Sparse Stochastic Bandits

Joon Kwon
CMAP, École polytechnique, Université Paris–Saclay

Vianney Perchet
CMLA, École Normale Supérieure Paris–Saclay & Criteo Research, Paris

Claire Vernade
LTCI, Télécom ParisTech

Abstract

In the classical multi-armed bandit problem, \(d \) arms are available to the decision maker who pulls them sequentially in order to maximize his cumulative reward. Guarantees can be obtained on a relative quantity called regret, which scales linearly with \(d \) (or with \(\sqrt{d} \) in the minimax sense). We here consider the sparse case of this classical problem in the sense that only a small number of arms, namely \(s < d \), have a positive expected reward. We are able to leverage this additional assumption to provide an algorithm whose regret scales with \(s \) instead of \(d \). Moreover, we prove that this algorithm is optimal by providing a matching lower bound – at least for a wide and pertinent range of parameters that we determine – and by evaluating its performance on simulated data.

Keywords: stochastic multi-armed bandit problem, regret, sparsity, UCB

We consider the classical stochastic multi-armed bandit problem with \(d \) “arms”. Pulling arm \(i \in [d] := \{1, \ldots, d\} \) at time \(t \) yields a reward \(X_i(t) \in [-1, 1] \), the sequence \((X_i(t))_{t \geq 1} \) being assumed to be i.i.d and of expectation \(\mu_i \). This problem is well understood, and there exist algorithms minimizing the regret such that

\[
\text{Reg}(T) \lesssim \sum_{i \in [d]} \Delta_i \log(T) \quad \text{where} \quad \Delta_i = \max_{j} \mu_j - \mu_i ,
\]

\(\text{Reg}(T) \) denotes the expected regret after \(T \) rounds, and \(\lesssim \) indicates that the inequality holds up to some universal multiplicative or additive constants. We consider the sparse bandit problem where exactly \(s > 1 \) expectations are positive (wlog, we assume that they correspond to the first \(s \) indices of arms). We construct an anytime algorithm that leverages this a-priori knowledge to lower the linear dependency in \(d \) to \(s \). Indeed, it guarantees

\[
\text{Reg}(T) \lesssim \sum_{i \in [s]} \left(\frac{\log(T)}{\Delta_i} + \frac{\Delta_i \log(T)}{\mu_i^2} \right).
\]

We also prove that this algorithm is optimal, at least for a wide and pertinent range of parameters, by deriving an asymptotic matching lower bound.

For instance, in the specific case where $\mu_1 = 1$ and for $2 \leq i \leq s$, $\mu_i = \mu_1 - \Delta := \mu \geq 1/2$ (and $\mu_i = 0$ for $i > s$), the guarantee of our algorithm boils down to

$$\text{Reg}(T) \lesssim \max \left\{ \frac{s \log(T)}{\Delta}, \frac{s \Delta \log(T)}{\mu^2} \right\} = \frac{s \log(T)}{\Delta}.$$

On the other hand, our asymptotic, problem-dependent lower bound shows that the above performance is tight up to constant terms, as soon as $s \leq d/3$ since

$$\liminf_{T \to +\infty} \frac{\text{Reg}(T)}{\log(T)} \geq \max \left\{ \frac{s}{2\Delta}, \frac{s \Delta}{2\mu^2} \right\} = \frac{s}{2\Delta}.$$

Acknowledgments

J. Kwon was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH. V. Perchet has benefitted from the support of the ANR (grant ANR-13-JS01-0004-01), of the FMJH Program Gaspard Monge in optimization and operations research (supported in part by EDF) and from the Labex LMH. C. Vernade was also partially supported by the Machine Learning for Big Data Chair at Télécom ParisTech.