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Abstract
We introduce the following hidden hubs model H(n, k, σ0, σ1): the input is an n × n random
matrix A with a subset S of k special rows (hubs); entries in rows outside S are generated from
the Gaussian distribution p0 = N(0, σ2

0), while for each row in S, an unknown subset of k of its
entries are generated from p1 = N(0, σ2

1), σ1 > σ0, and the rest of the entries from p0. The special
rows with higher variance entries can be viewed as hidden higher-degree hubs. The problem we
address is to identify the hubs efficiently. The planted Gaussian Submatrix Model is the special
case where the higher variance entries must all lie in a k × k submatrix. If k ≥ c

√
n lnn, just the

row sums are sufficient to find S in the general model. For the Gaussian submatrix problem (and
the related planted clique problem), this can be improved by a

√
lnn factor to k ≥ c

√
n by spectral

or combinatorial methods.
We give a polynomial-time algorithm to identify all the hidden hubs with high probability for

k ≥ n0.5−δ for some δ > 0, when σ2
1 > 2σ2

0 . The algorithm extends to the setting where planted
entries might have different variances, each at least σ2

1 . We also show a nearly matching lower
bound: for σ2

1 ≤ 2σ2
0 , there is no polynomial-time Statistical Query algorithm for distinguishing

between a matrix whose entries are all from N(0, σ2
0) and a matrix with k = n0.5−δ hidden hubs

for any δ > 0. The lower bound as well as the algorithm are related to whether the chi-squared
distance of the two distributions diverges. At the critical value σ2

1 = 2σ2
0 , we show that the hidden

hubs problem can be solved for k ≥ c
√
n(lnn)1/4, improving on the naive row sum-based method.

Keywords: Planted Clique, Hidden Gaussian, Spectral Methods, Concentration, Statistical Queries.

1. Introduction

Identifying hidden structure in random graphs and matrices is a fundamental topic in unsupervised
machine learning, with many application areas and deep connections to probability, information
theory, linear algebra, statistical physics and other disciplines. A prototypical example is finding
a large hidden clique in a random graph. A well-known extension to real-valued entries is the
Gaussian hidden submatrix: each entry is drawn from N(0, σ2

0), except for entries from a k × k
submatrix, which are drawn from N(µ, σ2

1). The study of these problems has lead to interesting
algorithms and analysis techniques.

Model. In this paper, we consider a more general model of hidden structure: the presence of
a small number of hidden hubs. These hubs might represent more influential or atypical nodes
of a network. Recovering such nodes is of interest in many areas (information networks, protein
interaction networks, cortical networks etc.). In this model, as before, the entries of the matrix are
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drawn from N(0, σ2
0) except for special entries that all lie in k rows, with k entries from each of

these k rows. This is a substantial generalization of the above hidden submatrix problems, as the
only structure is the existence of k higher “degree” rows (hubs) rather than a large submatrix. (We
also consider unequal variances for the special entries and varying numbers of them for each hub.)

More precisely, we are given an N × n random matrix A with independent entries. There is
some unknown subset S of special rows, with |S| = s. Each row in S has k special entries, each
picked according to

p1(x) ∼ N(0, σ2
1),

whereas, all the other Nn− k|S| entries are distributed according to

p0 ∼ N(0, σ2
0).

The task is to find S, given, s = |S|, k, n, σ2
0, σ

2
1 . One may also think of S rows as picking n i.i.d.

samples from a mixture
k

n
p1(x) +

(
1− k

n

)
p0(x),

whereas, the non-S rows are picking i.i.d. samples from p0(x). This makes it clear that we cannot
assume that the planted entries in the S rows are all in the same columns (while the methods in this
paper can handle both variants, we focus on the version with a given number of atypical entries in
each row).

If σ2
0 = σ2

1 , obviously, we cannot find S. If

σ2
1 > σ2

0(1 + c),

for a positive constant c (independent of n, k), then it is easy to see that k = Ω
(√

n lnn
)

suffices

to have a polynomial time algorithm to find S: Set Bij = A2
ij − 1. Let

∑
j Bij = ρi. It is not

difficult to show that if k ≥ c
√
n lnn, then, whp,

Mini: hub ρi > 2Maxi: non-hub ρi.

The above algorithm is analogous to the “degree” algorithm for hidden (Gaussian) clique — take
the k vertices with the highest degrees — and works with high probability for k ≥ c

√
n lnn. The

remaining literature on upper bounds removes the
√

lnn factor, by using either a spectral approach
(Alon et al., 1998) or a combinatorial approach (iteratively remove the minimum degree vertex,
(Feige and Ron, 2010)). These algorithms, both spectral and combinatorial, rely on the special en-
tries being in a k × k submatrix. This leads to our first question:

Q. Are there efficient algorithms for finding hidden hubs for k = o(
√
n lnn)?

1.1. Related work

Algorithms for the special cases of planted clique and hidden Gaussian submatrix are based on
spectral or combinatorial methods. Information-theoretically, even a planting of size O(log n) can
be found in time nO(logn) by enumerating subsets of size O(log n). This raises the question of
the threshold for efficient algorithms. Since the planted part has different mean or variance, it is
natural to try to detect the planting using either the sums of the rows (degrees in the case of graphs)
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or the spectrum of the matrix. The degree method needs k =
√
n log n for the planted clique

problem or the hidden Gaussian problem with different variances. For the hidden Gaussian problem
with perturbed mean, Ma and Wu (2015) give a characterization of the computational difficulty
(assuming hardness of planted clique); a hidden submatrix of any size k can be detected if the mean
is shifted by a sufficiently large function that grows with k as roughly

√
log(n/k).

These approaches can detect planted cliques with sufficiently large mean separation or for k =
Ω(
√
n) (Boppana, 1987; Kucera, 1995; Alon et al., 1998; Feige and Ron, 2010; Dekel et al., 2011;

Bhaskara et al., 2010; Montanari et al., 2015; Deshpande and Montanari, 2015a). Roughly speaking,
the relatively few entries of the planted part must be large enough to dominate the variance of the
many entries of the rest of the matrix. Moreover, for any δ > 0, finding a planted clique of size
smaller than n0.5−δ planted in Gn, 1

2
is impossible by statistical algorithms (Feldman et al., 2013a)

or by using convex programming hierarchies (Barak et al., 2016).
The algorithm of Bhaskara et al. (2010) for detecting dense subgraphs can be used together with

thresholding to detect a hidden Gaussian clique (of different variance) of size k = n0.5−δ. The
resulting running time grows roughly as nO(1/(ε−2δ)) for σ2

1 = 2(1 + ε)σ2
0 , and ε must be Ω(1) to

be polynomial-time.
We note that all these improvements below k = Ω(

√
n log n) rely on the special entries lying in

a submatrix. The use of spectral methods or finding high density regions crucially depends on this
structure.

In other related work, a precise threshold for a rank-one perturbation to a random matrix to
be noticeable was given by Féral and Péché (2007) and applied in a lower bound by Montanari
et al. (2015) on using the spectrum to detect a planting. Tensor optimization (or higher moment
optimization) rather than eigen/singular vectors can find smaller cliques (Frieze and Kannan, 2008;
Brubaker and Vempala, 2009), but the technique has not yielded a polynomial-time algorithm to
date. A different approach to planted clique and planted Gaussian submatrix problems is to use
convex programming relaxations, which also seem unable to go below

√
n. Many recent papers

demonstrate the limitations of these approaches (Feige and Krauthgamer, 2000; Feldman et al.,
2013a; Meka et al., 2015; Hopkins et al., 2016; Barak et al., 2016; Feldman et al., 2017) (see also
Jerrum (1992)).

1.2. Our results

Our main results can be summarized as follows. (For this statement, assume ε, δ are positive con-
stants. In detailed statements later in the paper, they are allowed to depend on n.)

Theorem 1 For the hidden hubs model with k hubs:

1. For σ2
1 = 2(1+ε)σ2

0 , there is an efficient algorithm for k ≥ n0.5−δ for some δ > 0, depending
only on ε.

2. For σ2
1 ∈ [cσ2

0, 2σ
2
0], any constant c > 0, no polynomial Statistical Query algorithm can

detect hidden hubs for k = n0.5−δ, for any δ > 0.

3. At the critical value σ2
1 = 2σ2

0 , with N = n, k ≥
√
n (lnn)1/4 suffices.

As far as we know, these are the first improvements for the hidden hubs problem that can recover
the hubs below the threshold given by the simple row-sum (degree-based) algorithm. Previous
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algorithms that go below the degree threshold need the special (higher variance) entries to span a
k× k submatrix and do not extend to the hidden hubs model. At the critical threshold of σ2

1 = 2σ2
0 ,

the size of the clique that can be recovered with our methods jumps from below
√
n to
√
n(log n)1/4;

the latter is still an improvement over the simple degree-based method. Further improvement at the
threshold, even to

√
n, is an open problem.

Our algorithm also gives improvements for the special case of identifying hidden Gaussian
cliques. For that problem, the closest upper bound in the literature is the algorithm of Bhaskara
et al. (2010) for detecting dense subgraphs, which can be used to give a polynomial-time algorithm
for ε = Ω(1), with exponent growing with the inverse of ε. Their running time of the algorithm
is nO(1/ε) for k = n0.5−ε (it is not stated explicitly, but is an algorithm that follows from their
ideas). In contrast, our simple algorithms run in time linear in the number of entries of the matrix
for ε = Ω(1/ log n). All this is for the special case of the hidden Gaussian problem, where all
atypical entries lie in a k × k submatrix.

Our upper bound can be extended further, to the model where each planted entry could have its
own distribution pij ∼ N(0, σ2

ij) with bounded σ2
ij . There is a set of rows S that are hubs, with

|S| = k. For each i ∈ S, now we assume there is some subset Ti of higher variance entries. The
|Ti| are not given and need not be equal. We assume that the special entries satisfy:

σ2
ij ≥ σ2

1, where, σ2
1 = 2(1 + ε)σ2

0, ε > 0.

Theorem 2 Let τi =
∑

j∈Ti n
−σ2

0/σ
2
ij . Suppose, for all i ∈ S,

τi ≥
1√
ε
c(lnN)(lnn)0.5,

then there is a randomized algorithm to identify all of S with high probability.

As a corollary, we get that if |Ti| = k for all i ∈ S, all special entries satisfy σ2
ij = σ2

1 , and

k = n.5−δ, with ε ≥ 2δ

1− 2δ
+

ln lnN

lnn
+

ln lnn

2 lnn
,

then we can identify all of S.
We also have a result for values of ε ∈ Ω(1/ lnn), see Theorem (9).

Techniques. Our algorithm is based on a new technique to amplify the higher variance entries,
which we illustrate next. Let

p0(x) =
1√

2πσ0

exp

(
− x2

2σ2
0

)
p1(x) =

1√
2πσ1

exp

(
− x2

2σ2
1

)
be the two probability densities. The central (intuitive) idea behind our algorithm is to construct
another matrix Â of “likelihood ratios”, defined as

Âij =
p1(Aij)

p0(Aij)
− 1.

Such a transformation was also described in the context of the planted clique problem Deshpande
and Montanari (2015b) (although it does not give an improvement for that problem). At a high level,
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one computes the row sums of Â and shows that the row sums of the k rows of the planted part are
all higher than all the row sums of the non-planted part. First, note that

Ep0(Âij) =

∫
p1 −

∫
p0 = 0 ; Varp0(Âij) =

∫ (
p1

p0
− 1

)2

p0 =

∫
p2

1

p0
− 1 = χ2(p1‖p0),

the χ-squared distance between the two distributions p0, p1. Also,

Ep1

(
p1

p0
− 1

)
= χ2(p1‖p0).

Intuitively, since the expected sum of row i, for any i /∈ S is 0, we expect success if the expected
row sum in each row of S is greater than the standard deviation of the row sum in any row not in S
times a log factor, namely, if √

χ2(p1‖p0) ≥ Ω̃(

√
n

k
) = Ω̃(nδ). (1)

Now, χ2(p1‖p0) =

∫
p2

1

p0
− 1 =

cσ0

σ2
1

∫
exp

(
x2

(
1

2σ2
0

− 1

σ2
1

))
.

So, if σ2
1 ≥ 2σ2

0 , then, clearly, χ2(p1‖p0) is infinite and so intuitively, (1) can be made to hold. This
is not a proof. Indeed substantial technical work is needed to make this succeed. The starting point
of that is to truncate entries, so the integrals are finite. We also have to compute higher moments to
ensure enough concentration to translate these intuitive statements into rigorous ones.

On the other hand, if σ2
1 < 2σ2

0 , then χ2(p1‖p0) is finite and indeed bounded by a constant
independent of k,

√
n. So (1) does not hold. This shows that this line of approach will not yield an

algorithm. Our lower bounds show that there is no polynomial time Statistical Query algorithm at
all when σ2

1 ∈ (0, 2σ2
0].

The algorithms are based on the following transformation to the input matrix: truncate each
entry of the matrix, i.e., set the ij’th entry to min{M,Aij}, then apply p1(·)

p0(·) to it; then take row
sums. The analysis needs nonstandard a concentration inequality via a careful estimation of higher
moments; standard concentration inequalities like the Höffding inequality are not sufficient to deal
with the fact that the absolute bound on p1/p0 is too large. More sophisticated standard inequalities
such as extensions of Bernstein’s inequality to higher moments also appear to be inadequate.

Our algorithms also apply directly to the following distributional version of the hidden hubs
problem with essentially the same separation guarantees. A hidden hubs distribution is a distribution
over vectors x ∈ Rn defined by a subset S ⊂ [n] and parameters µ, σ1, σ0 as follows: xi ∼ N(0, σ2

0)
for i 6∈ S, and for i ∈ S,

xi ∼

{
N(µ, σ2

1) with probability k
n

N(0, σ2
0) with probability 1− k

n .

The problem is to identify S.
For almost all known distributional problems1, the best-known algorithms are statistical or can

be made statistical, i.e., they only need to compute expectations of functions on random samples

1. The only known exception where a nonstatistical algorithm solves a distributional problem efficiently is learning
parities with no noise using Gaussian elimination.
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rather than requiring direct access to the samples. This characterization of algorithms, introduced
by Kearns (1993, 1998), has been insightful in part because it is possible to prove lower bounds on
the complexity of statistical query algorithms. For example, Feldman et al. (2013a) have shown that
the bipartite planted clique problem cannot be solved efficiently by such algorithms when the clique
size is k ≤ n0.5−δ for any δ > 0. A statistical query algorithm can query the input distribution via a
statistical oracle. Three natural oracles are STAT, VSTAT and 1-STAT. Roughly speaking, STAT(τ )
returns the expectation of any bounded function on a random sample to within additive tolerance τ ;
VSTAT(t) returns the expectation of a 0/1-valued function to within error no more than the standard
deviation of t random samples; and 1-STAT returns the value of a 0/1 function on a random sample.

For the hidden hubs problem, our algorithmic results show that one can go below
√
n hubs (size

of clique for the special case of hidden Gaussian clique). Under the conditions of the algorithmic
bounds, for σ2

1 ≥ 2(1+ε)σ2
0 , there is a δ > 0 s.t., a planting can be detected using a single statistical

query whose tolerance is at most the standard deviation of the average of O(n/k) independent
samples. We complement the algorithmic results with a lower bound on the separation between
parameters that is necessary for statistical query algorithms to be efficient (Theorem 18). Our
application of statistical query lower bounds to problems over continuous distributions might be of
independent interest. Our matching upper and lower bounds can be viewed in terms of a single
function, namely the χ-squared divergence of the planted Gaussian and the base Gaussian.

The model and results raise several interesting open questions, including: (1) Can the upper
bounds be extended to more general distributions on the entries, assuming independent entries?
(2) Does the χ-squared divergence condition suffice for general distributions? (3) Can we recover
k = O(

√
n) hidden hubs when σ2

1 = 2σ2
0? (our current upper bound is k =

√
n(lnn)1/4 and our

lower bounds do not apply above
√
n) (4) Are there reductions between planted clique problems

with 1/− 1 entries and the hidden hubs problem addressed here?

Summary of algorithms. Our basic algorithm for all cases is the same:
Define an M (which is σ0

√
lnn(1 + o(1)).) The exact value of M differs from case to case.

Define matrix B by Bij = exp(γMin(x2,M2)), where, γ is always = 1
2σ2

0
− 1

2σ2
1

. Then, we prove
that with high probability, the maximum |S| row sums ofB occur precisely in the S rows. However,
the bounds are delicate and so we present the proofs in each case separately.

2. At the threshold: σ2
1 = 2σ2

0

In this section, we assume
σ2

1 = 2σ2
0 and N = n.

p1

p0
= ceγx

2
,

where, γ > 0 is given by:

γ =
1

2σ2
0

− 1

2σ2
1

=
1

4σ2
0

. (2)

Define L,M by:
L =

√
2 (lnn− ln lnn) ; M = Lσ0. (3)

Bij = exp
(
γMin(M2, A2

ij)
)
. (4)
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Theorem 3 If
k ≥ c

√
n(lnn)1/4,

then with probability 1− o(1), the top s row sums of the matrix B occur precisely in the S rows.

Proposition 4 SupposeX is a non-negative real-valued random variable and l is a positive integer.

E
(
|X − E(X)|l

)
≤ 2E(X l).

Proof

E
(
|X − E(X)|l

)
≤
∫ E(X)

x=0
(EX)lPr(X = x) dx+

∫ ∞
x=E(X)

xlPr(X = x) dx

≤ (EX)l + E(X l) ≤ 2E(X l),

the last, since, E(X) ≤ (E(X l))1/l.

2.1. Non-planted entries are small

Let
µ0 = Ep0(Bij) =

1√
2πσ0

∫ ∞
−∞

exp
(
γMin(M2, x2)

)
exp(−x2/2σ2

0). (5)

µ0 ≤
1√

2πσ0

∫ ∞
−∞

exp(γx2)p0(x) dx =
1√

2πσ0

∫ ∞
−∞

exp(−x2/2σ2
1) =

√
2. (6)

.

Ep0((Bij − µ0)2)

≤ Ep0(B2
ij)

≤ 2√
2πσ0

∫ M

0
exp(2γx2) exp(−x2/2σ2

0) +
2 exp(2γM2)√

2πσ0

∫ ∞
M

x

M
exp(−x2/2σ2

0)dx

≤ 2

σ0

∫ M

0
dx +

2σ0

M
exp

(
M2

(
2γ − 1

2σ2
0

))
≤ cL. (7)

For l ≥ 4, even, we have γl − (1/2σ2
0) > 0 and using Proposition (4), we get

Ep0((Bij − µ0)l)

≤ 2Ep0(Bl
ij)

≤ 4√
2πσ0

∫ M

0
exp(γlx2) exp(−x2/2σ2

0) +
4 exp(γlM2)√

2πσ0

∫ ∞
M

x

M
exp(−x2/2σ2

0)dx

≤ 2

σ0

∫ M

0
exp

(
Mx

(
γl − 1

2σ2
0

))
dx +

2σ0

M
exp

(
M2

(
γl − 1

2σ2
0

))
≤ c

L
exp

(
L2(l − 2)

4

)
, (8)
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We will use a concentration result from (Kannan (2009), Theorem 1) which specialized to our
case states

Theorem 5 If X1, X2, . . . , Xn are i.i.d. mean 0 random variables, for any even positive integer
m, we have

E

 n∑
j=1

Xj

m ≤ (cm)m

m/2∑
l=1

1

l2

(
nE(X2l

1 )

m

)1/l
m/2 .

With Xj = Bij − µ0, in Theorem (5), we plug in the bounds of (7) and (8) to get:

Lemma 6

∀m even, m ≤ c lnn, Ep0

 n∑
j=1

(Bij − µ0)

m

≤ (cmnL)m/2

Proof For all even m,

Ep0

 n∑
j=1

(Bij − µ0)

m

≤ (cm)m

nL
m

+ exp(L2/2)

m/2∑
l=2

1

l2

( n

mL
exp(−L2/2)

)1/l

m/2 .
Now, it is easy to check that

cnL

m
≥ exp(L2/2)

(
n exp(−L2/2)/(mL)

)1/l ∀l ≥ 2.

Hence the Lemma folows, noting that
∑

l(1/l
2) ≤ c.

Lemma 7 Let
t = c

√
n (lnn)3/4.

for c a suitable constant. For i /∈ S,

Pr

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ 1

n2
.

Thus, we have

Pr

∃i /∈ S :

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ 1

n
.

Proof We use Markov’s inequality on the random variable
∣∣∣∑n

j=1(Bij − µ0)
∣∣∣m and Lemma (6)

with m set to 4 lnn to get

Pr

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ e−m ≤ 1

n2
,

giving us the first inequality. The second follows by union bound.
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2.2. Planted entries are large

Now focus on i ∈ S. Let Ti be the set of k special entries in row i. We will use arguments similar
to (8) to prove an upper bound on the l th moment of Bij − µ1 for planted entries and use that to
prove that

∑
Ti
Bij is concentrated about its mean.

We first need to get a lower bound on µ1 = Ep1(Bij):

µ1 ≥
c

σ1

∫ M

0
ex

2/4σ2
0e−x

2/4σ2
0 dx =

c

σ1

∫ M

0
dx = cL.

Let l ≥ 2 be an integer. Using Proposition (4), we get

Ep1((Bij − µ1)l)

≤ 2Ep1(Bl
ij)

≤ 4√
2πσ1

∫ M

0
exp(γlx2) exp(−x2/2σ2

1) +
4 exp(γlM2)√

2πσ1

∫ ∞
M

x

M
exp(−x2/2σ2

1)dx

≤ 2

σ1

∫ M

0
exp

(
Mx

(
γl − 1

2σ2
1

))
dx +

2σ1

M
exp

(
M2

(
γl − 1

2σ2
1

))
≤ 4

σ1M(2γ − (1/2σ2
1))

exp

(
M2

(
γl − 1

2σ2
1

))
≤ c

L
exp

(
L2(l − 1)

4

)
. (9)

Lemma 8 Let t be as in Lemma (7). Let

t2 = c

(
lnn exp(L2/4) +

√
k lnn√
L

exp(L2/8)

)
.

Pr

∃i ∈ S :
∑
j∈Ti

(Bij − µ1) < − t2

 ≤ 1

n
.

Pr

∃i ∈ S :
n∑
j=1

(Bij − µ0) < 100t

 <
1

n
.

Proof First, fix attention on one i ∈ S. We use Theorem (5) with Xj = Bij − µ1 for j ∈ Ti. We
plug in (9) for E(X2l

j ) to get, with m = 4 lnN :

E

∑
j∈Ti

(Bij − µ1)

m

≤ (cm exp(L2/4))m

m/2∑
l=1

1

l2

(
k

mL
exp(−L2/4)

)1/l
m/2

≤ (cm exp(L2/4))m
(

k

mL
exp(− L2/4) + 1

)m/2
,

the last using x1/l ≤ x + 1 for all x > 0. Now, we get that for a single i ∈ S, probability that∑
j∈Ti(Bij − µ1) < − t2 is at most 1/n2 by using Markov inequality on

∣∣∣∑j∈Ti(Bij − µ1)
∣∣∣m.

We get the first statement of the Lemma by a union bound over all i ∈ S.
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For the second statement we have, using the same argument as in Lemma (7), with high proba-
bility,

∀i ∈ S,
∑
j /∈Ti

(Bij − µ0) ≥ − t. (10)

We now claim that
kL > 100(t+ t2).

From the definition of t, t2, it suffices to prove the following three inequalities to show this:

kL > c
√
n(lnn)3/4 ; kL > c lnneL

2/4 ; kL >

√
k lnn√
L

eL
2/8.

Each is proved by a straightforward (but tedious) calculation.
From the first assertion of the Lemma and (10), we now get that with high probability:

n∑
j=1

(Bij − µ0) ≥ k(µ1 − µ0)− t2 − t ≥ 100(t+ t2),

proving Lemma (8).

3. Above the threshold: σ2
1 > 2σ2

0

Recall that all planted entries are N(0, σ2
1). There are k planted entries in each row of S. Assume

(only) ε > c
lnn . Define:

M2 = 2σ2
0(lnn− ln ε− ln lnN − 1

2
ln lnn) and Bij = exp

(
γMin(M2, A2

ij)
)
.

Theorem 9 If ε > c/ lnn and

k > (ε lnN
√

lnn)
1− 1

2(1+ε)n1/(2(1+ε)),

then with probability 1− o(1), the top s row sums of B occur precisely in the S rows.

Corollary 10 If ε > c/ lnn and k ∈ Ω̃
(
n

0.5− ε
2(1+ε)

)
, then, with high probability, the top s row

sums of B occur precisely in the S rows.

3.1. Non-planted entries are small

Let

µ0 = Ep0(Bij) =
1√

2πσ0

∫ ∞
−∞

exp
(
γMin(M2, x2)

)
exp(−x2/2σ2

0)

≤ 1√
2πσ0

∫ ∞
−∞

exp(−x2/2σ2
1) =

√
2(1 + ε). (11)

10
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Let l ≥ 2 be an integer. We note that γl − (1/2σ2
0) > 0 for l ≥ 2. Using Proposition (4), we

get (recall i /∈ S)

Ep0((Bij − µ0)l) ≤ 2Ep0(Bl
ij)

≤ 4√
2πσ0

∫ M

0
exp(γlx2) exp(−x2/2σ2

0) +
4 exp(γlM2)√

2πσ0

∫ ∞
M

x

M
exp(−x2/2σ2

0)dx

≤ 2

σ0

∫ M

0
exp

(
Mx

(
γl − 1

2σ2
0

))
dx +

2σ0

M
exp

(
M2

(
γl − 1

2σ2
0

))
≤ cσ0

Mε
exp

(
M2

(
γl − 1

2σ2
0

))
, (12)

using 2γ − (1/2σ2
0) = ε

2σ2
0(1+ε)

≥ ε
4σ2

0
.

With Xj = Bij − µ0, in Theorem (5), we plug in the bounds of (12) to get:

Lemma 11 For all even m,

Ep0

 n∑
j=1

(Bij − µ0)

m

≤ (cm)meγmM
2

m/2∑
l=1

1

l2

( cnσ0

mMε
exp(−M2/(2σ2

0))
)1/l

m/2
=⇒

Ep0

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣
m

≤
(
cm exp(γM2)

)m (
1 +

cnσ0

mMε
exp(−M2/2σ2

0)
)m/2

(13)

with m = 4 lnN .

Here, the last inequality is because x1/l ≤ x+ 1 for all real x and further
∑

l(1/l
2) is a convergent

series.

Lemma 12 Let

t = c(lnN) exp(γM2)

(
1 +

√
cnσ0√
mMε

exp

(
−M

2

4σ2
0

))
,

for c a suitable constant. For i /∈ S,

Pr

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ 1

N2
.

Thus, we have

Pr

∃i /∈ S :

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ 1

N
.

Proof We use Markov’s inequality on the random variable
∣∣∣∑n

j=1(Bij − µ0)
∣∣∣m and (13) with m

set to 4 lnN to get

Pr

∣∣∣∣∣∣
n∑
j=1

(Bij − µ0)

∣∣∣∣∣∣ ≥ t

 ≤ e−m ≤ 1

N2
,

11
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giving us the first inequality. The second follows by union bound.

3.2. Planted Entries are large

Now focus on i ∈ S. We will use arguments similar to (12) to prove an upper bound on the l th
moment of Bij − µ1 for planted entries and use that to prove that

∑
Ti
Bij is concentrated about its

mean. Let l ≥ 2 be an integer. Using Proposition (4), we get

Ep1((Bij − µ1)l)

≤ 2Ep1(Bl
ij)

≤ 4√
2πσ1

∫ M

0
exp(γlx2) exp(−x2/2σ2

1) +
4 exp(γlM2)√

2πσ1

∫ ∞
M

x

M
exp(−x2/2σ2

1)dx

≤ 2

σ1

∫ M

0
exp

(
Mx

(
γl − 1

2σ2
1

))
dx +

2σ1

M
exp

(
M2

(
γl − 1

2σ2
ij

))

≤ 4

σ0M(2γ − (1/2σ2
1))

exp

(
M2

(
γl − 1

2σ2
1

))
≤ cσ0

M
exp

(
M2(γl − (1/2σ2

1))
)
.

Now, applying Theorem (5), we get:

Ep1

∑
j∈Ti

(Bij − µ1)m

 ≤ (cm exp(γM2))m

m/2∑
l=1

1

l2

(
kσ0

mM
exp(−M2/2σ2

1)

)1/l
m/2 (14)

Lemma 13 Let

t2 = c lnN exp(γM2)

[
1 +

c
√
k√

lnN(lnn)1/4
exp(−M2/4σ2

1)

]
.

Pr

∃i ∈ S :

∣∣∣∣∣∣
∑
j∈Ti

(Bij − µ1)

∣∣∣∣∣∣ ≥ t2
 ≤ 1

N

Pr

∃i ∈ S :

n∑
j=1

(Bij − µ0) < 50t

 ≤ 1

N
.

Proof The first statement of the Lemma follows from (14) withm = 4 lnN by applying Markov in-
equality to |

∑
j∈Ti(Bij−µ1)| and then union bound over all i ∈ S (using

∑
l

1
l2
x1/l ≤

∑
l(1/l

2)(1+
x) ≤ c(1 + x).)

For the second statement, we start with a lower bound on µ1.

µ1 ≥
c

σ1

∫ M

0
exp(γx2 − x2/2σ2

1) ≥ cσ0

εM
exp(γM2 − (M2/2σ2

1)), (15)

12
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the last using: for λ > 0,
∫M

0 eλx
2 ≥

∫M
M−(1/λM) exp(λ(M − (1/λM))2)dx ≥ c exp(λM2)/λM .

[Note: We also needed: M ≥ 1/εM which holds because M ∈ O(
√

lnn) and ε > c/ lnn.] We
assert that

kµ1 > ct, t2.

This is proved by checcking three inequalities:

kcσ0

εM
exp(γM2 − (M2/2σ2

1)) > c lnN exp(γM2)

kcσ0

εM
exp(γM2 − (M2/2σ2

1)) > c lnN exp(γM2)

√
nσ0√
mMε

exp(−M2/4σ2
0)

kcσ0

εM
exp(γM2 − (M2/2σ2

1)) >
c lnN exp(γM2)

√
k

(lnN)1/2(lnn)1/4
exp(−M2/4σ2

1).

These all hold as can be checked by doing simple calculations.
Now, we have

n∑
j=1

(Bij − µ0) = k(µ1 − µ0) +
∑
j∈Ti

(Bij − µ1) +
∑
j /∈Ti

(Bij − µ0).

The last term is at least −t with high probability (the proof is exactly as for the non-planted en-
tries). The second term is at least −t2 (whp). We have already shown that µ0 ≤

√
2 and that

kµ1 > 100(t+ t2 + µ0). This proves the second statement of the Lemma.

Lemmas (13) and (12) together prove Theorem (9).
Noise Tolerance This algorithm can tolerate (adversarial) noise which can perturb Ω̃(e1/2ε)

(which is, for example, a power of n when ε = c/ lnn) of the planted entries in each row of S.
Here is a sketch of the argument for this: Note that the crucial lower bound on planted row sums
in B comes from the lower bound on kµ1, the expected row sum in S rows. The lower bound of L
on µ1 involves the integral (15). It is easy to see that we only loose a constant factor if the integral
is taken from 0 to M − σ2

0
εM (instead of to M ). Thus, corruption of all x ∈

[
M − σ2

0
εM , M

]
would

only cost a constant factor. It is easy to see that (i) there are Ω̃(e1/2ε) points in this interval and (ii)
these are the worst possible points to be corrupted.

4. Generalization to unequal variances of planted entries

We assume the non-planted entries of an N × n matrix are drawn from N(0, σ2
0). There is again

a set S of “planted” rows, with |S| = k. For each i ∈ S, now we assume there is some subset
Ti of “planted entries”. [But |Ti| are not equal and we are not given |Ti|.] Planted entry (i, j) has
distribution pij ∼ N(0, σ2

ij). We assume each planted

σ2
ij ≥ σ2

1, where, σ2
1 = 2(1 + ε)σ2

0, ε > 0.

Let τi =
∑
j∈Ti

n−σ
2
0/σ

2
ij . (16)

13
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Let γ =
1

2σ2
0

− 1

2σ2
1

. (17)

Define M by:
M =

√
2σ0

√
lnn. (18)

Bij = exp
(
γMin(M2, A2

ij)
)
. (19)

Theorem 14 With the above notation, if, for all i ∈ S,

τi ≥
1√
ε
c(lnN)(lnn)0.5,

then, with high probability, the set of k rows of B with the largest row sums is precisley S.

Corollary 15 If |Ti| = k for all i ∈ S and all planted σ2
ij = σ2

1 , and

k = n.5−δ, with ε ≥ 2δ

1− 2δ
+

ln lnN

lnn
+

ln lnn

2 lnn
,

then, with high probability, the largest k row sums of B occur in the S rows.

The analysis for the non-planted entries is the same as before.

4.1. Planted Entries are large

Now focus on i ∈ S. We will use arguments similar to (12) to prove an upper bound on the l th
moment of Bij − µij (µij = Epij (Bij)) for planted entries and use that to prove that

∑
Ti
Bij is

concentrated about its mean. Let l ≥ 2 be an integer. Using Proposition (4), we get

Epij ((Bij − µij)l)
≤ 2Ep1(Bl

ij)

≤ 4√
2πσij

∫ M

0
exp(γlx2) exp(−x2/2σ2

ij) +
4 exp(γlM2)√

2πσij

∫ ∞
M

x

M
exp(−x2/2σ2

ij)dx

≤ 2

σij

∫ M

0
exp

(
Mx

(
γl − 1

2σ2
ij

))
dx +

2σij
M

exp

(
M2

(
γl − 1

2σ2
ij

))

≤ 4

σ0M(2γ − (1/2σ2
ij))

exp

(
M2

(
γl − 1

2σ2
ij

))
≤ cσ0

M
exp

(
M2(γl − (1/2σ2

ij))
)
. (20)

Lemma 16 For i ∈ S, let ti = c lnN exp(γM2)
(

1 +
√
τi√

lnN(lnn)1/4

)
.

Pr

∃i ∈ S :
∑
j∈Ti

(Bij − µij) < − ti

 ≤ 1

N
.

Pr

∃i ∈ S :
n∑
j=1

(Bij − µ0) < 100t

 <
1

N
.

14
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Proof First, fix attention on one i ∈ S. We use a more general version of Theorem (5) also from
(Kannan (2009)):

Theorem 17 If X1, X2, . . . , Xn are independent (not necessarily identical) mean 0 random vari-
ables, for any even positive integer m, we have

E

 n∑
j=1

Xj

m ≤ (cm)m

m/2∑
l=1

1

l2

 n∑
j=1

E(X2l
j )

m

1/l

m/2

.

We apply this with Xj = Bij −µij for j ∈ Ti. We plug in (20) for E(X2l
j ) to get, with m = 4 lnN :

E

∑
j∈Ti

(Bij − µij)

m

≤ (cm exp(γM2))m

m/2∑
l=1

1

l2

∑
j∈Ti

1

mM
exp(−M2/2σ2

ij)

1/l

m/2

≤ (cm)m exp(γmM2)

m/2∑
l=1

1

l2

∑
j∈Ti

1

mM
n−σ

2
0/σ

2
ij

1/l

m/2

≤ (cm)m exp(γmM2)

(
1 +

τ
m/2
i

(mM)m/2

)
,

the last using x1/l ≤ x+ 1 for all x > 0.
Now, withm = 4 lnN , we get that for a single i ∈ S, probability that

∑
j∈Ti(Bij−µ1) < − ti

is at most 1/N2 by using Markov inequality on
∣∣∣∑j∈Ti(Bij − µ1)

∣∣∣m (noting: M ≥ c
√

lnn). We
get the first statement of the Lemma by a union bound over all i ∈ S.

For the second statement, we first need to get a lower bound on µij :

µij ≥
∫ M

x=0

c

σij
exp(γx2 − x2/2σ2

ij) dx ≥
cσ0

M
exp(γM2 −M2/2σ2

ij),

the last using: for λ > 0,
∫M

0 eλx
2 ≥

∫M
M−(1/λM) exp(λ(M − (1/λM))2)dx ≥ c exp(λM2)/λM .

So, ∑
j∈Ti

µij ≥
cσ0

M
exp(γM2)τi. (21)

We have, using the same argument as in Lemma (12), with high probability,

∀i ∈ S,
∑
j /∈Ti

(Bij − µ0) ≥ − t. (22)

Thus, from (22), (21) and the first assertion of the current Lemma,
n∑
j=1

(Bij − µ0) =
∑
j∈Ti

(Bij − µij) +
∑
j∈Ti

(µij − µ0) +
∑
j /∈Ti

(Bij − µij)

≥ −ti +
cσ0

M
exp(γM2)− t.

15
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We would like to assert the follwing inequalities, which together prove the second assertion of the
Lemma.

cσ0

M
exp(γM2)τi > c lnN exp(γM2)

> c(lnN) exp(γM2)

√
τi√

lnN(lnn)1/4

> c lnN exp(γM2)

( √
cnσ0√
mMε

exp(−M2/4σ2
0)

)
.

Each follows by a simple calculation.

5. Statistical algorithms and lower bounds

For problems over distributions, the input is a distribution which can typically be accessed via a
sampling oracle that provide iid samples from the unknown distribution. Statistical algorithms are a
restricted class of algorithms that are only allowed to query functions of the distribution rather than
directly access samples. We consider three types of statistical query oracles from the literature. Let
X be the domain over which the input distribution D is defined (e.g., {−1, 1}n or Rn).

1. STAT(τ ): For any bounded function f : X → [−1, 1], and any τ ∈ [0, 1], STAT(τ ) returns a
number p ∈ [ED(f(x))− τ,ED(f(x)) + τ ].

2. VSTAT(t): For any function f : X → {0, 1}, and any integer t > 0, VSTAT(t) returns a

number p ∈ [ED(f(x)) − γ,ED(f(x)) + γ] where γ = Max
{

1
t ,

√
VarD(f)

t

}
. Note that in

the second term, VarD(f) = ED(f)(1− ED(f)).

3. 1-STAT: For any f : X → {0, 1}, returns f(x) on a single random sample from D.

The first oracle was defined by Kearns in his seminal paper Kearns (1993, 1998) showing a lower
bound for learning parities using statistical queries and analyzed more generally by Blum et al.
Blum et al. (1994). The second oracle was introduced in Feldman et al. (2013a) to get stronger
lower bounds, including for the planted clique problem. For relationships between these oracles
(and simulations of one by another), the reader is referred to Feldman et al. (2013a,b).

Our algorithm for the hidden hubs problem can be made statistical. We focus on the detection
problem P: determine with probability at least 3/4 whether the input distribution is N(0, σ2

0) for
every entry with no planting, or if it is a hidden hubs instance, i.e., on a fixed k-subset of coordinates,
the distribution is a mixture of N(0, σ2

0) and N(µ, σ2
1) where the latter distribution is used with

mixing weight k/n. To get a statistical version of our algorithm (p1/p0), consider the following
query function f : For a random sample (column) x, truncate each entry, apply p1/p0 − µ0, add all
the entries and output 1 if the sum exceeds t0; else output 0.

By Lemmas 12 and 16, with T0 = 100t and the threshold t as in Lemma 12, we have the
following consequence: if there is no planting, the probability that this query is 1 is at most 1/N ,
while if there is a planting it is one with probability at least kn(1− 1

N ). Thus it suffices to approximate

16
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the expectation to within relative error 1/2. To do this with VSTAT(t), we set t = Cn/k for a large
enough constant C. Thus, a planted Gaussian of size n0.5−δ can be detected with a single query to
VSTAT(O(n/k)), provided σ2

1 ≥ 2(1 + ε)σ2
0 .

We will now prove that this upper bound is essentially tight. For cσ2
0 ≤ σ2

1 ≤ 2σ2
0 , for any

c > 0, and k = n0.5−δ for any δ > 0, any statistical algorithm that detects hidden hubs must have
superpolynomial complexity. For the lower bounds we assume the planted entries are drawn from
N(µ, σ2

1). The cases of most interest are (a) µ = 0 and (b)σ1 = σ2. In both cases, the lower bounds
will nearly match algorithmic upper bounds.

Theorem 18 For a planting of size k = n
1
2
−δ,

1. For µ = 0 and cσ2
0 ≤ σ2

1 ≤ 2σ2
0(1 − ε), any constant c > 0, any statistical algorithm that

solves P with probability at least 3/4 needs nΩ(logn) calls to VSTAT(n1+δ).

2. For µ = 0 and σ2
1 = 2σ2

0 , any statistical algorithm that solves P with probability at least 3/4
needs nΩ(logn/ log logn) calls to VSTAT(n1+δ).

3. For µ = 0 and σ2
1 ≤ (2 + o(δ))σ2

0 , any statistical algorithm that solves P with probability at
least 3/4 needs nω(1) calls to VSTAT(n1+δ).

4. For σ1 = σ0, if µ2 = o(σ2 ln(
√
n/k)), any statistical algorithm that solvesP with probability

at least 3/4 needs nω(1) calls to VSTAT(n1+δ).

Moreover, the number of queries to 1-STAT for any of the above settings is Ω(n1+δ).

The proof of the theorem is based on the notion of Statistical Dimension with Average Correla-
tion defined in Feldman et al. (2013a). It is a generalization of statistical dimension as defined by
Blum et al. (1994) for learning problems. We first need to define the correlation of two distributions
A,B and a reference distribution U , all over a domain X ,

ρU (A,B) = EX

((
A(x)

U(x)
− 1

)(
B(x)

U(x)
− 1

))
.

The average correlation of a set of distributions D with respect to reference distribution U is

ρU (D) =
1

|D|2
∑

A,B∈D
ρU (A,B).

Definition 19 For γ̄ > 0, domain X , a set of distributions D over X and a reference distribution
U over X the statistical dimension of D relative to U with average correlation γ̄ is denoted by
SDA(D, U, γ̄) and defined to be the largest integer d such that for any subset D′ ⊂ D, |D′| >
|D|/d⇒ ρU (D′) ≤ γ̄.

The main application of this definition is captured in the following theorem.

Theorem 20 (Feldman et al., 2013a) For any decision problem P with reference distribution U ,
let D be a set of distributions such that d = SDA(D, U, γ̄). Then any randomized algorithm that
solves P with probability at least ν > 1

2 must make at least (2ν − 1)d queries to V STAT (1/3γ̄).
Moreover, any algorithm that solves P with probability at least 3/4 needs Ω(1) min{d, 1

γ̄ } calls to
1-STAT.
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5.1. Average correlation

For two subsets S, T , each of size k, the correlation of their corresponding distributions FS , FT is

ρ(FS , FT ) =

〈
FS(x)

F (x)
− 1,

FT (x)

F (x)
− 1

〉
F

= EF

((
FS(x)

F (x)
− 1

)(
FT (x)

F (x)
− 1

))
where F is the distribution with no planting, i.e., N(0, σ2

0)n. For proving the lower bound at the
threshold σ2

1 = 2σ2
0 , it will be useful to define F̄S as FS with each coordinate restricted to the

interval [−M,M ]. We will set M = σ1

√
C ln k. As before, we focus on the range σ2

1 ∈ [cσ2
0, (2 +

o(1))σ2
0].

Lemma 21 For σ2
1 < 2σ2

0

ρ(FS , FT ) =
k2

n2

( σ2
0

σ1

√
2σ2

0 − σ2
1

)|S∩T |
exp

(
µ2

2σ2
0 − σ2

1

· |S ∩ T |
)
− 1

 .

For σ2
1 = 2σ2

0 ,

ρ(F̄S , F̄T ) ≤ k2(C ln k)|S∩T |/2

n2
.

For σ2
1 = (2 + α)σ2

0 and α = o(1),

ρ(F̄S , F̄T ) ≤ k2

n2
kCα|S∩T |/4.

Proof

ρ(FS , FT ) =

〈
FS(x)

F (x)
− 1,

FT (x)

F (x)
− 1

〉
F

=

∫
dFS(x) dFT (x)

dF (x)
− 1

=
k2

n2

(
Πi∈S∩T

σ0√
2πσ2

1

∫
exp

(
−(xi − µ)2

2σ2
1

− (xi − µ)2

2σ2
1

+
x2
i

2σ2
0

)
− 1

)

=
k2

n2

(
Πi∈S∩T

σ0√
2πσ2

1

∫
exp

(
−x2

i ·
2σ2

0 − σ2
1

2σ2
1σ

2
0

− 2µ2 − 4xiµ

2σ2
1

)
− 1

)

Setting z = σ1σ0√
2σ2

0−σ2
1

,

ρ(FS , FT ) =
k2

n2

( ∏
i∈S∩T

σ0√
2πσ2

1

∫
exp

(
−(xi − 2µz2/σ2

1)2

2z2
+ µ2

(
2z2

σ4
1

− 1

σ2
1

))
− 1

)
.

18
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We note that if z2 ≤ 0, then the integral diverges. Assuming that z2 > 0.

ρ(FS , FT )

=
k2

n2

( ∏
i∈S∩T

σ0√
2πσ2

1

∫
exp

(
−(xi − 2µz2/σ2

1)2

2z2
+ µ2

(
2σ2

0

σ2
1(2σ2

0 − σ2
1)
− 1

σ2
1

))
− 1

)

=
k2

n2

(
exp

(
µ2|S ∩ T |
2σ2

0 − σ2
1

) ∏
i∈S∩T

σ0√
2πσ2

1

∫
exp

(
−(xi − 2µz2/σ2

1)2

2z2

)
− 1

)

=
k2

n2

((
exp

(
µ2

2σ2
0 − σ2

1

)
σ0z

σ2
1

)|S∩T |
− 1

)

=
k2

n2

( σ2
0

σ1

√
2σ2

0 − σ2
1

exp

(
µ2

2σ2
0 − σ2

1

))|S∩T |
− 1



Note that σ2
0 ≥ σ1

√
2σ2

0 − σ2
1 , so the above bound is of the form αβ|S∩T |, where β > 1. For the

second part, we have

ρ(F̄S , F̄T ) ≤ k2

n2

(
σ0√
2πσ2

1

∫ M

−M
1 dx

)|S∩T |

≤ k2

n2

(
C ln k

2

)|S∩T |/2
.

The last part is similar. With σ2
1 = (2 + α)σ2

0 ,

ρ(F̄S , F̄T ) ≤ k2

n2

(
σ0√
2πσ2

1

∫ M

−M
e
αx2

2σ21 dx

)|S∩T |
≤ k2

n2

(
kCα/2

)|S∩T |/2
.

5.2. Statistical dimension of planted Gaussian

Lemma 22 Let σ2
1 < 2σ2

0 and D be set of distributions induced by every possible subset of [n] of
size k. Assume ρ(FS , FT ) ≤ αβ|S∩T | for some β > 1. Then, for any subset A ⊂ D with

|A| ≥
2
(
n
k

)
`!(n/2k2)`

,

the average correlation of A with any subset S is at most

ρ(A,S) =
1

|A|
∑
T∈A

ρ(FT , FS) ≤ 2αβ`.
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Proof This proof is similar to Feldman et al. (2013a). Define Tr = {T ∈ A : |T ∩ S| = r}. Then,

∑
T∈A

ρ(FS , FT ) ≤ α
∑
T∈A

β|S∩T | = α
k∑

r=r0

|Tr ∩A|βr.

To maximize the bound, we would include in A sets that intersect S in k − 1 indices, then k − 2
indices and so on. Taking this extremal choice of A gives us a lower bound on the minimum
intersection size r0 as follows. Note that for 0 ≤ j ≤ k − 1,

|Tj+1|
|Tj |

=

(
k
j+1

)(
n−k
k−j−1

)(
k
j

)(
n−k
k−j
)

=
(k − j)2

(j + 1)(n− 2k + j + 1)

≤ k2

jn

where the last step assumes 2k2 < n. Therefore,

|Tj | ≤
1

j!

(
k2

n

)j
|T0| ≤

(
n
k

)
j!(n/k2)j

.

This gives a bound on the minimum intersection size since

k∑
j=r0

|Tj | <
2
(
n
k

)
r0!(n/k2)r0

Therefore under the assumption on |A|, we get that r0 < `. Using this,

∑
T∈A

ρ(FS , FT ) ≤ α
k∑

r=r0

|Tr ∩A|βr

≤ α

(
|Tr0 ∩A|βr0 +

k∑
r=r0+1

|Tr|βr
)

≤ α
(
|Tr0 ∩A|βr0 + 2|Tr0+1|

βr0+1 − 1

(r0 + 1)(β − 1)

)
≤ 2α|A|βr0+1 ≤ 2αβ`|A|.

Theorem 23 For the planted Gaussian problem P , with (a) σ2
1 < 2σ2

0 , and average correlation at
most

γ̄ = 2
k2

n2

(
σ2

0

σ1

√
2σ2

0 − σ2
1

exp

(
µ2

2σ2
0 − σ2

1

))`
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or (b) σ2
1 = 2σ2

0 , and average correlation

γ̄ = 2
k2

n2

(
C ln k

2

)`/2
or (c) σ2

1 = (2 + α)σ2
0 for α = o(1), and average correlation

γ̄ = 2
k2

n2
kCα`/4

the statistical dimension of P is at least `!(n/k2)`/2.

We now state explicitly the three main corollaries of this theorem. This completes the proof of
Theorem 18.

Corollary 24 With µ = 0, and σ2
1 = 2σ2

0(1− ε), we have

γ̄ = 2
k2

n2

(
1

4ε(1− ε)

)`/2
and for any δ > 0, with k = n0.5−δ, ` = c log n/ log(1/ε(1− ε)), we have γ̄ = 2nc−2δ−1 and

SDA(P, γ̄) = Ω(n
2δ log 1

ε(1−ε)
n
).

Hence with c = δ, any statistical algorithm that solves P with probability at least 3/4 needs
nΩ(logn) calls to VSTAT(n1+δ).

We note that the above corollary applies for any 0 < σ2
1 < 2σ2

0 , with the bounds depending
mildly on how close σ2

1 is to the ends of this range. This is quantified by the dependence on ε(1− ε)
above.

Our lower bound extends slightly above the threshold σ2
1 = 2σ2

0 . For this, we need to observe
that with respect to any nC samples, the distributions FS and F̂S are indistinguishable with high
probability (1 − n−C). Therefore, proving a lower bound on the statistical dimension of P with
distributions F̂S is effectively a lower bound for the original problem P with distributions FS .

Corollary 25 With µ = 0, and σ2
1 = 2σ2

0 , we have

γ̄ = 2
k2

n2

(
C ln k

2

)`/2
and for any δ > 0, with k = n0.5−δ, ` = c log n/2 log log k, we have γ̄ = 2nc−2δ−1 and

SDA(P, γ̄) = Ω(nδ logn/ log logn).

Hence with c = δ, any statistical algorithm that solves P with probability at least 3/4 needs
nΩ(logn/ log logn) calls to VSTAT(n1+δ). Moreover, for σ2

1 = (2 + α)σ2
0 , α = o(δ), we have

γ̄ = 2
k2

n2
kCα`/4
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and for any δ > 0, with k = n0.5−δ, ` = 8δ/Cα, we have γ̄ = 2n−δ−1 and

SDA(P, γ̄) ≥ nδ`.

Hence any statistical algorithm that solves P with probability at least 3/4 needs nω(1) calls to
VSTAT(n1+δ).

Corollary 26 For σ1 = σ0,

γ̄ = 2
k2

n2
exp

(
µ2`

σ2

)
.

and for any δ > 0, with k = n0.5−δ, µ2 = cσ2 ln(
√
n/k), we have γ̄ = 2ncδ`−2δ−1 and

SDA(P, γ̄) = Ω(n2δ`).

If µ2 = o(σ2 ln(
√
n/k)), any statistical algorithm that solves P with probability at least 3/4 needs

nω(1) calls to VSTAT(n1+δ).
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