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Abstract
In the classical multi-armed bandit problem, d arms are available to the decision maker who

pulls them sequentially in order to maximize his cumulative reward. Guarantees can be obtained
on a relative quantity called regret, which scales linearly with d (or with

√
d in the minimax sense).

We here consider the sparse case of this classical problem in the sense that only a small number
of arms, namely s < d, have a positive expected reward. We are able to leverage this additional
assumption to provide an algorithm whose regret scales with s instead of d. Moreover, we prove that
this algorithm is optimal by providing a matching lower bound – at least for a wide and pertinent
range of parameters that we determine – and by evaluating its performance on simulated data.
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We consider the classical stochastic multi-armed bandit problem with d “arms”. Pulling arm
i ∈ [d] := {1, ..., d} at time t yields a reward Xi(t) ∈ [−1, 1], the sequence (Xi(t))t>1 being as-
sumed to be i.i.d and of expectation µi. This problem is well understood, and there exist algorithms
minimizing the regret such that

Reg(T ) .
∑
i∈[d]
∆i>0

log(T )

∆i
, where ∆i = max

j
µj − µi ,

Reg(T ) denotes the expected regret after T rounds, and . indicates that the inequality holds up to
some universal multiplicative or additive constants. We consider the sparse bandit problem where
exactly s > 1 expectations are positive (wlog, we assume that they correspond to the first s indices
of arms). We construct an anytime algorithm that leverages this a-priori knowledge to lower the
linear dependency in d to s. Indeed, it guarantees

Reg(T ) .
∑
i∈[s]
∆i>0

( log(T )

∆i
+

∆i log(T )

µ2
i

)
.

We also prove that this algorithm is optimal, at least for a wide and pertinent range of parameters,
by deriving an asymptotic matching lower bound.
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For instance, in the specific case where µ1 = 1 and for 2 6 i 6 s, µi = µ1 −∆ := µ > 1/2
(and µi = 0 for i > s), the guarantee of our algorithm boils down to

Reg(T ) . max
{s log(T )

∆
,
s∆ log(T )

µ2

}
=
s log(T )

∆
.

On the other hand, our asymptotic, problem-dependent lower bound shows that the above perfor-
mance is tight up to constant terms, as soon as s 6 d/3 since

lim inf
T→+∞

Reg(T )

log(T )
> max

{ s

2∆
,
s∆

2µ2

}
=

s

2∆
.
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