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Abstract
We consider the high-dimensional inference problem where the signal is a low-rank symmetric
matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the
low-rank matrix, we compute the limit in the large dimension setting for the mutual information
between the signal and the observations, as well as the matrix minimum mean square error, while
the rank of the signal remains constant. We unify and generalize a number of recent works on
PCA, sparse PCA, submatrix localization or community detection by computing the information-
theoretic limits for these problems in the high noise regime. This allows to locate precisely the
information-theoretic thresholds for the above mentioned problems.1
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1. Low-rank matrix estimation

The estimation of a low-rank matrix observed through a noisy channel is a fundamental problem in
statistical inference with applications in machine learning, signal processing or information theory.
We shall consider the high dimensional setting where the low-rank matrix to estimate is symmetric
and where the noise is additive and Gaussian.

Let P0 be a probability distribution over Rk (k ∈ N∗ is fixed) with finite second moment. Let
Xi

i.i.d.∼ P0 and suppose that we observe for 1 ≤ i < j ≤ n:

Yi,j =

√
λ

n
Xᵀ
iXj + Zi,j (1)

where Zi,j
i.i.d.∼ N (0, 1). The goal here is to recover the low-rank signal XXᵀ from the observation

Y. Notice that we suppose here to observe only the coefficients of
√
λ/nXXᵀ + Z that are above

the diagonal. The case where all the coefficients are observed can be directly deduced from this
case.

Depending on the choice of the prior P0, (1) can encode many classical statistical problems such
as PCA, sparse PCA, submatrix localization or community detection. These examples are detailed
in the full version of this work. Define the minimal mean square error (MMSE) for this statistical

1. Extended abstract. Full version appears as [arXiv:1611.03888v3]
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problem:

MMSEn(λ) = min
θ̂

2

n(n− 1)

∑
1≤i<j≤n

E
[(

Xᵀ
iXj − θ̂i,j(Y)

)2]

where the minimum is taken over all estimators θ̂ (i.e. measurable functions of the observations
Y). We aim at computing the limit of MMSEn and the mutual information 1

nI(X;Y) as n goes to
infinity.

2. The replica symmetric formula

We define the function

F : (λ,q) ∈ R× S+
k 7→ E log

∫
dP0(x) exp

(√
λ(Zᵀq1/2x) + λxᵀqX− λ

2
xᵀqx

)
− λ

4
‖q‖2

where S+
k denote the set of k × k symmetric positive-semidefinite matrices. Z ∼ N (0, Ik) and

X ∼ P0 are independent random variables. The limits of the MMSE and the mutual information
has been conjectured in Lesieur et al. (2015b) according to powerful, but non-rigorous, statistical
physics arguments. They are given by the following “replica symmetric” formula.

Theorem 1 For λ > 0, we have

lim
n→+∞

1

n
I(X;Y) =

λ‖EP0XXᵀ‖2

4
− sup

q∈S+
k

F(λ,q),

For almost all λ > 0, all the maximizers q of q ∈ S+
k 7→ F(λ,q) have the same norm ‖q‖ = q∗(λ)

and
MMSEn(λ) −−−→

n→∞
‖EP0XXᵀ‖2 − q∗(λ)2

In the rank-one case (k = 1), Barbier et al. (2016) proved Theorem 1 for discrete P0 but under
the restrictive assumption that the function q 7→ F(λ, q) is required to have at most three stationary
points.

Notice that the “dummy estimator” θ̂i,j(Y) = E[XiX
ᵀ
j ] achieves has a mean square error equal

to DMSE = ‖EXXᵀ‖2 − ‖(EX)(EX)ᵀ‖2. We deduce from Theorem 1 that

λc := inf {λ > 0 | q∗(λ) > ‖(EX)(EX)ᵀ‖}

is the information-theoretic threshold for the estimation problem (1). Namely,

• if λ > λc, then lim
n→∞

MMSEn < DMSE: one can estimate XXᵀ better than chance as n goes
to infinity.

• if λ < λc, then lim
n→∞

MMSEn = DMSE: it is impossible to retrieve asymptotically XXᵀ

better than a “random guess”.
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Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and algorithms.
Advances in Physics, 65(5):453–552, 2016.

5


	Low-rank matrix estimation
	The replica symmetric formula

