S ⊆ N :

(1− ε)f(S) ≤ f̃(S) ≤ (1 + ε)f(S)

For the canonical problem of maxS:|S|≤k f(S), one can trivially approximate the solution within a
factor of 1−ε

1+ε using
(
n
k

)
queries with an ε-erroneous oracle by simply evaluating all possible subsets

and returning the best solution (according to the erroneous oracle). Is there a polynomial-time algo-
rithm that can obtain desirable approximation guarantees for maximizing a monotone submodular
function under a cardinality constraint given access to ε-erroneous oracles? In Figure 1 we sketch
an example showing that the celebrated greedy algorithm fails to obtain an approximation strictly
better than O(1/k) for any constant ε > 0 when given access to an ε-erroneous oracle f̃ instead of
f . It turns out that this is not intrinsic to greedy. No algorithm is robust to small errors.

Theorem 8 No randomized algorithm can obtain an approximation strictly better thanO(n−1/2+δ)

to maximizing monotone submodular functions under a cardinality constraint using en
δ
/n queries

to an ε-erroneous oracle, for any fixed ε, δ < 1/2, with probability 1− o(1).

Since desirable guarantees are generally impossible with erroneous oracles, we seek natural
relaxations of the problem. The first could be to consider stricter classes of functions. It is trivial

2

SUBMODULAR OPTIMIZATION UNDER NOISE

to show for example, that additive functions (i.e. f(S) =
∑

a∈S f(a)) allow us to obtain a 1−ε
1+ε

approximation when given access to ε-erroneous oracles. However, our impossibility result applies
to very simple affine functions, and even coverage functions like those in the example sketched
above. An alternative relaxation is to consider error models that are not necessarily adversarial.

Noisy oracles. We can equivalently say that f̃ : 2N → R is ε-erroneous if for every S ⊆ N we
have that f̃(S) = ξSf(S) for some ξS ∈ [1− ε, 1 + ε]. The lower bound stated above applies to the
case in which the error multipliers ξS are adversarially chosen. A natural question is whether some
relaxation of the adversarial error model can lead to possibility results.

Definition For a function f : 2N → R we say that f̃ : 2N → R is a noisy oracle if there exists
some distributionD s.t. f̃(S) = ξSf(S) where ξS is independently drawn fromD for every S ⊆ N .

We will consider a general class of distributions which we call generalized exponential tail dis-
tributions (see Definition 10) that contains Gaussian, Exponential, and distributions with bounded
support which are independent of n (o.w. optimization is impossible, see Appendix D). 1

Consistent oracles. Note that the noisy oracle defined above is consistent: for any S ⊆ N the
noisy oracle returns the same answer regardless of how many times it is queried. Consistency is
important from a modeling perspective. If we aim to model approximately submodular functions, as
in the case of functions learned from data, or agents’ valuations that are not exactly submodular, the
oracle must remain consistent. When the noisy oracle is inconsistent, mild conditions on the noise
distribution allow the noise to essentially vanish after logarithmically-many queries, reducing the
problem to standard submodular maximization (see e.g. Kempe et al. (2003); Singla et al. (2016)).
Consistency implies that the noise is arbitrarily correlated for a given set in different time steps,
but i.i.d between different sets. In fact, we will later generalize the model to the case in which
ξS and ξT are i.i.d only when S and T are sufficiently far, and arbitrarily correlated otherwise
(see Section 1.3). At this point, we are interested in identifying a natural non worst-case model of
corrupted or approximately submodular functions that is amendable to optimization.

1.1. Main result

Our main result is that for the problem of optimizing a monotone submodular function under a
cardinality constraint using noisy oracles, when the cardinality is sufficiently large, near-optimal
approximations are achievable.

Theorem (informal) For any monotone submodular function there is a deterministic poly-time al-
gorithm which optimizes the function under a cardinality constraint k ∈ Ω(log log n) and w.h.p
obtains an approximation ratio arbitrarily close to 1− 1/e using a noisy oracle of the function.

The technique we use in this work critically depends on k ∈ Ω(log log n), and cannot be modi-
fied to work for regimes in which k ∈ O(log log n). We leave this regime for future work.

1. It is important to note that the difficulty of the optimization problem is not due to the richness of the noise distribu-
tions. For simplicity, one can always consider the special case where D ⊆ [1− ε, 1 + ε]. The greedy algorithm fails
even in this case (see Appendix E), and we are not aware of algorithms that are simpler than those presented here.

3

HASSIDIM SINGER

1.2. Extensions

One of the appealing aspects of the noise model and the algorithms, is that they can easily be
extended to a rich variety of related models. In Section 4 we discuss application to additive noise,
marginal noise, correlated noise, information degradation, and approximate submodularity.

1.3. Applications

• Optimization under noise. When considering optimization under noise, queries can be in-
dependent or correlated in time and in space. For f : 2N → R the noisy oracle is defined as
f̃(S) = ξS(t)f(S) where ξS(t) ∼ D, for every step the oracle is queried t ∈ N and S ⊆ N .

Definition Noise is i.i.d in time if ξS(t) and ξS(t′) are independent for any t 6= t′ ∈ N and
S ⊆ N . Similarly, we can say that noise is i.i.d in in space if ξS(t) and ξT (t′) are independent
for any S 6= T and t, t′ ∈ N. The noise distribution is correlated in time (space) if it is not
independent in time (space).

The case in which the oracle is inconsistent is one where the noise is i.i.d in time and in
space. From an algorithmic perspective this problem is largely solved, as discussed above.
From Theorem 8 we know that there is no poly-time approximation algorithm for the case
in which the errors are arbitrarily correlated in time and in space, even when the support
of the noise distribution is arbitrarily small. The model we describe assumes the noise is
arbitrarily correlated in time, but i.i.d in space. In Section 4 we show how one can relax this
assumption. In particular, we show how to generalize the algorithms to obtain approximation
ratios arbitrarily close to 1 − 1/e in a noise model where ξS(t) and ξT (t′) are arbitrarily
correlated in time and in space for any t, t′ ∈ N and S, T for which |S4T | ∈ O(

√
k). To the

best of our knowledge, this is the first study of submodular optimization under any correlation.

• Maximizing approximately submodular functions. There are cases where one may wish
to optimize an approximately submodular function. Theorem 8 implies that being arbitrarily
close to a submodular function is not sufficient. In statistics and learning theory, to model
the fact that data is generated by a function that is approximately in a class of well behaved
functions, the function generating the data f̃ is typically assumed to be a noisy version of a
function f from a well-behaved class of functions Hastie et al. (2009); Wasserman (2010);
Shalev-Shwartz and Ben-David (2014):

f̃(x) = f(x) + ξx,

where ξx is an i.i.d sample drawn from some distribution D. In regression problems for in-
stance, one assumes that the data is generated by f̃(x) = wᵀx + ξx. This model captures
the idea that some phenomena may not exactly behave in a linear manner, but can be ap-
proximated by such a model. This therefore seems like a natural model to study approximate
submodularity, especially in light of Theorem 8. Notice that in this case we would be inter-
ested in the optimization problem: maxS:|S|≤k f̃(S). In Section 4 we describe a black-box
reduction which allows one to use the algorithms described here to get optimal guarantees.

4

SUBMODULAR OPTIMIZATION UNDER NOISE

• Active learning. In active learning one assumes a membership oracle that can be queried to
obtain labeled data Angluin (1988). In noise-robust learning, the task is to get good approx-
imations to the noise-free target f when the examples are corrupted by some noise. In this
model the assumption is that noise is consistent and i.i.d, exactly as in our model. That is,
we observe f̃(x) + ξx where x is drawn i.i.d from D and multiple queries return the same
answer (see e.g.Goldman et al. (1990); Jackson (1994); Shamir and Schwartzman (1995);
Jackson et al. (1999); Bshouty and Feldman (2002); Feldman (2009)). Our results apply to
additive noise, and thus apply to active learning with noisy membership queries of submod-
ular functions. One example application of active learning where the function is submodular
is experimental design Krause et al. (2008, 2007); Horel et al. (2014).

• Learning and sketching. In learning and sketching the goal is to generate a surrogate func-
tion which approximates the submodular function well (see e.g. Goemans et al. (2009);
Balcan and Harvey (2011); Balcan et al. (2012); Badanidiyuru et al. (2012); Feldman et al.
(2013); Feldman and Vondrák (2013); Du et al. (2014a,b); Feldman and Kothari (2014); Feld-
man and Vondrák (2015); Balcan (2015)). Theorem 8 implies that a surrogate which approxi-
mates a submodular function arbitrarily well may be inapproximable. Our main result shows
that if when the surrogate is a noisy version of the function, then one can use the surrogate for
optimization. This can therefore be used as a stricter benchmark for learning and sketching
which allows optimizing a function learned or sketched from data.

1.4. Technical overview

To handle noise, instead of optimizing f , we optimize a smoothed surrogate function F . In general,
by selecting a family of sets H we can define a surrogate F (S) =

∑
H′∈H f(S ∪H ′) and its noisy

analogue F̃ (S) =
∑

H′∈H f̃(S ∪ H ′) which we can evaluate. Intuitively, when H is sufficiently
large and chosen appropriately, submodularity and monotonicity can be used to cancel the noise so
that the choices we make on F̃ (S) are those we would have made on F (S). A large part of the
challenge then comes from analyzing the solution obtained from optimizing the surrogate F as an
approximation of the optimum of f . Additionally, the fact that we’re dealing with noise deprives us
of elementary procedures like computing a maximum, and intuitive arguments about the properties
of the greedy algorithm no longer hold.2 Hence, the analysis of the algorithms is subtle and quite
technical (even when distributions are bounded in [1− ε, 1 + ε]). We sketch a high level overview.

Overview of the algorithms. We first construct and analyze the SMOOTH-GREEDY algorithm
which applies a greedy algorithm on the smoothed surrogate. Then, we construct the SLICK-
GREEDY algorithm which employs a variant of SMOOTH-GREEDY as a sub-procedure.

The smooth greedy algorithm. SMOOTH-GREEDY chooses a setH of ` ∈ O(log log n) arbitrary
elements when k ∈ O(log n) and ` ∈ O(log n) elements when k is sufficiently larger than log n.
Then, it runs the greedy algorithm for k − ` steps, starting with S = ∅ adding elements one at a
time. However, instead of evaluating f(S ∪ a) to choose the next element to add to S, it uses the
surrogate F (S) = EH′⊆H [f(S ∪H ′)]. In the end of the procedure, the output is S ∪H .

2. For example, an element that enters a solution does not necessarily have the largest marginal contribution, the
marginal contribution of elements that enter the solution do not necessarily (weakly) decrease, etc.

5

HASSIDIM SINGER

Noise elimination via smoothing. Averaging over 2O(log logn) = poly log n samples of the distri-
bution suffices to give us concentration bounds that hold with 1− 1/ poly(n) probability. Thus, we
can union bound the failure of these bounds3 and focus on analyzing SMOOTH-GREEDY assuming
it queries the noiseless surrogate function4.

Analysis of the smooth greedy algorithm. If we were lucky and at some point fS(H) = 0 we are
done, since from this point onwards we are essentially computing the true marginal contribution of
every element to S, and running the standard greedy algorithm. In the beginning, this is clearly not
the case. However, letting S denote the set of elements selected at the beginning of some iteration,
we show that in every iteration we add an element a whose marginal contribution to S is arbitrarily
close to maxb fS∪H(b). We then show that the resulting set S together with the smoothing set H
give a 1− 1/e approximation against the optimal solution that optimizes fH with k − ` elements.

Slick Greedy: optimal approximation guarantee. In principle, SMOOTH-GREEDY does not
provide the 1 − 1/e guarantee since it may use a smoothing set which encompasses a large-valued
fraction of the optimal solution. In this case, the optimal solution evaluated on fH may be insignif-
icant to the optimal solution, and the constant factor approximation guarantee crucially depends on
including H in the solution. The main idea behind SLICK-GREEDY is to select a large yet constant
number c ≈ 1/ε of smoothing sets H1, . . . ,Hc, run multiple iterations of a variant of SMOOTH-
GREEDY and choose the best solution. In this variant, in each iteration we set one of the smoothing
sets Hj aside and run SMOOTH-GREEDY that is initialized with S = ∪i 6=jHi and Hj as its smooth-
ing set. Intuitively, the idea is that one of the smoothing sets has relatively small value to the rest,
and SMOOTH-GREEDY obtains a 1− 1/e− ε approximation to the restricted optimal solution that
is forced to take ∪i 6=jHi, which in itself is close to the (unrestricted) optimal solution.

1.5. Paper organization

The exposition of the algorithms is contained in sections 2 and 3. For each algorithm, we suppress
proofs and additional lemmas to the corresponding section in the appendix. The smoothing argu-
ments can be found in Appendix A. The smoothing arguments are used as a black-box in the proofs
of each algorithm, and are not required for reading the main exposition. In Section 4 we discuss ex-
tensions of the algorithms to related models. In Section 5 we prove the result for adversarial noise.
Discussion about additional related work is in Section 6. Further discussion about the noise distri-
butions can be found in Appendix D, and additional bad examples for greedy and variants under
error and noise are in Appendix E.

2. The Smooth Greedy Algorithm

In this section we describe SMOOTH-GREEDY which is then slightly generalized and used as a
subroutine by SLICK-GREEDY to obtain an optimal approximation guarantee. The algorithm is

3. There is an oversimplification here. In general, we want the smoothing to have two properties. First, we need to
have an accuracy which is at least proportional to 1/k. This means that when k ∈ O(logn), we can do with
` ∈ O(log log n), but when k is much larger than logn we already use ` = O(logn) elements. In addition, we need
to have a union bound over a polynomial number of evaluations, and hence always need at least ` ∈ O(log log n).

4. There is a subtle issue here: it is not true that the noise cancels when using the surrogate; We gloss over this here, but
in the paper we show a weaker concentration argument which suffices to ensure that with high probability at every
stage of the algorithm the element selected is the element whose marginal contribution to the surrogate is arbitrarily
close to the marginal contribution of the element whose marginal contribution to the surrogate is maximal.

6

SUBMODULAR OPTIMIZATION UNDER NOISE

deterministic and for any desired degree of accuracy ε > 0 can be applied when the cardinality
constraint k is in Ω(log logn/ε2), or more specifically when k ≥ 3168 log log n/ε2.

2.1. The Smoothing Neighborhood

We begin by describing the smoothing technique used by SMOOTH-GREEDY. We select an arbi-
trary set H and for a given element a, the smoothing neighborhood is H = {H ′ ∪ a : H ′ ⊆ H}.
Throughout the rest of this section we assume that H is an arbitrary set of size `, where ` depends
on k. In the case where k ≥ 2400 log n we will use ` = 25 log n, and when k < 2400 log n we will
use ` = 33 log log n 5. The precise choice for ` will become clear later in this section. Intuitively,
` is on the one hand small enough so that we can afford to sacrifice ` elements for smoothing the
noise, and on the other hand ` is large enough so that taking all its subsets gives us a large smoothing
neighborhood which enables applying concentration bounds.

Definition For a set S ⊆ N and some fixed set H ⊆ N of size `, we use H(1), . . . ,H(t) to denote
all the subsets of H and k′ = k − `. The smooth value, noisy smooth value and smooth marginal
contribution are, respectively:

(1) F (S ∪ a) := E
[
f(S ∪ (H(i) ∪ a)

]
=

1

t

t∑
i=1

f
(
S ∪ (H(i) ∪ a)

)
;

(2) F̃ (S ∪ a) := E
[
f̃(S ∪ (H(i) ∪ a)

]
=

1

t

t∑
i=1

f̃
(
S ∪ (H(i) ∪ a)

)
;

(3) FS(a) := E
[
fS((H(i) ∪ a))

]
=

1

t

t∑
i=1

fS

(
H(i) ∪ a

)
.

2.1.1. THE ALGORITHM

The smooth greedy algorithm is a variant of the standard greedy algorithm which replaces the pro-
cedure of adding argmaxa∈N f(S ∪ a) with its smooth analogue. The algorithm receives a set of
elements H of size `, initializes S = ∅ and at every stage adds to S the element a /∈ H for which
the smooth noisy value F̃ (S ∪ a) is largest. A formal description is added below.

Algorithm 1 SMOOTH-GREEDY

Input: budget k, set H
1: S ← ∅
2: while |S| < k − |H| do
3: S ← S ∪ arg maxa/∈H F̃ (S ∪ a)
4: end while
5: return S

5. W.l.o.g. we assume that k < n − 25 logn as for sufficiently large n this then implies that k ≥ (1 − ε)n and by
submodularity optimizing with k′ = n− 25 logn suffices to get the 1− 1/e− ε guarantee for any fixed ε > 0.

7

HASSIDIM SINGER

Overview of the analysis. At a high level, the idea behind the analysis is to compare the perfor-
mance of the solution returned by the algorithm against an optimal solution which ignores the value
of H and any of its partial substitutes. More specifically, let OPT denote the value of the optimal
solution with k elements evaluated on f and OPTH denote the value of the optimal solution with
k′ = k−` elements evaluated on fH , where fH(T) = f(T ∪H)−f(H). Essentially, we will show
that at every step SMOOTH-GREEDY selects an element whose marginal contribution is larger than
that of an element from the optimal solution evaluated on fH (we illustrate this idea in Figure 2).
Together with an inductive argument this suffices for a constant factor approximation.

Relevant iterations. One of the artifacts of noise is that our comparisons are not precise. Specifi-
cally, when we select an element that maximizes F̃ (S∪a), our smoothing guarantee will be that this
element respects FS(a) ≥ (1− δ) maxb/∈H FS(b) for δ > 0 that depends on ε and k. This can be
guaranteed only for an iteration where two conditions are met: (i) there is at least a single element
not yet selected (and not in H) whose marginal contribution is at least ε/k fraction of OPTH , and
(ii) OPTH is sufficiently large in comparison to OPT. We call such iterations ε-relevant.

Definition An iteration of SMOOTH-GREEDY is ε-relevant if (i) maxb/∈H fH∪S(b) ≥ ε·OPTH
k and

(ii) OPTH ≥ OPT
e , where S is the set of elements selected in previous iterations.

We will analyze SMOOTH-GREEDY in the case where the iterations are ε-relevant as it allows ap-
plying the smoothing arguments. In the analysis we will then ignore iterations that are not ε-relevant
at the expense of a negligible loss in the approximation guarantee. The main steps are:

1. In Lemma 1 we show that in each ε-relevant iteration the (non-noisy) smooth marginal con-
tribution of the element selected in that iteration by the algorithm is w.h.p. an arbitrarily good
approximation to maxb/∈H FS(b). To do so we need claims 5, 6 and 7;

2. Next, in Claim 2 we show that the element a whose smooth marginal contribution FS(a) is
maximal has true marginal contribution fS(a) that is roughly a k′th fraction of the marginal
contribution of the optimal solution over fH ;

3. Finally, in Lemma 2 we apply a standard inductive argument to show that the fact that the
algorithm selects an element with large smooth value in each step results in an approximation
arbitrarily close to 1−1/e to OPTH (not OPT). In Corollary 15 we show that the bound against
OPTH can already be used to give a constant factor approximation to OPT. To get arbitrar-
ily close to 1− 1/e, SLICK-GREEDY executes multiple instantiations of a generalization of
SMOOTH-GREEDY as later described in Section 3.

2.1.2. SMOOTHING GUARANTEES

The first step is to prove Lemma 1. This lemma shows that at every step as SMOOTH-GREEDY adds
the element that maximizes the noisy value argmaxa/∈H F̃ (S ∪ a), that element nearly maximizes
the (non-noisy) smooth marginal contribution FS , with high probability.

Lemma 1 For any fixed ε > 0, consider an ε-relevant iteration of SMOOTH-GREEDY where
S is the set of elements selected in previous iterations and a ∈ arg maxb/∈H F̃ (S ∪ b). Then for
δ = ε2/4k and sufficiently large n we have that w.p. ≥ 1− 1/n4:

FS(a) ≥ (1− δ) max
b/∈H

FS(b).

8

SUBMODULAR OPTIMIZATION UNDER NOISE

H

A
B

N

Figure 2: An illustration of Claim 5 applied on a coverage function. The set of all elements N and A,B,H ⊂ N are
depicted as circles that illustrate the area of the universe they cover. Claim 5 essentially says that if we select
A rather than B this means that the total area A covers (white and grey) must be larger than the white-only
(i.e. universe not covered by H) of B. Stated in these terms, we use this idea to analyze the performance
of SMOOTH-GREEDY evaluated on the white and grey area against the optimal solution evaluated on the
white-only area.

To prove the above lemma we use claims 5, 6, and 7. The statements and proofs can be found
in Appendix B and are best understood after reading the smoothing section in Appendix A.

2.1.3. APPROXIMATION GUARANTEE

Lemma 1 lets us forget about noise, at least for the remainder of the analysis of SMOOTH-GREEDY.
We can now focus on the consequences of selecting an element a which (up to factor 1 − δ) maxi-
mizes FS rather than the true marginal contribution fS .

Claim 1 For any ε > 0, let δ ≤ ε2/4k and suppose the iteration is ε-relevant. For a ∈ N \H and
b? ∈ argmaxb/∈H fH∪S(b), if FS(a) ≥ (1− δ)FS(b?), then:

fS(a) ≥ (1− ε)fH∪S(b?).

The principle is similar to Claim 5. In this version we have a weaker condition since FS(a) is not
greater than FS(b?) but rather (1 − δ)FS(b?), but the claim is less general as it only needs to hold
for b?. We therefore use a slightly different approach to prove this claim (see Appendix B).

Claim 2 For any fixed ε > 0, consider an ε-relevant iteration of SMOOTH-GREEDY with S as the
elements selected in previous iterations. Let a ∈ argmaxb/∈H F̃ (S ∪ b). Then, w.p. ≥ 1− 1/n4:

fS(a) ≥
(

1− ε
)[1

k′

(
OPTH − f(S)

)]
.

The proof is in Appendix B. We can now state the main lemma of this subsection.

Lemma 2 Let S be the set returned by SMOOTH-GREEDY and H its smoothing set. Then, for any
fixed ε > 0 when k ≥ 3`/ε with probability of at least 1− 1/n3 we have that:

f(S ∪H) ≥ (1− 1/e− ε/3)OPTH .

9

HASSIDIM SINGER

To prove the lemma we show that if OPTH < OPT/e then H alone provides the approximation
guarantee. Otherwise we can apply Claim 2 using a standard inductive argument to show that S∪H
provides the approximation. The subtle yet crucial aspect of the proof is that the inductive argument
is applied to analyze the quality of the solution against the optimal solution for fH and not against
the optimal solution on f . The proof is in Appendix B.

As we will soon see, Lemma 2 plays a key role in the analysis of the SLICK-GREEDY algorithm.
It is worth noting that this lemma can also be used to show that SMOOTH-GREEDY alone provides
a constant (≈ 0.387) albeit suboptimal approximation guarantee (Corollary 15).

3. The Slick Greedy Algorithm

The reason SMOOTH-GREEDY cannot obtain an approximation arbitrarily close to 1−1/e is due to
the fact that a substantial portion of the optimal solution’s value may be attributed to H . This would
be resolved if we had a way to guarantee that the contribution ofH is small. The idea behind SLICK-
GREEDY is to obtain this type of guarantee. Intuitively, by running a large albeit constant number
of instances of SMOOTH-GREEDY with different smoothing sets, selecting the “best” solution will
ensure the contribution of the smoothing set is relatively minor.

3.1. The algorithm

We can now describe the SLICK-GREEDY algorithm which gives us the main result of this paper.
Given a constant ε > 0 we set δ = ε/6 and generate arbitrary sets H1, . . . ,H1/δ, each of size `
s.t. Hi ∩ Hj = ∅ for every i, j ∈ [1/δ]. We then run a modified version of SMOOTH-GREEDY

1/δ times: in each iteration j we initialize SMOOTH-GREEDY with Rj = ∪i 6=jHi
6 and use Hj to

generate the smoothing neighborhood. We denote this as SMOOTH-GREEDY(k,Rj , Hj). We then
compare the solution Tj = Sj ∪Hj to the best Ti = Si ∪Hi we’ve seen so far using a procedure
we call SMOOTH-COMPARE described below. The SMOOTH-COMPARE procedure compares Ti
and Tj by using a set Hij s.t. Hij ∩ (Tj ∪ Ti) = ∅ and |Hij | = `. If Ti wins, the procedure
returns Ti and otherwise returns Tj . The SLICK-GREEDY then returns the set Ti that survived the
SMOOTH-COMPARE tournament.

Algorithm 2 SLICK-GREEDY

Input: budget k
1: Select `/δ elements in N and partition them into disjoint sets of equal size H1 . . . , H1/δ

2: Ti ← ∅
3: for j ∈ [1/δ] do
4: Rj ← ∪x 6=jHx

5: Tj ← SMOOTH-GREEDY(k,Rj , Hj) ∪Hj

6: Hij ← arbitrary set of ` elements disjoint from Ti ∪ Tj
7: Ti ← SMOOTH-COMPARE({Ti, Tj}, Hij)
8: end for
9: return Ti

6. By initializing the SMOOTH-GREEDY withRj we mean that the first iteration begins with S = Rj rather than S = ∅
and following the initialization the algorithm greedily adds k − |Rj | − |Hj | elements.

10

SUBMODULAR OPTIMIZATION UNDER NOISE

Overview of the analysis. Consider the smoothing sets H1, . . . ,H1/δ. Let Hl be the smoothing
set whose marginal contribution to the others is minimal, i.e. Hl ∈ argmini∈[1/δ] fRi(Hi). Notice
that from submodularity we are guaranteed that fRl(Hl) ≤ δf(Rl ∪Hl). In this case, the fact that
the marginal contribution of Hl to the rest of the smoothing sets Rl is small, together with the fact
that the solution is initialized with Rl, enables the tight analysis. The two main steps are:

1. In Lemma 3 we show that w.h.p. Tl provides an approximation arbitrarily close to (1− 1/e).
Intuitively, this happens since the marginal contribution of Hl to the rest of the smoothing
sets Rl = ∪iHi \Hl is small, and since the solution to SMOOTH-GREEDY is initialized with
Rl, losing the value of Hl is negligible. The proof relies on Claim 8 and Lemma 17 that
generalize the guarantees of SMOOTH-GREEDY to the case it is initialized (see Appendix);

2. We then describe and analyze the SMOOTH-COMPARE procedure. In the absence of noise,
one can simply select the set whose value is largest. To overcome noise, we run a tournament
to extract the solution whose value is approximately largest, or at least arbitrarily close to (1−
1/e)OPT. Specifically, we prove that w.h.p. the set Ti that wins the SMOOTH-COMPARE tour-
nament (i.e. the set Ti returned by SLICK-GREEDY) satisfies f(Ti) ≥ (1− ε/3) min{f(Tl), (1−
1/e− 2ε/3)OPT}. Since f(Tl) is arbitrarily close to (1− 1/e)OPT, this concludes the proof.

3.2. Generalizing the guarantees of smooth greedy

Lemma 3 Let Sl be the set returned by SMOOTH-GREEDY that is initialized with Rl and Hl its
smoothing set. Then, for any fixed ε > 0 when k ≥ 36`/ε2 w.p. at least 1− 1/n3 we have that:

f(Sl ∪Hl) ≥ (1− 1/e− 2ε/3)OPT.

3.2.1. THE SMOOTH COMPARISON PROCEDURE

We can now describe the SMOOTH-COMPARE procedure we use in the algorithm. For a given set
Hij ⊆ N of size ` and two sets Ti, Tj ⊆ N \Hij , we compare f̃(Ti ∪H ′ij) with f̃(Tj ∪H ′ij) for
all H ′ij ⊂ Hij . We select Ti if in the majority of the comparisons with H ′ij ⊂ Hij (breaking ties
lexicographically) we have that f̃(Ti ∪H ′ij) ≥ f̃(Tj ∪H ′ij), and otherwise we select Tj .

Algorithm 3 SMOOTH-COMPARE

Input: Ti, Tj , Hij ⊆ N \ (Ti ∪ Tj),
1: Compare f̃(Ti ∪H ′ij) with f̃(Tj ∪H ′ij) for all H ′ij ⊂ Hij

2: if Ti won the majority of comparisons return Ti otherwise return Tj

Lemma 4 Assume k ≥ 96`/ε2. Let Ti be the set that won the SMOOTH-COMPARE tournament.
Then, with probability at least 1− 1/n2:

f(Ti) ≥
(

1− ε

3

)
min

{(
1− 1

e
− 2ε

3

)
OPT, max

j∈[1/δ]
f(Tj)

}
The proof of this lemma has two parts.

11

HASSIDIM SINGER

1. First we show in Claim 9 that if a set Ti has moderately larger value than another set Tj
(more specifically, if the gap is 1 − εδ/3) then as long as f(Tj) is not arbitrarily close to
(1 − 1/e)OPT then f(Ti ∪ H ′ij) is larger than f(Tj ∪ H ′ij), for any H ′ij ⊆ Hij . At a high
level, this is because elements in H ′ij are candidates for SMOOTH-GREEDY and the fact that
they are not selected indicates that their marginal contribution to Tj = Sj ∪Hj is low. Thus,
elements in H ′ij cannot add much value, and since |Hij | � k adding subsets of Hij does not
distort the comparison by much. If f(Tj) is arbitrarily close to (1 − 1/e)OPT, we may have
that Tj beats Ti, but this would still ultimately result in an approximation arbitrarily close to
1− 1/e;

2. The next step (Claim 10) then shows that if for everyH ′ij we have f(Ti∪H ′ij) ≥ f(Tj ∪H ′ij)
then with high probability Ti wins the comparison against Tj in SMOOTH-COMPARE.

Using these two parts we then conclude since we are running the SMOOTH-COMPARE tournament
between 1/δ sets, the winner is an (1 − εδ/3)1/δ ≥ (1 − ε/3) approximation to the competing set
with the highest value or a set whose approximation is arbitrarily close to 1− 1/e. The claims and
proofs can be found in Appendix C.

3.2.2. APPROXIMATION GUARANTEE OF SLICK GREEDY

Finally, putting everything together, we can prove the main result of this section (see Appendix C).

Theorem 3.1 Let f : 2N → R be a monotone submodular function. For any fixed ε > 0, when k ≥
3168 log log n/ε2, then given access to a noisy oracle whose noise distribution has a generalized
exponential tail, the SLICK-GREEDY algorithm returns a set which is a (1−1/e−ε) approximation
to maxS:|S|≤k f(S), with probability at least 1− 1/n.

4. Extensions

In this section we consider extensions of the optimization under noise model. In particular, we
show that the algorithms can be applied to several related problems: additive noise, marginal noise,
correlated noise, degradation of information, and approximate submodularity.

4.1. Additive Noise

Throughout this paper we assumed the noise is multiplicative, i.e. we defined the noisy oracle to
return f̃(S) = ξS · f(S). An alternative model is one where the noise is additive, i.e. f̃(S) =
f(S) + ξS , where ξS ∼ D. The impossibility results for adversarial noise apply to the additive case
as well.

From a modeling perspective, the fact that the noise may be independent of the value of the
set queried may be an advantage or a disadvantage, depending on the setting. From a technical
perspective, the problem remains non-trivial. Fortunately, all the algorithms described above apply
to the additive noise model, modulo the smoothing arguments which become straightforward. That
is, we still need to apply smoothing on the surrogate functions, but it is easy to show arguments like
A ∈ argmaxB F̃ (S ∪B) implies w.h.p. FS(A) ≥ (1− δ) maxb FS(B):

F̃ (S∪A) =
∑

X∈H(A)

f̃(S∪X) =
∑

X∈H(A)

(f(S ∪X) + ξS∪X) =
∑

X∈H(A)

f(S∪X)+
∑

X∈H(X)

ξS∪X

12

SUBMODULAR OPTIMIZATION UNDER NOISE

Thus, by applying a concentration bound we can show that a set A whose smooth value is maximal
implies that its non-noisy smooth marginal contribution FS(A) is approximately maximal as well.

4.2. Marginal Noise

An alternative noise model is one where the noise acts on the marginals of the distribution. In this
model, a query to the oracle is a pair of sets S, T ⊆ N and the oracle returns ξS,T · fS(T) in the
multiplicative marginal noise model and fS(T) + ξS,T in the additive marginal noise model.

Adversarial additive marginal noise is generally impossible. If the error is adversarial, and the
noise is additive, the lower bound of 8 follows for any magnitude of the noise. Letting ε denote
the maximal magnitude of the noise, we consider a function in which no element ever gives a
contribution higher than ε, and then getting marginal information does not help.

Adversarial multiplicative marginal noise is approximable. If the marginal error is adversarial
but multiplicative within factor α ∈ [0, 1], it is well known one can obtain a 1−1/eα approximation.

Marginal i.i.d noise is approximable. If one is allowed to query the oracle on any two sets S, T
and get ξS,T · fS(T) (or fS(T) + ξS,T) where ξS,T is drawn i.i.d for any pair S, T , then one can
simply apply all the algorithms and analysis as is, by using f∅(S ∪ T). If one is only allowed to
query S, T where |T | = 1, the algorithms still work, but we need to be careful with the analysis,
since we need to show that we are calling the oracle on different sets. It is easy to show that if the
noise is weak and multiplicative (e.g. in [1− ε, 1 + ε]) we obtain a (1− 1/e− ε) approximation.

4.3. Correlated Noise

As discussed in the Introduction, Theorem 8 implies that no algorithm can optimize a monotone
submodular function under a cardinality constraint given access to a noisy oracle whose noise mul-
tipliers are arbitrarily correlated across sets, even when the support of the distribution is arbitrarily
small. In light of this, one may wish to consider special cases of correlated distributions. We first
show that even very simple correlations can result in inapproxiability. We then show an interesting
class of distributions we call d-correlated, for which optimal guarantees are obtainable.

Impossibility result for correlated distributions. Having taken the first step showing algorithms
for the i.i.d. in space model, a natural question is whether this assumption is necessary.

Theorem 5 Even for unit demand functions there are simple space-correlated distributions for
which no algorithm can achieve an approximation strictly better than 1/n.

Proof Consider a unit demand function f(S) = maxa∈S f(a) which operates on a ground set with
n elements. There are n − 1 regular elements and one special element a?. The value of f on any
regular element is 1, but f(a?) = M for some arbitrarily large M . The noise distribution is such
that it returns 1 on sets which do not contain a?, and 1/M on sets that contain a?. The best one can
do in this case is to choose a random element without querying the oracle at all.

13

HASSIDIM SINGER

Guarantees for d-correlated distributions. Our algorithms can be extended to a model in which
querying similar sets may return results that are arbitrarily correlated, as long as querying sets which
are sufficiently far from each other gives independent answers.

Definition We say that the noise distribution is d-correlated if for any two sets S and T , such that
|S \ T |+ |T \ S| > d we have that the noise is applied independently to S and to T .

Notice that if a distribution is d-correlated, any two points on the hypercube at distance at most d
can be arbitrarily correlated. For this model we show that when k ∈ Ω(log log n) then we can obtain
an approximation arbitrarily close to 1 − 1/e for O(

√
k)-correlated distributions. Alternatively, in

this regime we can get this approximation guarantee for any distribution that is arbitrarily correlated
when querying two sets S, T whose symmetric difference is larger than

√
max{|T |, |S|}.

Modification of algorithms for large k for
√
k-correlated noise. For large k, if we have that

k � d2, then the approximation guarantee we get is still arbitrarily close to 1 − 1/e even when D
is d-correlated. To do this, we modify the smoothing neighborhood and the definition of smooth
values as follows. Recall that in SMOOTH-GREEDY, we select an arbitrary set of elements H of
size ` for smoothing, and compute the noisy smooth value of S ∪ a by averaging all subsets of H:

F̃ (S ∪ a) =
1

2`

∑
H′⊂H

f̃
(
S ∪

(
a ∪H ′

))
.

In the d-correlated case, for each 1 ≤ i ≤ d and 1 ≤ j ≤ ` we choose a bundle h(i)j
of d elements, such that every two bundles are disjoint. Denote H(i) = {h(i)1, . . . h(i)`, and
H = di,jh(i)j the set of all elements we used. The noisy smooth value with smoothing set H(i) is
now:

F̃ (i)(S ∪ a) =
1

2`

∑
H′⊂H(i)

f̃(S ∪ a ∪H ′)

where we abuse notation and use S ∪ a ∪H ′ instead of S ∪ {a} ∪h(i)j∈H′ h(i)j .
We will run SMOOTH-GREEDY with the smoothing sets H(1), . . . ,H(d), where in each itera-

tion i mod d we use H(i) as the smoothing set. Exactly as in the original algorithm, we generate
S by iteratively adding k − |H| elements from N \ H that maximize the smooth value in every
iteration, and we then return S ∪H . As before, SLICK- GREEDY employs SMOOTH-GREEDY.

To prove correctness of the algorithm we need to show that the evaluations of the surrogate
functions are independent. We will first show by induction on |S| that between iterations, the oracle
calls are independent.

Claim 3 Any oracle call at iteration i is independent of any previous oracle call at iteration r < i.

Proof Let S(i) be the set of elements we have already committed to in stage i. Consider an eval-
uation of f̃(S(i) ∪ a ∪ H ′) for some non empty H ′ ⊂ H(i mod d) at iteration i, and an oracle
evaluation f̃(S(r) ∪ b ∪ H ′′) made at some iteration r < s with some non empty H ′′ ⊂ H(r
mod d) and b /∈ S(r) ∪ H . If r ≤ i − d, then the symmetric difference between S(i) ∪ a and
S(r) ∪ b is at least of size d. Since a, b /∈ H , and S(i) ∩ H = ∅, this means that the symmetric

14

SUBMODULAR OPTIMIZATION UNDER NOISE

difference of S(i)∪a∪H ′ and S(r)∪ b∪H ′′ is at least of size d, for any H ′′ ⊂ H(r mod d), and
thus the calls are independent. If r > s− d, then i mod d 6= r mod d, and hence S(i) ∪ a ∪H ′
and S(r) ∪ b ∪H ′′ are independent because of the symmetric difference between H ′ and H ′′.

Claim 4 When evaluating F̃ (i)(S ∪ a), all noise multipliers are independent.

Proof When evaluating F̃ (i)(S ∪ a) we call the noisy oracle on sets of the form S ∪ a ∪H ′. Since
each H ′ corresponds to a different subset of H(i), and H(i) is a collection of ` bundles of size d,
the symmetric difference between every two sets H ′, H ′′ ⊆ H(i), is at least d.

As in the original SMOOTH-GREEDY procedure, we can show that at every iteration, when S is
the set of elements we selected in previous iterations, an element a added to S implies that w.h.p.
F (S ∪ a) is arbitrarily close to maxb/∈H F (S ∪ b) (see Claim 4). Let a1, a2, . . . an−|S|−|H| denote
the elements which are being considered. For each element ai, we have that if F (S ∪ ai) is non
negligible then w.h.p F̃ (S ∪ ai) approximates F (S ∪ ai), and if F (S ∪ ai) is negligible then so is
F̃ (S ∪ ai). While for ai, aj these events may well be correlated, since the probability of failure is
inverse polynomially small and there are only n− |S| − |H| events, we can take a union bound and
say that with high probability for every i if F (S ∪ai) is negligible so is F̃ (S ∪ai), and if F (S ∪ai)
is non negligible then it is well approximated by F̃ (S ∪ ai).

Thus, we know that at every iteration i when S is the set of elements selected in previous
iterations, we have selected the element a that is arbitrarily close to maxb/∈H F

(i)(S ∪ b). From the
arguments in the paper we know that this implies that for an arbitrarily small γ > 0 we have:

fS(a) ≥ (1− γ)fS∪H(i)(b) ≥ (1− γ)fS∪H(b)

where the right inequality is due to submodularity and the fact that H(i) ⊆ H . The guarantees
of SMOOTH-GREEDY therefore apply in this case as well. What remains to show is that SLICK-
GREEDY is unaffected by this modification. This is easy to verify as SLICK-GREEDY takes 1/δ
disjoint sets H1, . . . ,H1/δ, and the arguments discussed apply for every such set. Since we apply
SMOOTH-COMPARE 1/δ times with sets of size ` it is easy to implement as well.

4.4. Information Degradation

We have written the paper as if the algorithm gains no additional information for querying a set
twice. The generalization to a case where the algorithm gets more information each time but there
is a degradation of information is simple: whenever the algorithms we presented here want to query
a set just query it multiple times, and feed the expected value of the set given all the information one
has to the algorithm. Hence it makes sense to focus on the extreme case where only the first query
is informative, as common in literature of noisy optimization (e.g. Braverman and Mossel (2008))

4.5. Approximate Submodularity

In this paper our goal is to obtain near optimal guarantees as defined on the original function that
was distorted through noise. That is, we assume that there is an underlying submodular function

15

HASSIDIM SINGER

which we aim to optimize, and we only get to observe noisy samples of it. An alternative direction
would be to consider the problem of optimizing functions that are approximately submodular:

max
S:|S|≤k

f̃(S)

The notion of approximate submodularity has been studied in machine learning Krause and Cevher
(2010); Das and Kempe (2011); Das et al. (2012); Elenberg et al.. More generally, given the de-
sirable guarantees of submodular functions, it is interesting to understand the limits of efficient
optimization with respect to the function classes we aim to optimize.

Impossibility for ε-adversarial approximation. If we assume that the function is an adversarial
(1 ± ε) approximation of a submodular function, our lower bound from Section 5 for erroneous
oracles implies that no polynomial time algorithm can obtain a non-trivial approximation.

Trivial reduction for noise in [1− ε, 1 + ε]. When D ⊆ [1− ε, 1 + ε], and the noise is i.i.d across
sets, SLICK-GREEDY obtains a solution arbitrarily close to

(
1−ε
1+ε

) (
1− 1

e

)
of maxS:|S|≤k f̃(S).

Impossibility for unbounded noise. If we assume that a noisy process of a distribution with un-
bounded support altered a submodular function, then there are trivial impossibility results. Suppose
that the initial submodular function is the constant function that gives 1 to every set. If we apply
(e.g.) Gaussian noise to it, then the optimal algorithm is just to try random sets and hope for the
best, and no polynomial time algorithm can achieve a constant factor approximation.

Optimal approximation via black-box reduction. First, note that there is an algorithm which
runs in time nk and finds the optimal subset of size k: query f̃ on all subsets of size at most k,
and choose the maximal one. Notice that this is in contrast to the setting we study throughout
the paper in which there is a lower bound of (2k − 1)/2k + O(1/

√
n). The interesting regime

is k = ω(1), where there is a black-box reduction from the problem of maximizing a submod-
ular function given an approximately submodular function, to the problem of maximizing an ap-
proximately submodular function. Since we can solve the original problem within a factor ar-
bitrarily close to 1 − 1/e we get an optimal approximation guarantee in this case as well. Let
maxD(t) = E[maxξ1,...ξt∼D{ξ1, . . . , ξt}] be the expected maximum value of t i.i.d samples of D.

Lemma 6 An algorithm that uses t ≤
(
n
k

)
queries to f̃ cannot achieve approximation better than:

maxD(t)

maxD(
(
n
k

)
)
.

Proof Suppose that f(S) = 1 for every set S. The best that the algorithm can do is query t sets with
at most k elements, and output the maximal one. The approximation ratio of this is exactly

maxD(t)

maxD(
(
n
k

)
)

If the algorithm queries sets with more than k elements, the approximation would deteriorate.

16

SUBMODULAR OPTIMIZATION UNDER NOISE

Lemma 7 Suppose there exists an algorithm which given k ∈ ω(1) returns a solution S s.t.
f(S) ≥ γmaxT :|T |≤k f(T) using q queries to a noisy oracle. Then, for any t ∈ poly(n) there
is an algorithm that uses q + t to a noisy oracle and returns a solution S′ s.t.:

f̃(S′) ≥
(
γ − o(1)

)(maxD(t)

maxD(
(
n
k

)
)

)
max
T :|T |≤k

f̃(T).

Proof Let r be such that
(
n−k
r

)
≥ t. Since t is polynomial in n, we have that r is constant. Run the

algorithm to obtain a set G of size k − r. From submodularity and the fact that r is constant:

f(G) ≥ γ max
S:|S|≤k−r

f(S) ≥ (1− r/k)γ max
S:|S|≤k

f(S) ≥ (1− o(1))γ max
S:|S|≤k

f(S)

For every set of r elements {x1, . . . , xr}where xi 6∈ G, the algorithm queries f̃ onG∪{x1, . . . xr},
and chooses the set with maximum value. It is easy to see that the expected value of this set would
be at least maxD(t)(1− r/k)γmaxS:|S|≤k f(S), which gives the ratio.

5. Impossibility for Adversarial Noise

In this section we show that there are very simple submodular functions for which no randomized
algorithm with access to an ε-erroneous oracle can obtain a reasonable approximation guarantee
with a subexponential number of queries to the oracle. Intuitively, the main idea behind this result
is to show that a noisy oracle can make it difficult to distinguish between two functions whose
values can be very far from one another. The functions we use are similar to those used to prove
information theoretic lower bounds for submodular optimization and learning Mirrokni et al. (2008);
Papadimitriou et al. (2008); Feige et al. (2011); Balcan and Harvey (2011); Vondrák (2013).

Theorem 8 No randomized algorithm can obtain an approximation strictly better thanO(n−1/2+δ)

to maximizing monotone submodular functions under a cardinality constraint using en
δ
/n queries

to an ε-erroneous oracle, for any fixed ε, δ < 1/2.

Proof We will consider the problem of maxS:|S|≤k f(S) where k = n1/2+δ. Let X ⊆ N be a
random set constructed by including every element from N with probability n−1/2+δ. We will use
this set to construct two functions that are close in expectation but whose maxima have a large gap,
and show that access to a noisy oracle implies distinguishing between these two functions. The
functions are:

• f1(S) = min
{
|S ∩X| · n1/2 + n1/2+δ

ε , |S| · n1+δ
}

• f2(S) = min
{
|S| · nδ + n1/2+δ

ε , |S| · n1+δ
}

Notice that both functions are normalized monotone submodular: when S = ∅ both functions eval-
uate to 0, and otherwise are affine. By the Chernoff bound we know that |X| ≥ n1/2+δ/2 with
probability 1− e−Ω(n1/2+δ). Conditioned on this event we have that maxS:|S|≤k f1(S) = f1(X) ∈

17

HASSIDIM SINGER

O(n1+δ) whereas f2 is symmetric and maxS:|S|≤k f2(S) ∈ O(n1/2+2δ). Thus, an inability to distin-
guish between these two functions implies there is no approximation algorithm with approximation
better than O(n−1/2+δ). We define the erroneous oracle as follows. If the function is f2, its oracle
returns the exact same value as f2 for any given set. Otherwise, the function is f1 and its erroneous
oracle is defined as:

f̃(S) =

{
f2(S), if (1− ε)f1(S) ≤ f2(S) ≤ (1 + ε)f1(S)

f1(S) otherwise

Notice that this oracle is ε-erroneous, by definition.
Suppose now that the setX is unknown to the algorithm, and the objective is maxS:|S|≤k f1(S).

We will first show that no deterministic algorithm that uses a single query to the erroneous oracle
f̃ can distinguish between f1 and f2, with exponentially high probability (equivalently, we will
show that a single query to the algorithm cannot find a set S for which f1(S) < (1 − ε)f2(S) or
f1(S) > (1 + ε)f2(S) with exponentially high probability). For a single query algorithm, we can
imagine that the set X is chosen after the algorithm chooses which query to invoke, and compute
the success probability over the choice of X . In this case, all the elements are symmetric, and the
function value is only determined by the size of the set that the single-query algorithm queries.

In case the query is a set S of cardinality smaller or equal to n1/2, by the Chernoff bound we
have that |S ∩X| ≤ (1 + β)nδ for any β < 1 with probability at least 1− e−Ω(β2nδ). Thus:

n1/2+δ

ε
≤ f1(S) ≤

(
1 + β +

1

ε

)
n1/2+δ

n1/2+δ

ε
≤ f2(S) ≤

(
1 +

1

ε

)
n1/2+δ

It is easy to verify that for β < ε/(1 − ε): (1 − ε)f1(S) ≤ f2(S) ≤ (1 + ε)f1(S). Thus, for any
query of size less or equal to n1/2 the likelihood of the oracle returning f1 is 1− e−Ω(nδ).

In case the oracle queries a set of size greater than n1/2 then again by the Chernoff bound, for
any β < 1 we have that with probability at least 1− e−Ω(β2n1/2):(

1− β
) |S|
n1/2−δ ≤ |S ∩X| ≤

(
1 + β

) |S|
n1/2−δ

For β ≤ ε/(1− ε), this implies that:

(1− ε)f1(S) ≤ f2(S) ≤ (1 + ε)f1(S)

Therefore, for any fixed ε ∈ (0, 1), the algorithm cannot distinguish between f1 and f2 with proba-
bility 1 − e−Ω(nδ) by querying the erroneous oracle with a set larger than n1/2. To conclude, by a
union bound we get that with probability 1− e−Ω(nδ) no algorithm can distinguish between f1 and
f2 using a single query to the erroneous oracle, and the ratio between their maxima is O(n1/2−δ).

To complete the proof, suppose we had an algorithm running in time en
δ
/n which can approxi-

mate the value of a submodular function, given access to an ε-erroneous oracle with approximation
ratio strictly better than O(n−1/2+δ) which succeeds with probability 2/3. This would let us solve

18

SUBMODULAR OPTIMIZATION UNDER NOISE

the following decision problem: Given access to an ε-erroneous oracle for either f1 or f2, deter-
mine which function is being queried. To solve the decision problem, given access to an erroneous
oracle of unknown function, we would use the hypothetical approximation algorithm to estimate the
value of the maximal set of size n1/2+δ. If this value is strictly more than n1/2+2δ, the function is
f1 (since f1(X) = O(n1+δ)), and otherwise it is f2.

The reduction allows us to show that distinguishing between the functions in time en
δ
/n and

success probability 2/3 is impossible. For purpose of contradiction, suppose that there is a (ran-
domized) algorithm for the decision problem, and let p denote the probability that it outputs f2 if it
sees an oracle which is fully consistent with f2. To succeed with probability 2/3, it must be the case
that whenever the algorithm gets f1 as an input, it finds a set S for which the noisy oracle returns
f1(S) with probability at least 2/3 − p/2 ≥ 1/6. Whenever it finds such a set, the algorithm is
done, since it can compute f2(S) without calling the oracle, and hence it knows that f1 was chosen
in the decision problem.

In this case, we know that the algorithm makes up to en
δ
/n queries, until it sees a set for which

it gets f1(S). But this means that there is an algorithm with success probability at least O(n/6en
δ
)

that makes a single query. This algorithm guesses some index i < en
δ
/n, and simulates the original

algorithm for i− 1 steps (by feeding it with f2 without using the oracle), and then using the oracle
in step i. If the algorithm guesses i to be the first index in which the exponential time algorithm sees
f1(S), then the single query algorithm would succeed. Hence, since we showed that no single query
(randomized) algorithm can find a set S such that f1(S) < (1− ε)f2(S) or f1(S) > (1 + ε)f2(S)
with just one query this concludes the proof.

The following remarks are worth mentioning:

• The functions we used in the lower bound are very simple examples of coverage functions;

• If one does not require the function to be normalized, then the lower bound holds for affine
functions, i.e. f(S) =

∑
a∈S f(a) + C, where C is independent of S;

• The lower bound is tight: for any ε-erroneous oracle there is a 1−ε
1+ε · max{n−1/2, 1/k} ap-

proximation by simply partitioning the ground sets to arbitrary sets of size min{
√
n, k}, and

select the set whose value according to the erroneous oracle is maximal;

• The lower bound applies to additive noise by simply applying an additive version of the
Chernoff bound.

Somewhat surprisingly, the above theorem suggests that a good approximation to a submodular
function does not suffice to obtain reasonable approximation guarantees. In particular, guarantees
from learning or sketching where the goal is to approximate a submodular function up to constant
factors may not necessarily be meaningful for optimization. It is important to note that for some
classes of submodular functions such as additive functions (f(S) =

∑
a∈S f(a)), we can obtain

algorithms that are robust to adversarial noise. A very interesting open question is to characterize
the class of submodular functions that are robust to adversarial noise.

19

HASSIDIM SINGER

6. More related work

Submodular optimization. Maximizing monotone submodular functions under cardinality and
matroid constraints is heavily studied. The seminal works of Nemhauser et al. (1978a); Fisher
et al. (1978) show that the greedy algorithm gives a factor of 1 − 1/e for maximizing a submodu-
lar function under a cardinality constraint and a factor 1/2 approximation for matroid constraints.
For max-cover which is a special case of maximizing a submodular function under a cardinality
constraint, Feige shows that no poly-time algorithm can obtain an approximation better than 1-
1/e unless P=NP Feige (1998). Vondrak presented the continuous greedy algorithm which gives a
1 − 1/e ratio for maximizing a monotone submodular function under matroid constraints Vondrák
(2008). This is optimal, also in the value oracle model Mirrokni et al. (2008); Khot et al. (2005);
Nemhauser and Wolsey (1978). It is interesting to note that with a demand oracle the approximation
ratio is strictly better than 1− 1/e Feige and Vondrak (2006). When the function is not monotone,
constant factor approximation algorithms are known to be obtainable as well Feige et al. (2011);
Lee et al. (2009); Buchbinder et al., 2014). In general, in the past decade there has been a develop-
ment in the theory of submodular optimization, through concave relaxations Ageev and Sviridenko
(2004); Chekuri and Ene (2011), the multilinear relaxation Calinescu et al. (2007); Vondrák (2008);
Chekuri et al. (2015), and general rounding technique frameworks Vondrák et al. (2011). In this pa-
per, the techniques we develop arise from first principles: basic properties of submodular functions,
concentration bounds, and the algorithms are variants of the standard greedy algorithm.

Submodular optimization in game theory. Submodular functions have been studied in game
theory almost fifty years ago Shapley (1971). In mechanism design submodular functions are used
to model agents’ valuations Lehmann et al. (2001) and have been extensively studied in the context
of combinatorial auctions (e.g. Dobzinski et al. (2005); Dobzinski and Schapira (2006); Dobzinski
et al. (2008); Mirrokni et al. (2008); Buchfuhrer et al. (2010a); Dobzinski et al. (2011); Papadim-
itriou and Pierrakos (2011); Dughmi et al. (2011); Dobzinski and Vondrák (2012)). Maximizing
submodular functions under cardinality constraints have been studied in the context of combina-
torial public projects Papadimitriou et al. (2008); Schapira and Singer (2008); Buchfuhrer et al.
(2010b); Lucier et al. (2013) where the focus is on showing the computational hardness associated
with not knowing agents valuations and having to resort to incentive compatible algorithms. Our
adversarial lower bound implies that if agents err in their valuations, optimization may be hard,
regardless of incentive constraints.

Submodular optimization in machine learning. In the past decade submodular optimization
has become a central tool in machine learning and data mining (see surveys Krause and Guestrin
(2011); Krause and Jegelka (2013); Bilmes (2013)). Problems include identifying influencers in so-
cial networks Kempe et al. (2003); Rodriguez et al. (2011) sensor placement Leskovec et al. (2007);
Golovin et al. (2010), learning in data streams Streeter et al. (2009); Gomes and Krause (2010); Ku-
mar et al. (2013); Badanidiyuru et al. (2014), information summarization Lin and Bilmes (2011a,b),
adaptive learning Golovin and Krause (2011), vision Jegelka and Bilmes (2011b,a); Kohli et al.
(2013), and general inference methods Krause and Guestrin (2007); Jegelka and Bilmes (2011a);
Djolonga and Krause (2014). In many cases the submodular function is learned from data, and our
work aims to address the case in which there is potential for noise in the model.

Learning submodular functions. One of the main motivations we had for studying optimiza-
tion under noise is to understand whether submodular functions that are learned from data can be

20

SUBMODULAR OPTIMIZATION UNDER NOISE

optimized well. The standard framework in the literature for learning set functions is Probably
Mostly Approximately Correct (PMAC) learnability due to Balcan and Harvey Balcan and Harvey
(2011). This framework nicely generalizes Valiant’s notion of Probably Approximately Correct
(PAC) learnability Valiant (1984). Informally, PMAC-learnability guarantees that after observing
polynomially-many samples of sets and their function values, one can construct a surrogate func-
tion that is with constant probability over the distributions generating the samples, likely to be an
approximation of the submodular function generating the data. Since the seminal paper of Balcan
and Harvey there has been a great deal of work on learnability of submodular functions Feldman
and Kothari (2014); Balcan et al. (2012); Badanidiyuru et al. (2012); Feldman and Vondrák (2013);
Feldman and Vondrák (2015); Balcan (2015). As discussed in the paper, our lower bounds imply
that one cannot optimize the surrogate function PMAC learned from data. If the approximation is
via i.i.d noise on sets sufficiently far, this may be possible.

Approximate submodularity. The concept of approximate submodularity has been studied in
machine learning for dictionary selection and feature selection in linear regression Krause and
Cevher (2010); Das and Kempe (2011); Das et al. (2012); Elenberg et al.. Generally speaking,
this line of work considers approximate submodularity by defining a notion of the submodular-
ity ratio of a function, defined in terms of how close it is to have a diminishing returns property.
This ratio depends on the instance, which in the worst-case may result in a function that poorly
approximates a submodular function. In practice however, these works show that in a broad range
of applications the functions of interest are sufficiently close to submodular. Recently, the notion
of approximate modularity (i.e. additivity) has been studied in Chierichetti et al. (2015) which give
an optimal algorithm for approximating an approximately modular function via a modular function.
These notions of approximate modularity and approximate submodularity are the model in which
we have noise on the marginals. As discussed in Section 4, if the error on the marginals is adversar-
ial, there are regimes in which non-trivial guarantees are impossible. If one assumes the marginal
approximations are i.i.d our positive results apply.

Combinatorial optimization under noise. Combinatorial optimization with noisy inputs can be
largely studied through consistent (independent noisy answers when querying the oracle twice) and
inconsistent oracles. For inconsistent oracles, it usually suffices to repeat every query O(log n)
times, and eliminate the noise. To the best of our knowledge, submodular optimization has been
studied under noise only in instances where the oracle is inconsistent or equivalently small enough
so that it does not affect the optimization Kempe et al. (2003); Krause and Guestrin (2005). One
line of work studies methods for reducing the number of samples required for optimization (see e.g.
Feige et al. (1994); Ben Or and Hassidim (2008)), primarily for sorting and finding elements. On
the other hand, if two identical queries to the oracle always yield the same result, the noise can not
be averaged out so easily, and one needs to settle for approximate solutions, which has been studied
in the context of tournaments and rankings Kenyon-Mathieu and Schudy (2007); Braverman and
Mossel (2008); Ajtai et al. (2009).

Convex optimization under noise. Maximizing functions under noise is also an important topic
in convex optimization. The analogue of our model here is one where there is a zeroth-order noisy
oracle to a convex function. As discussed in the paper, the question of polynomial-time algorithms
for noisy convex optimization is straightforward and the work in this area largely aims at improving

21

HASSIDIM SINGER

the convergence rate Elster and Neumaier (1995); Glad and Goldstein (1977); Khuri and Cornell
(1996); Kushner and Clark (1978); Polyak (1987).

Follow up work. Since the inception of this work, there have been several follow up works Singer
and Vondrak (2015); Roughgarden et al. (2016); Horel and Singer, all primarily concerned with
lower bounds in the adversarial noise case. None of these works consider algorithms for the noise
model we study here.

7. Acknowledgements

A.H. was supported by ISF 1394/16; Y.S. was supported by NSF grant CCF-1301976, CAREER
CCF-1452961, a Google Faculty Research Award, and a Facebook Faculty Gift. We thank Vitaly
Feldman for pointing out the application to active learning. We are deeply indebted to Lior Seeman
and anonymous reviewers who carefully read previous versions of the manuscript and made multiple
invaluable suggestions.

22

SUBMODULAR OPTIMIZATION UNDER NOISE

References

Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim., 8(3), 2004.

Miklós Ajtai, Vitaly Feldman, Avinatan Hassidim, and Jelani Nelson. Sorting and selection with
imprecise comparisons. In ICALP. 2009.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and Tim
Roughgarden. Sketching valuation functions. In SODA, 2012.

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Stream-
ing submodular maximization: massive data summarization on the fly. In KDD, 2014.

Maria-Florina Balcan. Learning submodular functions with applications to multi-agent systems. In
AAMAS, 2015.

Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In STOC, 2011.

Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation functions.
In COLT, 2012.

Michael Ben Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary search
(and pretty good for quantum as well). In FOCS, 2008.

J. Bilmes. Deep mathematical properties of submodularity with applications to machine learning.
Tutorial at NIPS, 2013.

Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In SODA, 2008.

Nader H. Bshouty and Vitaly Feldman. On using extended statistical queries to avoid membership
queries. Journal of Machine Learning Research, 2:359–395, 2002.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In FOCS.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with
cardinality constraints. In SODA, 2014.

D. Buchfuhrer, S. Dughmi, H. Fu, R. Kleinberg, E. Mossel, C. H. Papadimitriou, M. Schapira,
Y. Singer, and C. Umans. Inapproximability for VCG-based combinatorial auctions. In SIAM-
ACM Symposium on Discrete Algorithms (SODA), 2010a.

D. Buchfuhrer, M. Schapira, and Y. Singer. Computation and incentives in combinatorial public
projects. In EC, 2010b.

Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In IPCO. 2007.

23

HASSIDIM SINGER

Chandra Chekuri and Alina Ene. Approximation algorithms for submodular multiway partition. In
FOCS, 2011.

Chandra Chekuri, T. S. Jayram, and Jan Vondrák. On multiplicative weight updates for concave and
submodular function maximization. In ITCS, 2015.

Flavio Chierichetti, Abhimanyu Das, Anirban Dasgupta, and Ravi Kumar. Approximate modularity.
In FOCS, 2015.

Abhimanyu Das and David Kempe. Submodular meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary selection. In ICML, 2011.

Abhimanyu Das, Anirban Dasgupta, and Ravi Kumar. Selecting diverse features via spectral regu-
larization. In NIPS, 2012.

J. Djolonga and A. Krause. From MAP to marginals: Variational inference in bayesian submodular
models. In NIPS, 2014.

Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial
auctions with submodular bidders. In SODA, 2006.

Shahar Dobzinski and Jan Vondrák. The computational complexity of truthfulness in combinatorial
auctions. In EC, pages 405–422, 2012.

Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combinato-
rial auctions with complement-free bidders. In STOC, pages 610–618, 2005.

Shahar Dobzinski, Ron Lavi, and Noam Nisan. Multi-unit auctions with budget limits. In FOCS,
2008.

Shahar Dobzinski, Hu Fu, and Robert D. Kleinberg. Optimal auctions with correlated bidders are
easy. In STOC, 2011.

N. Du, Y. Liang, M. Balcan, and L. Song. Influence function learning in information diffusion
networks. In ICML, 2014a.

N. Du, Y. Liang, M. Balcan, and L. Song. Learning time-varying coverage functions. In NIPS,
2014b.

Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan. From convex optimization to randomized mech-
anisms: toward optimal combinatorial auctions. In STOC, pages 149–158, 2011.

Ethan R. Elenberg, Rajiv Khanna, Alexandros G. Dimakis, and Sahand Negahban. Restricted strong
convexity implies weak submodularity. In NIPS Workshop on Learning in High Dimensions with
Structure, 2016.

Clemens Elster and Arnold Neumaier. A grid algorithm for bound constrained optimization of noisy
functions. IMA Journal of Numerical Analysis, 15(4):585–608, 1995.

Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):
634–652, 1998.

24

SUBMODULAR OPTIMIZATION UNDER NOISE

Uriel Feige and Jan Vondrak. Approximation algorithms for allocation problems: Improving the
factor of 1-1/e. In FOCS, 2006.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy information.
SIAM Journal on Computing, 23(5):1001–1018, 1994.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular func-
tions. SIAM J. Comput., 40(4):1133–1153, 2011.

Vitaly Feldman. On the power of membership queries in agnostic learning. Journal of Machine
Learning Research, 10:163–182, 2009.

Vitaly Feldman and Pravesh Kothari. Colt. 2014.

Vitaly Feldman and Jan Vondrák. Optimal bounds on approximation of submodular and XOS func-
tions by juntas. In FOCS, 2013.

Vitaly Feldman and Jan Vondrák. Tight bounds on low-degree spectral concentration of submodular
and xos functions. In FOCS, 2015.

Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Representation, approximation and learning of
submodular functions using low-rank decision trees. In COLT, 2013.

Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approximations
for maximizing submodular set functionsII. Springer, 1978.

Torkel Glad and Allen Goldstein. Optimization of functions whose values are subject to small
errors. BIT Numerical Mathematics, 17(2):160–169, 1977.

Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab Mirrokni. Approximating sub-
modular functions everywhere. In SODA, 2009.

Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. Exact identification of circuits using
fixed points of amplification functions. In COLT, 1990.

D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and
stochastic optimization. JAIR, 42:427–486, 2011.

D. Golovin, M. Faulkner, and A. Krause. Online distributed sensor selection. In IPSN, 2010.

R. Gomes and A. Krause. Budgeted nonparametric learning from data streams. In ICML, 2010.

Trevor J. Hastie, Robert John Tibshirani, and Jerome H. Friedman. The elements of statistical
learning : data mining, inference, and prediction. Springer series in statistics. Springer, New
York, 2009.

Thibaut Horel and Yaron Singer. Maximizing approximately submodular functions. In NIPS 2016.

Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan. Budget feasible mechanisms for experi-
mental design. In LATIN, 2014.

25

HASSIDIM SINGER

Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution. In FOCS, 1994.

Jeffrey C. Jackson, Eli Shamir, and Clara Shwartzman. Learning with queries corrupted by classi-
fication noise. Discrete Applied Mathematics, 1999.

S. Jegelka and J. Bilmes. Approximation bounds for inference using cooperative cuts. In ICML,
2011a.

S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: Coupling edges in graph
cuts. In CVPR, 2011b.

D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social net-
work. In KDD, 2003.

Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In STOC, 2007.

Subhash Khot, Richard J Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximability
results for combinatorial auctions with submodular utility functions. In WINE. 2005.

André I Khuri and John A Cornell. Response surfaces: designs and analyses, volume 152. CRC
press, 1996.

P. Kohli, A. Osokin, and S. Jegelka. A principled deep random field for image segmentation. In
CVPR, 2013.

A. Krause and C. Guestrin. Nonmyopic active learning of gaussian processes. an exploration–
exploitation approach. In ICML, 2007.

A. Krause and C. Guestrin. Submodularity and its applications in optimized information gathering.
ACM Trans. on Int. Systems and Technology, 2(4), 2011.

A. Krause and S. Jegelka. Submodularity in Machine Learning: New directions. Tutorial ICML,
2013.

Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse representation. In
ICML, 2010.

Andreas Krause and Carlos Guestrin. A note on the budgeted maximization of submodular func-
tions. In Technical Report, 2005.

Andreas Krause, H. Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Selecting observa-
tions against adversarial objectives. In NIPS, 2007.

Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 9:235–284, 2008.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms
in mapreduce and streaming. In SPAA, 2013.

26

SUBMODULAR OPTIMIZATION UNDER NOISE

Harold J Kushner and Dean S Clark. Stochastic Approximation Methods for Constrained and Un-
constrained Systems (Applied Mathematical Sciences, Vol. 26), volume 8. Springer, 1978.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone sub-
modular maximization under matroid and knapsack constraints. In STOC, 2009.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. In ACM conference on electronic commerce, 2001.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective
outbreak detection in networks. In KDD, 2007.

H. Lin and J. Bilmes. A class of submodular functions for document summarization. In ACL/HLT,
2011a.

H. Lin and J. Bilmes. Optimal selection of limited vocabulary speech corpora. In Proc. Interspeech,
2011b.

Brendan Lucier, Yaron Singer, Vasilis Syrgkanis, and Éva Tardos. Equilibrium in combinatorial
public projects. In WINE, 2013.

Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions. In EC, 2008.

George L Nemhauser and Leonard A Wolsey. Best algorithms for approximating the maximum of
a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functionsi. Mathematical Programming, 14(1):265–294, 1978a.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maximizing
submodular set functions—I. Mathematical Programming, 14(1):265–294, 1978b.

C. H. Papadimitriou, M. Schapira, and Y. Singer. On the hardness of being truthful. In FOCS, 2008.

Christos H. Papadimitriou and George Pierrakos. On optimal single-item auctions. In STOC, 2011.

Boris T Polyak. Introduction to optimization. Optimization Software New York, 1987.

M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence.
ACM TKDD, 5(4), 2011.

Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondrák. When are welfare guarantees robust?
CoRR, abs/1608.02402, 2016.

Michael Schapira and Yaron Singer. Inapproximability of combinatorial public projects. In WINE,
2008.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York, NY, USA, 2014. ISBN 1107057132,
9781107057135.

27

HASSIDIM SINGER

Eli Shamir and Clara Schwartzman. Learning by extended statistical queries and its relation to PAC
learning. In Computational Learning Theory: Eurocolt 95, pages 357–366. Springer-Verlag,
1995.

L. S. Shapley. Cores of convex games. International Journal of Game Theory, 1(1):11–26, 1971.

Yaron Singer and Jan Vondrak. Information-theoretic lower bounds for convex optimization with
erroneous oracles. In NIPS, pages 3204–3212, 2015.

Adish Singla, Sebastian Tschiatschek, and Andreas Krause. Noisy submodular maximization via
adaptive sampling with applications to crowdsourced image collection summarization. In AAAI,
2016.

M. Streeter, D. Golovin, and A. Krause. Online learning of assignments. In Advances in Neural
Information Processing Systems (NIPS), 2009.

Leslie G. Valiant. A Theory of the Learnable. Commun. ACM, 1984.

Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In STOC, pages 67–74, 2008.

Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM J.
Comput., 42(1):265–304, 2013.

Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. In STOC ’11, 2011.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Publishing
Company, Incorporated, 2010. ISBN 1441923225, 9781441923226.

28

SUBMODULAR OPTIMIZATION UNDER NOISE

Appendix

Appendix A. Combinatorial Smoothing

In this section we illustrate a general framework we call combinatorial smoothing that we will use
in the subsequent sections. Intuitively, combinatorial smoothing mitigates the effects of noise and
enables finding elements whose marginal contribution is large.

Some intuition. Recall from our earlier discussion that implementing the greedy algorithm re-
quires identifying arg max f(S ∪ a) for a given set S of elements selected by the algorithm in
previous iterations. Thus, if for some a, b ∈ N we can compare S ∪a and S ∪ b and decide whether
f(S∪a) > f(S∪b) or vice versa, we can implement the greedy algorithm. Put differently, viewing
a set as a point on the hypercube, given two points in {0, 1}n we need to be able to tell which one
has the larger true value, using a noisy oracle. In a world of continuous optimization, a reasonable
approach to estimate the true value of a point in [0, 1]n with access to a noisy oracle is to take
a small neighborhood around the point, sample values of points in its neighborhood, and average
their values. Taking polynomially-many samples allows concentration bounds to kick in, and using
a small enough diameter can often guarantee that the averaged value is a reasonable estimate of the
point’s true value. Surprisingly, the spirit of this idea can used in submodular optimization.

Smoothing neighborhood. For a given subset A ⊆ N a smoothing function is a method which
assigns a family of sets H(A) called the smoothing neighborhood. The smoothing function will be
used to create a smoothing neighborhood for a small set A. This set A whose marginal contribution
we aim to evaluate, is essentially a candidate for a greedy algorithm. In the application in Section 2
the set A is simply be a single element, whereas in Section ?? the set A is of size O(1/ε).

Definition 9 For a given function f : 2N → R, A,S ⊆ N , and smoothing neighborhoodH(A):

• FS(A) := EX∈H(A) [fS(X)] (called the smooth marginal contribution of A),

• F (S ∪A) := EX∈H(A) [f(S ∪X)] (called the smooth value of S ∪A)

• F̃ (S ∪A) := EX∈H(A)

[
f̃(S ∪X)

]
(called the noisy smooth value of S ∪A).

The idea behind combinatorial smoothing is to select a smoothing neighborhood which includes
sets whose value is in some sense close to the value of the set A whose marginal contribution we
wish to evaluate. Intuitively, when the sets are indeed close, by averaging the values of the sets in
H(A) we can mitigate the effects of noise and produce meaningful statistics (see Figure 3).

Noise distributions. We will be interested in a class of distributions that avoids trivialities like
D ⊆ {0} and is yet general enough to contain natural distributions. In this paper we define a class
which we call generalized exponential tail distributions that contains Gaussian, Exponential, and
distributions with bounded support which are independent of n (o.w. optimization is impossible,
see Appendix D). Note that optimization in this setting always requires that n is sufficiently large.
For example, if for every S the noise is s.t. ξS = 2100 with probability 1/2100 and 0 otherwise, but
n = 50, it is likely that the noisy oracle will always return 0, in which case we cannot do better than
selecting an element at random. Throughout the paper we assume that n is sufficiently large.

29

HASSIDIM SINGER

0 200 400 600 800 1000 1200

0
5

10
15

20
25

30

i

fu
nc

tio
n

va
lu

es

●

●

Figure 3: An illustration of smoothing. For every element in the ground set we associate an index i ∈ [n] and define

the submodular function as f(S) =
√∑

i∈S i/2 − c for a constant c > 0. The blue dot depicts the true
value of the element a associated with the index i = 400 and the red dot depicts the true value of the element
b associated with the index j = 900. The light blue and light red dots depict the noisy function values of
elements associated with indices i in the range |i − 400| ≤ 100 and |i − 900| ≤ 100. For S = ∅, and
smoothing neighborhoodsH(a) = {i : |i−a| ≤ 100} andH(b) = {i : |i− b| ≤ 100} we depict F̃ (S ∪a)
and F̃ (S ∪ b) as the blue and red triangles, respectively. Intuitively, an algorithm which needs to decide
whether a (blue point) is larger than b (red point) will decide by comparing F̃ (S ∪ a) (blue triangle) and
F̃ (S ∪ b) (red triangle).

Definition 10 A noise distribution D has a generalized exponential tail if there exists some x0

such that for x > x0 the probability density function ρ(x) = e−g(x), where g(x) =
∑

i aix
αi . We

do not assume that all the αi’s are integers, but only that α0 ≥ α1 ≥ . . ., and that α0 ≥ 1. If D has
bounded support we only require that either it has an atom at its supremum, or that ρ is continuous
and non zero at the supremum.

Note that the definition includes Gaussian and Exponential distributions. For i > 0 it is possible
that αi < 1 which implies that a generalized exponential tail also includes cases where the proba-
bility density function denoted ρ respects ρ(x) = ρ(x0)e−g

′(x−x0) (we can simply add ρ(x0) to g
using αi = 0 for some i, and move from g′(x− x0) to an equivalent g(x) via a coordinate change).

30

SUBMODULAR OPTIMIZATION UNDER NOISE

Smoothing arguments

In our model, the algorithm may only access F̃ (S ∪ A). Ideally, given a set S and a smoothing
neighborhood H(A) we would have liked to apply concentration bounds and show that the noisy
smooth value is arbitrarily close to the non-noisy smooth value, i.e. F (S ∪A) ≈ F̃ (S ∪A) or:∑

i∈H(A)

f(S ∪Xi) ≈
∑

i∈H(A)

ξif(S ∪Xi)

If the values in {f(S ∪ Xi)}|H(A)|
i=1 were arbitrarily close, we could simply apply a concentration

bound by taking the value of any one of the sets, say S ∪Xj , and for vj = f(S ∪Xj), since all the
values are close, we would be guaranteed that:∑

i∈H(A)

ξif(S ∪Xi) ≈
∑

i∈H(A)

ξif(S ∪Xj) = vj ·
∑

i∈H(A)

ξi

In continuous optimization this is usually the case when averaging over an arbitrarily small ball
around the point of interest, and concentration bounds apply. In our case, due to the combinatorial
nature of the problem, the values of the sets in the smoothing neighborhood may take on very
different values. For this reason we cannot simply apply concentration bounds. The purpose of this
section is to provide machinery that overcomes this difficulty. The main ideas can be summarized
as follows:

1. In general, there may be cases in which we cannot perform smoothing well and cannot get
the noisy smooth values to be similar to the true smooth values. We therefore define a more
modest, yet sufficient goal. Since our algorithms essentially try to replace the step of adding
the element a ∈ argmaxb f(S ∪ b) in the greedy algorithm with a′ ∈ argmaxb F (S ∪ b),
it suffices to guarantee that for the set A which maximizes the noisy smooth values, that
set also well approximates the (non-noisy) smooth values. More precisely our goal is to
show that if for an arbitrarily small δ > 0 we have that A ∈ argmaxB F̃ (S ∪ B) then
F (S ∪A) ≥ (1− δ) maxB F (S ∪B);

2. To show that A ∈ argmax F̃ (S ∪ A) implies F (S ∪ A) ≥ (1 − δ) maxB F (S ∪ B) for an
arbitrarily small δ > 0, we prove two bounds. Lemma 12 lower bounds the noisy smooth
contribution of a set in terms of its (true) smooth contribution. Lemma 13 upper bounds the
smooth noisy contribution of any element against its smooth contribution. The key difference
between these lemmas is that Lemma 12 lower bounds the value in terms the variation of
the smoothing neighborhood. The variation of the neighborhood is the ratio between the set
with largest value and that with lowest value in the neighborhood. Intuitively, for elements
with large values the variation of the neighborhood is bounded, and thus we can show that the
noisy smooth value of these elements is nearly as high as their true smooth values.

3. Together, these lemmas are used in subsequent sections to show that an element with the
largest noisy smooth marginal contribution is an arbitrarily good approximation to the ele-
ment with the largest (non-noisy) smooth marginal contribution. This is achieved by show-
ing that the lower bound on the smooth value of an element with large (non-noisy) smooth
marginal contribution beats the upper bound on the smooth (non-noisy) value of an element
with slightly smaller smooth contribution.

31

HASSIDIM SINGER

The definition below of the variation of the neighborhood quantifies the ratio between the largest
possible value and the smallest possible value achieved by a set in the neighborhood.

Definition 11 For given sets A,S ⊆ N , the variation of the neighborhood denoted vS(H(A)) is:

vS(H(A)) =
maxT∈H(A) fS(T)

minT∈H(A) fS(T)
.

The following lemma gives a lower bound on the noisy smooth value in terms of the (non-noisy)
smooth value and the variation. Intuitively, when an element has large value its variation is bounded,
and the lemma implies that its noisy smooth value is close to its smooth value. Essentially, when
the variation is bounded F̃ (S) ≈ (1− λ)(1− ε)F (S) for λ and ε that vanish as n grows large.

Lemma 12 Let f : 2N → R, A,S ⊂ N , ω = maxAi∈H(A) ξAi , and µ be the mean of the noise

distribution. For ε = min
{

1, 2vS(H) · |H(A)|−1/4
}

for any λ < 1 w.p 1− e−Ω(λ
2t1/4

ω
) we have:

F̃ (S ∪A) > (1− λ)µ · (f(S) + (1− ε) · FS(A)) .

Proof Let A1, . . . , At be the sets in H(A) and let α1, . . . , αt denote the corresponding marginal
contributions and ξ1 . . . , ξt denote their noise multipliers. In these terms the noisy smooth value is:

F̃ (S ∪A) =
1

t

t∑
i=1

ξi(f(S) + αi) =
1

t

t∑
i=1

ξif(S) +
1

t

t∑
i=1

ξiαi. (1)

Let ω be the upper bound on the value of the noise multiplier. Applying the Chernoff bound, we get
that for any λ < 1 with probability at least 1− e−Ω(λ2t/ω):

1

t

t∑
i=1

ξif(S) ≥ (1− λ)µf(S).

To complete the proof we need to argue about concentration of the second term in (1). To do so, in
our analysis we will consider a fine discretization of {αi}i∈[t] and apply concentration bounds on
each discretized value. Define αmax = maxi∈[t] αi and αmin = mini∈[t] αi. We can divide the set
of values {αi}i∈[t] to t1/4 bins BIN1, . . . , BINt1/4 , where a value αi is placed in the bin BINq if

(q − 1) · αmaxt
−1/4 ≤ αi ≤ q · αmaxt

−1/4

Say a bin is dense if it contains at least t1/4 values and sparse otherwise. Consider some dense
bin BINq and let αmin(q) = mini∈BINq αi and αmax(q) = maxi∈BINq αi. Since every bin is of width
αmax · t−1/4 we know that:

αmin(q) ≥ αmax(q) − αmax · t−1/4

32

SUBMODULAR OPTIMIZATION UNDER NOISE

Applying concentration bounds as above, we get that
∑

i∈BINq
ξi ≥ (1−λ)µ·|BINq|with probability

at least 1− e−Ω(λ2t1/4/ω) for any λ < 1. Thus, with this probability:∑
i∈BINq

ξiαi ≥
∑
i∈BINq

ξiαmin(q)

≥ (1− λ)µ · |BINq| · αmin(q)

≥ (1− λ)µ · |BINq| ·
(

max
{

0, αmax(q) − αmax · t−1/4
})

> (1− λ)µ · |BINq| ·
(

max

{
0, 1− αmax

αmax(q)
· t−1/4

})
αmax(q)

≥ (1− λ)µ · |BINq| ·
(

max

{
0, 1− αmax

αmin
· t−1/4

})
αmax(q)

= (1− λ)µ · |BINq| ·
(

max
{

0, 1− vS (H(A)) · t−1/4
})

αmax(q)

Taking a union bound over all (at most t1/4) dense bins, we get that with probability 1−e−Ω(λ2t1/4/ω):∑
i∈dense

ξiαi ≥ (1− λ)µ ·
(

1−max
{

0, vS (H(A)) · t−1/4
}) ∑

BINq∈dense

|BINq| · αmax(q)

≥ (1− λ)µ ·
(

max
{

0, 1− vS (H(A)) · t−1/4
}) ∑

i∈dense

αi. (2)

Let α = 1
t

∑t
i=1 αi. Since we have less than t1/4 elements in a sparse bin, and in total t1/4 bins, the

number of elements in sparse bins is at most t1/2. We can use this to effectively lower bound the
values in sparse bins in terms of α:

∑
i∈dense

αi =
t∑
i=1

αi −
∑
i∈sparse

αi

≥ max

{
0,

t∑
i=1

αi − t1/2αmax

}
≥ max

{
0, tα− t1/2αmax

}
> max

{
0, t ·

(
1− αmax

αmin
· t−1/2

)
α

}
= max

{
0, t ·

(
1− vS(H) · t−1/2

)
α
}

(3)

33

HASSIDIM SINGER

Putting (2) and (3) we get that for any λ < 1, with probability 1− e−Ω(λ2t1/4/ω):

F̃S(A) =
1

t

t∑
i=1

ξi · αi

≥ 1

t

∑
i∈dense

ξi · αi

≥ (1− λ)µ · (max
{

0, 1− vS (H(A)) · t−1/4
}

) · 1

t

∑
i∈dense

αi

≥ (1− λ)µ · (max
{

0, 1− vS (H(A)) · t−1/4
}

)(max
{

0, 1− vS (H(A)) · t−1/2
}

)α

> (1− λ)µ · (max
{

0, 1− 2vS (H(A)) · t−1/4
}

)α

= (1− λ)µ · (max
{

0, 1− 2vS (H(A)) · t−1/4
}

)FS(A)

Taking a union bound we get that for any positive λ < 1 with probability 1− e−Ω(λ2t1/4/ω):

F̃ (S ∪A) =
1

t

t∑
i=1

ξif(S) +
1

t

t∑
i=1

ξiαi

> (1− λ)µ ·
(
f(S) + (max

{
0, 1− 2vS(H(A)) · t−1/4) · FS(A)

})
= (1− λ)µ ·

(
f(S) + (1−min

{
1, 2vS(H(A)) · t−1/4) · FS(A)

})
.

The next lemma gives us an upper bound on the noisy smooth value. The bound shows that
for sufficiently large t (the size of the smoothing neighborhood, which always depends on n), for
small λ > 0 we have that F̃ (S) ≈ (1 + λ)F (S) + 3t−1/4 · αmax. In our applications of smoothing
αmax ≤ OPT, and t is large. Since we use this upper bound to compare against elements whose
value is at least some bounded factor of OPT, the dependency of the additive term on αmax will be
insignificant.

Lemma 13 Let f : 2N → R, A,S ⊆ N , ω = maxAi∈H(A) ξAi , αmax = maxAi∈H(A) fS(Ai)

and µ be the mean of the noise distribution. For ε = 3t−1/4αmax we have that for any λ < 1 with
probability 1− e−Ω(λ2t1/4/ω):

F̃ (S ∪A) < (1 + λ)µ · (f(S) + FS(A) + ε) .

Proof As in the proof of Lemma 12 let A1, . . . , At denote the sets inH(A), and for each set Ai we
will again use αi to denote the marginal value fS(Ai) and ξi to denote the noise multiplier ξS∪{Ai}.

F̃ (S ∪A) =
1

t

t∑
i=1

ξif(S) +
1

t

t∑
i=1

ξiαi. (4)

34

SUBMODULAR OPTIMIZATION UNDER NOISE

As before, we will focus on showing concentration on the second term. Define αmax = maxi αi
and αmin = mini αi. To apply concentration bounds on the second term, we again partition the
values of {αi}i∈[t] to bins of width αmax · t−1/4 and call a bin dense if it has at least t1/4 values and
sparse otherwise. Using this terminology:

t∑
i=1

ξiαi =
∑
i∈dense

ξiαi +
∑
i∈sparse

ξiαi.

Let BIN` be the dense bin whose elements have the largest values. Consider the t1/4/2 largest values
in BIN` and call the set of indices associated with these values L. We have:

t∑
i=1

ξiαi =
∑

i∈dense\L

ξiαi +
∑

i∈L∪sparse

ξiαi

The set L ∪ sparse is of size at least t1/4/2 and at most t1/4/2 + t1/2. This is because L is of size
exactly t1/4/2 and there are at most t1/2 values in bins that are sparse since there are t1/4 bins and a
bin that has at least t1/4 is already considered dense. Thus, when ω is an upper bound on the value
of the noise multiplier, from Chernoff, for any λ < 1 with probability 1− e−Ω(λ2t1/4/ω):∑

i∈L∪sparse

ξiαi ≤
∑

i∈L∪sparse

ξiαmax

< (1 + λ)µ · |L ∪ sparse| · αmax

≤ (1 + λ)µ ·

(
t1/4

2
+ t1/2

)
αmax

< (1 + λ)µ · 2t1/2αmax

We will now use the same logic as in the proof of Lemma 12 to apply concentration bounds on the
values in the dense bins. For a dense bin BINq, let αmax(q) and αmin(q) be the maximal and minimal

values in the bin, respectively. As in Lemma 12, for any λ < 1 with probability 1− e−Ω(λ2t1/4/ω):∑
i∈BINq

ξiαi ≤
∑
i∈BINq

ξi · αmax(q)

≤ (1 + λ)µ · αmax(q) · |BINq|

≤ (1 + λ)µ ·
(
αmin(q) + αmax · t−1/4

)
· |BINq|

< (1 + λ)µ ·
(
|BINq| · αmin(q) + |BINq|αmax · t−1/4

)
Applying a union bound we get with probability 1− e−Ω(λ2t1/4/ω):∑

i∈dense\L

ξiαi <
∑
q

(1 + λ)µ ·
(
|BINq| · αmin(q) + |BINq|αmax · t−1/4

)
< (1 + λ)µ · t

(
α+ t−1/4αmax

)
35

HASSIDIM SINGER

Together we have:

1

t

t∑
i=1

ξiαi =
1

t

 ∑
i∈dense\L

ξiαi +
∑

i∈L∪sparse

ξiαi

< (1 + λ)µ ·

(
α+ t−1/4αmax + 2t−1/2αmax

)
< (1 + λ)µ ·

(
α+ 3t−1/4αmax

)
< (1 + λ)µ ·

(
FS(A) + 3t−1/4αmax

)

By a union bound we get that with probability 1− e−Ω(λ2t1/4/ω):

F̃ (S ∪A) =
1

t

t∑
i=1

ξif(S) +
1

t

t∑
i=1

ξiαi ≤ (1 + λ)µ ·
(
f(S) + FS(A) + 3t−1/4αmax

)
.

36

SUBMODULAR OPTIMIZATION UNDER NOISE

Appendix B. The Smooth Greedy Algorithm

SMOOTHING GUARANTEES

Lemma 1 For any fixed ε > 0, consider an ε-relevant iteration of SMOOTH-GREEDY where S is
the set of elements selected in previous iterations and a ∈ arg maxb/∈H F̃ (S ∪ b). For δ = ε2/4k
and sufficiently large n we have that w.p. ≥ 1− 1/n4:

FS(a) ≥ (1− δ) max
b/∈H

FS(b).

To prove the above lemma we will need claims 5, 6 and 7. The proof will then follow by
verifying that the smoothing neighborhood is sufficiently large to obtain the (1− δ) approximation.

Claim 5 If FS(a) ≥ FS(b) then fS(a) ≥ fS∪H(b).

Proof Assume for purpose of contradiction that fS(a) < fS∪H(b). Since f is a submodular func-
tion, fS(T) = f(S ∪ T)− f(S) is also submodular (hence also subadditive). Therefore ∀H ′ ⊆ H:

fS(H ′ ∪ a) ≤ fS(H ′) + fS(a) < fS(H ′) + fS∪H(b) ≤ fS(H ′) + fS∪H′(b) = fS(H ′ ∪ b).

Notice however, that this contradicts our assumption:

FS(a) =
1

t

∑
H′⊆H

fS(H ′ ∪ a) <
1

t

∑
H′⊆H

fS(H ′ ∪ b) = FS(b).

The following claim bounds the variation (see Definition 11) of the smoothing neighborhood of
the element we selected. This is a necessary property for later applying the smoothing arguments.

Claim 6 Let ε > 0. For an ε-relevant iteration of SMOOTH-GREEDY, let S be the set of elements
selected in previous iterations. If a? ∈ arg maxa/∈H FS(a) then vS (H(a?)) < 3k/ε.

Proof Let b? ∈ argmaxb/∈H fH∪S(b). By the maximality of a? we have that FS(a?) ≥ FS(b?),
and thus by Claim 5 we get fS(a?) ≥ fH∪S(b?). Since the iteration is ε-relevant we have that
fH∪S(b?) ≥ ε · OPTH/k, and from monotonicity of f we get:

min
H′⊆H

fS(H ′ ∪ a?) ≥ fS(a?) ≥ fH∪S(b?) ≥ ε · OPTH
k

and since every set in H(a?) is of size at most k we know that maxH′⊆H fS(H ′ ∪ a?) ≤ OPT.
Together with the fact that OPT ≤ e · OPTH we get:

vS (H(a?)) =
maxH′⊆H fS(H ′ ∪ a?)
minH′⊆H fS(H ′ ∪ a?)

≤ OPT

OPTH
· k
ε
<

3k

ε
.

This lemma gives us tail bounds on the upper and lower bounds of the value of the noise mul-
tiplier in any of the calls made by a polynomial-time algorithm. We later use these tail bounds in
concentration bounds we use in the smoothing procedures.

37

HASSIDIM SINGER

Lemma 14 Let ωmax = max{ξ1, . . . , ξm} and ωmin = min{ξ1, . . . , ξm}, where ξi ∼ D and D is
a noise distribution with a generalized exponential tail. For any δ > 0 and sufficiently large m, we
have that:

• Pr[ωmax < mδ] > 1− e−Ω(mδ/ lnm)

• Pr[ωmin > m−δ] > 1− e−Ω(mδ/ lnm)

Proof As m tends to infinity, this lemma trivial for any noise distribution which is bounded, or has
finite support. If the noise distribution is unbounded, we know that its tail is subexponential. Thus,
at any given sample the probability of seeing the value mδ is at most e−O(mδ) where the constant
in the big O notation depends on the magnitude of the tail. Iterating this a polynomial number of
times gives the bound. The proof of the lower bound is equivalent.

We can now show that in ε-relevant iterations the value of the element which maximizes the
noisy smooth value is comparable to that of the (non-noisy) smooth value, with high probability.
Recall that we use t to denote the size of the smoothing neighborhood.

Claim 7 Given ε > 0 assume t ≥
(

110k·logn
εδ

)8
. For an ε-relevant iteration of SMOOTH-GREEDY,

let S be the elements selected in previous iterations and a ∈ arg maxb/∈H F̃ (S ∪ b). Then, w.p.
≥ 1− 1/n4:

FS(a) ≥ (1− δ) max
b/∈H

FS(b).

Proof Let a? be the element which maximizes smooth marginal contribution:

a? ∈ argmaxb/∈H FS(a)

We will show that for any element bwhose smooth marginal contribution is a factor of (1−δ) smaller
than the smooth marginal contribution of a?, then w.h.p. its noisy value of is smaller than that of
a?. That is, for any b /∈ H for which FS(b) < (1− δ)FS(a?) we get that F̃ (S ∪ b) < F̃ (S ∪ a?)
with probability at least Ω(1− 1/n5). The result will then follow by taking a union bound over all
comparisons. We will show that a? likely beats b by lower bounding F̃ (S∪a?) and upper bounding
F̃ (S∪b) using the smoothing arguments from the previous section. We use ω to denote the value of
the largest noise multiplier realized throughout the iterations of the algorithm. We later argue that
we can upper bound ω ≤ 6 log n as the noise distribution has an exponentially decaying tail.

• Lower bound on F̃ (S∪a?): First, from Claim 6 we know that vS(H(a?)) ≤ 3k/ε. Together
with Lemma 12 we get that ∀λ < 1 with probability 1− e−Ω(λ2t1/4/ω):

F̃ (S ∪ a?) > (1− λ)µ ·
(
f(S) +

(
1− 6k

ε
· t−1/4

)
· FS(a?)

)
(5)

• Upper bound on F̃ (S ∪ b): Letting βmax = maxX∈H(b) f(X), from Lemma 13, we get that

∀λ < 1 with probability 1− e−Ω(λ2t1/4/ω):

F̃ (S ∪ b) < (1 + λ)µ ·
(
f(S) + FS(b) + 3t−1/4βmax

)
(6)

38

SUBMODULAR OPTIMIZATION UNDER NOISE

We’ll express this inequality in terms of f(S) and FS(a?) as well. First, since all sets inH(b)
are of size at most k we also know that βmax ≤ OPT. Thus:

3t−1/4βmax ≤ 3t−1/4 · OPT (7)

We will now bound OPT in terms of FS(a?). Since every set in H(a?) includes a?, from
monotonicity we get that FS(a?) ≥ fS(a?). Let b? ∈ argmaxb/∈H fH∪S(b). Due to the
maximality of a? we have that FS(a?) ≥ FS(b?) and by Claim 5 we know that fS(a?) ≥
fS∪H(b?). Since the iteration is ε-relevant we get:

FS(a?) ≥ fS(a?) ≥ fS∪H(b?) ≥ fS∪H(OH)

k
≥ ε · OPTH

k
>
ε · OPT

3k
(8)

Putting (8) together with (7) we get:

3t−1/4βmax ≤
k

ε
· 9t−1/4 · FS(a?)

Plugging into (6) and using the assumption that FS(b) < (1− δ)FS(a?) we get:

F̃ (S ∪ b) < (1 + λ)µ ·
(
f(S) + FS(b) +

(
9t−1/4 · k

ε

)
FS(a?)

)
(9)

< (1 + λ)µ ·
(
f(S) +

(
9t−1/4 · k

ε
+ (1− δ)

)
FS(a?)

)
(10)

Putting (5) together with (10) we get that ∀λ < 1 with probability at least 1− 2e−Ω(λ2t1/4/ω):

F̃ (S ∪ a?)− F̃ (S ∪ b)

> µ ·
(
FS(a?)

[
(1− λ)

(
1− 6k

ε
t−1/4

)
− (1 + λ)

(
9k

ε
t−1/4 + (1− δ)

)]
− 2λf(S)

)
≥ µ ·

(
FS(a?)

[
(1− λ)

(
1− 6k

ε
t−1/4

)
− (1 + λ)

(
9k

ε
t−1/4 + (1− δ)

)]
− 2λOPT

)
> µ ·

(
FS(a?)

[
(1− λ)

(
1− 6k

ε
t−1/4

)
− (1 + λ)

(
9k

ε
t−1/4 + (1− δ)

)]
− 2λ

3k

ε
FS(a?)

)
= µ ·

(
FS(a?)

[
(1− λ)

(
1− 6k

ε
t−1/4

)
− (1 + λ)

(
9k

ε
t−1/4 + (1− δ)

)
− 2λ

3k

ε

])
= µ ·

(
FS(a?)

[
δ − 15k

ε
· t−1/4 − λ

(
(2− δ) +

3k

ε
· t−1/4 +

6k

ε

)])
> µ ·

(
FS(a?)

[
δ − k

ε

(
15t−1/4 + 10λ

)])

The second inequality above is an application of (8) and the fact that f(S) ≤ OPT since |S| ≤ k.
The third is from (8).

For the result to hold we need the above difference to be strictly positive, and hold with proba-
bility Ω(1− 1/n5). Thus, sufficient conditions would be:

39

HASSIDIM SINGER

1. k
ε · 15t−1/4 ≤ δ

2 , and

2. 10λ ≤ δ
2 , and

3. 1− 2 exp(−λ
2t1/4

ω) ∈ Ω(1− 1/n5).

The first condition holds when t ≥ (30k/εδ)4; the second condition holds when λ = εδ/20k.
For ω = 6 log n and λ = εδ/20k, the third condition is satisfied when:

(εδ)2t1/4

202k2ω
=

(εδ)2t1/4

202k26 log n
≥ 5 log n

rearranging:

t ≥ 120004

(
k log n

εδ

)8

Thus, since t in the lemma statement respects:

t ≥
(

110k log n

εδ

)8

> 120004

(
k log n

εδ

)8

we have that the first, second, and third conditions are met conditioned on ω ≤ 6 log n. That is,
we have that the difference is positive with probability 1 − 2 exp(−λ

2t1/4

ω) ≥ 1 − 2/n5, condi-
tioned on ω ≤ 6 log n. From lemma 14 we know that the probability of ω > 6 log n is smaller
than 1/n5 for sufficiently large n. Therefore, by taking a union bound on the probability of the
event in which the difference is negative and the probability that ω > 6 log n, both occurring with
probability smaller than 2/n5 we have that the probability of the difference being positive is at least
1− 4/n5 ∈ Ω(1− 1/n5), as required.

Proof of Lemma 1 By Claim 7, when δ = ε2/4k for any fixed ε > 0 we need to verify that for
sufficiently large n:

t >

(
110k log n

εδ

)8

=
(440k2 log n)8

ε3

In the case where k ≥ log n we use ` = 25 log n and thus t = 2` = n25 and the above inequality
holds. When k < log n we use ` = 33 log log n and thus t = log33 n and the above inequality holds
in this case as well. We therefore have the result with probability at least 1− 1/n4.7

Approximation guarantee

Claim 1 For any ε > 0, let δ ≤ ε2/4k and suppose the iteration is ε-relevant. For a ∈ N \H and
b? ∈ argmaxb/∈H fH∪S(b), if FS(a) ≥ (1− δ)FS(b?), then:

fS(a) ≥ (1− ε)fH∪S(b?).

7. Note that we could have used smaller values of ` to achieve the desired bound. The reason we exaggerate the values
of ` is to be consistent with the analysis of SLICK-GREEDY which necessitates these slightly larger values of `.

40

SUBMODULAR OPTIMIZATION UNDER NOISE

Proof First, we upper bound FS(a):

FS(a) =
1

t

∑
H′⊆H

fS(H ′ ∪ a) by definition of FS

=
1

t

∑
H′⊆H

(
fS(H ′) + fS∪H′(a)

)
≤ 1

t

∑
H′⊆H

(
fS(H ′) + fS(a)

)
by submodularity of f

= fS(a) +
1

t

∑
H′⊆H

fS(H ′) t = 2|H|

Next, we lower bound (1− δ)FS(b?):

(1− δ)FS(b?) = (1− δ)1

t

∑
H′⊆H

fS(H ′ ∪ b?) by definition of FS

= (1− δ)1

t

∑
H′⊆H

(
fS(H ′) + fS∪H′(b?)

)
≥ (1− δ)1

t

∑
H′⊆H

(
fS(H ′) + fS∪H(b?)

)
by submodularity of f

= (1− δ)fH∪S(b?)− δ1

t

∑
H′⊆H

fS(H ′) +
1

t

∑
H′⊆H

fS(H ′) t = 2|H|

Since FS(a) ≥ (1− δ)FS(b?) this implies that:

fS(a) ≥ (1− δ)fH∪S(b?)− δ1

t

∑
H′⊆H

fS(H ′)

≥ (1− δ)fH∪S(b?)− δ1

t

∑
H′⊆H

fS(H) monotonicity of f

≥ (1− δ)fH∪S(b?)− δfS(H) t = |H ′|
≥ (1− δ)fH∪S(b?)− δOPT |H| ≤ k
≥ (1− δ)fH∪S(b?)− eδOPTH OPTH ≥ OPT/e

≥ (1− δ)fH∪S(b?)− eδ · k
ε
· fH∪S(b?) ε-relevant iteration

=

(
1− δ

(
1 +

e · k
ε

))
fH∪S(b?)

≥
(

1− δ
(

4k

ε

))
fH∪S(b?)

= (1− ε)fH∪S(b?). δ ≤ ε2/4k

41

HASSIDIM SINGER

Claim 2 For any fixed ε > 0, consider an ε-relevant iteration of SMOOTH-GREEDY with S as the
elements selected in previous iterations. Let a ∈ arg maxb/∈S∪H F̃ (S ∪ b). Then, w.p. ≥ 1− 1/n4:

fS(a) ≥
(

1− ε
)[1

k′

(
OPTH − f(S)

)]
.

Proof Let O ∈ argmaxT :|T |≤k′fH(T), o? ∈ argmaxo∈OfH∪S(o) and b? ∈ argmaxb/∈H fH∪S(b).
From Lemma 1 we know that with probability 1 − 1/n4 we have FS(a) ≥ (1 − δ)FS(b?) for
δ = ε2/4k, and together with Claim 1 we get:

fS(a) ≥ (1− ε)fH∪S(b?) ≥ (1− ε)fH∪S(o?)

From subadditivity fH∪S(o?) ≥ fH∪S(O)/k′ and thus:

fS(a) ≥ (1− ε)fH∪S(o?) ≥
(

1− ε
k′

)
fH∪S(O) ≥

(
1− ε
k′

)(
fH(O)− f(S)

)
.

Lemma 2 Let S be the set returned by SMOOTH-GREEDY and H its smoothing set. Then, for any
fixed ε > 0 when k ≥ 3`/ε with probability of at least 1− 1/n3 we have that:

f(S ∪H) ≥ (1− 1/e− ε/3)OPTH .

Proof In case OPTH < OPT/e then H alone provides a 1− 1/e− ε/3 approximation. To see this,
let O ∈ argmaxT :|T |≤k f(T) and O′ ∈ argmaxT :|T |≤k′ f(T), and OH ∈ argmaxT :|T |≤k′ fH(T).
We get:

(1− ε/3)f(O) ≤ f(O′) k′ = k − ` and k ≥ 3`/ε

≤ f(H ∪O′) monotonicity

= f(H) + fH(O′)

≤ f(H) + fH(OH) optimality of OH
< f(H) + f(O)/e eOPTH < OPT

Thus:

f(H) ≥
(

1− 1

e
− ε

3

)
OPT ≥

(
1− 1

e
− ε

3

)
OPTH

In case OPTH ≥ OPT/e we set γ = min{1/e, ε/6}. We will use the following notation. At
every iteration i ∈ [k′] of the while loop in the algorithm, we will use ai to denote the element that
was added in that step, and Si := {a1, . . . , ai}.

First, notice that if there exists an iteration i that is not γ-relevant, our bound trivially holds:

fH∪Si(OH) ≤ k′ · max
o∈OH

fH∪Si(o) ≤ k′ · max
b/∈Si∪H

fH∪Si(b) ≤ k′ ·
γOPTH
k

< γOPTH

42

SUBMODULAR OPTIMIZATION UNDER NOISE

Since fH∪Si(OH) = f(H ∪Si ∪OH)− f(H ∪Si), the above inequality implies that f(H ∪Si) >
f(H ∪ Si ∪OH)− γOPTH . But this implies:

f(S ∪H) ≥ f(Si ∪H)

> f(OH ∪ Si ∪H)− γOPTH
≥ f(OH)− γOPTH
≥ fH(OH)− γOPTH
= (1− γ)OPTH

≥ (1− 1/e)OPTH

It remains to prove the approximation guarantee in the case that every iteration is γ-relevant.
To do so, we can apply a standard inductive argument on Claim 2 to show that S alone provides a
1− 1/e− ε/3 approximation. Claim 2 states that for γ-relevant iterations, at every stage i ∈ [k′]:

f(Si+1)− f(Si) ≥ (1− γ)

[
1

k′
(fH(OH)− f(Si))

]
. (11)

We will show that at every stage i ∈ [k′]:

f(Si) ≥ (1− γ)

(
1−

(
1− 1

k′

)i)
fH(OH).

The proof is by induction on i. For i = 1 we have that Si = {a1} and invoking Claim 2 with S = ∅
we get that f(ai) ≥ (1− γ) 1

k′ fH(OH). Therefore:

f(S1) = f(a1) ≥ (1− γ)
1

k′
fH(OH) = (1− γ)

(
1−

(
1− 1

k′

))
fH(OH).

We can now assume the claim holds for i = l < k′ and show that it holds for i = l + 1:

f(Sl+1) ≥ (1− γ)

(
1

k′
(fH(OH)− f(Sl))

)
+ f(Sl) By (11)

> (1− γ)

((
1

k′
fH(OH)

)
+

(
1− 1

k′

)
f(Sl)

)
δ > 0

≥ (1− γ)

(
1

k′
fH(OH)

)
+ (1− γ)

(
1− 1

k′

)(
1−

(
1− 1

k′

)l)
fH(OH)

= (1− γ)

(
1−

(
1− 1

k′

)l+1
)
fH(OH)

Note that for any l > 1 we have that (1− 1/l)l ≤ 1/e, and thus:

f(S) = f(Sk′)

≥ (1− 1/e− γ)fH(OH) by the induction

> (1− 1/e− ε/3)OPTH . γ = ε/6

43

HASSIDIM SINGER

Corollary 15 Let S be the set returned by SMOOTH-GREEDY andH be its smoothing set. For any
fixed ε > 0 and k > 3`/ε, we have that with probability at least 1− 1/n3:

f(S ∪H) >

(
e− 1

2e− 1− ε
− 2ε

)
OPT.

Proof Let OH ∈ argmaxT :|T |≤k′fH(T). From Lemma 2, with probability at least 1− 1/n3:

f(S ∪H) >

(
1− 1

e
− ε

3

)
f(OH) (12)

Let O′ ∈ argmaxT :|T |≤k−|H| f(T). From submodularity and the fact that k ≥ 3`/ε > |H|/ε we
get that (1− ε)OPT ≤ f(O′). Putting everything together:

(1− ε)OPT ≤ f(O′) submodularity of f

≤ f(OH ∪H) monotonicity of f

≤ f(OH) + f(H) subadditivity of f

≤
(

e

e− 1− ε

)
f(S ∪H) + f(H) by (12)

≤
(

2e− 1− ε
e− 1− ε

)
f(S ∪H). monotonicity of f

Therefore f(S ∪H) >
(

e−1
2e−1−ε − 2ε

)
OPT as required.

44

SUBMODULAR OPTIMIZATION UNDER NOISE

Appendix C. The Slick Greedy Algorithm

As described in the main body of the paper, in SLICK-GREEDY we apply a slightly more general
version of SMOOTH-GREEDY where in each iteration i ∈ [1/δ] the algorithm SMOOTH-GREEDY is
initialized with the set of elementsRi = ∪j 6=iHj and uses the smoothing setHi. SMOOTH-GREEDY

from the previous section is a special case in which Ri = ∅. As one might imagine, the guarantees
from the previous section carry over, using the appropriate definitions.

GENERALIZING GUARANTEES OF SMOOTH GREEDY

To make the transition to the case in which SMOOTH-GREEDY is being initialized with Ri of size
`/δ−` and selects k′′ = k−|Ri|−|Hi| = k−`/δ elements, we extend our definitions as follows. For
a given set Ri used for initialization, it’ll be convenient to consider the function gi(T) = fRi(T),
and its smooth value Gi(a) = 1

t

∑t
j=1 gi(S ∪ Hj ∪ a). When the smoothing set is clear from

context we will generally use R,H, g,G instead of Ri, Hi, gi, Gi. The value of the optimal solu-
tion here is OPT[G] = maxT :|T |≤k′′ g(T) where k′′ = k − |R| − |H|. We can then also define
OPT[G]H = maxT :|T |≤k′′ gH(T). For a given set S of elements selected by SMOOTH-GREEDY

and b? ∈ argmaxb/∈H gS∪H(b), an ε-relevant iteration is one in which gH∪S(b?) ≥ εOPT[G]H/k
and OPT[G]H ≥ OPT[G]/e.

Lower bounding the marginal contribution in each iteration. We first show that when SMOOTH-
GREEDY is initialized with a set R and run with smoothing set H , then in every γ-relevant iteration
the element a selected respects gS(a) ≥ (1 − γ)gH∪H(b?). This claim is necessary for proving
Lemma 17 which shows the approximation guarantee of SMOOTH-GREEDY in each iteration of
SLICK-GREEDY as well as for proving guarantees of SMOOTH-COMPARE in Lemma 4.

Claim 8 For a given set R ⊂ N , let g(T) = fR(T). For any fixed γ > 0 consider a γ-relevant
iteration of SMOOTH-GREEDY initialized with some set R using smoothing set H s.t. H ∩R = ∅,
and let S be the set of elements selected before the iteration. If a ∈ argmaxb/∈H F̃ (R ∪ S ∪ b) then
w.p.≥ 1− 1/n4:

gS(a) ≥ (1− γ)gH∪S(b?)

Proof Let G denote the smooth value function of g, i.e. G(S ∪ a) = 1
t

∑
H′⊂H g(S ∪H ′ ∪ a). The

proof is a chaining of four simple arguments. Let λ = γ2/4k and α = γλ/3k. We show:

1. F̃ (R ∪ S ∪ a) ≥ F̃ (R ∪ S ∪ b?) =⇒ FR∪S(a) ≥ (1− α) FR∪S(b?)

2. FR∪S(a) ≥ (1− α) FR∪S(b?) =⇒ G(S ∪ a) ≥ (1− α) G(S ∪ b?)
3. G(S ∪ a) ≥ (1− α) G(S ∪ b?) =⇒ GS(a) ≥ (1− λ) GS(b?)

4. GS(a) ≥ (1− λ) GS(b?) =⇒ gS(a) ≥ (1− γ) gH∪S(b?)

The above arguments can be justified as follows:

1. To see F̃ (R ∪ T ∪ a) ≥ F̃ (R ∪ T ∪ b?) implies FR∪T (a) ≥ (1 − α)FR∪T (b?), we invoke
Claim 7 on S = R ∪ T . To do so, since α ≤ γ3/24k2 for sufficiently large n we need to
verify:

t >

(
110k log n

γα

)8

=

(
2640k3 log n

γ3

)8

45

HASSIDIM SINGER

In the case where k ≥ 2400 log n we use ` = 25 log n and thus t = 2` = n25 and the above
inequality holds. When k < 2400 log n we use ` = 33 log log n and thus t = log33 n and the
above inequality holds in this case as well. We therefore have the result w.p. ≥ 1− 1/n4.

2. Assuming that FR∪S(a) ≥ (1−α)FR∪S(b?) we will show thatG(S∪a) ≥ (1−α)G(S∪b?):

FR∪S(a) ≥(1− α)FR∪S(b?)

=⇒ 1

t

∑
H′⊂H

fR∪S(H ′ ∪ a) ≥(1− α)
1

t

∑
H′⊂H

fR∪S(H ′ ∪ b?)

=⇒ 1

t

∑
H′⊂H

fR(S ∪H ′ ∪ a) ≥(1− α)
1

t

∑
H′⊂H

fR(S ∪H ′ ∪ b?)

=⇒ 1

t

∑
H′⊂H

g(S ∪H ′ ∪ a) ≥(1− α)
1

t

∑
H′⊂H

g(S ∪H ′ ∪ b?)

=⇒ G(S ∪ a) ≥(1− α)G(S ∪ b?)

3. G(S ∪ a) ≥ (1− α)G(S ∪ b?) =⇒ GS(a) ≥ (1− λ)GS(b?):
We first argue GS(b?) > γOPT[G]

e·k′′ :

GS(b?) =
1

t

∑
H′⊂H

(
g(S ∪ b? ∪H ′)− g(S)

)
≥ 1

t

∑
H′⊂H

(
g(S ∪ b? ∪H ′)− g(S ∪H ′)

)
monotonicity of g

≥ 1

t

∑
H′⊂H

(g(S ∪ b? ∪H)− g(S ∪H)) submodularity of g

= g(S ∪ b? ∪H)− g(S ∪H)

= gS∪H(b?)

≥ γ

k′′
OPT[G]H γ-relevant iteration

>
γ

e · k′′
OPT[G] OPT[G]H > OPT[G]/e

Now, in a similar fashion to Claim 1:

GS(a) = G(S ∪ a)−G(S)

≥ (1− α) (G(S ∪ b?)−G(S))− αG(S)

≥ (1− α) (G(S ∪ b?)−G(S))− αOPT[G]

≥ (1− α) (G(S ∪ b?)−G(S))− αe · k
′′

γ
·GS(b?) GS(b?) >

γOPT[G]

e · k′′

= (1− α) (GS(b?))− αe · k
′′

γ
·GS(b?)

=

(
1− α

(
1 +

e · k′′

γ

))
GS(b?)

= (1− λ)GS(b?) α = ελ/3k and k ≥ k′′ + 1

46

SUBMODULAR OPTIMIZATION UNDER NOISE

4. GS(a) ≥ (1− λ)GS(b?) =⇒ gS(a) ≥ (1− γ)gH∪S(b?): by direct application of Claim 1

Definition 16 Given two disjoint sets H and R, let OPTH,R = f(H ∪R∪OH,R)− fR(H) where:

OH,R ∈ argmaxT :|T |≤k−|H∪R| f(H ∪R ∪ T).

Notice that when R = ∅ we have that OH,R = OH ∈ argmaxT :|T |≤k−|H| fH(T) as defined in
the previous subsection. In that sense, the value of OH,R is that of the optimal solution evaluated
on fH when initialized with R. In the same way Lemma 2 shows SMOOTH-GREEDY obtains a
1− 1/e− ε/3 approximation to OPTH , the following lemma shows that when SMOOTH-GREEDY

is initialized with R it obtains the same guarantee against OPTH,R. Details are in Appendix C.

Lemma 17 Let S be the set returned by SMOOTH-GREEDY that is initialized with a set R ⊆ N
and has H as its smoothing set of size `, which is disjoint from R and S. Then, for any fixed ε > 0
when k ≥ 3|H ∪R|/ε with probability of at least 1− 1/n3 we have that:

f(R ∪ S ∪H) ≥ (1− 1/e− ε/3)OPTH,R.

Proof Notice that the proof of Lemma 2 applies for the application of SMOOTH-GREEDY on any
submodular function v where in every γ-relevant iteration vS(a) ≥ (1 − γ)vS∪H(b?) with proba-
bility 1 − 1/n4, for γ ∈ min{1/e, ε/6}, and S being the elements added in the previous iteration.
From Claim 8 we have that for any γ-relevant iteration gS(a) ≥ (1− γ)gS∪H(b?) w.p. ≥ 1− 1/n4.
We can therefore apply the exact same proof on g and get:

g(S ∪H) ≥ (1− 1/e− ε/3)OPT[G]H (13)

Let OH ∈ argmaxT :|T |≤k−|R∪H| g(T) and let OH,R ∈ argmaxT :|T |≤k−|H∪R| f(H ∪ R ∪ T).
Observe that by definition of g(X) = fR(X) we have that:

f(H ∪R ∪OH,R) = f(H ∪R ∪OH)

and thus from (13) we get:

f(R ∪ S ∪H)− f(R) = fR(S ∪H)

= g(S ∪H)

≥ (1− 1/e− ε/3)gH(OH)

≥ (1− 1/e− ε/3) (g(OH ∪H)− g(H))

= (1− 1/e− ε/3) (fR(OH ∪H)− fR(H))

≥ (1− 1/e− ε/3) (f(R ∪OH ∪H)− f(R)− fR(H))

≥ (1− 1/e− ε/3) (f(R ∪OH,R ∪H)− fR(H))− (1− 1/e− ε/3)f(R)

and we therefore have that f(R ∪ S ∪H) ≥ (1− 1/e− ε/3) (f(R ∪OH,R ∪H)− fR(H)).

47

HASSIDIM SINGER

We will instantiate the Lemma with R = Rl and H = Hl as discussed above: for any i ∈ [1/δ]

we will define Ri = ∪j 6=iHj and use the index l to denote the smoothing set in {Hi}1/δi=1 which has
the least marginal contribution to the rest, i.e. Hl = argmini∈[1/δ] fRi(Hi). We first show that the
iteration of SLICK-GREEDY on l finds a solution arbitrarily close to 1− 1/e for sufficiently large k.

Lemma 3 Let Sl be the set returned by SMOOTH-GREEDY that is initialized with Rl and Hl its
smoothing set. Then, for any fixed ε > 0 when k ≥ 36`/ε2 with probability of at least 1− 1/n3 we
have:

f(Sl ∪Hl) ≥ (1− 1/e− 2ε/3)OPT

Proof To ease notation, letR = Rl,H = Hl, andO = Ol whereOl is the solution which maximizes
f(H ∪R ∪ T) over all subsets T of size at most k − |H ∪R|. Let β = |H ∪R|/k. Notice that by
submodularity we have that:

f(H ∪R ∪O) ≥
(

1− |H ∪R|
k

)
OPT = (1− β)OPT (14)

Notice also that by the minimality ofH = Hl and submodularity we have that fR(H) ≤ δf(H∪R).
Recall also that δ = ε/6 and notice that whenever k ≥ `/δ2 = 36`/ε2 we have that β < δ and
hence β + δ < ε/3. Therefore, by application of Lemma 17 we get that with probability 1− 1/n3:

f(S ∪R ∪H) ≥
(

1− 1

e
− ε

3

)
OPTH,R by Lemma 17

=

(
1− 1

e
− ε

3

)
(f(H ∪R ∪O)− fR(H)) by definition

≥
(

1− 1

e
− ε

3

)
(f(H ∪R ∪O)− δ · f(H ∪R)) fR(H) ≤ δf(H ∪R)

≥
(

1− 1

e
− ε

3

)
((1− δ)f(H ∪R ∪O)) monotonicity of f

≥
(

1− 1

e
− ε

3
− δ
)

(f(H ∪R ∪O))

≥
(

1− 1

e
− ε

3
− δ
)

(1− β)OPT by (14)

≥
(

1− 1

e
− 2ε

3

)
OPT. β + δ < ε/3

THE SMOOTH COMPARISON PROCEDURE

Lemma 4 Assume k ≥ 96`/ε2. Let Ti be the set that won the SMOOTH-COMPARE tournament.
Then, with probability at least 1− 1/n2:

f(Ti) ≥
(

1− ε

3

)
min

{(
1− 1

e
− 2ε

3

)
OPT, max

j∈[1/δ]
f(Tj)

}
48

SUBMODULAR OPTIMIZATION UNDER NOISE

The proof of the lemma uses the following two claims.

Claim 9 Let Ti = Si ∪ Hi and Tj = Sj ∪ Hj be two sets that are compared by SMOOTH-
COMPARE, and suppose that (i)f(Ti) ≥ (1 + 2β)f(Tj) where β = |Hij |/k′′ and k′′ = k − `/δ,
and (ii) f(Tj) < (1 − 1/e − 2ε/3)OPT for any ε ≥ 3(1 − k′′/k)/2. Then, for any set H ′ij ⊆ Hij

w.p. ≥ 1− 1/n3:
f(Ti ∪H ′ij) ≥ f(Tj ∪H ′ij).

Proof Recall thatHij∩
(
Ti∪Tj

)
= ∅. We will argue that assuming f(Tj) < (1−1/e)OPT, the fact

that every element in H ′ij was a candidate for selection by SMOOTH-GREEDY and wasn’t selected,
implies that w.h.p. either (i) f(Tj) is arbitrarily close to 1 − 1/e (in which case we wouldn’t mind
that if it wins the comparison) or (ii) the marginal contribution of H ′ij to Tj is bounded from above
by 2βf(Tj) which suffices since then we get:

f(Tj ∪H ′ij) = f(Tj) + fTj (H
′
ij) ≤ (1 + 2β)f(Tj) < f(Ti) ≤ f(Ti ∪H ′ij)

To prove this, consider the instantiation of SMOOTH-GREEDY initialized with Rj with smoothing
setHj , and let S be the set selected after its k′′ = k−|Rj |−|Hj | iterations. Recall that Sj = Rj∪S
and that Tj = Sj ∪Hj . To ease notation let R = Rj and H = Hj .

We will first prove the statement in the case that the iteration is γ-relevant for γ = 1/4. For
every iteration r ∈ [k′′] let S(r) be the set of elements selected in the previous iterations and a(r) be
the element added to the solution at that stage by SMOOTH-GREEDY. From Claim 8 we know that
since a(r) ∈ argmaxb F̃ (R∪S(r)∪ b) and the size of the smoothing neighborhood t is sufficiently
large then w.p. ≥ 1− 1/n4:

gS(r)(a(r)) ≥ (1− γ) max
b/∈H

gH∪S(r)(b)

We therefore have that:

g(S) =
k′′∑
r=1

gS(r)(ar)

≥
k′′∑
r=1

(1− γ) max
b/∈H

gS(r)∪H(b)

≥
k′′∑
r=1

(1− γ) max
b/∈H

gS∪H(b)

= k′′(1− γ) max
b/∈H

gS∪H(b)

≥ k′′(1− γ) max
h∈H′

ij

gS∪H(h)

≥ k′′(1− γ)

|H ′ij |
gS∪H(H ′ij)

≥ (1− γ)k′′

`
gS∪H(H ′ij)

49

HASSIDIM SINGER

Since g(T) = fR(T) and γ = 1/4 this implies:

f(R ∪ S)− f(R) >
k′′

2`

(
f(R ∪H ∪H ′ij)− f(R ∪ S)

)
Since Tj = Rj ∪ S ∪Hj = R ∪ S ∪H we get:

fTj (H
′
ij) <

2`

k′′
f(Tj) = 2βf(Tj).

If the iteration is not γ-relevant, assume first that e · OPT[G]H ≥ OPT[G]. In this case, let
OH = argmaxT :|T |≤k′′ gH(T). Notice that the fact that iteration is not relevant in this case says
that there is an iteration r for which maxb/∈H gH∪S(r)(b) < γOPT[G]H/k and from submodularity
of g since S(r) ⊆ S we get maxb/∈H gH∪S(b) < γOPT[G]H/k. Thus:

gH∪S(OH) ≤ k′′ · gH∪S(b?)

≤ k′′ · γOPT[G]H
k

< γOPT[G]H

which implies:

g(H ∪ S) > g(OH ∪H ∪ S)− γOPT[G]H
≥ gH(OH)− γOPT[G]H
= (1− γ)OPT[G]H

Using this bound we get:

gH∪S(H ′ij) ≤ |H ′ij | max
h∈H′

ij

gH∪S(h)

≤ |H ′ij |max
b/∈H

gH∪S(b)

≤ |H ′ij |
γ

k
OPT[G]H

<
γ`

k(1− γ)
g(H ∪ S)

Again, as before for δ = 1/4 we get that in this case:

fTj (H
′
ij) <

2`

k′′
f(Tj) = 2βf(Tj)

Lastly, it remains to show that if if the iteration is not γ-relevant because e · OPT[G]H < OPT[G],
we get a contradiction to our assumption that f(Tj) < (1 − 1/e − 2ε/3)OPT. To see this, let
O ∈ argmaxT :|T |≤k′′ g(T), and notice that:

g(H ∪OH)− g(H) <
g(O)

e

50

SUBMODULAR OPTIMIZATION UNDER NOISE

hence:

f(R ∪H)− f(R) = g(H)

> g(H ∪OH)− g(O)

e

≥
(

1− 1

e

)
g(O)

≥
(

1− 1

e

)
(f(R ∪O))− f(R)

We therefore get that f(Tj) ≥ f(R ∪ H) > (1 − 1/e)f(O). Notice that since |O| = k′′ and
k′′/k ≥ (1− 2ε/3), submodularity implies f(Tj) ≥ (1− 1/e− 2ε/3)OPT, a contradiction.

Claim 10 For k ≥ 96`/ε2 suppose that f(Ti) ≥ (1+εδ/3)f(Tj) and that f(Tj) ≤ (1− 1/e− 2ε/3)OPT.
Then, Ti wins in the smooth comparison procedure w.p. ≥ 1− 2/n3.

Proof Let β = |Hij |/k′′ where k′′ = k−(|Hij |+ |Ri|). Since we assume that k ≥ 96` and δ = ε/6
this implies that 2β < ε2/45. We therefore have:

f(Ti) >

(
1 +

εδ

3

)
f(Tj) =

(
1 +

ε2

18

)
f(Tj) >

(
1 +

ε2

45

)2

f(Tj) > (1 + 2β)2 f(Tj)

From Claim 9 this implies that for any H ′ij ⊆ Hij we have that with probability at least 1− 1/n3:

f(Tj ∪H ′ij) ≤ (1 + 2β)f(Tj ∪H ′ij)

We will condition on this event as well as the event that the maximal value obtained throughout the
iterations of the algorithm is νmax and minimal value is νmin, and that νmax/νmin ≤ nτ for some
constant τ > 0.

Pr

[
f̃(Ti ∪H ′ij) ≥ f̃(Tj ∪H ′ij)

∣∣∣f(Ti) ≥
(

1 +
εδ

3

)
f(Tj)

]
= Pr

[
ξif(Ti ∪H ′ij) ≥ ξjf(Tj ∪H ′ij)

∣∣∣f(Ti) ≥
(

1 +
εδ

3

)
f(Tj)

]
> Pr

[
(1 + 2β) · ξi

ξj
≥ 1

]
≥ 1

2
+

1

2 log1+2β(νmaxνmin
)

The last inequality follows from a discretization argument: Consider the m ∈ O(log n) intervals,
where the i’th interval is [νmin(1 + 2β)i, νmin(1 + 2β)i+1], and i ranges from 0 to log1+2β(νmaxνmin

).
Due to symmetry of ξi and ξj , the likelihood of ξi falling in the same or higher interval than ξj is:∑m

i=1 i

m2
=

1

2
+

1

2m
=

1

2
+

1

2 log1+2β(νmaxνmin
)

=
1

2
+

1

2τ log1+2β n

51

HASSIDIM SINGER

Applying a Chernoff bound, for any constants ε, δ > 0, s.t. εδ/8 > 1 + 2β, and νmax/νmin ≤ nτ

for some constant τ > 0, we get that Ti is chosen with probability at least 1−exp(−Ω(n/ log(n))),
conditioned on νmax/νmin < nτ which by Lemma 14 occurs with probability 1 − exp(−Ω(nα))
for some constant α > 0. For sufficiently large n, Ti therefore wins w.p. at least 1− 2/n3.

Proof of Lemma 4 Since ∀i, j ∈ [1/δ] SMOOTH-COMPARE({Ti, Tj}, Hij) returns Ti as long as
f(Ti) ≥ (1 − εδ/3)f(Tj) and f(Tj) < (1 − 1/e − 2ε/3)OPT, and SMOOTH-COMPARE is called
1/δ times we get:

f(Ti) ≥
(

1− εδ

3

)
1/δ × min

{(
1− 1

e
− 2ε

3

)
OPT, max

j∈[1/δ]
f(Tj)

}
≥

(
1− ε

3

)
× min

{(
1− 1

e
− 2ε

3

)
OPT, max

j∈[1/δ]
f(Tj)

}
.

Approximation guarantee for slick greedy

Theorem 3.1 Let f : 2N → R be a monotone submodular function. For any fixed ε > 0, when
k ≥ 3168 log log n/ε2, then given access to noisy oracle whose noise is an exponentially decaying
tail distribution, the SLICK-GREEDY algorithm returns a set which is a (1−1/e−ε) approximation
to maxS:|S|≤k f(S), with probability at least 1− 1/n.

Proof From Lemma 3 we know that when k > 36`/ε2 with probability at least 1− 1/n3 SMOOTH-
GREEDY initialized with Rl outputs Tl = Sl ∪ Hl which is a 1 − 1/e − 2ε/3 approximation to
OPT. When 3168 log log n/ε2 ≤ k ≤ 2400 log n/ε2 we use ` = 33 log log n and then k ≥ 96`/ε2.
In the case that k ≥ 2400 log n/ε2 we have that ` = 25 log n and in this case too k ≥ 96`/ε2.
Therefore, the conditions for Lemma 4 hold. Applying a union bound on these events we get that
with probability at least 1− 1/n:

f(Ti) ≥
(

1− ε

3

)
min

{(
1− 1

e
− 2ε

3

)
OPT, f(Tl)

}
by Lemma 4

=
(

1− ε

3

)(
1− 1

e
− 2ε

3

)
OPT by Lemma 3

>

(
1− 1

e
− ε
)
OPT.

52

SUBMODULAR OPTIMIZATION UNDER NOISE

Appendix D. Noise Distributions

As discussed in the Introduction, our goal was to allow noise distribution in the model to potentially
be Gaussian, Exponential, uniform and generally bounded. It was important for us that algorithm
to be oblivious to the specific noise distribution, and rely on its properties only in the analysis. For
achieve this we introduced the class of generalized exponential tail distributions. We recall the
definition from the Introduction.

Definition A noise distribution D has a generalized exponential tail if there exists some x0 such
that for x > x0 the probability density function ρ(x) = e−g(x), where g(x) =

∑
i aix

αi . We do
not assume that all the αi’s are integers, but only that α0 ≥ α1 ≥ . . ., and that α0 ≥ 1. If D has
bounded support we only require that either it has an atom at its supremum, or that ρ is continuous
and non zero at the supremum.

Note that the definition includes Gaussian and Exponential distributions. For i > 0 it is possible
that αi < 1 which implies that a generalized exponential tail also includes cases where the proba-
bility density function denoted ρ respects ρ(x) = ρ(x0)e−g

′(x−x0) (we can simply add ρ(x0) to g
using αi = 0 for some i, and move from g′(x− x0) to an equivalent g(x) via a coordinate change).

The most important property of the noise distribution is that all of its moments are constant,
independent of n. In fact, D describes how the noise affects a single evaluation, and does not
depend on the number of elements. This means (for example) that if we could get h(n) independent
samples from D, we would be arbitrarily close to the mean, as long as h(n) is monotone in n.

Impossibility for distributions that depend on n. We note that if the adversary would have been
allowed to choose the noise distribution as a function of n, then no approximation would be possible,
even if the noise distribution had mean 1. For example, a noise distribution which returns 0 with
probability 1 − 1/22n and 22n with probability 1/22n has an expected value of 1, is not always 0,
but does not enable any approximation.

Impossibility for two distributions. One can consider having multiple noise distributions which
act on different sets. A noise distribution can be assigned to a set either in adversarial manner,
or at random. If sets are assigned to noise distributions in an adversarial manner, it is possible to
construct the bad example of the correlated case from Section 4 with just two noise distributions. If
sets are assigned to a noise distribution in an i.i.d manner, this reduces to the i.i.d case when there
is a single distribution.

The relation between n and the distribution As we have explained above, if the distribution
depends on n, then approximation is not possible. In particular, this means that if the universe is
too small, optimization is not possible. For example, suppose that D returns 0 with probability
1 − 2−100, and otherwise returns 2100. Then D is bounded away from zero, has expectancy 1, but
approximation is not possible if n = 50. Hence we need to assume some minimal value n0 that
depends on the distribution, and assert an approximation ratio of 1− 1/e− ε only for n > n0. We
note that n0 is constant, and hence if n ≤ n0 we can run the “optimal” algorithm of evaluating the
noisy oracle over all subsets of n, but the approximation ratio might still be arbitrarily bad.

We note that the problem is not “just” an atom at zero. Suppose that f is additive, and bounded
between 1 and 100. if D is uniform over the set 2100i for 1 ≤ i ≤ 2100 and n = 50 then approxima-
tion is not possible; if f̃(A) turns out to be larger than f̃(B) this says very little about f(A), f(B)
- it’s more likely happen due to the noise.

53

HASSIDIM SINGER

Appendix E. Additional Examples

In this section we show some examples of how greedy and its variants fail under error and noise.

Greedy fails with random noise. In practice, the greedy algorithm is often used although we
know the data may be noisy. Hence, a different direction for research could be to analyze the effect
of noise on the existing greedy algorithm. Unfortunately, it turns out that the greedy algorithm fails
even on very simple examples.

Theorem 18 Given a noise distribution that is either uniformly distributed in [1− ε, 1 + ε] for
any ε > 0, a Gaussian, or an Exponential, the greedy algorithm cannot obtain a constant factor
approximation ratio even in the case of maximizing additive functions under a cardinality constraint.

Proof [Proof sketch] Consider an additive function, which has two types of elements: k =
√
n

good elements, each worth n1/4, and n − k bad elements, each worth 1. Suppose that the noise
is uniform in [1 − ε, 1 + ε]. Then after taking k2/3 good elements greedy is much more likely to
take bad elements, which leads to an approximation ratio of O(1/n1/6). Similar examples hold for
Gaussian and Exponential noise.

54

	Introduction
	Main result
	Extensions
	Applications
	Technical overview
	Paper organization

	The Smooth Greedy Algorithm
	The Smoothing Neighborhood
	The algorithm
	Smoothing guarantees
	Approximation guarantee

	The Slick Greedy Algorithm
	The algorithm
	Generalizing the guarantees of smooth greedy
	The smooth comparison procedure
	Approximation guarantee of slick greedy

	Extensions
	Additive Noise
	Marginal Noise
	Correlated Noise
	Information Degradation
	Approximate Submodularity

	Impossibility for Adversarial Noise
	More related work
	Acknowledgements
	Appendices
	Combinatorial Smoothing
	The Smooth Greedy Algorithm
	The Slick Greedy Algorithm
	Noise Distributions
	Additional Examples

