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Abstract
Deep neural nets have caused a revolution in many classification tasks. A related ongoing revolution—
also theoretically not understood—concerns their ability to serve as generative models for compli-
cated types of data such as images and texts. These models are trained using ideas like variational
autoencoders and Generative Adversarial Networks.

We take a first cut at explaining the expressivity of multilayer nets by giving a sufficient crite-
rion for a function to be approximable by a neural network with 𝑛 hidden layers. A key ingredient
is Barron’s Theorem (Barron, 1993), which gives a Fourier criterion for approximability of a func-
tion by a neural network with 1 hidden layer. We show that a composition of 𝑛 functions which
satisfy certain Fourier conditions (“Barron functions”) can be approximated by a 𝑛+1-layer neural
network.

For probability distributions, this translates into a criterion for a probability distribution to be
approximable in Wasserstein distance—a natural metric on probability distributions—by a neural
network applied to a fixed base distribution (e.g., multivariate gaussian).

Building up recent lower bound work, we also give an example function that shows that com-
position of Barron functions is more expressive than Barron functions alone.
Keywords: neural network, generative model, function approximation, Fourier transform

1. Introduction

Deep neural networks have led to state-of-the-art performance on classification tasks in many do-
mains such as computer vision, speech recognition, and reinforcement learning (Bengio et al., 2013;
Schmidhuber, 2015). One can view a neural network as a way to learn a function mapping inputs
𝑥 to outputs 𝑦. For image classification, the input is a vector representing an image and the output
can be probabilities of being in various classes.

But another recent (and less understood) use of neural networks is as generative models for
complicated probability distributions, such as distributions over images on ImageNet, handwritten
characters from various alphabets, or speech. Here the network may map a stochastic input—such as
a uniform normal gaussian—to a realistic image. Such networks are trained using various methods
such as variational autoencoders (Kingma and Welling (2013), Rezende et al. (2014)) or generative
adversarial networks (GANs) (Goodfellow et al. (2014)). A GAN consists of a repeated zero-sum
game between two networks: the generator attempts to imitate a given probability distribution; it
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obtains its samples by passing a base distribution (e.g. a gaussian) through its neural network. The
discriminator attempts to distinguish between samples from the generator and the true distribution,
and thus forces the generator to improve over many repetitions.

The current paper is concerned with the following natural question that appears not to have
been studied before: Why are deep neural networks so well-suited to efficiently generate many
distributions that occur in nature?

1.1. Our work

We give a sufficient criterion for a function to be approximable by a neural network with 𝑛 hidden
layers (Theorem 3.1). This criterion holds with respect to any distribution of inputs supported on
a compact set. As a consequence of our main result, we obtain a criterion for a distribution to be
approximately generated by a neural network with 𝑛 hidden layers in the Wasserstein metric 𝑊2, a
natural metric on the space of distributions (Corollary 3.3).

Our criterion relies on Fourier properties of the function. We build on Barron’s Theorem Bar-
ron (1993), which says that if a certain quantity involving the Fourier transform is small, then the
function can be approximated by a neural network with one hidden layer and a small number of
nodes. Calling such a function a Barron function, our criterion roughly says that if a distribution
is generated by a composition of 𝑛 Barron functions, then the distribution can be approximately
generated by a neural network with 𝑛 hidden layers.

Many nice functions, such as polynomials and ridge functions, are Barron; this property is
also preserved under natural operations such as linear combinations. Thus, our result says that if
nature creates a distribution by starting from a base distribution (such as a gaussian) and applying a
sequence of functions in this class, then we can also generate that distribution with a neural network.

This “correspondence” between compositions of Barron functions and multi-layer neural net-
works raises questions analogous to those raised about neural nets: for example, are compositions
of 𝑘 Barron functions more expressive than Barron functions? Using a technique to lower-bound
the Barron constant (Theorem 4.2), we show a separation theorem between Barron functions and
composition of Barron functions (Theorem 4.1). This parallels —and is inspired by—the separation
between 2-layer and 3-layer neural networks in Eldan and Shamir (2015).

1.2. Related work

Despite the practical success of neural networks, we lack a good theoretical understanding of their
effectiveness. An initial attempt to understand the effectiveness of neural networks was by their
function approximation properties. A series of works showed that any continuous function in a
bounded domain can be approximated by a sufficiently large 2-layer neural network (Cybenko
(1989), Funahashi (1989), Hornik et al. (1989)). However, the network size can be exponential
in the dimension. Barron (Barron (1993)) gave a upper bound for the size of the network required
in terms of a Fourier criterion. He showed that a function 𝑓 can be approximated in 𝐿2 up to error

𝜀 by a 2-layer neural network with 𝑂

Å
𝐶2

𝑓

𝜀

ã
units, where 𝐶𝑓 depends on Fourier properties of 𝑓 .

One remarkable consequence is that representationally speaking, neural nets can evade the curse of
dimensionality: the number of parameters required to obtain a fixed error increases linearly, rather
than superlinearly, in the number of dimensions. (Fixing the number of nodes in the hidden layer,
the number of parameters scales linearly in the number of dimensions.)
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However, such approximability results only explain a small part of the success of neural net-
works. Firstly, they only deal with 2-layer neural networks. Empirically speaking, deep neural
networks—networks with many layers—appear to be much more effective than shallow neural net-
works. There have been several attempts to explain the effectiveness of deep neural networks.
Following the paradigm in circuit complexity, one produces a function 𝑓 that can be computed by
a deep neural network but requires exponentially many nodes to be computed by a shallow neural
network. Eldan and Shamir (Eldan and Shamir (2015)) show a certain radial function can be ap-
proximated by a 3-layer neural net but not by a 2-layer neural net with a subexponential number
of nodes. Daniely (2017) shows such a separation but with respect to the uniform distribution on
the sphere. Telgarsky (Telgarsky (2016)) shows such a separation between 𝑘2-layer and 𝑘-layer
neural networks. Cohen, Sharir, and Shashua (Cohen et al. (2015)) show a separation for a differ-
ent model, a certain type of convolutional neural net architecture. Kane and Williams (Kane and
Williams (2016)) show super-linear gate and super-quadratic wire lower bounds for depth-two and
depth-three threshold circuits, which can be thought of as a boolean analogue to neural networks.

Secondly, these works—as well as our paper—do not address how to learn neural networks, or
why the established method, gradient descent, has been so successful. Barron (1993) and Barron
(1994) address the generalization theory, and show that the nodes can be chosen “greedily”; however
the optimization problem is nonconvex. Under the assumption that certain properties of the input
distribution (related to the score function) are known and that the function is exactly representable
by a 2-layer neural network, Janzamin, Sedghi, and Anandkumar (Janzamin et al. (2015)) give an
algorithm inspired by Barron’s Fourier criterion and utilizing tensor decomposition, to learn 2-layer
neural networks.

Finally, we note that the learnability for distributions has been studied for discrete distribu-
tions (Kearns et al., 1994).

Organization of the paper We explain Barron’s original theorem in Section 2, our criterion for
representation by multi-layer neural networks in Section 3, and give our separation result in Section
4. Most proofs and background on Fourier analysis are left in Appendix.

1.3. Notation and Definitions

First, we formally define the model of a feedforward neural network that we will use.

Definition 1.1 A neural network with 𝑛 hidden layers (also referred to as a 𝑛 + 1-layer neural
network) has an associated input space R𝑚0 , output space R𝑚𝑛+1 , and 𝑛 hidden layers of sizes
𝑚1, . . . ,𝑚𝑛 ∈ N.It has parameters 𝐴(𝑙) ∈ R𝑚𝑙−1×𝑚𝑙 and 𝑏(𝑙) ∈ R𝑚𝑙 for 1 ≤ 𝑙 ≤ 𝑛 + 1. The
neural network has a fixed activation function 𝜎 : R → R, and if 𝑥 is a vector then 𝜎(𝑥) denotes
componentwise application. On input 𝑥 ∈ R𝑚0 , the network computes

𝑥(0) : = 𝑥 (1)

𝑥(𝑙) : = 𝜎(𝐴(𝑙−1)𝑥(𝑙−1) + 𝑏(𝑙)) 1 ≤ 𝑙 ≤ 𝑛 (2)

𝑥(𝑛+1) : = 𝐴(𝑛+1)𝑥(𝑛) + 𝑏(𝑛+1). (3)

and outputs 𝑥(𝑛+1). This can also be written out in terms of the components:

𝑥
(𝑙)
𝑗 := 𝜎

(
𝑚𝑙∑
𝑘=1

𝐴
(𝑙−1)
𝑗𝑘 𝑥

(𝑙−1)
𝑘 + 𝑏

(𝑙−1)
𝑘

)
.
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Common choices of activation functions 𝜎 include the logistic function 1
1+𝑒−𝑥 , tanh(𝑥), and

the ReLU function max{0, 𝑥}.

Definition 1.2 For a function 𝑓 : R𝑚 → R𝑛, define Lip(𝑓) = Lip2(𝑓), the Lipschitz constant of 𝑓
with respect to the 𝐿2 norm, by

inf {𝐶 : ∀𝑥, 𝑦, ‖𝑓(𝑥)− 𝑓(𝑦)‖2 ≤ 𝐶 ‖𝑥− 𝑦‖2} .

Let 𝐵𝑛 be the unit ball in 𝑛 dimensions{𝑥 ∈ R𝑛 : ‖𝑥‖ ≤ 1}. For sets 𝐴,𝐵 and a scalar 𝑟, let

𝐴+𝐵 := {𝑥+ 𝑦 : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} , 𝑟𝐴 := {𝑟𝑥 : 𝑥 ∈ 𝐴} . (4)

For example, 𝑟𝐵𝑛 denotes the ball of radius 𝑟 in 𝑛 dimensions, and 𝐴 + 𝑟𝐵𝑛 is the neighborhood
of radius 𝑟 around 𝐴.

Let ‖·‖ = ‖·‖2 denote the usual Euclidean norm on vectors in R𝑛. For a function 𝑓 , let 𝑓∨(𝑥) :=
𝑓(−𝑥). (This notation is often used in Fourier analysis.) Let 𝑓 (𝑛)(𝑥) = 𝑑𝑛

𝑑𝑥𝑛 𝑓(𝑥) denote the 𝑛th
derivative, and Δ𝑓 =

∑𝑛
𝑖=1

𝜕2

𝜕𝑥𝑖
2 𝑓 denote the Laplacian.

2. Barron’s Theorem

For 𝑓 ∈ 𝐿1(R) we define the Fourier transform of 𝑓 : R𝑛 → R with the following normalization.

𝑓(𝜔) :=
1

(2𝜋)𝑛

∫
R𝑛

𝑓(𝑥)𝑒−𝑖⟨𝜔,𝑥⟩ 𝑑𝑥. (5)

For vector-valued functions 𝑓 : R𝑛 → R𝑚, define the Fourier transform componentwise.
The inverse Fourier transform is

(ℱ−1𝑔)(𝑥) :=

∫
R𝑛

𝑔(𝜔)𝑒𝑖⟨𝜔,𝑥⟩ 𝑑𝑥 = (2𝜋)𝑛𝑔∨

The Fourier inversion formula, which holds for all sufficiently “nice” functions, is

𝑓(𝑥) =

∫
R𝑛

𝑓(𝑥)𝑒𝑖⟨𝜔,𝑥⟩ 𝑑𝑥. = (2𝜋)𝑛
^̂
𝑓∨

For background on Fourier analysis with rigorous statements, see Appendix A.
Barron (1993) defines a norm on functions defined on a set 𝐵, and shows that a small norm

implies that the function is amenable to approximation by a neural network with one hidden layer.

Definition 2.1 For a bounded set 𝐵 ⊆ R𝑝 let ‖𝜔‖𝐵 = sup𝑥∈𝐵 | ⟨𝜔, 𝑥⟩ |. For a function 𝑓 : R𝑛 →
R, define the norm ‖𝑓‖*𝐵 :=

∫
R𝑛 ‖𝜔‖𝐵 |𝑓(𝜔)| 𝑑𝜔.

When 𝐵 = 𝐵𝑛 is the unit ball, ‖𝜔‖𝐵 = ‖𝜔‖2. In this case, using Theorem A.3,

‖𝑓‖*𝐵 =

∫
R𝑛

‖𝜔‖ |𝑓(𝜔)| 𝑑𝜔 =
∥∥∥∥∥∥𝜔𝑓∥∥∥

2

∥∥∥
1
=
∥∥∥∥∥∥∇̂𝑓

∥∥∥
2

∥∥∥
1

where for a function 𝑔 : R𝑛 → R𝑛, ‖𝑔‖2 is thought of as a function R𝑛 → R, and ‖‖𝑔‖2‖1 is the
𝐿1 norm of this function.

We would like to define this norm for functions 𝑓 : 𝐵 → R. However, the Fourier transform
is defined for functions 𝑓 : R𝑛 → R. Because we only care about the value of 𝑓 on 𝐵, we allow
arbitrary extension outside of 𝐵.

4



ON THE ABILITY OF NEURAL NETS TO EXPRESS DISTRIBUTIONS

Definition 2.2 Let 𝐵 ⊆ R𝑛. Let ℱ𝐵 be the set of functions for which the Fourier inversion formula
holds on 𝐵 after subtracting out 𝑔(0):1

ℱ𝐵 =

ß
𝑔 : R𝑛 → R : ∀𝑥 ∈ 𝐵, 𝑔(𝑥) = 𝑔(0) +

∫
(𝑒𝑖⟨𝜔,𝑥⟩ − 1)𝑔(𝜔) 𝑑𝜔

™
.

Define Γ𝐵 = {𝑓 : 𝐵 → R : ∃𝑔, 𝑔|𝐵 = 𝑓, 𝑔 ∈ ℱ𝐵}, let Γ𝐵(𝐶) be the subset with norm ≤ 𝐶
Γ𝐵(𝐶) = {𝑓 : 𝐵 → R : ∃𝑔, 𝑔|𝐵 = 𝑓, ‖𝑔‖*𝐵 ≤ 𝐶, 𝑔 ∈ ℱ𝐵}. We say that a function 𝑓 ∈ Γ𝐵(𝐶) is
𝐶-Barron on 𝐵. For a function 𝑓 : 𝐵 → R, let 𝐶𝑓,𝐵 be the minimal constant for which 𝑓 ∈ Γ𝐵,𝐶:

𝐶𝑓,𝐵 := inf
𝑔|𝐵=𝑓,𝑔∈ℱ𝐵

∫
R𝑛

‖𝜔‖𝐵 |𝑔(𝜔)| 𝑑𝜔. (6)

When the set 𝐵 is clear, we just write 𝐶𝑓 .

This definition is non-algorithmic. How to compute or approximate the Barron constant in general
is an open problem. The difficulty stems from the fact that we have to take an infimum over all
possible extensions. The Barron constant can be upper-bounded by choosing any extension 𝑓 , but
is more difficult to lower-bound. We will give a technique to lower-bound the Barron constant in
Theorem 4.2.

We give some intuition on the Barron constant. First, in order for the Barron constant to be
finite, 𝑓 must be continuously differentiable. Indeed, the inverse Fourier transform of 𝜔𝑓(𝜔) is
−𝑖∇𝑓(𝑥), and integrability of a function implies continuity of its (inverse) Fourier transform, so
∇𝑓 is continuous.

Second, the Barron constant will be larger when 𝑓 is more “spread out.” One can think of
‖𝑔‖𝐵 as a kind of 𝐿1 norm. This makes sense in the context of neural networks, because if
𝑓(𝑥) =

∑𝑘
𝑖=1 𝑐𝑖𝜎(⟨𝑎𝑖, 𝑥⟩ + 𝑏𝑖) then 𝑓 has Fourier transform completely supported on the lines

in the direction of the 𝑎𝑖.2 One can think of the Barron constant as a 𝐿1 relaxation of this “sparsity”
condition.

Barron’s Theorem gives an upper bound on how well a function can be approximated by a neural
network with 1 hidden layer of 𝑘 nodes, in terms of the Barron constant.

For a list of functions with small Barron constant, as well as the effect of various operations on
the Barron constant, see (Barron, 1993, SIX). Examples of Barron functions include polynomials of
low degree, ridge functions, and linear combinations of Barron functions.

Definition 2.3 A sigmoidal function is a bounded measurable function 𝑓 : R → R such that
lim𝑥→−∞ 𝑓(𝑥) = 0 and lim𝑥→∞ 𝑓(𝑥) = 1.

Theorem 2.4 (Barron, Barron (1993)) Let 𝐵 ⊆ R𝑛 be a bounded set, and 𝜇 any probability
measure on 𝐵. Let 𝑓 ∈ Γ𝐵(𝐶) and 𝜎 be sigmoidal. There exist 𝑎𝑖 ∈ R𝑛, 𝑏𝑖 ∈ R, 𝑐𝑖 ∈ R with∑𝑘

𝑖=1 |𝑐𝑖| ≤ 2𝐶 such that letting 𝑓𝑘(𝑥) =
∑𝑘

𝑖=1 𝑐𝑖𝜎(⟨𝑎𝑖, 𝑥⟩+ 𝑏𝑖), we have

‖𝑓 − 𝑓𝑘‖2𝜇 :=

∫
𝐵
(𝑓(𝑥)− 𝑓𝑘(𝑥))

2 𝜇(𝑑𝑥) ≤ (2𝐶)2

𝑘
.

1. This is a strictly larger set than functions for which the Fourier inversion formula holds.
2. Here 𝑓 does not approach 0 as ‖𝑥‖ → ∞, so the Fourier transform must be understood in the sense of distributions.
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Barron’s Theorem works for the logistic function (which is sigmoidal), hyperbolic tangent (which
is sigmoidal if rescaled to [0, 1]), and ReLU up to a factor of 2 in the number of nodes. Even though
the ReLU function ReLU(𝑥) = max{0, 𝑥} is not sigmoidal, the linear combination ReLU(𝑥) =
ReLU(𝑥)− ReLU(𝑥− 1) is.

Note that Barron’s Theorem doesn’t give approximability tailored to a specific measure 𝜇; it
simultaneously gives approximability for all 𝜇 defined on 𝐵, and up to any degree of accuracy. This
is why some degree of smoothness is necessary for 𝑓 : otherwise, 𝜇 could be concentrated on the
regions where 𝐵 is not smooth. Note that approximability for all 𝜇 will be crucial to the proof of
the main theorem (Theorem 3.1). 3

3. Multilayer Barron’s Theorem

3.1. Main theorem

Barron’s Theorem says that a Barron function can be approximated by a neural net with 1 hidden
layer. From this, it is reasonable to suspect that a composition of 𝑙 Barron functions can be approxi-
mated by a neural network with 𝑙 hidden layers. Our main theorem says that this is the case; we give
a sufficient criterion for a function to be approximated by a neural network with 𝑙 hidden layers, on
any distribution supported in a fixed set 𝐾0.

We note two caveats: first, 𝑓𝑖 need to be Lipschitz to prevent the error from blowing up. Second,
we will need our functions 𝑓𝑖 to be Barron on a slightly expanded set (assumption 3), because an
approximation 𝑔𝑖 to 𝑓𝑖 could take points outside 𝐾𝑖, and we need to control the error for those
points.

Given a sequence of functions 𝑓𝑖 and 𝑗 ≥ 𝑖, let 𝑓𝑗:𝑖 := 𝑓𝑗 ∘ 𝑓𝑗−1 ∘ · · · ∘ 𝑓𝑖.

Theorem 3.1 (Main theorem) Let 𝜀, 𝑠 > 0 be parameters, and 𝑙 ≥ 1. For 0 ≤ 𝑖 ≤ 𝑙 let 𝑚𝑖 ∈ N.
Let 𝑓𝑖 : R𝑚𝑖−1 → R𝑚𝑖 be functions, 𝜇0 be any probability distribution on R𝑚0 , and 𝐾𝑖 ⊂ R𝑚𝑖 be
sets.

Suppose the following hold.

1. (Support of initial distribution) Supp(𝜇0) ⊂ 𝐾0.

2. (𝑓𝑖 is Lipschitz) Lip(𝑓𝑖) ≤ 1.

3. (𝑓𝑖 is Barron) 𝑓1 ∈ Γ𝐾0(𝐶0) and for 1 ≤ 𝑖 ≤ 𝑙, 𝑓𝑖 ∈ Γ𝐾𝑖−1+𝑠𝐵𝑚𝑖−1
(𝐶𝑖).

4. (𝑓𝑖 takes each set to the next) 𝑓𝑖(𝐾𝑖−1) ⊆ 𝐾𝑖

3. Although Barron’s Theorem seems to require a strong smoothness assumption, we can approximate any continuous
function arbitrarily well with a smooth function and then apply Barron’s Theorem.
A converse to Barron’s Theorem cannot hold in the form stated, because if ‖𝑎𝑖‖ is not restricted, then 𝜎(⟨𝑎𝑖, 𝑥⟩+ 𝑏𝑖)
could have large gradient; the Barron constant of 𝜑(⟨𝑎𝑖, 𝑥⟩+ 𝑏𝑖) would scale as ‖𝑎𝑖‖.
It is natural to ask whether we can choose the 𝑎𝑖 to have bounded norm. Barron (Barron, 1993, Theorem 3) shows
a version of the theorem that produces a representation with ‖𝑎𝑖‖ ≤ 𝜏 , but that incurs an additive error 𝐶𝜏 in the
approximation.
Note that the following weak converse holds: the Barron constant of 𝑓 = 𝑐0 +

∑𝑟
𝑖=1 𝑐𝑖𝜎(⟨𝑎𝑖, 𝑥⟩ + 𝑏𝑖) is bounded

by 𝑂(diam(𝐾)
∑𝑟

𝑖=1 |𝑐𝑖| ‖𝑎𝑖‖).
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Suppose that the diameter of 𝐾𝑙 is 𝐷. Then there exists a neural network 𝑔 with 𝑙 hidden layers with⌈
4𝐶2

𝑖 𝑚𝑖

𝜀2

⌉
nodes on the 𝑖th layer, so thatÇ∫

𝐾0

‖𝑓𝑙:1 − 𝑔‖2 𝑑𝜇0

å 1
2

≤ 𝑙𝜀

 
(2𝐶𝑙

√
𝑚𝑙 +𝐷)2

𝑙

3𝑠2
+ 1. (7)

We prove this in Section 3.3. It is crucial to the proof that Barron’s Theorem simultaneously gives
approximability for all probability distributions on a given set.

Note that if 𝐾𝑙−1 is a ball of radius 𝑟, by the way we defined the norm ‖·‖𝐾𝑙−1
in the Barron

constant, 𝐶𝑙 will at least scale as 𝑠+ 𝑟. If we set 𝑠 to be on the same order as 𝑟, then the RHS of (7)

is on the order of 𝑙
3
2𝑚

1
2
𝑙 𝜀.

3.2. Approximating probability distributions

Theorem 3.1 can be interpreted in a very natural way when the aim is to approximate the probability
distribution 𝑓𝑙:1(𝑥), 𝑥 ∼ 𝜇0. The Wasserstein distance is a natural distance defined on distributions.

Definition 3.2 Let 𝜇, 𝜈 be two probability distributions on R𝑛. Let Γ(𝜇, 𝜈) denote the set of prob-
ability distributions on R𝑛 × R𝑛 whose marginals on the first and second factors are 𝜇 and 𝜈
respectively. (A distribution 𝛾 ∼ Γ(𝜇, 𝜈) is called a coupling of 𝜇, 𝜈.) For 1 ≤ 𝑝 < ∞, define the
𝑝th Wasserstein distance by

𝑊𝑝(𝜇, 𝜈) =

Ç
inf

𝛾∈Γ(𝜇,𝜈)

∫
R𝑛×R𝑛

‖𝑥− 𝑦‖𝑝2 𝑑𝛾(𝑥, 𝑦)

å 1
𝑝

When 𝑝 = 1, this is also known as the “earth mover’s distance.” One can think of it as the minimum
“effort” required to change the distribution of 𝜇 to that of 𝜈 by shifting probability mass (where
“effort” is an integral of mass times distance).

Corollary 3.3 Keep the notation in Theorem 3.1 and suppose the diameter of the set 𝑓𝑙:1(𝐾0) is
𝐷. Then the Wasserstein distance between the distribution 𝑓𝑙:1(𝑋)(𝑋 ∼ 𝜇0) and 𝑔(𝑋), (𝑋 ∼ 𝜇0)

is at most 𝑙𝜀
»
1 + (2𝐶𝑙

√
𝑚𝑙 +𝐷)2 𝑙

3𝑠2
.

The proof of this is simple: observe that (𝑓𝑙:1(𝑋), 𝑔(𝑋)), 𝑋 ∼ 𝜇0 defines a coupling between
the distributions. Thus by Theorem 3.1 the 𝑊2 Wasserstein distance is at mostñ

E
𝑋∼𝜇0

‖𝑓𝑙:1(𝑋)− 𝑔(𝑋)‖2
ô 1

2

≤ 𝑙𝜀

 
(2𝐶𝑙

√
𝑚𝑙 +𝐷)2

𝑙

3𝑠2
+ 1.

The Wasserstein distance is a suitable metric in the context of GANs (Arjovsky and Bottou
(2017), Arjovsky et al. (2017)). One way to model a discriminator is as a function 𝑓 in a certain
class 𝐹 that maximizes the difference between E𝑓 on the real distribution 𝜇 and the generated
distribution 𝜈,

sup
𝑓∈𝐹

∣∣∣∣ E𝑥∼𝜇
𝑓(𝑥)− E

𝑦∼𝜈
𝑓(𝑦)

∣∣∣∣ . (8)

This is called the maximal mean discrepancy (Kifer et al. (2004), Dziugaite et al. (2015)). The
Wasserstein distance captures the idea that if two distributions are close, then it is hard for such a
Lipschitz discriminator to tell the difference, as the following lemma shows.

7
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Lemma 3.4 (Properties of Wasserstein metric) For any two distributions 𝜇, 𝜈 over R𝑛, 𝑊1(𝜇, 𝜈) ≤
𝑊2(𝜇, 𝜈). Moreover, for any Lipschitz function 𝑓 : R𝑛 → R,∣∣∣∣ E𝑥∼𝜇

𝑓(𝑥)− E
𝑦∼𝜈

𝑓(𝑦)

∣∣∣∣ ≤ Lip(𝑓)𝑊1(𝜇, 𝜈). (9)

Proof is deferred to Appendix C. In the context of Corollary 3.3, Lemma 3.4 says that the distri-
bution generated by 𝑓𝑙:1 and by the neural network cannot be distinguished by a Lipschitz function.
Arjovsky et al. (2017) discuss why the class of Lipschitz functions is a good choice in comparison
to other classes. For instance, if we maximize over the class of indicator functions (of measurable
sets) instead, (8) becomes the total variation (TV) distance, which is unstable under perturbations
to the function generating the distribution. In particular, the TV distance is discontinuous under
perturbations of distributions supported on lower-dimensional subsets of the ambient space R𝑛.

3.3. Proof of main theorem

To prove Theorem 3.1 we first prove the following theorem.

Theorem 3.5 Keep conditions 1–4 and the notation of Theorem 3.1. Then there exists a neural
network 𝑔 with 𝑙 hidden layers and 𝑆 ⊂ R𝑚0 satisfying 𝜇0(𝑆) ≥ 1−

Ä∑𝑙−1
𝑖=1 𝑖

2
ä

𝜀2

𝑠2
so thatÅ∫

1𝑆 ‖𝑓𝑙:1 − 𝑔‖2 𝑑𝜇0

ã 1
2

≤ 𝑙𝜀 (10)

Proof Let 𝑟𝑖 =
⌈
4𝐶2

𝑖 𝑚𝑖

𝜀2

⌉
. We will show that we can take 𝑔 = 𝑔𝑙:1, where 𝑔1, . . . , 𝑔𝑙 are functions

defined by

𝑔𝑖 : R𝑚𝑖−1 → R𝑚𝑖 (11)

(𝑔𝑖(𝑥))𝑗 = 𝑐𝑖𝑗0 +
𝑟𝑖∑

𝑘=1

𝑐𝑖𝑗𝑘𝜎(⟨𝑎𝑖𝑗𝑘, 𝑥⟩+ 𝑏𝑖𝑗𝑘), (12)

for some parameters 𝑐𝑖𝑗𝑘, 𝑏𝑖𝑗𝑘 ∈ R, 𝑎𝑖𝑗𝑘 ∈ R𝑚𝑖−1 . Note that each 𝑔𝑖 is a neural net with one hidden
layer and a linear output layer. When the next layer 𝑔𝑖+1 is applied to the output 𝑦 of 𝑔𝑖, first linear
functions ⟨𝑎𝑖+1,𝑗,𝑘, 𝑦⟩+ 𝑏𝑖+1,𝑗,𝑘 are applied; these linear functions can be collapsed with the linear
output layer of 𝑔𝑖. Thus only one hidden layer is added each time.

We prove the statement by induction on 𝑙. For 𝑙 = 1, the theorem follows directly from Barron’s
Theorem 2.4, using assumptions 1 and 3.

For the induction step, assume we have functions 𝑔1, . . . , 𝑔𝑙−1 satisfying the conclusion for
𝑓1, . . . , 𝑓𝑙−1. Let 𝑆𝑙−1 be the set in the conclusion. Apply Barron’s Theorem 2.4 to 𝑓𝑙 to get that
that for each 1 ≤ 𝑗 ≤ 𝑚𝑙, for any 𝜇 supported on a set 𝐾 ′

𝑙−1 ⊆ R𝑚𝑙−1 and any 𝑟𝑙 ∈ N, there exists
a neural net 𝑔𝑙,𝑗 with 1 hidden layer with 𝑟𝑙 nodes such thatÅ∫

R𝑚𝑙−1
[(𝑓𝑙)𝑗 − (𝑔𝑙)𝑗 ]

2 𝑑𝜇

ã 1
2

≤
2𝐶𝑓𝑙,𝐾

′
𝑙−1√

𝑟𝑙
.

Note it is vital here that Barron’s Theorem applies to any distribution 𝜇 supported on 𝐾 ′
𝑙−1. Let

𝑆𝑙 = 𝑆𝑙−1 ∩
¶
𝑥 : 𝑔𝑙−1:1(𝑥) ∈ 𝐾𝑙−1 + 𝑠𝐵𝑚𝑙−1

©
. Apply Barron’s Theorem with 𝐾 ′

𝑙 = 𝐾𝑙 + 𝑠𝐵𝑚𝑙
,

8
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𝑟𝑙 =

°
4𝐶2

𝑙 𝑚𝑙

𝜀2

§
. 𝜇 = 𝑔𝑙−1:1*(1𝑆𝑙

𝜇0). 4 We have that 𝜇 is supported on 𝑔𝑙−1:1(𝑆𝑙) ⊆ 𝐾𝑙−1 +

𝑠𝐵𝑚𝑙−1
= 𝐾 ′

𝑙−1, as required, and 𝑓𝑙 is 𝐶𝑙-Barron on this set by assumption 3. (Note that 𝜇 is not a
probability measure because it was restricted to the set 𝑔𝑙−1:1(𝑆𝑙), but it is a nonnegative measure
with total 𝐿1 mass at most 1. Because Barron’s Theorem holds for any probability measure, it also
holds for these measures.) The conclusion of Barron’s Theorem gives (𝑔𝑙)𝑗 such thatÅ∫

R𝑚𝑙−1
[(𝑓𝑙)𝑗 − (𝑔𝑙)𝑗 ]

2 𝑑(𝑔𝑙−1:1*(1𝑆𝑙
𝜇0))

ã 1
2

≤ 2𝐶𝑙√
𝑟𝑙

≤ 𝜀
√
𝑚𝑙

(13)

=⇒
Å∫

R𝑚𝑙−1
‖𝑓𝑙 − 𝑔𝑙‖2 𝑑(𝑔𝑙−1:1*(1𝑆𝑙

𝜇0))

ã 1
2

≤ 𝜀 (14)

We bound by the triangle inequalityÅ∫
R𝑚

1𝑆𝑙
‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0

ã 1
2

≤
Å∫

R𝑚
1𝑆𝑙

‖𝑓𝑙 ∘ 𝑓𝑙−1:1 − 𝑓𝑙 ∘ 𝑔𝑙−1:1‖2 𝑑𝜇0

ã 1
2

+

Å∫
R𝑚

1𝑆𝑙
‖𝑓𝑙 ∘ 𝑔𝑙−1:1 − 𝑔𝑙 ∘ 𝑔𝑙−1:1‖2 𝑑𝜇0

ã 1
2

≤
Å∫

R𝑚
1𝑆𝑙

‖𝑓𝑙 ∘ 𝑓𝑙−1:1 − 𝑓𝑙 ∘ 𝑔𝑙−1:1‖2 𝑑𝜇0

ã 1
2

+

Å∫
R𝑚𝑙−1

‖𝑓𝑙 − 𝑔𝑙‖2 𝑑𝑔𝑙−1:1*(1𝑆𝑙
𝜇0)

ã 1
2

≤ Lip(𝑓𝑙)

Å∫
R𝑚

1𝑆𝑙
‖(𝑓𝑙−1:1 − 𝑔𝑙−1:1)‖2 𝑑𝜇0

ã 1
2

+ 𝜀

≤ Lip(𝑓𝑙)

Å∫
R𝑚

1𝑆𝑙−1
‖(𝑓𝑙−1:1 − 𝑔𝑙−1:1)‖2 𝑑𝜇0

ã 1
2

+ 𝜀

≤ 1 · (𝑙 − 1)𝜀+ 𝜀 = 𝑙𝜀

The last inequality holds by assumption 2 and the induction hypothesis.
To finish, we have to check that 𝜇0(𝑆𝑙) ≥ 1−

Ä∑𝑙−1
𝑖=1 𝑖

2
ä

𝜀2

𝑠2
. As above, we have that∫

1𝑆𝑙−1
‖𝑓𝑙−1:1 − 𝑔𝑙−1:1‖2 𝑑𝜇0 ≤ (𝑙 − 1)2𝜀2

by the induction hypothesis. Also, 𝑓𝑙−1:1(𝑥) ∈ 𝐾𝑙−1 for all 𝑥 ∈ Supp(𝜇0) by assumption 4. Thus
by Markov’s inequality and the induction hypothesis on 𝑆𝑙−1,

𝜇0(𝑆𝑙−1 ∩
¶
𝑥 : 𝑥 ̸∈ 𝐾𝑙−1 + 𝑠𝑔𝑙−1:1(𝐵𝑚𝑙−1

)
©
)

≤ 𝜇0(𝑆𝑙−1 ∩ {𝑥 : ‖𝑓𝑙−1:1(𝑥)− 𝑔𝑙−1:1(𝑥)‖ ≥ 𝑠}) ≤ (𝑙 − 1)2𝜀2

𝑠2

Therefore 𝜇0(𝑆𝑙) ≤ 𝜇0(𝑆𝑙−1)− (𝑙−1)2𝜀2

𝑠2
≤ 1−

Ä∑𝑙−1
𝑖=1 𝑖

2
ä

𝜀2

𝑠2
.

It is inelegant to have to exclude the sets 𝑆𝑙. The main theorem is a statement that doesn’t
involve the sets 𝑆𝑙. We achieve this by using the trivial bound on 𝑆𝑐

𝑙 .

4. The pushforward of a measure 𝜇 by a function 𝑓 is denoted by 𝑓*𝜇 and defined by 𝑓*𝜇(𝑆) = 𝜇(𝑓−1(𝑆)). Here,
𝑔𝑙−1:1*(1𝑆𝑙𝜇0)(𝑆) = 𝜇0(𝑔

−1
𝑙−1:1(𝑆) ∩ 𝑆𝑙).
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Proof [Proof of Theorem 3.1] The functions 𝑔1, . . . , 𝑔𝑙 in Theorem 3.5 satisfy
∫
𝑆𝑙
‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0 ≤

𝑙2𝜀2. The range of 𝑔𝑙 = ((𝑔𝑙)1, . . . , (𝑔𝑙)𝑚𝑙
) is contained in a set of diameter 2𝐶𝑙

√
𝑚𝑙 because the

function 𝜎 has range contained in [0, 1] and Barron’s Theorem gives functions (𝑔𝑙)𝑗 , 1 ≤ 𝑗 ≤ 𝑚𝑙,
with

∑𝑟
𝑘=1 |𝑐𝑙𝑗𝑘| ≤ 2𝐶𝑙.

Choose a constant vector 𝑘 to minimize
∫
𝑆𝑙
‖𝑓𝑙:1(𝑥)− 𝑔𝑙:1(𝑥)− 𝑘‖2 𝑑𝜇0 and replace 𝑔𝑙 with

𝑔𝑙 + 𝑘. Note that now, the range of 𝑔𝑙 and 𝑓𝑙 necessarily overlap; otherwise a further translation
will decrease this error. We still have

∫
𝑆𝑙
‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0 ≤ 𝑙2𝜀2. Moreover, ‖𝑔𝑙(𝑥)− 𝑓𝑙(𝑥)‖ ≤

2𝐶𝑙
√
𝑚𝑙 +𝐷 for any 𝑥 ∈ 𝐾0.

Now we have (using 𝜇0(𝑆
𝑐
𝑙 ) ≤

Ä∑𝑙−1
𝑖=1 𝑖

2
ä

𝜀2

𝑠2
≤ 𝑙3𝜀2

3𝑠2
)∫

𝐾0

‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0 ≤
∫
𝑆𝑙

‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0 +

∫
𝑆𝑐
𝑙

‖𝑓𝑙:1 − 𝑔𝑙:1‖2 𝑑𝜇0 (15)

≤ 𝑙2𝜀2 + (2𝐶𝑙
√
𝑚𝑙 +𝐷)2

𝑙3𝜀2

3𝑠2
. (16)

Taking square roots gives the theorem.

4. Separation between Barron functions and composition of Barron functions

In this section we produce an explicit function 𝑓 : R𝑛 → R that is a composition of two poly(𝑛)-
Barron functions, but is not 𝑂(𝑐𝑛)-Barron for some 𝑐 > 1.

Theorem 4.1 For any 𝑛 ≡ 3 (mod 4) and 𝑐 > 1, there exists a function 𝑓 and 𝐶2 > 0 such that

1. (𝑓 is not Barron) 𝐶𝑓,𝐶2𝑛𝐵𝑛 ≥ 𝑐𝑛.

2. (𝑓 is the composition of 2 Barron functions) 𝑓 = 𝑗 ∘ 𝑘 where for all 𝑟, 𝑠 > 0, 𝑘 : R𝑛 → R is
𝑂(𝑛𝑟3)-Barron on 𝑟𝐵𝑛, and 𝑗 : R → R is 𝑂(𝑠𝑛2)-Barron on 𝑠𝐵1.

The condition 𝑛 ≡ 3 (mod 4) is not necessary; we include it only to avoid case analysis.
Note that this theorem gives a separation between Barron functions and compositions of Barron

functions, and does not give a separation between distributions expressible by Barron functions and
compositions of Barron functions. The analogous question for distributions is an open problem.

We will choose 𝑓 to be a certain radial function 𝑓 = 𝑓1(‖𝑥‖) defined in Section 4.1.5 In order
for 𝑓 to have large Barron constant, it is necessary for

∫
R𝑛 ‖𝜔‖2 |𝑓(𝜔)| 𝑑𝜔 to be large, i.e. for 𝑓

to have significant mass far away from the origin. We ensure this holds by choosing 𝑓 to change
sharply in the radial direction. This means 𝑓 has mass far away from the origin. Moreover, 𝑓 is
radial because 𝑓 is radial, so 𝑓 has significant mass in a large shell.

However, lower-bounding
∫
R𝑛 ‖𝜔‖2 |𝑓(𝜔)| 𝑑𝜔 is not sufficient because the definition of the Bar-

ron constant requires us to bound this quantity over all extensions of 𝑓 .
To solve this problem, we give a technique to lower bound the Barron constant in Section 4.2

(Theorem 4.2). Although we cannot certify 𝑓 is Barron by showing
∫
R𝑛

∥∥∥∇̂𝑓(𝜔)
∥∥∥ 𝑑𝜔 =

∫
R𝑛 ‖𝜔‖2 |𝑓(𝜔)| 𝑑𝜔

is large, it suffices to show
∫
R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥ 𝑑𝜔 is large for a judiciously chosen 𝑔. We use this to

show that 𝑓 is not Barron in Section E.1 (Theorem E.4).

5. For any radial function 𝑎 : R𝑛 → R, we write 𝑎1 : R → R for the function such that 𝑎(𝑥) = 𝑎1(‖𝑥‖).
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We will see in Section 4.3 (Theorem 4.4) that 𝑓 is a composition of two Barron functions
𝑥 ↦→ ‖𝑥‖2 and 𝑦 ↦→ 𝑓1(

√
𝑦). The function 𝑥 ↦→ ‖𝑥‖2 is Barron because it is a polynomial. The

function 𝑦 ↦→ 𝑓1(
√
𝑦) is a function in 1 variable, and it is much easier for a 1-dimensional function

ℎ to be Barron as bounds on ℎ, ℎ′, and ℎ′′ suffice (Lemma A.6).
Our result is similar to the construction in Eldan and Shamir (2015) of an explicit function that

can be approximated by a 3-layer neural net but cannot be approximated (to better than constant
error) by any 2-layer neural net with subexponential number of units. Eldan and Shamir (2015) use
a different Fourier criterion in order to prove a certain function is not computable by a two-layer
neural network.

Roughly speaking, Eldan and Shamir implicitly show that for a specific probability measure
that they chose (𝜙2, where 𝜙 = 1𝑅𝑛𝐵𝑛 , where 𝑅𝑛 is chosen so that Vol(𝑅𝑛𝐵𝑛) = 1), a necessary
criterion for 𝑓 to be approximated by a 2-layer neural network with 𝑘 nodes is that most of its mass
is concentrated in 𝑘 “tubes”

⋃𝑘
𝑖=1(span{𝑣𝑖}+ 𝑅𝑛𝐵𝑛). (See (Eldan and Shamir, 2015, Proposition

13, Claim 15, Lemma 16).) The idea can be adapted to other measures. The main difference from
Barron’s Theorem is that their criterion is a necessary condition for approximability (so useful to
show lower bounds), is measure-specific (rather than agnostic to the measure), and is more similar
to a “sparsity” condition than a “𝐿1 measure” as in Barron’s Theorem.

4.1. Definition of 𝑓

Let 𝑓1 : R → R be a function such that 𝑓1 is nonnegative, Supp(𝑓1) ⊆ [𝐾1,𝐾1+𝜀],
∫∞
0 𝑓1(𝑥) 𝑑𝑥 =

1, and |𝑓 (𝑖)
1 | = 𝑂

Ä
1

𝜀𝑖+1

ä
for all 𝑖 = 0, 1, 2. This function exists by Lemma D.1(1). We will choose

𝐾1, 𝜀 depending on 𝑛.
By Theorem A.5,

𝑓(𝜔) =
1

2𝜋

Ç
1

2𝜋 ‖𝜔‖

å𝑛
2
−1 ∫ ∞

0
𝑟

𝑛
2
−1𝑓1(𝑟)𝐽𝑛

2
−1(‖𝜔‖ 𝑟) 𝑑𝑟. (17)

We will choose [𝐾1,𝐾1 + 𝜀] to be an interval on which 𝐽𝑛
2
(‖𝜔‖ 𝑟) is large and positive for some

large ‖𝜔‖.
We use the notation of Lemma B.1. For 𝑥 ≥ 𝑛,

(𝑓𝑛,𝑥𝑥)
′ =

𝑥√
𝑥2 −

Ä
𝑛2−1
4

ä −
√
𝑛2 − 1

2
· 1√

1− 𝑛2−1
4𝑥2

· −
√
𝑛2 − 1

2𝑥2
=

 
1− 𝑛2 − 1

4𝑥2
∈
[ 

3

4
, 1

]
.

Let 𝐾3 = 𝐶3
√
𝑛 for some 𝐶3 to be chosen. In every interval of length ≥ 4𝜋

𝐾3

√
3/4

there is an

interval of length ≥ 𝜋
𝐾3

on which

cos

Ç
−(𝑛+ 1)𝜋

4
+ 𝑓𝑑,𝐾3𝑟𝐾3𝑟

å
≥ 1√

2
. (18)

Let [𝐾1,𝐾1 + 𝜀] be the first such interval with 𝐾1 ≥ 𝐶1
√
𝑛, where 𝐶1 is a constant to be chosen.

Note we have 𝐾1 ∼ 𝐶1
√
𝑛 and 𝜀 = Θ

Ä
1
𝐾3

ä
.
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4.2. A technique to lower bound the Barron constant

The main difficulty in showing a function is not Barron is to lower bound the integral∫
R𝑛

‖𝜔‖ |“𝐹 (𝜔)| 𝑑𝜔 =

∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥ 𝑑𝜔

over all extensions 𝐹 of 𝑓 . In general, it is not known how to calculate the infimum over all
extensions.

Theorem 4.2 gives us a way to lower-bound the Barron constant for 𝑓 over a ball 𝑟𝐵𝑛. The idea
is the following. Instead of bounding

∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥ 𝑑𝜔 for every extension 𝐹 , we choose 𝑔 with

support in 𝐵 and compute
∫
R𝑛

∥∥∥◊�(∇𝐹 )𝑔(𝜔)
∥∥∥ 𝑑𝜔. This does not depend on the extension 𝐹 because

(∇𝐹 )𝑔 = (∇𝑓)𝑔. It turns out that we can bound
∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥ 𝑑𝜔 in terms of

∫
R𝑛

∥∥∥◊�(∇𝐹 )𝑔(𝜔)
∥∥∥ 𝑑𝜔.

Theorem 4.2 If 𝑓 is differentiable, then for any 𝑔 such that Supp(𝑔) ⊆ 𝑟𝐵𝑛 and 𝑔, 𝑔 ∈ 𝐿1(R𝑛),

𝐶𝑓,𝑟𝐵𝑛 ≥ 𝑟

∫
R𝑛 |÷(∇𝑓)𝑔(𝜔)| 𝑑𝜔∫

R𝑛 |𝑔(𝜔)| 𝑑𝜔

Note that 𝑔 is a function that we are free to choose. To use the theorem we will choose 𝑔 with
Supp(𝑔) ⊆ 𝐶2𝑛𝐵𝑛 and

∫
R𝑛 |𝑔(𝜔)| 𝑑𝜔 small. This theorem is similar to (Barron, 1993, SIX.11),

which bounds the Barron constant of a product of two functions. We defer the proof to Appendix E.
To use this bound for a function 𝑓 , we need to judiciously choose the function 𝑔. Let 𝑏 be

the “bump” function given by Lemma D.1(3) for 𝑚 = 𝑛+1
2 . This function has the properties that

𝑏(𝑥) = 1 for 𝑥 ∈ [−1, 1], 𝑏(𝑥) = 0 for |𝑥| ≥ 2, and for 𝑘 ≤ 𝑚, 𝑏(𝑘)(𝑥) ≤ (𝑛 + 1)𝑘. Let
𝑔1(𝑥) = 𝑏(𝐾2)(𝑥) = 𝑏

Ä
𝑥
𝐾2

ä
and 𝑔(𝑥) = 𝑔1(‖𝑥‖) for 𝐾2 = 𝐶2𝑛, where 𝐶2 is a constant to be

chosen.
In Appendix E, we show the following lemma that bounds the Barron constant for 𝑓 .

Lemma 4.3 For 𝑛 ≡ 3 (mod 4) and constants 𝐶1, 𝐶2, 𝐶3 such that 𝐶1𝐶3 ≥ 3
2 , 𝐶2 > 𝐶1 ≥ 1,

𝐶3 ≥ 1, the functions 𝑓, 𝑔 we choose satisfy∫
R𝑛

|𝑔(𝜔)| 𝑑𝜔 = 𝑂((5𝑒𝐶2)
𝑛
2 ), (19)∫

R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥ 𝑑𝜔 = Ω(𝐶

𝑛
2
−3

1 𝐶
𝑛
2
3 𝑛− 1

2 𝑒
𝑛
2 ). (20)

As a result the Barron constant 𝐶𝑓,2𝐾2𝐵𝑛 ≥ Ω

Å
2−𝑛𝐶

𝑛
2
−3

1 𝐶
𝑛
2
3 𝐶

−(𝑛
2
−1)

2 𝑛
1
2

ã
.

Therefore, as long as we choose 𝐶3 to be large enough this constant is exponentially large. The
constraint that 𝑛 ≡ 3 (mod 4) is only there to avoid case analysis. We give the proof in Section E.

4.3. ℎ is a composition of Barron functions

We can write 𝑓 as the composition of a function that computes the square norm, and a one dimen-
sional function. The Barron constant for both functions can be bounded by polynomials.

12
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Lemma 4.4 Suppose that 𝐶1 < 𝐶3. 𝑓 is the composition of the two functions

𝑥 ↦→ ‖𝑥‖2 R𝑛 → R (21)

𝑦 ↦→ 𝑓1(
√
𝑦) R → R. (22)

The function 𝑥 ↦→ ‖𝑥‖2 satisfies 𝐶‖𝑥‖2,𝑟𝐵𝑛
≤ 𝑂(𝑛𝑟3) and the function 𝑦 ↦→ 𝑓1(

√
𝑦) satisfies

𝐶𝑓1(
√
𝑦),[−𝑠,𝑠] = 𝑂(𝑠𝐶

1
2
1 𝐶

3
2
3 𝑛

2) for any 𝑠.

Intuitively, the proof uses the fact that polynomials are Barron, and all “nice” one dimensional
functions are Barron. We leave the detailed proofs in Section E. Now it is easy to see the separation:
Proof [of Theorem 4.1] By Lemma 4.3, we know we can choose 𝐶3 large enough so that the Barron
constant for 𝑓 is exponential. On the other hand, by Lemma 4.4 we know 𝑓 is a composition of two
Barron functions.

5. Conclusion

In this paper we show if a generative model can be expressed as the composition of 𝑛 Barron
functions, then it can be approximated by a 𝑛 + 1-layer neural network. Along the way we proved
a multi-layer version of the Barron’s Theorem (Barron, 1993), and a key observation is to use
Wasserstein distance 𝑊 2 as the distance measure between distributions. This partly explains the
expressive power of neural networks as generative models. However, there are still many open
problems: what natural transformations can be represented by a composition of Barron functions?
Is there a separation between composition of 𝑛 Barron functions and composition of 𝑛 + 1 Barron
functions? How can we learn such a representation efficiently? We hope this paper serves as a first
step towards understanding the power of deep generative models.
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Appendix A. Background from Fourier Analysis

The Fourier transform is defined in (5).

Theorem A.1 (Fourier inversion) For continuous 𝑓 such that 𝑓 ∈ 𝐿1(R𝑛) and 𝑓 ∈ 𝐿1(R𝑛),

𝑓(𝑥) =

∫
𝑓(𝑥)𝑒𝑖⟨𝜔,𝑥⟩ 𝑑𝑥. = (2𝜋)𝑛

^̂
𝑓∨

Theorem A.2 (Plancherel’s Theorem) For 𝑓, 𝑔 : R𝑛 → C such that 𝑓, 𝑔 ∈ 𝐿1(R𝑛) ∩ 𝐿2(R𝑛),∫
R𝑛

𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 =

∫
R𝑛

(2𝜋)𝑛𝑓(𝜔)𝑔(𝜔) 𝑑𝜔.

Theorem A.3 (Fourier transform of derivative) For differentiable 𝑓 : R𝑛 → R, 𝑓 ∈ 𝐿1(R𝑛),

∇̂𝑓(𝑥) = 𝑖𝑥𝑓(𝑥).

For 𝑓 : R𝑛 → R such that 𝑓, ‖𝑥‖ 𝑓 ∈ 𝐿1(R𝑛),

(𝑥𝑓)∧ = 𝑖∇𝑓(𝑥).

Theorem A.4 (Fourier transform of convolution) For 𝑓, 𝑔 ∈ 𝐿1(R𝑛)’𝑓 * 𝑔(𝑥) = 𝑓(𝜔)𝑔(𝜔) (23)

For 𝑓, 𝑔 ∈ 𝐿1(R𝑛) with 𝑓𝑔, 𝑓 , 𝑔 ∈ 𝐿1(R𝑛),

𝑓𝑔(𝑥) = (𝑓 * 𝑔)(𝜔). (24)

Theorem A.5 (Fourier transform of radial function) Suppose 𝑓(𝑥) = 𝑓1(‖𝑥‖) where 𝑓 ∈ 𝐿1(R𝑛),
𝑓 : R≥0 → R. Then

𝑓(𝜔) =
1

2𝜋

Ç
1

2𝜋 ‖𝜔‖

å𝑛
2
−1 ∫ ∞

0
𝑟

𝑛
2
−1𝑓1(𝑟)𝐽𝑛

2
−1(‖𝜔‖ 𝑟) 𝑑𝑟.

where 𝐽𝛼 is the Bessel function of order 𝛼.

Lemma A.6 (𝐿1 bound on Fourier transform)

1. Let 𝑘 ≥ 𝑛+1
2 and 𝑘 be even. Then for 𝑔 : R𝑛 → R that is 𝑘 times differentiable,

∫
R𝑛

‖𝑔(𝜔)‖ 𝑑𝜔 ≤

Ñ
Γ
Ä
1
2

ä
2𝑛𝜋

𝑛
2 Γ
Ä
𝑛+1
2

äé 1
2 Å∫

R𝑛
[(𝐼 −Δ)

𝑘
2 𝑔(𝑥)]2 𝑑𝑥

ã 1
2

. (25)

2. Let ℎ : R → R be once or twice differentiable, respectively. Then∫ ∞

−∞
|ℎ̂(𝜔)| 𝑑𝜔 ≤ 2−

1
2

Å∫ ∞

−∞
|ℎ|2 + |ℎ′|2 𝑑𝑥

ã 1
2

(26)∫ ∞

−∞
|𝜔ℎ̂(𝜔)| 𝑑𝜔 ≤ 2−

1
2

Å∫ ∞

−∞
|ℎ′|2 + |ℎ′′|2 𝑑𝑥

ã 1
2

. (27)
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Proof By Cauchy-Schwarz and the fact that
∫
R𝑛

1

(1+‖𝜔‖2)
𝑛+1
2

𝑑𝜔 =
𝜋

𝑛
2 Γ( 1

2)
Γ(𝑛+1

2 )
(this is used e.g. to

define the Cauchy probability distribution)

∫
R𝑛

‖𝑔(𝜔)‖ 𝑑𝜔 ≤

Ñ∫
R𝑛

1Ä
1 + ‖𝜔‖2

ä𝑘 𝑑𝜔

é 1
2 Å∫

R𝑛
(1 + ‖𝜔‖2)𝑘|𝑔(𝜔)|2 𝑑𝜔

ã 1
2

(28)

≤

Ö∫
R𝑛

1Ä
1 + ‖𝜔‖2

ä𝑛+1
2

𝑑𝜔

è 1
2 Å∫

R𝑛
(1 + ‖𝜔‖2)𝑘|𝑔(𝜔)|2 𝑑𝜔

ã 1
2

(29)

≤

Ñ
𝜋

𝑛
2 Γ
Ä
1
2

ä
Γ
Ä
𝑛+1
2

ä é 1
2 Å∫

R𝑛

∣∣∣(1 + ‖𝜔‖2)
𝑘
2 𝑔(𝜔)

∣∣∣2 𝑑𝜔

ã 1
2

(30)

≤

Ñ
𝜋

𝑛
2 Γ
Ä
1
2

ä
Γ
Ä
𝑛+1
2

ä é 1
2

(2𝜋)−
𝑛
2

Å∫
R𝑛

[(𝐼 −Δ)
𝑘
2 𝑔(𝑥)]2 𝑑𝑥

ã 1
2

(31)

where in the last step we used Theorem A.2 and the calculation

Δ̂𝑔 =

(
𝑛∑

𝑖=1

𝜕2

𝜕𝑥𝑖2
𝑔

)∧

= −
𝑛∑

𝑖=1

𝜔2
𝑖 𝑔(𝜔) = −‖𝜔‖2 𝑔(𝜔).

For the second part, again by Cauchy-Schwarz and “ℎ′(𝜔) = 𝑖𝜔ℎ(𝜔),

∫ ∞

−∞
|ℎ̂(𝜔)| 𝑑𝜔 ≤

Ç∫ ∞

−∞

1

1 + |𝜔|2
𝑑𝜔

∫ ∞

−∞
|ℎ̂(𝜔)|2(1 + |𝜔|2) 𝑑𝜔

å 1
2

(32)

≤
√
𝜋

Å∫ ∞

−∞
|ℎ̂|2 + |“ℎ′|2 𝑑𝜔ã 1

2

(33)

≤
√
𝜋(2𝜋)−

1
2

Å∫ ∞

−∞
|ℎ|2 + |ℎ′|2 𝑑𝑥

ã 1
2

. (34)

This gives the first equation. To get the second, replace ℎ with ℎ′.

Appendix B. Bessel functions

We will need some facts about Bessel functions 𝐽𝛼(𝑥), 𝛼 ∈ R. 𝐽𝛼(𝑥) has an oscillating shape like
a damped sinusoid.

Lemma B.1 ((Krasikov, 2014, Theorem 5), (Eldan and Shamir, 2015, Lemma 21)) If 𝑑 ≥ 2
and 𝑥 ≥ 𝑑, then ∣∣∣∣∣𝐽𝑑/2(𝑥)−

√
2

𝜋𝑐𝑑,𝑥𝑥
cos

Ç
−(𝑑+ 1)𝜋

4
+ 𝑓𝑑,𝑥𝑥

å∣∣∣∣∣ ≤ 𝑥−3/2,
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where

𝑐𝑑,𝑥 =

 
1− 𝑑2 − 1

4𝑥2
, 𝑓𝑑,𝑥 = 𝑐𝑑,𝑥 +

√
𝑑2 − 1

2𝑥
arcsin

Ç√
𝑑2 − 1

2𝑥

å
.

Moreover, assuming 𝑥 ≥ 𝑑,

1 ≥ 𝑐𝑑,𝑥 ≥ 1− 0.15 𝑑

𝑥
≥ 0.85

and
1.3 ≥ 1 +

0.3 𝑑

𝑥
≥ 𝑓𝑑,𝑥 ≥ 1− 0.15 𝑑

𝑥
≥ 0.85.

Lemma B.2 ((Eldan and Shamir, 2015, Lemma 20)) For any 𝛼 ≥ 1 and 𝑥 ≥ 3𝛼, 𝐽𝛼(𝑥) is 1-
Lipschitz in 𝑥.

Appendix C. Properties of Wasserstein Distance

Lemma C.1 (Lemma 3.4 restated) For any two distributions 𝜇, 𝜈 over R𝑛,

𝑊1(𝜇, 𝜈) ≤ 𝑊2(𝜇, 𝜈). (35)

Moreover, for any Lipschitz function 𝑓 : R𝑛 → R,∣∣∣∣ E𝑥∼𝜇
𝑓(𝑥)− E

𝑦∼𝜈
𝑓(𝑦)

∣∣∣∣ ≤ Lip(𝑓)𝑊1(𝜇, 𝜈). (36)

Proof Let 𝛾 ∈ Γ(𝜇, 𝜈) be a coupling of 𝜇, 𝜈. Then by the Cauchy-Schwarz inequality,

𝑊1(𝜇, 𝜈) ≤
∫
R𝑛×R𝑛

‖𝑥− 𝑦‖2 𝑑𝛾(𝑥, 𝑦) (37)

≤
Å∫

R𝑛×R𝑛
‖𝑥− 𝑦‖22 𝑑𝛾(𝑥, 𝑦)

ã 1
2
Å∫

R𝑛×R𝑛
𝑑𝛾

ã2
︸ ︷︷ ︸

1

. (38)

The infimum of (38) over all couplings 𝛾 ∼ Γ(𝜇, 𝜈) is exactly 𝑊2(𝜇, 𝜈). This shows (35).
Now for any 𝛾 ∈ Γ(𝜇, 𝜈), because its marginals are 𝜇 and 𝜈,∣∣∣∣ E𝑥∼𝜇

𝑓(𝑥)− E
𝑦∼𝜈

𝑓(𝑦)

∣∣∣∣ = ∣∣∣∣∫
R𝑛×R𝑛

𝑓(𝑥)− 𝑓(𝑦) 𝑑𝛾(𝑥, 𝑦)

∣∣∣∣ (39)

≤ Lip(𝑓)

∫
R𝑛×R𝑛

‖𝑓(𝑥)− 𝑓(𝑦)‖2 𝑑𝛾(𝑥, 𝑦). (40)

The Lipschitz constant is with respect to the 𝐿2 norm because we use the 𝐿2 norm to measure the
distance between 𝑓(𝑥) and 𝑓(𝑦). Taking the infimum of (40) gives (36).

In fact, (36) is sharp when 𝜇, 𝜈 have bounded support. The duality theorem of Kantorovich and
Rubinstein (Kantorovich and Rubinstein, 1958) says that

𝑊1(𝜇, 𝜈) = sup

ß
E

𝑥∼𝜇
𝑓(𝑥)− E

𝑦∼𝜈
𝑓(𝑦) : 𝑓 : R𝑛 → R,Lip(𝑓) ≤ 1

™
.
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Appendix D. Test functions

For a function 𝑓 , let 𝑓(𝐾)(𝑥) := 𝑓
( 𝑥
𝐾

)
.

Lemma D.1 Let 𝑚 ≥ 2 be a given positive integer.

1. There exists a function 𝑔 : R → R with the following properties.

(a) 𝑔 ≥ 0 everywhere.
(b) Supp(𝑔) ⊆ [0, 1].
(c)

∫ 1
0 𝑔(𝑥) 𝑑𝑥 = 1.

(d) 𝑔 is 𝑚 times continuously differentiable and for all 𝑘 ≤ 𝑚, |𝑔(𝑘)(𝑥)| = 𝑂((2𝑚)𝑘+1).

The function 1
𝐾 𝑔(𝐾)(𝑥) satisfies Supp(𝑔(𝐾)) ⊆ [0,𝐾],

∫𝐾
0 𝑔(𝐾) 𝑑𝑥 = 1, and for 𝑘 ≤ 𝑚,

𝑔
(𝑘)
(𝐾)(𝑥) = 𝑂

(Ä
2𝑚
𝐾

ä𝑘+1
)

.

2. There exists a function 𝐺 : R → R with the following properties.

(a) 𝐺 is nondecreasing.
(b) 𝐺(𝑥) = 0 for 𝑥 ≤ 0.
(c) 𝐺(𝑥) = 1 for 𝑥 ≥ 1.
(d) 𝐺 is 𝑚+ 1 times continuously differentiable and for all 𝑘 ≤ 𝑚, 𝐺(𝑘)(𝑥) = 𝑂((2𝑚)𝑘).

3. There exists a function 𝑏 : R → R with the following properties:

(a) Supp(𝑏) ⊆ [−2, 2].
(b) 𝑏(𝑥) = 1 for 𝑥 ∈ [−1, 1].
(c) 𝑏 is is 𝑚+ 1 times continuously differentiable and for all 𝑘 ≤ 𝑚, 𝑏(𝑘)(𝑥) = 𝑂((2𝑚)𝑘).

The function 𝑏(𝐾) satisfies Supp(𝑏(𝐾)) ⊆ [−2𝐾, 2𝐾], 𝑏(𝐾)(𝑥) = 1 for 𝑥 ∈ [−𝐾,𝐾], and

𝑏
(𝑚)
(𝐾)(𝑥) = 𝑂

(Ä
2𝑚
𝐾

ä𝑘)
.

Proof Take

𝑔(𝑥) =

{
𝐶𝑚4𝑚+1𝑥𝑚+1(1− 𝑥)𝑚+1, 𝑥 ∈ [0, 1]

0, else.

where 𝐶𝑚 is chosen so that
∫ 1
0 𝑔(𝑥) 𝑑𝑥 = 1. Note that 𝑥(1− 𝑥) ≤ 1

4 so 𝑔(𝑥) ≤ 𝐶𝑚 and

1 =

∫ 1

0
𝑔(𝑥) 𝑑𝑥 ≤ 𝐶𝑚 (41)

1 =

∫ 1

0
𝑔(𝑥) 𝑑𝑥 ≥

∫ 1
2
+ 1

2
√
𝑚

1
2
− 1

2
√
𝑚

𝐶𝑚4𝑚+1𝑥𝑚+1(1− 𝑥)𝑚+1 𝑑𝑥 (42)

≥ 1√
𝑚
𝐶𝑚4𝑚+1

Ç
1

2
+

1

2
√
𝑚

å𝑚+1Ç
1

2
− 1

2
√
𝑚

å𝑚+1

(43)

≥ 1√
𝑚
𝐶𝑚

Å
1− 1

𝑚

ã𝑚+1

(44)

≥ 𝐶𝑚

2𝑒
√
𝑚

(45)
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so 1 ≤ 𝐶𝑚 ≤ 2𝑒
√
𝑚.

Now, note that for functions 𝑢, 𝑣,

(𝑢𝑣)(𝑘) =
𝑘∑

𝑗=0

Ç
𝑘

𝑗

å
𝑢(𝑗)𝑣(𝑘−𝑗). (46)

Applying this to 𝑥𝑚+1 and (1− 𝑥)𝑚+1 and gives that for 0 ≤ 𝑥 ≤ 1, 𝑘 ≤ 𝑚,

|𝑔(𝑘)(𝑥)| ≤ 𝐶𝑚

√
𝑚

𝑘∑
𝑗=0

Ç
𝑘

𝑗

å
(𝑚+ 1)𝑗(𝑚+ 1)𝑘−𝑗 (47)

≤ 𝑂(𝑚(2(𝑚+ 1))𝑘) (48)

= 𝑂((2𝑚)𝑘+1). (49)

For the second part, take 𝐹 (𝑥) =
∫ 𝑥
−∞ 𝑓(𝑡) 𝑑𝑡. The normalization

∫ 1
0 𝑓(𝑥) 𝑑𝑥 = 1 ensures

𝐹 (𝑥) = 1 for 𝑥 ≥ 1, and for 𝑘 ≤ 𝑚, 𝐹 (𝑘+1)(𝑥) = 𝑓 (𝑘)(𝑥) = 𝑂((2𝑚)𝑘).
For the third part, define

𝑏(𝑥) =


0, |𝑥| > 2

𝐹 (2− |𝑥|), 1 ≤ |𝑥| ≤ 2

1, |𝑥| < 1.

For the rescaled functions, just note that for any function 𝑓 , 𝑓 (𝑘)
(𝐾)(𝑥) =

1
𝐾𝑘 𝑓

(𝑘)
( 𝑥
𝐾

)
.

Appendix E. Omitted Proofs in Section 4

Theorem E.1 (Theorem 4.2 restated) If 𝑓 is differentiable, then for any 𝑔 such that Supp(𝑔) ⊆
𝑟𝐵𝑛 and 𝑔, 𝑔 ∈ 𝐿1(R𝑛),

𝐶𝑓,𝑟𝐵𝑛 ≥ 𝑟

∫
R𝑛 |÷(∇𝑓)𝑔(𝜔)| 𝑑𝜔∫

R𝑛 |𝑔(𝜔)| 𝑑𝜔

Proof Let 𝐵 = 𝑟𝐵𝑛. We have

𝐶𝑓,𝐵 = inf
𝐹 |𝐵=𝑓

∫
R𝑛

‖𝜔‖𝐵 |“𝐹 (𝜔)| 𝑑𝜔 (50)

= 𝑟 inf
𝐹 |𝐵=𝑓

∫
R𝑛

‖𝜔‖2 |“𝐹 (𝜔)| 𝑑𝜔 (51)

= 𝑟 inf
𝐹 |𝐵=𝑓

∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥
2
𝑑𝜔. (52)

Young’s inequality and Theorem A.4 give∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥
2
𝑑𝜔

∫
R𝑛

|𝑔(𝜔)| 𝑑𝜔 ≥
∫
R𝑛

∥∥∥(‘∇𝐹 * 𝑔)(𝜔)
∥∥∥
2
𝑑𝜔 (53)

=

∫
R𝑛

∥∥∥◊�(∇𝐹 )𝑔(𝜔)
∥∥∥
2
𝑑𝜔 (54)

=

∫
R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥
2
𝑑𝜔. (55)
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where the last step uses the fact that Supp(𝑔) ⊆ 𝑟𝐵𝑛, so (∇𝐹 )𝑔 = (∇𝑓)𝑔. Then

∫
R𝑛

∥∥∥‘∇𝐹 (𝜔)
∥∥∥
2
𝑑𝜔 ≥

∫
R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥
2
𝑑𝜔∫

R𝑛 |𝑔(𝜔)| 𝑑𝜔
. (56)

E.1. 𝑓 is not Barron

In this section we prove Lemma 4.3. We first prove the function 𝑔 we choose gives a small denomi-
nator in the lowerbound equation.

Lemma E.2 For 𝑛 ≡ 3 (mod 4),∫
R𝑛

‖𝑔(𝜔)‖ 𝑑𝜔 ≤ 𝑂((5𝑒𝐶2)
𝑛
2 ).

To prove this we will need bound certain combinations of derivatives of a radial function.

Lemma E.3 Let 𝑓 : R𝑛 → R𝑛 be a radial function with 𝑓(𝑥) = 𝑓1(‖𝑥‖). Then for 𝑘 ∈ N,
1 ≤ 𝑘 ≤ 𝑛

4 + 1,

((𝐼 −Δ)𝑘𝑓)(𝑥) =
∑

0 ≤ 𝑖 ≤ 2𝑘, 0 ≤ 𝑗 ≤ max{0, 2𝑘 − 1}
𝑖+ 𝑗 ≤ 2𝑘

𝑐𝑖,𝑗𝑛
𝑗𝑓

(𝑖)
1 (𝑟)

𝑟𝑗
, 𝑟 = ‖𝑥‖ (57)

for some 𝑐𝑖,𝑗 with
∑

𝑖,𝑗 |𝑐𝑖,𝑗 | ≤ 5𝑘.
Here, (𝐼 −Δ)𝑓 denotes 𝑓 −Δ𝑓 .

Proof We proceed by induction. The case 𝑘 = 0 is just 𝑓(𝑥) = 𝑓1(𝑟). Suppose the statement is
true for a given 𝑘 ≤ 𝑛

4 ; we show it for 𝑘 + 1. Let (𝐼 −Δ)𝑘𝑓 be given by (57). We use the formula
for the Laplacian of a radial function,

Δ𝑓(𝑥) =
𝑛− 1

𝑟
𝑓 ′
1(𝑟) + 𝑓 ′′

1 (𝑟). (58)

For ease of notation, in the below the arguments of 𝑓 and 𝑓1, which are 𝑥 and 𝑟, are omitted. Then
using (58) and the product rule,

(𝐼 −Δ)𝑘+1𝑓 =
∑

0 ≤ 𝑖 ≤ 2𝑘, 0 ≤ 𝑗 ≤ max{0, 2𝑘 − 1}
𝑖+ 𝑗 ≤ 2𝑘

𝑐𝑖,𝑗𝑛
𝑗

Ç
1

𝑟𝑗
𝑓
(𝑖)
1 +

𝑛− 1

𝑟

Å
𝑗

𝑟𝑗+1
𝑓
(𝑖)
1 − 1

𝑟𝑗
𝑓
(𝑖+1)
1

ã
(59)

+

Ç
−𝑗(𝑗 + 1)

𝑟𝑗+2
𝑓
(𝑖)
1 +

2𝑗

𝑟𝑗+1
𝑓
(𝑖+1)
1 − 1

𝑟𝑗
𝑓
(𝑖+2)
1

åå
(60)
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The largest derivative of 𝑓1 increases by 2 and the power of 𝑟 increases by 2, except when 𝑘 = 0,
when the power increases by 1 (from (58)). Write this as

∑
0 ≤ 𝑖 ≤ 2(𝑘 + 1), 0 ≤ 𝑗 ≤ 2𝑘 + 1

𝑖+ 𝑗 ≤ 2(𝑘 + 1)

𝑐′𝑖,𝑗𝑛
𝑗𝑓

(𝑖)
1

𝑟𝑗
.

A term is identified by the order 𝑓 (𝑖) that appears and the power 1
𝑟𝑗

that appears. For example,

the term 𝑐𝑖,𝑗𝑛
𝑗 𝑛−1

𝑟
𝑗

𝑟𝑗+1 𝑓
(𝑖)
1 = 𝑐𝑖,𝑗𝑛

𝑗+2 (𝑛−1)𝑗
𝑛2

1
𝑟𝑗+2 𝑓

(𝑖)
1 in (59) will contribute 𝑐𝑖,𝑗

(𝑛−1)𝑗
𝑛2 to 𝑐′𝑖,𝑗+2.

Noting 𝑘 ≤ 𝑛
4 implies 2𝑘 ≤ 𝑛

2 , we have

∑
𝑖,𝑗

|𝑐′𝑖,𝑗 | ≤
∑

0 ≤ 𝑖 ≤ 2𝑘, 0 ≤ 𝑗 ≤ max{0, 2𝑘 − 1}
𝑖+ 𝑗 ≤ 2𝑘

|𝑐𝑖,𝑗 |
Ç
1 +

(𝑛− 1)𝑗

𝑛2
+

𝑛− 1

𝑛
+

𝑗(𝑗 + 1)

𝑛2
+

2𝑗

𝑛
+ 1

å
(61)

≤
∑
𝑖,𝑗

|𝑐𝑖,𝑗 |
Å
1 +

1

2
+ 1 +

1

4
+ 1 + 1

ã
(62)

≤ 5
∑
𝑖,𝑗

|𝑐𝑖,𝑗 |. (63)

This completes the induction step and proves the theorem.

Proof [Proof of Lemma E.2] By Lemma A.6 with 𝑘 = 𝑛+1
2 ,

∫
R𝑛

‖𝑔(𝜔)‖ 𝑑𝜔 ≤

Ñ
Γ
Ä
1
2

ä
2𝑛𝜋

𝑛
2 Γ
Ä
𝑛+1
2

äé 1
2 Å∫

R𝑛
[(𝐼 −Δ)

𝑛+1
4 𝑔(𝑥)]2 𝑑𝑥

ã 1
2

. (64)

Note [(𝐼 − Δ)
𝑛+1
4 𝑔(𝑥)]2 is nonzero only on 2𝐾2𝐵𝑛. Then letting 𝑐𝑖,𝑗 be as in Lemma E.3 with

𝑘 = 𝑛+1
4 , we have

(𝐼 −Δ)
𝑛+1
4 𝑔(𝑥) =

∑
0 ≤ 𝑖 ≤ 𝑛+1

2
, 0 ≤ 𝑗 ≤ 𝑛−1

2
𝑖+ 𝑗 ≤ 𝑛+1

2

𝑐𝑖,𝑗𝑛
𝑗𝑔

(𝑖)
1 (𝑟)

𝑟𝑗
, 𝑟 = ‖𝑥‖ (65)

We separate out the one term 𝑔1(𝑟), and bound the derivatives noting that 𝑔1 was defined using the
bump function 𝑏(𝐾2) in Lemma D.1. Note that 𝑔(𝑖)1 = 0 for 𝑟 < 𝐾2, so we can take 𝑟 ≥ 𝐾2 in the
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sum.

|(𝐼 −Δ)
𝑛+1
4 𝑔(𝑥)| ≤ 𝑔1(𝑟) +

∑
1 ≤ 𝑖 ≤ 𝑛+1

2
, 0 ≤ 𝑗 ≤ 𝑛−1

2
𝑖+ 𝑗 ≤ 𝑛+1

2

|𝑐𝑖,𝑗 |
𝑛𝑗 |𝑔(𝑖)1 (𝑟)|

𝑟𝑗
(66)

≤ 𝑔1(𝑟) +
∑

1 ≤ 𝑖 ≤ 𝑛+1
2

, 0 ≤ 𝑗 ≤ 𝑛−1
2

𝑖+ 𝑗 ≤ 𝑛+1
2

|𝑐𝑖,𝑗 |
𝑛𝑗𝑂

(
(𝑛+1)𝑖

(𝐶2𝑛)𝑖

)
(𝐶2𝑛)𝑗

(67)

= 𝑂(4
𝑛+1
4 ). (68)

(69)

Noting that the volume of 2𝐾2𝐵𝑛 is 𝜋
𝑛
2

Γ(𝑛
2
+1)

(2𝐾2)
𝑛,Å∫

R𝑛
[(𝐼 −Δ)

𝑛+1
4 𝑔(𝑥)]2 𝑑𝑥

ã 1
2

= 𝑂

ÑÇ
𝜋

𝑛
2

Γ
(𝑛
2 + 1

)(2𝐾2)
𝑛
(
5

𝑛+1
4

)2å 1
2

é
(70)

= 𝑂

ÑÇ
𝜋

𝑛
2 2𝑛𝐶𝑛

2 𝑛
𝑛

Γ(𝑛2 + 1)

å 1
2

5
𝑛+1
4

é
. (71)

Combining (64) and (71) and using Stirling’s approximation Γ(𝑛+ 1) ∼
√
2𝜋𝑛

(𝑛
𝑒

)𝑛 gives

∫
R𝑛

‖𝑔(𝜔)‖ 𝑑𝜔 ≤ 𝑂

Ö
𝐶

𝑛
2
2 𝑛

𝑛
2 5

𝑛+1
4

Γ
Ä
𝑛+1
2

ä 1
2 Γ

(𝑛
2 + 1

) 1
2

è
(72)

= 𝑂
Ä
(5𝑒𝐶2)

𝑛
2

ä
. (73)

Now we are ready to bound the numerator and finish the proof.

Lemma E.4 For 𝑓 defined as in Section 4.1, 𝑛 ≡ 3 (mod 4), and constants 𝐶1, 𝐶2, 𝐶3 such that
𝐶1𝐶3 ≥ 3

2 , 𝐶2 > 𝐶1 ≥ 1, 𝐶3 ≥ 1,

𝐶𝑓,2𝐾3𝐵𝑛 = Ω

Å
2−𝑛𝐶

𝑛
2
−3

1 𝐶
𝑛
2
3 𝐶

−(𝑛
2
−1)

2 𝑛
1
2

ã
.

In particular, this is exponentially large if we choose 𝐶3 large enough (i.e. if we make 𝑓 vary sharply
enough).
Proof For ‖𝜔‖ = 𝐾3, by (17), (18), and Lemma B.1,

𝑓(𝜔) =
1

2𝜋

Å
1

2𝜋𝐾3

ã𝑛
2
−1 ∫ 𝐾1+𝜀

𝐾1

𝑟
𝑛
2
−1𝑓1(𝑟)𝐽𝑛

2
−1(𝐾3𝑟) 𝑑𝑟 (74)

≥ 1

2𝜋

Å
1

2𝜋𝐾3

ã𝑛
2
−1 ∫ 𝐾1+𝜀

𝐾1

𝑟
𝑛
2
−1𝑓1(𝑟)

Ç 
2

𝜋𝐾3𝑟

1√
2
− (𝐾3𝑟)

− 3
2

å
𝑑𝑟 (75)

≥ 1

2𝜋

Å
𝐾1

2𝜋𝐾3

ã𝑛−3
2

 
1

𝜋
(1− 𝑜(1)) (76)
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where in the last step we used
∫𝐾1+𝜀
𝐾1

𝑓1(𝑟) = 1. Now we show that 𝑓 is also large for ‖𝜔‖ ≈ 𝐾3.
Let 𝜔, 𝜔0 be such that ‖𝜔0‖ = 𝐾3 and 𝜔 ≥ 𝜔0. Then using the fact that 𝐽𝑛

2
−1 is 1-Lipschitz for

𝑥 ≥ 3
(𝑛
2 − 1

)
(Lemma B.2) and 𝐾3𝐾1 ≥ 𝐶3𝐶1𝑛 ≥ 3𝑛

2 ,

|𝑓(𝜔)− 𝑓(𝜔0)| ≤
1

2𝜋

Å
1

2𝜋𝐾3

ã𝑛
2
−1 ∫ 𝐾1+𝜀

𝐾1

𝑟
𝑛
2
−1𝑓1(𝑟)|𝐽𝑛

2
−1(‖𝜔‖ 𝑟)− 𝐽𝑛

2
(𝐾3𝑟)| 𝑑𝑟 (77)

≤ 1

2𝜋

Å
1

2𝜋𝐾3

ã𝑛
2
−1 ∫ 𝐾1+𝜀

𝐾1

𝑟
𝑛
2
−1𝑓1(𝑟)𝑟(‖𝜔‖ −𝐾3) 𝑑𝑟 (78)

≤ 1

2𝜋

Å
1

2𝜋𝐾3

ã𝑛
2
−1

(𝐾1 + 𝜀)
𝑛
2 (‖𝜔‖ −𝐾3) (79)

= 𝑂

ÇÅ
𝐾1

2𝜋𝐾3

ã𝑛
2
−1

𝐾
3
2
1 𝐾

1
2
3 (‖𝜔‖ −𝐾3)

å
(80)

By (76) and (80), for 𝑛 ≥ 3, there exists 𝛿 such that for all ‖𝜔‖ ∈
ï
𝐾3,𝐾3 +

𝛿

𝐾
3/2
1 𝐾

1/2
3

ò
,

|𝑓(𝜔)| = Ω

(Å
𝐾1

2𝜋𝐾3

ã𝑛−3
2

)
(81)

Then using the fact that the surface area of a sphere in R𝑛 is 2𝜋
𝑛
2

Γ(𝑛
2 )

,

∫
R𝑛

‖𝜔‖ |𝑓(𝜔)| 𝑑𝜔 =

∫
𝐾3≤‖𝜔‖≤𝐾3+

𝛿

𝐾
3/2
1

Ω

(Å
𝐾1

2𝜋𝐾3

ã𝑛−3
2

)
𝑑𝜔 (82)

= Ω

(
𝜋

𝑛
2

Γ
(𝑛
2

)𝐾𝑛−1
3

𝛿

𝐾
3/2
1 𝐾

1/2
3

Å
𝐾1

2𝜋𝐾3

ã𝑛−3
2

)
(83)

= Ω

Ç
1

Γ
(𝑛
2

)𝐾 𝑛
2
3 𝐾

𝑛
2
−3

1 2−
𝑛
2

å
(84)

= Ω

ÇÅ
2𝑒

𝑛− 2

ã𝑛
2
−1

(𝐶3𝑛
1
2 )

𝑛
2 (𝐶1𝑛

1
2 )

𝑛
2
−32−

𝑛
2

å
(85)

= Ω(𝐶
𝑛
2
−3

1 𝐶
𝑛
2
3 𝑛− 1

2 𝑒
𝑛
2 ). (86)

Note 𝐾2 = 𝐶2𝑛 > 𝐶1
√
𝑛+ 𝜀 = 𝐾1 + 𝜀. Then 𝑔 = 1 on the support of 𝑓 , so (∇𝑓)𝑔 = ∇𝑓 and∫

R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥ 𝑑𝜔 =

∫
R𝑛

∥∥∥∇̂𝑓(𝜔)
∥∥∥ 𝑑𝜔 (87)

= Ω(𝐶
𝑛
2
−3

1 𝐶
𝑛
2
3 𝑛− 1

2 𝑒
𝑛
2 ). (88)

Then by Lemma E.2,

𝐶𝑓,2𝐾2𝐵𝑛 ≥ 2𝐾2

∫
R𝑛

∥∥∥÷(∇𝑓)𝑔(𝜔)
∥∥∥ 𝑑𝜔∫

R𝑛 |𝑔(𝜔)| 𝑑𝜔
(89)

= 2𝐾2
Ω(𝐶

𝑛
2
−3

1 𝐶
𝑛
2
3 𝑛− 1

2 𝑒
𝑛
2 )

𝑂((5𝑒𝐶2)
𝑛
2 )

= Ω

Å
5−

𝑛
2 𝐶

𝑛
2
−3

1 𝐶
𝑛
2
3 𝐶

−(𝑛
2
−1)

2 𝑛
1
2

ã
. (90)
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E.2. ℎ is a composition of Barron functions

In this section we proof Lemma 4.4. In order to do that, let us first define the following set of
functions:

Definition E.5 Define

Γ(𝐴,𝐶) :=

ß
𝑓 : R𝑛 → R :

∫
R𝑛

|𝑓(𝜔)| 𝑑𝜔 ≤ 𝐴,

∫
R𝑛

‖𝜔‖ |𝑓(𝜔)| 𝑑𝜔 ≤ 𝐶

™
Barron functions have many nice properties:

Proposition E.6 (Properties of Barron constant)

1. (Subadditivity, (Barron, 1993, SIV.3)) For any set 𝐵,

𝐶∑
𝑖
𝛽𝑖𝑓𝑖,𝐵 ≤

∑
𝑖

|𝛽𝑖|𝐶𝑓𝑖,𝐵.

2. (Ridge functions, (Barron, 1993, SIV.7)) Suppose 𝑓 = ℎ(⟨𝑎, 𝑥⟩), where ℎ : R → R is a
1-dimensional function and ‖𝑎‖2 = 1. Then

𝐶𝑓,𝑟𝐵𝑛 ≤ 𝐶ℎ,[−𝑟,𝑟].

3. (Powers, (Barron, 1993, SIV.12)) If 𝑔 : R → R, 𝑔 ∈ Γ(𝑎, 𝑐), then 𝑔(𝑥)𝑘 ∈ Γ(𝑎𝑘, 𝑘𝑎𝑘−1𝑐).

4. The function 𝑓(𝑥) = 𝑥 has an extension ℎ agreeing with 𝑥 on [−𝑟, 𝑟], which satisfies ℎ(𝑥) ∈
Γ(𝑂(𝑟

3
2 ), 𝑂(𝑟

1
2 )).

Proof We show (4). Choose a bump function 𝑏 as in Lemma D.1 for 𝑚 = 2. Consider the extension
ℎ(𝑥) = 𝑥𝑏(𝑟)(𝑥) = 𝑥𝑏

(𝑥
𝑟

)
which is supported on [−2𝑟, 2𝑟]. Because 𝑏, 𝑏′, 𝑏′′ are all bounded by a

constant, on [−2𝑟, 2𝑟],

|ℎ(𝑥)| ≤ 𝑥 (91)

|ℎ′(𝑥)| = |𝑏(𝑟)(𝑥) + 𝑥𝑏′(𝑟)(𝑥)| ≤ 1 +𝑂

Å
𝑥

𝑟

ã
(92)

|ℎ′′(𝑥)| = |2𝑏′(𝑟)(𝑥) + 𝑏′′(𝑟)(𝑥)| ≤ 𝑂

Å
𝑥

𝑟

ã
+𝑂

Å
1

𝑟2

ã
. (93)

Then by Lemma A.6(2),∫ ∞

−∞
|ℎ̂(𝜔)| 𝑑𝜔 ≤ 2−

1
2

Å∫ 𝑟

−𝑟
|ℎ(𝑥)|2 + |ℎ′(𝑥)|2 𝑑𝑥

ã 1
2

≤ 𝑂(𝑟
3
2 ) (94)∫ ∞

−∞
|𝜔ℎ̂(𝜔)| 𝑑𝜔 ≤ 2−

1
2

Å∫ 𝑟

−𝑟
|ℎ′(𝑥)|2 + |ℎ′′(𝑥)|2 𝑑𝑥

ã 1
2

≤ 𝑂(𝑟
1
2 ). (95)
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Proof [Proof of Theorem 4.4] By Proposition E.6(4) and (3), the 1-dimensional function 𝑦 ↦→ 𝑦2 has
an extension 𝑘(𝑦) with 𝑘(𝑦) ∈ Γ(𝑂(𝑟3), 𝑂(𝑟2)). Thus, 𝐶𝑦2,[−𝑟,𝑟] ≤ 𝑟

∫∞
−∞ ‖𝜔‖ |𝑘(𝜔)| 𝑑𝜔 = 𝑂(𝑟3).

Because 𝑥2𝑖 : R𝑛 → R is the composition of the projection 𝑥 ↦→ ⟨𝑒𝑖, 𝑥⟩ and the 1-dimensional
function 𝑦 ↦→ 𝑦2 and , by (2),

𝐶𝑥2
𝑖 ,𝑟𝐵𝑛

≤ 𝐶𝑦2,[−𝑟,𝑟] ≤ 𝑂(𝑟3)

By (1), because ‖𝑥‖2 =∑𝑛
𝑖=1 𝑥

2
𝑖 ,

𝐶‖𝑥‖2,𝑟𝐵𝑛
≤ 𝑂(𝑛𝑟3).

Now consider the function ℎ(𝑦) := 𝑓1(
√
𝑦). We have, noting this is nonzero only for 𝑥 ∈

[𝐾2
1 , (𝐾1 + 𝜀)2], and 𝑓

(𝑖)
1 (

√
𝑦) = 𝑂(𝐾𝑖+1

3 ),

ℎ′(𝑦) =
1

2𝑦
1
2

𝑓1(
√
𝑦) + 𝑓 ′

1(
√
𝑦) = 𝑂

ÅÅ
𝐾3

𝐾1

ã
+𝐾2

3

ã
(96)

ℎ′′(𝑦) =
1

4𝑦
3
2

𝑓1(
√
𝑦) +

1

4𝑦
𝑓 ′
1(
√
𝑦) +

1

2𝑦
1
2

𝑓 ′′
1 (
√
𝑦) = 𝑂

Ç
𝐾3

𝐾3
1

+
𝐾2

3

𝐾2
1

+
𝐾3

3

𝐾1

å
. (97)

Using 𝐶3 < 𝐶1 we have |ℎ′|2 + |ℎ′′|2 = 𝑂(𝐾4
3 ). Thus by Lemma A.6,

∫ ∞

0
|𝜔ℎ̂(𝜔)| 𝑑𝜔 =

Ç∫ (𝐾1+𝜀)2

𝐾2
1

𝑂
Ä
𝐾4

3

äå 1
2

= 𝑂

(Å
𝐾1

𝐾3
𝑂(𝐾4

3 )

ã 1
2

)
= 𝑂

Å
𝐾

1
2
1 𝐾

3
2
3

ã
.

Thus 𝑓1(
√
𝑥) is 𝑂(𝑠𝐶

1
2
1 𝐶

3
2
3 𝑛

2)-Barron on [−𝑠, 𝑠].
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