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Abstract
Learning a Gaussian mixture model (GMM) is a fundamental statistical problem. One common
notion of learning a GMM is proper learning: here, the goal is to find a mixture of k GaussiansM
that is close to the unknown density f from which we draw samples. The distance betweenM and
f is often measured in the total variation / L1-distance.

Our main result is an algorithm for learning a mixture of k univariate Gaussians that is nearly-
optimal for any fixed k. It is well known that the sample complexity of properly learning a uni-
variate k-GMM is O(k/ε2). However, the best prior running time for this problem is Õ(1/ε3k−1);
in particular, the dependence between 1/ε and k is exponential. In this paper, we significantly im-
prove this dependence by replacing the 1/ε term with log 1/ε, while only increasing the exponent
moderately. Specifically, the running time of our algorithm is (k · log 1/ε)O(k4) +Õ(k/ε2). For any
fixed k, the Õ(k/ε2) term dominates our running time, and thus our algorithm runs in time which is
nearly-linear in the number of samples drawn. Achieving a running time of poly(k, 1/ε) for proper
learning of k-GMMs has recently been stated as an open problem by multiple researchers, and we
make progress on this question.

Our main algorithmic ingredient is a new connection between proper learning of parametric
distributions and systems of polynomial inequalities. We leverage results for piecewise polynomial
approximation of GMMs and reduce the learning problem to a much smaller sub-problem. While
tihs sub-problem is still non-convex, its size depends only logarithmically on the final accuracy ε.
Hence we can invoke computationally expensive methods for solving the sub-problem.

We show that our connection is also useful in the multivariate setting, where we get new results
for learning a mixture of two spherical Gaussians. A variant of our approach is also within reach
of modern computer algebra systems. Experiments for learning a 2-GMM show promising results:
our algorithm improves over the popular Expectation-Maximization (EM) algorithm in the noisy
setting.
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1. Introduction

Gaussian mixture models (GMMs) are one of the most fundamental probabilistic models. GMMs
have a long history in statistics, going back to the seminal work of Pearson (1894). In spite of
their age, GMMs are still part of the core machine learning toolkit: the classical Expectation-
Maximization (EM) algorithm for GMMs is implemented in many modern machine learning pack-
ages such as the Spark’s MLlib1 and Google’s Tensorflow.2 GMMs are routinely employed in
diverse applications across science and engineering, for instance recent advances in deep reinforce-
ment learning by Levine et al. (2016). A key strength of GMMs is their ability to describe multi-
modal distributions arising from distinct sub-populations.

The wide use of GMMs (and the EM algorithm in particular) motivates the fundamental ques-
tion: What provable guarantees can we give for learning a GMM from samples? Both computa-
tional and statistical complexity are important aspects of this question. Classical methods such as
maximum likelihood estimation (MLE) yield non-convex problems when applied to GMMs. This
non-convexity makes it challenging to design algorithms that combine provably good sample com-
plexity with sub-exponential running time. In this paper, we make progress on the computational
question and significantly weaken the exponential dependence in the running time.

1.1. Notions of learning

There are several natural notions of learning a GMM, all of which have been extensively studied
in the learning theory community. The known sample and time complexity bounds differ widely
for these related problems, and the corresponding algorithmic techniques are also considerably dif-
ferent. We refer the reader to Table 1 at the end of the introduction for an overview. In order of
decreasing hardness, the notions of learning are:

Parameter learning. Parameter learning asks to recover the parameters of the unknown GMM
(i.e., the means, variances, and mixing weights) up to some given additive error ε.

Proper learning. In proper learning, our goal is to find a GMMM ′ such that the probability density
of our hypothesis M ′ is close to the true unknown density. Common measures of distance are
the KL-divergence and the L1-distance / total variation distance.

Density estimation. Density estimation requires us to find any hypothesis ĥ such that the distance
between the density of ĥ and the unknown density is small. In particular, ĥ does not need to
be a GMM.

Parameter learning is the most desirable guarantee because it allows us to recover the unknown
mixture parameters. This is particularly important when the parameters directly correspond to phys-
ical quantities that we wish to infer, e.g., in a biological experiment. However, this power comes at a
cost: Hardt and Price (2015) show that Ω( 1

ε12
) samples are already necessary to learn the parameters

of a mixture of two univariate Gaussians with accuracy ε.3 Moreover, the sample complexity of pa-
rameter learning scales exponentially with the number of components: for a mixture of k univariate
Gaussians, the authors also give a sample complexity lower bound of Ω( 1

ε6k−2 ). This exponential

1. https://spark.apache.org/docs/latest/mllib-clustering.html
2. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/
factorization/python/ops/gmm.py

3. This bound is tight, i.e., the paper also gives an algorithm with time and sample complexity O( 1
ε12

).
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dependence between the accuracy ε and the number of mixture components k quickly becomes pro-
hibitive even for moderate choices of ε and k. Note that the exponential complexity is not an issue
of non-convexity: the lower bounds are information-theoretic and unconditional.

Tractable learning guarantees. At first sight, this strong lower bound would indicate that poly-
nomial complexity is hopeless for learning GMMs. However, this result stands in stark contrast to
the widespread use of GMMs in combination with the EM algorithm. Since the GMMs produced by
the EM algorithm are often sufficient in practice, a relaxed learning guarantee is a good explanation
for its success. In particular, it is well known that the EM algorithm is a local heuristic for comput-
ing the maximum likelihood estimate. Assuming that the EM algorithm (with a sufficiently large
number of restarts) comes close to the MLE, it inherits its attractive properties. One such property
is approximation in KL-divergence: Given samples from an unknown density f , the EM algorithm
produces an estimate ĥ such that the KL-divergence DKL(ĥ, f) is minimized over all mixtures of k
Gaussians. This is precisely the proper learning guarantee stated above for the KL-divergence.

Proper learning sidesteps the thorny sample complexity bounds of parameter learning. For
instance, Acharya et al. (2014) show that it is possible to properly learn a mixture of k Gaussians in d
dimensions with Õ(dk

9

ε4
) samples under the L1-distance. This removes the exponential dependence

between ε and k in the sample complexity (however, their algorithm still requires exponential time).
Thus, a plausible explanation for the efficacy of EM with limited samples is that the algorithm
learns the unknown GMM in KL-divergence, as opposed to always obtaining an accurate parameter
estimate. This motivates a careful study of proper learning, both from a statistical and computational
point of view.

In addition to the tractable sample complexity, proper learning naturally enables robust learning
guarantees for KL-divergence and L1-distance. The KL approximation guarantee of the MLE is
robust to model-misspecification and applies to any unknown density f , not only a mixture of
Gaussians. Such a guarantee is also known as (semi-)agnostic learning. Robustness guarantees are
particularly relevant from an empirical point of view. In many settings, GMMs are used as a rough
(but still useful) model of data that captures its multimodal structure. The true data generating
process is often much more complicated than a true GMM. Hence it is important that a learning
algorithm is not overly tailored to the specific generative model and instead gracefully adapts to
model-misspecification.

Drawbacks of existing results. Considering the positives attributes of the (idealized) EM algo-
rithm, a natural goal is to establish provable bounds for this method. Indeed, this has been the focus
of multiple recent papers: Balakrishnan et al. (2014); Daskalakis et al. (2016); Ji Xu (2016); Jin
et al. (2016). Unfortunately, there are two main issues with the EM algorithm:

1. Jin et al. (2016) show that the non-convexity of the likelihood objective affects first order
methods significantly more than in other estimation problems. In particular, there exist mix-
tures of k Gaussians for which the EM algorithm requires Ω(ek) random initializations. This
GMM is even well separated. Unless there is significant progress on provable initializations
for EM, the result precludes a polynomial running time.
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2. Robustness in KL-divergence has significant disadvantages.4 For illustration, consider a sin-
gle outlier point that we move arbitrarily far from the true data points. In order to compensate
for the exponentially decaying tails of the Gaussian distribution, the maximum likelihood
estimate must assign an entire mixture component to this outlier, even in the case of two mix-
ture components with equal weights and unit variance. While such extreme outliers can often
be removed via pre-processing, the KL-robustness issue also manifests itself in much milder
noise scenarios. In Figure 1, we see how a small amount of probability mass near the tail of
one Gaussian can significantly reduce the solution quality of the EM algorithm.

Prior work in proper learning of GMMs has addressed the KL-robustness issue by focusing on
the L1-distance, see Daskalakis and Kamath (2014) and Acharya et al. (2014). The L1-distance
considers the absolute difference of probability densities, which makes it more robust to outliers
near the tails of the distribution. While these results establish good sample complexity bounds, the
computational methods are mainly information-theoretic. Due to the non-convexity of the problem,
the algorithms resort to a brute-force search over the parameter space. Concretely, the method yields
a time complexity of Õ( 1

ε3k−1 ) for a mixture of k univariate Gaussians. Note that this resembles the
prohibitive Ω(1/εk) lower bound for parameter learning a GMM and is much larger than the sample
complexity O(k/ε2). This discrepancy has been raised as an open problem by Moitra (2014) and
Diakonikolas (2016). It stands in contrast to parameter learning and density estimation of GMMs,
where we have essentially tight upper and lower bounds in the univariate case.

Density estimation also offers robust learning guarantees. However, known results for density
estimation of GMMs produce less natural hypotheses such as kernel density estimates or piece-
wise polynomials, see Devroye and Lugosi (2001) and Acharya et al. (2017). Compared to proper
learning, density estimation methods lack the concise, interpretable, and easy to manipulate repre-
sentation that a GMM offers. Moreover, density estimation with weaker shape constraints such as
log-concavity becomes less tractable as the dimensionality increases. Kim and Samworth (2016)
show that estimating a log-concave density in d dimensions requires at least Ωd(1/ε

(d+1)/2) sam-
ples.5 The restriction to a parametric model such as GMMs allows significantly better sample
complexity in high dimensions.

1.2. Our contributions

We give a family of new algorithms for proper learning of GMMs. As we describe below, the
time complexity of our algorithms significantly improves over prior work while maintaining (or
improving) its sample complexity and robustness guarantees.

1.2.1. UNIVARIATE CASE

We make significant progress on the aforementioned open problem in the univariate setting. The
univariate case has also been studied by Daskalakis and Kamath (2014). Moreover, many algorithms
for learning high-dimensional GMMs rely on reductions to one dimension, see Kalai et al. (2010);
Moitra and Valiant (2010); Hardt and Price (2015). Hence it is important to understand this case

4. In addition to the robustness issue outlined here, it is also possible to achieve an infinitely large likelihood. We assign
a mixture component to a single data point and then reduce the variance of this component to 0. While this behavior
is a nuisance, there are practical methods for guarding against degenerate solutions.

5. This exponential dependence is close to tight, see Diakonikolas et al. (2016d).
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in greater detail. Later we will show how our univariate techniques are useful in the multivariate
setting.

We prove that an exponential dependence between 1
ε and k can be avoided. Our algorithm runs

in time which is nearly-optimal for any fixed k, i.e. nearly-linear in the optimal number of samples.
Assuming a small value of k is a natural regime for proper learning of GMMs where we want to
summarize a large number of samples (large 1/ε) with a small but non-trivial number of Gaussian
mixture components. Formally, we obtain the following result:

Theorem 1 Let f be the pdf of an arbitrary unknown distribution, let k be a positive integer, and
let ε > 0. Let OPTk = minM‖f−M‖1 whereM ranges over all k-GMMs. Then there is an algo-
rithm that draws Õ( k

ε2
) samples from the unknown distribution and with high probability produces

a mixture of k Gaussians such that the corresponding pdf ĥ satisfies ‖f − ĥ‖1 ≤ O(OPTk) + ε.

Moreover, the algorithm runs in time
(
k · log 1

ε

)O(k4)
+ Õ

(
k
ε2

)
.

We give a semi-agnostic guarantee: if there is GMM that is OPTk-close, we return a solution
that is O(OPTk) + ε close. This is a deviation from classical notions in supervised PAC learning as
considered by Kearns et al. (1994). There, the goal usually is to output a solution which is OPTk+ε
close, i.e., the constant in front of OPTk is 1. However, such a guarantee is typically impossible in
distribution learning, e.g., see Chan et al. (2013). Hence the semi-agnostic guarantee is the natural
adaptation for our setting.

We remark that we neither optimized the exponent O(k4), nor the constant in front of OPTk.
Instead, we see our result as a proof of concept that it is possible to (semi-)agnostically and properly
learn a mixture of Gaussians in time that is essentially fixed-parameter optimal. This is in contrast
to the best prior results that required Ω(1/εk) time.

We achieve this improvement by restricting the non-convex difficulties to a low-dimensional
space. In a nutshell, we reduce the problem size to roughly log 1/ε in a highly non-linear manner.
We then invoke algorithms for systems of polynomial inequalities in this smaller problem domain.
Solving such polynomial optimization problems is highly expensive, so it is crucial that the size
of our polynomial system depends only logarithmically on the number of samples. Avoiding a
brute-force search in the original space via this exponential “dimensionality reduction” is a main
contribution of our work. As we describe in more detail below, this step relies on recent results in
density estimation and approximation theory for mixtures of Gaussians.

In addition to the results for GMMs, our techniques offer a general scheme for converting im-
proper learning algorithms to proper algorithms. Our approach applies to any parametric family
of distributions that are well approximated by a piecewise polynomial. As a result, we can convert
purely approximation-theoretic results into proper learning algorithms for other classes of distribu-
tions such as mixtures of Laplace or exponential distributions.

1.2.2. MULTIVARIATE CASE

Next, we apply our univariate algorithm to the multivariate setting. Here, it gives the best known
results for properly learning a mixture of two spherical Gaussians with common covariance and
weights. The specific case of 2-GMMs has been the subject of several recent works, see Kalai
et al. (2010); Daskalakis and Kamath (2014); Balakrishnan et al. (2014); Hardt and Price (2015);
Daskalakis et al. (2016); Ji Xu (2016). Similarly, mixtures with shared spherical covariance have
been studied previously by Anderson et al. (2014); Acharya et al. (2014); Balakrishnan et al. (2014);
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Daskalakis et al. (2016); Ji Xu (2016). The papers of Balakrishnan et al. (2014); Daskalakis et al.
(2016); Ji Xu (2016) also consider the setting of equal weights.

Theorem 2 Let M be a 2-GMM in d dimensions with common spherical covariance matrix and
weights. Then there is an algorithm that draws Õ( d

ε6
) samples from M and with high probability

produces a 2-GMM M̂ such that ‖M − M̂‖1 ≤ ε. The algorithm runs in time Õ( d2

ε7.5
).

The previous best time complexity for our setting is Õ(d
3

ε8
), which was establied by Acharya et al.

(2014). Our time complexity improves over this result. In particular, our dependence on the dimen-
sion d is optimal up to logarithmic factors because Ω(d) samples (each of which is d-dimensional)
are necessary for proper learning in d dimensions; see Acharya et al. (2014).

For simplicity, we have stated our multivariate guarantee in the non-agnostic setting. Building
on the results of Diakonikolas et al. (2016a), we can also extend our techniques to the agnostic
setting (see Section 10.2).

Conditional results. We propose a plausible (and purely structural) conjecture about projections
of Gaussian mixtures. Under this conjecture, our algorithm directly extends to the case of multivari-
ate k-GMMs and separates the exponential dependence between 1

ε and k also in higher dimensions.
For a Gaussian mixtureMθ and a unit vector u, we denote the projection ofM onto u withMθ·u,
i.e., we transform each Gaussian componentN (µ, σ2I) to the univariateN (〈µ,u〉, σ2). Formally,
we propose the following conjecture:

Conjecture 1 There exists a set of directions N ⊂ Rk with cardinality |N | depending only on k
such that the following holds for any two spherical k-GMMs Mθ1 and Mθ2 in k dimensions: if
‖Mθ1·u−Mθ2·u‖1 ≤ ε for all u ∈ N , then ‖Mθ1 −Mθ2‖1 ≤ ck · ε, where ck depends only on k.

This conjecture essentially states that L1-closeness in a sufficient number of directions implies
L1-closeness in the entire k-dimensional space. As long as |N | and ck depend only on k , our
algorithm naturally generalizes to properly learning multivariate Gaussians and achieves a running
time of Õ(d

2

ε5
) and sample complexity of Õ( d

ε4
) for any fixed k. An exponential dependence on k is

sufficient for these bounds. We conjecture that GMMs satisfy this property due to the smoothness
of the Gaussian pdf and give numerical evidence in 3 to 5 dimensions. Our result for two mixture
components (Theorem 2) is essentially based on a proof of Conjecture 1 for the case k = 2.

1.2.3. A STEP TOWARDS PRACTICE.

While our approach gives new theoretical guarantees, it relies on sophisticated tools for optimiz-
ing systems of polynomial inequalities. Unfortunately, these tools are impractical for non-trivial
problem sizes. To overcome this hurdle, we propose a variant of our algorithm that only involves
systems of polynomial inequalities without quantifiers. The algorithm achieves a somewhat weaker
learning guarantee, but the resulting running time has only a (k ·log 1/ε)O(k) term, as opposed to the
O(k4) exponent of our algorithm for learning under the L1-norm. This modification brings our al-
gorithm within reach of modern computer algebra systems. We have implemented our algorithm in
Mathematica and investigated its empirical performance for learning a 2-GMM. In the non-agnostic
setting, the empirical sample complexity of our algorithm is competitive with the widely-used Ex-
pectation Maximization (EM) algorithm. As soon as the 2-GMM is perturbed with a small amount
of noise, our estimator demonstrates significantly better learning accuracy (see Figure 1).
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Figure 1: Left plot: empirical sample complexity for learning a 2-GMM in the non-agnostic / noise-
less and agnostic / noisy setting. Our algorithm is competitive with Expectation Maxi-
mization (EM) in the noiseless case and significantly better when the 2-GMM is perturbed
with a small amount of noise (the total noise probability mass is 0.05). Right plot: output
of a representative run for our algorithm and the EM algorithm. The green line is the
density from which samples are drawn. The slightly heavier left tail significantly affects
the accuracy of EM, while our estimator closely matches the true distribution.

We emphasize that our implementation is only a prototype to study the statistical behavior of
our polynomial programs. There are many approaches for improving the empirical running time
of our algorithm. Experiments with different solution heuristics in Mathematica indicate that local
search methods should perform well when solving our systems of polynomial inequalities. The
L2-formulation enables us to run gradient descent with the density approximation objective instead
of the likelihood objective of the EM algorithm. Moreover, we can apply gradient descent to a
piecewise polynomial approximation that is significantly smaller than the number of samples. Due
to the length of the current paper, we defer a more thorough experimental evaluation with several
mixture components and multiple dimensions to future work.

On the theoretical side, we prove the following result about our simplified system of polynomial
inequalities.

Theorem 3 Let f be the unknown pdf, and let θ be so that ‖f −Mθ‖1 = OPTk. Let pdens be
supported on [−1, 1] so that ‖pdens −Mθ‖1 < O (OPTk + ε) and supx∈R |pdens(x)−Mθ(x)| ≤
O (OPTk + ξ). Finally, let τ2

max = maxki=1 τ
2
i , where τ1, . . . , τk are the precisions for the compo-

nents ofMθ. Then there is an algorithm that outputs a k-GMMM
θ̂

so that with probability 1− δ,
we have

‖f −M
θ̂
‖1 ≤ O

(√
(OPTk + ε)(OPTk + τmaxε+ ξ) + OPTk + ε

)
.

Moreover, the algorithms runs in time Õ
(
k+log 1/δ

ε2

)
+ (k log 1/ε)O(k).
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When τmax and ξ are both reasonable (i.e., τmax = O(1) and ξ = O(ε)), the error guarantee
simplifies to ‖f −M

θ̂
‖1 ≤ O(OPTk) + ε, which matches our algorithm for the univariate case in

Theorem 1.

1.3. Techniques

At its core, our univariate algorithm fits a mixture of Gaussians to a density estimate. We first invoke
the algorithm of Acharya et al. (2017) to obtain an “improper” but ε-accurate and agnostic density
estimate. The time and sample complexity of this step is Õ( k

ε2
). The resulting density estimate

has the form of a piecewise polynomial with O(k) pieces, each of which has degree O(log 1
ε ). Our

algorithm does not draw any further samples after obtaining the density estimate. The process of
fitting a mixture of univariate Gaussians is entirely deterministic.

Once we have obtained a good density estimate, we need to approximate it with a mixture of k
Gaussians. We reduce this problem to solving a system of polynomial inequalities, for which we
employ Renegar’s algorithm Renegar (1992a,b). For the univariate case, this reduction to a system
of polynomial inequalities is our main technical contribution and relies on the following techniques.

Shape-restricted polynomials. Directly fitting a mixture of Gaussians to the density estimate is
challenging because the Gaussian pdf is not convex in the mean and variance parameters. Instead,
we utilize shape restricted polynomials. We say that a polynomial is shape restricted if its coeffi-
cients are in a given semialgebraic set, i.e., a set defined by a finite number of polynomial equalities
and inequalities. It is well-known in approximation theory that a single Gaussian can be approxi-
mated by a piecewise polynomial consisting of three pieces with degree at most O(log 1

ε ), e.g., see
Timan (1963). So instead of fitting a mixture of k Gaussian, we fit a mixture of k shape-restricted
piecewise polynomials. By encoding that the shape-restricted polynomials must be close to Gaus-
sian pdfs, we ensure that the resulting mixture of shape-restricted piecewise polynomials is close
to a true mixture of k-Gaussians. After solving the system of polynomial inequalities, it is easy to
convert the shape-restricted polynomials back to a proper GMM.

AK-distance. In our final guarantee for proper learning, we are interested in an approximation
in the L1-norm. However, directly encoding the L1-norm in the system of polynomial inequalities
requires knowledge of the intersections between the density estimate and the mixture of piecewise
polynomials (this is necessary to compute the integral of their difference). Since our shape-restricted
polynomials can have up to k · log 1

ε crossings, directly using the L1-norm would lead to an expo-
nential dependence on log 1

ε in our system of polynomial inequalities. Instead, we minimize the
closely relatedAK-norm from VC (Vapnik–Chervonenkis) theory, see Devroye and Lugosi (2001).
For functions with at most K − 1 sign changes, the AK-norm exactly matches the L1-norm. Since
two k-GMMs have at most O(k) intersections, we can replace the L1-norm with the AK-norm for
K = O(k). In contrast to the L1-norm, we can encode the AK-norm with a significantly smaller
system of polynomial inequalities.

Adaptively rescaling the density estimate. In order to fit a GMM with Renegar’s algorithm, we
have to solve our system of polynomial inequalities to sufficiently high accuracy. While Renegar’s
algorithm has a good dependence on the accuracy parameter, our goal is to give an algorithm for
proper learning without any assumptions on the GMM. We overcome this technical challenge by
adaptively rescaling the parametrization used in our system of polynomial inequalities based on the
lengths of the intervals that define the piecewise polynomial density estimate pdens. Since pdens

8
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can only be large on short intervals, the best Gaussian fit to pdens can only have large parameters
near such intervals. This allows us to identify where we require more accuracy when computing the
mixture parameters.

Reducing multivariate to univariate. The time complexity of our approach based on systems
of polynomial inequalities is inherently exponential in the number of GMM parameters. Since the
component means are now d-dimensional, naively applying our univariate scheme would yield a
running time exponential in d, even if a d-dimensional density estimate was available. Moreover,
there are no known algorithms that improperly learn a GMM in d dimensions for d > 1. So there
is no natural “reference density” for the system of polynomial inequalities. Our algorithm for the
multivariate case overcomes these challenges via two reductions.

First, we reduce the d-dimensional learning problem to a k-dimensional problem by finding
a subspace close to the subspace spanned by the true component means. This approach has been
employed in prior work Acharya et al. (2014), but we simplify the algorithm and improve its running
time. In particular, we build on Musco and Musco (2015) and show that it suffices to find an
approximate PCA of the covariance matrix.

Second (now for k = 2), we reduce the 2-dimensional problem to simultaneously satisfying a
set of 1-dimensional contraints. We use a constant-size net in the 2-dimensional space and produce
a density estimate for each direction in the net. Then we construct a single system of polynomial
inequalities that enforces closeness in all directions of the net. This reduction relies on a structural
result about projections of GMMs, showing that univariate L1-closeness in each direction of the net
implies L1-closeness of the resulting GMM in all of Rd.

1.4. Related work

Due to space constraints, it is impossible to summarize the entire body of work on learning GMMs
here. Therefore, we limit our attention to the notions of learning outlined in Subsection 1.1. This is
only one part of the picture: as mentioned above, the well-known Expectation-Maximization (EM)
algorithm is still the subject of current research, e.g., Balakrishnan et al. (2014); Daskalakis et al.
(2016); Ji Xu (2016); Jin et al. (2016).

For parameter learning, the seminal work of Dasgupta Dasgupta (1999) started a long line of
research in the theoretical computer science community, e.g., Arora and Kannan (2001); Vempala
and Wang (2004); Achlioptas and McSherry (2005); Kannan et al. (2008); Brubaker and Vempala
(2008); Brubaker (2009); Kalai et al. (2010); Moitra and Valiant (2010). We refer the reader to
Moitra and Valiant (2010) for a discussion of these and related results. Moitra and Valiant (2010)
and Belkin and Sinha (2010) were the first to give algorithms that are polynomial in ε and the
dimension of the mixture while requiring only minimal assumptions on the GMMs. More recently,
Hardt and Price (2015) gave tight bounds for learning the parameters of a mixture of two univariate
Gaussians: Θ( 1

ε12
) samples are necessary and sufficient, and the time complexity is linear in the

number of samples. Moreover, Hardt and Price give a strong lower bound of Ω( 1
ε6k−2 ) for the

sample complexity of parameter learning a k-GMM. While our proper learning algorithm offers
a weaker guarantee than these parameter learning approaches, our time and sample complexity
avoids the exponential dependence between 1

ε and k. See Subsection 1.1 for a discussion regarding
parameter and proper learning.

Interestingly, parameter learning becomes more tractable as the number of dimensions increases.
A recent line of work investigates this phenomenon under a variety of non-degeneracy assumptions
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(e.g., a full-rank matrix of means or smoothed analysis) Hsu and Kakade (2013); Bhaskara et al.
(2014); Anderson et al. (2014); Ge et al. (2015). These algorithms require a lower bound on the
dimension d such as d ≥ Ω(k) or d ≥ Ω(k2). Consequently they are not comparable with our result
for univariate GMMs. In the multivariate setting, the work closest to ours is Hsu and Kakade (2013),
which studies parameter learning of spherical Gaussians with a dependence on the condition number
of the component means. For the k = 2 case considered in our Theorem 2, the non-degeneracy
assumption of Hsu and Kakade (2013) precludes configurations such as two component means on a
line. In contrast, our algorithm succeeds for any configuration of the component means and its time
and sample complexities do not depend on a condition number.

Proper learning of k-GMMs without separation assumptions was first considered by Feldman
et al. (2006), building on work for properly learning mixtures of discrete product distributions in
Feldman et al. (2008); Freund and Mansour (1999). For fixed k, their algorithm takes poly(d, 1

ε , L)
samples and returns a mixture whose KL-divergence to the unknown mixture is at most ε. However,
their algorithm has a pseudo-polynomial dependence on L, which is a bound on the means and
variances of the underlying components. Such an assumption is not necessary a priori, and our
algorithm works without similar requirements. Moreover, their sample and time complexities have
an exponential dependence between 1

ε and k.
The work closest to ours are the papers Daskalakis and Kamath (2014) and Acharya et al.

(2014), who also consider the problem of properly learning a k-GMM. Their algorithms are based
on constructing a set of candidate GMMs that are then compared via an improved version of the
Scheffé-estimate. While this approach leads to a nearly-optimal sample complexity of Õ( k

ε2
), their

algorithm constructs an exponentially large number of candidate hypothesis. This leads to a time
complexity of O( 1

ε3k−1 ). As pointed out in Subsection 1.2, our algorithm significantly improves the
dependence between 1

ε and k.
Recent work of Diakonikolas et al. (2016a) gives new agnostic algorithms for learning high-

dimensional spherical GMMs. Our robust high-dimensional algorithm builds upon this work. How-
ever, their algorithm ultimately resorts to a brute force search over k dimensions and therefore still
runs in time O( 1

ε3k−1 ). Our main contribution in the high-dimensional setting is to propose a new
algorithmic framework that avoids this brute force search.

Diakonikolas et al. (2016c) provide lower bounds for learning high-dimensional GMMs with
statistical query (SQ) algorithms. Their lower bound has an exponential dependence between the
dimension d and k, but relies on highly non-spherical Gaussians. Hence their results do not apply
to our setting where we study spherical GMMs.

Another related paper is Bhaskara et al. (2015). Their approach reduces the GMM learning
problem to finding a sparse solution to a non-negative linear system. Conceptually, this approach is
somewhat similar to ours in that they also fit a mixture of Gaussians to a set of density estimates.
However, their algorithm does not give a proper learning guarantee: instead of k mixture compo-
nents, the GMM returned by their algorithm contains O( k

ε3
) components. Note that this number of

components is significantly larger than the k components returned by our algorithm and increases
as the accuracy paramter ε improves. In the univariate case, the time and sample complexity of their
algorithm is O( k

ε6
). Hence their sample complexity is not optimal and roughly 1

ε4
worse than our

approach. For any fixed k, our running time is also better by roughly 1
ε4

. In the multivariate setting,
both their time and sample complexity is roughly O((kd

ε3
)d), which is exponential in the dimension

d.
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There is a recent line of work on density estimation of structured distributions including GMMs,
see Chan et al. (2013, 2014); Acharya et al. (2017). While Acharya et al. (2017) achieves a nearly-
optimal time and sample complexity for univariate density estimation of k-GMMs, the hypothesis
produced by their algorithm is still a piecewise polynomial. As mentioned in Subsection 1.1, proper
learning has multiple advantages over density estimation.

In the context of learning Poisson binomial distributions, subsequent work of Diakonikolas et al.
(2016b) has independently used systems of polynomial inequalities for proper learning.6

1.5. Outline of our paper

Our paper is divided into three parts.

Univariate algorithm. The first part (Sections 2 to 4) addresses the univariate case, for which
we give a proper learning algorithm that is nearly optimal for any fixed number of compo-
nents. In Section 2, we introduce basic notation and important known results that we utilize
in our algorithm. Section 3 describes our univariate learning algorithm for the special case
of well-behaved density estimates. This assumption allows us to introduce two of our main
tools (shape-restricted polynomials and the AK-distance as a proxy for L1) without the tech-
nical details of adaptively reparametrizing the shape-restricted polynomials. Section 4 then
removes this assumption and gives an algorithm that works for agnostically learning any mix-
ture of univariate Gaussians. We also show how our techniques can be extended to properly
learn further classes of univariate distributions.

Multivariate algorithm. The second part (Sections 5 to 11) extends our univariate algorithm to
proper learning of multivariate Gaussian mixtures. In Section 5, we introduce additional pre-
liminaries for the multivariate setting and formally define our multivariate algorithm. Sections
6 to 9 establish the individual building blocks of our algorithm, which we then put together
in Section 10. Finally, Section 11 gives numerical evidence for our Conjecture 1.

Experimental algorithm. In the third part (Sections 12 and 13), we give a variant of our univariate
algorithm that avoids heavy machinery for systems of polynomial equalities with quantifiers.
Section 12 formally defines the algorithm and proves a slightly weaker learning guarantee.
We conclude this part with an experimental evaluation of our algorithm in Section 13.

6. To avoid confusion, we remark that the first version of our paper appeared on arXiv on 3 June 2015, see https:
//arxiv.org/abs/1506.01367.
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Problem type
Sample complexity

lower bound
Sample complexity

upper bound
Time complexity

upper bound

Parameter learning

k = 2
Θ( 1

ε12
)

Hardt and Price (2015)

O( 1
ε12

)

Hardt and Price (2015)

O( 1
ε12

)

Hardt and Price (2015)

general k
Ω( 1

ε6k−2 )

Hardt and Price (2015)

O((1
ε )
ck)

Moitra and Valiant (2010)

O((1
ε )
ck)

Moitra and Valiant (2010)

Proper learning

k = 2 Θ( 1
ε2

)
Õ( 1

ε2
)

Daskalakis and Kamath (2014)

Õ( 1
ε5

)

Daskalakis and Kamath (2014)

general k Θ( k
ε2

)
Õ( k

ε2
)

Acharya et al. (2014)

Õ( 1
ε3k−1 )

Daskalakis and Kamath (2014)
Acharya et al. (2014)

Our results

k = 2 Õ( 1
ε2

) Õ( 1
ε2

)

general k Õ( k
ε2

) (k log 1
ε
)O(k4) + Õ( k

ε2
)

Density estimation

general k Θ( k
ε2

)
Õ( k

ε2
)

Acharya et al. (2017)

Õ( k
ε2

)

Acharya et al. (2017)

Table 1: Overview of the best known results for learning a mixture of univariate Gaussians. Our
contributions (highlighted as bold) significantly improve on the previous results for proper
learning: the time complexity of our algorithm is nearly optimal for any fixed k. The
constant ck in the time and sample complexity of Moitra and Valiant (2010) depends only
on k and is at least k. The sample complexity lower bounds for proper learning and
density estimation are folklore results. The only time complexity lower bounds known are
the corresponding sample complexity lower bounds.
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2. Preliminaries

Before we construct our learning algorithm for GMMs, we introduce basic notation and the neces-
sary tools from density estimation, systems of polynomial inequalities, and approximation theory.

2.1. Basic notation and definitions

For a positive integer k, we write [k] for the set {1, . . . , k}. Let I = [α, β] be an interval. Then we
denote the length of I with |I| = β − α. For a measurable function f : R → R, the L1-norm of f
is ‖f‖1 =

∫
f(x) dx. All functions in this paper are measurable.

Since we work with systems of polynomial inequalities, it will be convenient for us to parametrize
the normal distribution with the precision, i.e., one over the standard deviation, instead of the vari-
ance. Thus, throughout the paper we let

Nµ,τ (x)
def
=

τ√
2π

e−τ
2(x−µ)2/2

denote the pdf of a normal distribution with mean µ and precision τ . A k-GMM is a distribution
with pdf of the form

∑k
i=1wi · Nµi,τi(x), where we call the wi mixing weights and require that the

wi satisfy wi ≥ 0 and
∑k

i=1wi = 1. Thus a k-GMM is parametrized by 3k parameters; namely,
the mixing weights, means, and precisions of each component.7 We let Θk = Sk × Rk × Rk+ be
the set of parameters, where Sk is the simplex in k dimensions. For each θ ∈ Θk, we identify it
canonically with θ = (w, µ, τ) where w, µ, and τ are each vectors of length k, and we let

Mθ(x) =

k∑
i=1

wi · Nµi,τi(x)

be the pdf of the k-GMM with parameters θ.

2.2. Important tools

We now turn our attention to results from prior work.

2.2.1. DENSITY ESTIMATION WITH PIECEWISE POLYNOMIALS

Our algorithm uses the following result about density estimation of k-GMMs as a subroutine.

Fact 4 (Acharya et al. (2017)) Let k ≥ 1, ε > 0 and δ > 0. There is an algorithm ESTIMATE-DENSITY(k, ε, δ)
that satisfies the following properties: the algorithm

• takes Õ((k + log(1/δ))/ε2) samples from the unknown distribution with pdf f ,

• runs in time Õ((k + log 1/δ)/ε2), and

• returns pdens, an O(k)-piecewise polynomial of degree O(log(1/ε)) such that

‖f − pdens‖1 ≤ 4 ·OPTk + ε

with probability at least 1− δ, where

OPTk = min
θ∈Θk
‖f −Mθ‖1 .

7. Note that there are only 3k − 1 degrees of freedom since the mixing weights must sum to 1.
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2.2.2. SYSTEMS OF POLYNOMIAL INEQUALITIES

In order to fit a k-GMM to the density estimate, we solve a carefully constructed system of polyno-
mial inequalities. Formally, a system of polynomial inequalities is an expression of the form

S = (Q1x
(1) ∈ Rn1) . . . (Qvx

(v) ∈ Rnv)P (y, x(1), . . . , x(v))

where

• the y = (y1 . . . , y`) are free variables,

• for all i ∈ [v], the quantifier Qi is either ∃ or ∀,

• P (y, x(1), . . . , x(v)) is a quantifier-free Boolean formula with m predicates of the form

gi(y, x
(1), . . . , x(v)) ∆i 0

where each gi is a real polynomial of degree d, and where the relations ∆i are of the form
∆i ∈ {>,≥,=, 6=,≤, <}. We call such predicates polynomial predicates.

We say that y ∈ R` is a λ-approximate solution for this system of polynomial inequalities if
there exists a y′ ∈ R` such that y′ satisfies the system and ‖y − y′‖2 ≤ λ. We use the following
result by Renegar as a black-box:

Fact 5 (Renegar (1992a,b)) Let 0 < λ < η and let S be a system of polynomial inequalities as de-
fined above. Then there is an algorithm SOLVE-POLY-SYSTEM(S, λ, η) that finds a λ-approximate
solution if there exists a solution y with ‖y‖2 ≤ η. If no such solution exists, the algorithm returns
“NO-SOLUTION”. In any case, the algorithm runs in time

(md)2O(v)`
∏
k nk log log

(
3 +

η

λ

)
.

2.2.3. SHAPE-RESTRICTED POLYNOMIALS

Instead of fitting Gaussian pdfs to our density estimate directly, we work with piecewise polynomials
as a proxy. Hence we need a good approximation of the Gaussian pdf with a piecewise polynomial.
In order to achieve this, we use three pieces: two flat pieces that are constant 0 for the tails of the
Gaussian, and a center piece that is given by the Taylor approximation.

Let let Td(x) be the degree-d Taylor series approximation toN around zero. It is straightforward
to show:

Lemma 6 Let ε,K > 0 and let Td(x) denote the degree-d Taylor expansion of the Gaussian pdf
N around 0. For d = 2K log(1/ε), we have∫ 2

√
log 1/ε

2
√

log 1/ε
|N (x)− Td(x)|dx ≤ O

(
εK
√

log(1/ε)
)
.

Definition 7 (Shape-restricted polynomials) Let K be such that∫ 2
√

log 1/ε

−2
√

log 1/ε
|N (x)− T2K log(1/ε)(x)|dx <

ε

4
.
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From Lemma 6 we know that such a K always exists. For any ε > 0, let P̃ε(x) denote the piecewise
polynomial function defined as follows:

P̃ε(x) =

{
T2K log(1/ε)(x) if x ∈ [−2

√
log(1/ε), 2

√
log(1/ε)]

0 otherwise
.

For any set of parameters θ ∈ Θk, let

Pε,θ(x) =

k∑
i=1

wi · τi · P̃ε(τi(x− µi)) .

It is important to note that Pε,θ(x) is a polynomial both as a function of θ and as a function of
x. This allows us to fit such shape-restricted polynomials with a system of polynomial inequalities.
Moreover, our shape-restricted polynomials are good approximations to GMMs. By construction,
we get the following result:

Lemma 8 Let θ ∈ Θk. Then ‖Mθ − Pε,θ‖1 ≤ ε.

Proof We have

‖Mθ − Pε,θ‖1 =

∫
|Mθ(x)− Pε,θ(x)|dx

(a)

≤
k∑
i=1

wi

∫
|τi · N (τi(x− µi))− τi · P̃ε(τi(x− µi))| dx

(b)

≤
k∑
i=1

wi · ‖N − P̃ε‖1

(c)

≤
k∑
i=1

wi · ε

≤ ε .

Here, (a) follows from the triangle inequality, (b) from a change of variables, and (c) from the defi-
nition of P̃ε.

2.2.4. AK -NORM AND INTERSECTIONS OF k-GMMS

In our system of polynomial inequalities, we must encode the constraint that the shape-restricted
polynomials are a good fit to the density estimate. For this, the following notion of distance between
two densities will become useful.

Definition 9 (AK-norm) Let IK denote the family of all sets ofK disjoint intervals I = {I1, . . . , IK}.
For any measurable function f : R→ R, we define the AK-norm of f to be

‖f‖AK
def
= sup
I∈IK

∑
I∈I

∣∣∣∣∫
I
f(x) dx

∣∣∣∣ .
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For functions with few zero-crossings, the AK-norm is close to the L1-norm. More formally, we
have the following properties, which are easy to check:

Lemma 10 Let f : R→ R be a real function. Then for any K ≥ 1, we have

‖f‖AK ≤ ‖f‖1 .

Moreover, if f is continuous and there are at most K − 1 distinct values x for which f(x) = 0, then

‖f‖AK = ‖f‖1 .

The second property makes the AK-norm useful for us because linear combinations of Gaussians
have few zeros.

Fact 11 (Kalai et al. (2010) Proposition 7) Let f be a linear combination of k Gaussian pdfs with
variances σ1, . . . , σk so that σi 6= σj for all i 6= j. Then there are at most 2(k − 1) distinct values
x such that f(x) = 0.

These facts give the following corollary.

Corollary 12 Let θ1, θ2 ∈ Θk and let K ≥ 4k. Then

‖Mθ1 −Mθ2‖AK = ‖Mθ1 −Mθ2‖1 .

Proof For any γ > 0, let θγ1 , θ
γ
2 be so that ‖θγi − θi‖∞ ≤ γ for i ∈ {1, 2}, and so that the vari-

ances of all the components in θγ1 , θ
γ
2 are all distinct. Lemma 10 and Fact 11 together imply that

‖Mθγ1
−Mθγ2

‖1 = ‖Mθγ1
−Mθγ2

‖AK . Letting γ → 0 the LHS tends to ‖Mθ1 −Mθ2‖AK , and the
RHS tends to ‖Mθ1−Mθ2‖1. So we get that ‖Mθ1−Mθ2‖AK = ‖Mθ1−Mθ2‖1, as claimed.

3. Proper learning in the well-behaved case

In this section, we focus on properly learning a mixture of k Gaussians under the assumption that
we have a “well-behaved” density estimate. We study this case first in order to illustrate our use
of shape-restricted polynomials and the AK-norm. Intuitively, our notion of “well-behavedness”
requires that there is a good GMM fit to the density estimate such that the mixture components
and the overall mixture distribution live at roughly the same scale. Algorithmically, this allows us
to solve our system of polynomial inequalities with sufficient accuracy. In Section 4, we remove
this assumption and give another algorithm that works for all univariate mixtures of Gaussians and
requires no special assumptions on the density estimation algorithm. However, the full algorithm is
somewhat more complicated. So for the sake of exposition, the current section is a warm-up and
describes the simpler algorithm that works when the density estimate is well-behaved.

3.1. Overview of the Algorithm

The first step of our algorithm is to learn a good piecewise-polynomial approximation pdens for
the unknown density f . We achieve this by invoking recent work on density estimation Acharya
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et al. (2017). Once we have obtained a good density estimate, it suffices to solve the following
optimization problem:

min
θ∈Θk

‖pdens −Mθ‖1 .

Instead of directly fitting a mixture of Gaussians, we use a mixture of shape-restricted piecewise
polynomials as a proxy and solve

min
θ∈Θk
‖pdens − Pε,θ‖1 .

Now all parts of the optimization problem are piecewise polynomials. However, we will see that we
cannot directly work with the L1-norm without increasing the size of the corresponding system of
polynomial inequalities substantially. Hence we work with the AK-norm instead and solve

min
θ∈Θk
‖pdens − Pε,θ‖AK .

We approach this problem by converting it to a system of polynomial inequalities with

1. O(k) free variables: one per component weight, mean, and precision,

2. Two levels of quantification: one for the intervals of theAK-norm, and one for the breakpoints
of the shape-restricted polynomial. Each level quantifies over O(k) variables.

3. A Boolean expression on polynomials with kO(k) many constraints.

Finally, we use Renegar’s algorithm to approximately solve our system in time (k log 1/ε)O(k4).
Because we only have to consider the well-behaved case, we know that finding a polynomially good
approximation to the parameters will yield a sufficiently close approximation to the true underlying
distribution.

3.2. Density estimation, rescaling, and well-behavedness

Density estimation As the first step of our algorithm, we obtain an agnostic estimate of the un-
known probability density f . For this, we run the density estimation subroutine ESTIMATE-DENSITY(k, ε, δ)
from Fact 4. Let p′dens be the resulting O(k)-piecewise polynomial. In the following, we condition
on the event that

‖f − p′dens‖1 ≤ 4 ·OPTk + ε .

which occurs with probability 1− δ.

Rescaling Since we can solve systems of polynomial inequalities only with bounded precision,
we have to post-process the density estimate. For example, it could be the case that some mixture
components have extremely large mean parameters µi, in which case accurately approximating
these parameters could take an arbitrary amount of time. Therefore, we shift and rescale p′dens so
that its non-zero part is in [−1, 1] (note that pdens can only have finite support because it consists of
a bounded number of pieces).

Let pdens be the scaled and shifted piecewise polynomial. Since the L1-norm is invariant under
shifting and scaling, it suffices to solve the following problem

min
θ∈Θk

‖pdens −Mθ‖1 .
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Once we have solved this problem and found a corresponding θ with

‖pdens −Mθ‖1 ≤ C

for some C ≥ 0, we can undo the transformation applied to the density estimate and get a θ′ ∈ Θk

such that
‖p′dens −Mθ′‖1 ≤ C .

Well-behavedness While rescaling the density estimate p′dens to the interval [−1, 1] controls the
size of the mean parameters µi, the precision parameters τi can still be arbitrarily large. Note that
for a mixture component with very large precision, we also have to approximate the corresponding
µi very accurately. For clarity of presentation, we ignore this issue in this section and assume that
the density estimate is well-behaved. This assumption allows us to control the accuracy in Renegar’s
algorithm appropriately. We revisit this point in Section 4 and show how to overcome this limitation.
Formally, we introduce the following assumption:

Definition 13 (Well-behaved density estimate) Let p′dens be a density estimate and let pdens be the
rescaled version that is supported on the interval [−1, 1] only. Then we say pdens is γ-well-behaved
if there is a set of GMM parameters θ ∈ Θk such that

‖pdens −Mθ‖1 = min
θ∗∈Θk

‖pdens −Mθ∗‖1

and τi ≤ γ for all i ∈ [k].

The well-behaved case is interesting in its own right because components with very high preci-
sion parameter, i.e., very spiky Gaussians, can often be learnt by clustering the samples.8 Moreover,
the well-behaved case illustrates our use of shape-restricted polynomials and theAK-distance with-
out additional technical difficulties.

3.3. The AK-norm as a proxy for the L1-norm

Computing the L1-distance between the density estimate pdens and our shape-restricted polynomial
approximation Pε,θ exactly requires knowledge of the zeros of the piecewise polynomial pdens−Pε,θ.
In a system of polynomial inequalities, these zeros can be encoded by introducing auxiliary vari-
ables. However, note that we cannot simply introduce one variable per zero-crossing without affect-
ing the running time significantly: since the polynomials have degreeO(log 1/ε), this would lead to
O(k log 1/ε) variables, and hence the running time of Renegar’s algorithm would depend exponen-
tially on O(log 1/ε). Such an exponential dependence on log(1/ε) means that the running time of
solving the system of polynomial inequalities becomes super-polynomial in 1

ε , while our goal was
to avoid any polynomial dependence on 1

ε when solving the system of polynomial inequalities.
Instead, we use the AK-norm as an approximation of the L1-norm. Since both Pε,θ and pdens

are close to mixtures of k Gaussians, their difference only has O(k) zero crossings that contribute
significantly to the L1-norm. More formally, we should have ‖pdens − Pε,θ‖1 ≈ ‖pdens − Pε,θ‖AK .
And indeed:

8. However, very spiky Gaussians can still be very close, which makes this approach challenging in some cases – see
Section 4 for details.
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Lemma 14 Let ε > 0, k ≥ 2, θ ∈ Θk, and K = 4k. Then we have

0 ≤ ‖pdens − Pε,θ‖1 − ‖pdens − Pε,θ‖AK ≤ 8 ·OPTk +O(ε) .

Proof Recall Lemma 10: for any function f , we have ‖f‖AK ≤ ‖f‖1. Thus, we know that ‖pdens−
Pε,θ‖AK ≤ ‖pdens − Pε,θ‖1. Hence, it suffices to show that ‖pdens − Pε,θ‖1 ≤ 8 ·OPTk +O(ε) +
‖pdens − Pε,θ‖AK .

We have conditioned on the event that the density estimation algorithm succeeds. So from Fact
4, we know that there is some mixture of k Gaussians Mθ′ so that ‖pdens−Mθ′‖1 ≤ 4 ·OPTk + ε.
By repeated applications of the triangle inequality and Corollary 12, we get

‖pdens − Pε,θ‖1 ≤ ‖pdens −Mθ′‖1 + ‖Mθ′ −Mθ‖1 + ‖Pε,θ −Mθ‖1
≤ 4 ·OPT + ε+ ‖Mθ′ −Mθ‖AK + ε

≤ 4 ·OPT + 2ε+ ‖Mθ′ − pdens‖AK + ‖pdens − Pε,θ‖AK + ‖Pε,θ −Mθ‖AK
≤ 4 ·OPT + 2ε+ ‖Mθ′ − pdens‖1 + ‖pdens − Pε,θ‖AK + ‖Pε,θ −Mθ‖1
≤ 8 ·OPT + 4ε+ ‖pdens − Pε,θ‖AK ,

as claimed.

Using this connection between the AK-norm and the L1-norm, we can focus our attention on
the following problem:

min
θ∈Θk

‖pdens − Pε,θ‖AK .

As mentioned above, this problem is simpler from a computational perspective because we only
have to introduce O(k) variables into the system of polynomial inequalities, regardless of the value
of ε.

When encoding the above minimization problem in a system of polynomial inequalities, we
convert it to a sequence of feasibility problems. In particular, we solve O(log(1/ε)) feasibility
problems of the form

Find θ ∈ Θk s.t. ‖pdens − Pε,θ‖AK < ν . (1)

Next, we show how to encode such an AK-constraint in a system of polynomial inequalities.

3.4. A system of polynomial inequalities for encoding closeness in AK-norm

In this section, we give a general construction for the AK-distance between any fixed piecewise
polynomial (in particular, the density estimate) and any piecewise polynomial we optimize over
(in particular, our shape-restricted polynomials which we wish to fit to the density estimate). The
only restriction we require is that we already have variables for the breakpoints of the piecewise
polynomial we optimize over. As long as these breakpoints depend only polynomially or rationally
on the parameters of the shape-restricted piecewise polynomial, this is easy to achieve. Presenting
our construction of the AK-constraints in this generality makes it easy to adapt our techniques to
the general algorithm (without the well-behavedness assumption, see Section 4) and to new classes
of distributions (see Section 4.5).
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The setup in this section will be as follows. Let p be a given, fixed piecewise polynomial
supported on [−1, 1] with breakpoints c1, . . . , cr. Let P be a set of piecewise polynomials so that
for all θ ∈ S ⊆ Ru for some fixed, known S, there is a Pθ(x) ∈ P with breakpoints d1(θ), . . . , ds(θ)
such that

• S is a semi-algebraic set.9 Moreover, assume membership in S can be stated as a Boolean
formula over R polynomial predicates, each of degree at most D1, for some R,D1.

• For all 1 ≤ i ≤ s, there is a polynomial hi so that hi(di(θ), θ) = 0, and moreover, for
all θ, we have that di(θ) is the unique real number y satisfying hi(y, θ) = 0. That is, the
breakpoints of Pθ can be encoded as polynomial equality in the θ’s. Let D2 be the maximum
degree of any hi.

• The function (x, θ) 7→ Pθ(x) is a polynomial in x and θ as long as x is not at a breakpoint of
Pθ. Let D3 be the maximum degree of this polynomial.

Let D = max(D1, D2, D3).
Our goal then is to encode the following problem as a system of polynomial inequalities:

Find θ ∈ S s.t. ‖p− Pθ‖AK < ν . (2)

In Section 3.5, we show that this is indeed a generalization of the problem in Equation (1), for
suitable choices of S and P .

In the following, let pdiff
θ

def
= p− Pθ. Note that pdiff

θ is a piecewise polynomial with breakpoints
contained in {c1, . . . cr, d1(θ), . . . , ds(θ)}. In order to encode the AK-constraint, we use the fact
that a system of polynomial inequalities can contain for-all quantifiers. Hence it suffices to encode
the AK-constraint for a single set of K intervals. We provide a construction for a single AK-
constraint in Section 3.4.1. In Section 3.4.2, we introduce two further constraints that guarantee
validity of the parameters θ and combine these constraints with the AK-constraint to produce the
full system of polynomial inequalities.

3.4.1. ENCODING CLOSENESS FOR A FIXED SET OF INTERVALS

Let [a1, b1], . . . , [aK , bK ] be K disjoint intervals. In this section we show how to encode the fol-
lowing constraint:

K∑
i=1

∣∣∣∣∫ bi

ai

pdiff
θ (x) dx

∣∣∣∣ ≤ ν .

Note that a given interval [ai, bi] might contain several pieces of pdiff
θ . In order to encode the integral

over [ai, bi] correctly, we must therefore know the current order of the breakpoints (which can
depend on θ).

However, once the order of the breakpoints of pdiff
θ and the ai and bi is fixed, the integral over

[ai, bi] becomes the integral over a fixed set of sub-intervals. Since the integral over a single poly-
nomial piece is still a polynomial, we can then encode this integral over [ai, bi] piece-by-piece.

More formally, let Φ be the set of permutations of the variables

{a1, . . . , aK , b1, . . . , bK , c1, . . . , cr, d1(θ), . . . , ds(θ)}

9. Recall a semi-algebraic set is a set where membership in the set can be described by polynomial inequalities.

20



ROBUST AND PROPER LEARNING FOR MIXTURES OF GAUSSIANSVIA SYSTEMS OF POLYNOMIAL INEQUALITIES

such that (i) the ai appear in order, (ii) the bi appear in order, (iii) ai appears before bi, and (iv) the
ci appear in order. Let t = 2K + r + s. For any φ = (φ1, . . . , φt) ∈ Φ, let

orderedp,P(φ)
def
=

t−1∧
i=1

(φi ≤ φi+1) .

Note that for any fixed φ, this is an unquantified Boolean formula with polynomial constraints in the
unknown variables. The order constraints encode whether the current set of variables corresponds
to ordered variables under the permutation represented by φ. An important property of an ordered
φ is the following: in each interval [φi, φi+1], the piecewise polynomial pdiff

θ has exactly one piece.
This allows us to integrate over pdiff

θ in our system of polynomial inequalities.
Next, we need to encode whether a fixed interval between φi and φi+1 is contained in one of the

AK-intervals, i.e., whether we have to integrate pdiff
θ over the interval [φi, φi+1] when we compute

the AK-norm of pdiff
θ . We use the following expression:

is-activep,P(φ, i)
def
=

1
if there is a j such that aj appears as or before φi in φ

and bj appears as or after φi+1

0 otherwise
.

Note that for fixed φ and i, this expression is either 0 or 1 (and hence trivially a polynomial).
With the constructs introduced above, we can now integrate pdiff

θ over an interval [φi, φi+1]. It
remains to bound the absolute value of the integral for each individual piece. For this, we introduce
a set of t new variables ξ1, . . . , ξt which will correspond to the absolute value of the integral in the
corresponding piece.

AK-bounded-intervalp,P(φ, θ, ξ, i)
def
=

((
−ξi ≤

∫ φi+1

φi

pdiff
θ (x) dx

)
∧
(∫ φi+1

φi

pdiff
θ (x) dx ≤ ξi

))
∨ (is-activep,P(φ, i) = 0) .

Note that the above is a valid polynomial constraint because pdiff
θ depends only on θ and x for

fixed breakpoint order φ and fixed interval [φi, φi+1]. Moreover, recall that by assumption, Pε,θ(x)
depends polynomially on both θ and x, and therefore the same holds for pdiff

θ .
We extend the AK-check for a single interval to the entire range of pdiff

θ as follows:

AK-bounded-fixed-permutationp,P(φ, θ, ξ)
def
=

t−1∧
i=1

AK-bounded-intervalp,P(φ, θ, ξ, i) .

We now have all the tools to encode the AK-constraint for a fixed set of intervals:

AK-boundedp,P(θ, ν, a, b, c, d, ξ)
def
=

(
t−1∑
i=1

ξi ≤ ν

)
∧

(
t−1∧
i=1

(ξi ≥ 0)

)

∧

∨
φ∈Φ

orderedp,P(φ) ∧ AK-bounded-fixed-permutationp,P(φ, θ, ξ)

 .

By construction, the above constraint now satisfies the following:
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Lemma 15 There exists a vector ξ ∈ Rt such that AK-boundedp,P(θ, ν, a, b, c, d, ξ) is true if and
only if

K∑
i=1

∣∣∣∣∫ bi

ai

pdiff
θ (x) dx

∣∣∣∣ ≤ ν .

Moreover, AK-boundedp,P has less than 6tt+1 polynomial constraints.

The bound on the number of polynomial constraints follows simply from counting the number of
polynomial constraints in the construction described above.

3.4.2. COMPLETE SYSTEM OF POLYNOMIAL INEQUALITIES

In addition to the AK-constraint introduced in the previous subsection, our system of polynomial
inequalities contains the following constraints:

Valid parameters First, we encode that the mixture parameters we optimize over are valid, i.e., we
let

valid-parametersS(θ)
def
= θ ∈ S .

Recall this can be expressed as a Boolean formula over R polynomial predicates of degree at
most D.

Correct breakpoints We require that the di are indeed the breakpoints of the shape-restricted poly-
nomial Pθ. By the assumption, this can be encoded by the following constraint:

correct-breakpointsP(θ, d)
def
=

s∧
i=1

(hi(di(θ), θ) = 0) .

The full system of polynomial inequalities We now combine the constraints introduced above
and introduce our entire system of polynomial inequalities:

SK,p,P,S(ν) = ∀a1, . . . aK , b1, . . . , bK :

∃d1, . . . , ds, ξ1 . . . ξt :

valid-parametersS(θ) ∧ correct-breakpointsP(θ, d) ∧ AK-boundedp,P(θ, ν, a, b, c, d, ξ) .

This system of polynomial inequalities has

• two levels of quantification, with 2K and s+ t variables, respectively,

• u free variables,

• R+ s+ 4tt+1 polynomial constraints,

• and maximum degree D in the polynomial constraints.

Let γ be a bound on the free variables, i.e., ‖θ‖2 ≤ γ, and let λ be a precision parameter. Then
Renegar’s algorithm (see Fact 5) finds a λ-approximate solution θ for this system of polynomial
inequalities satisfying ‖θ‖2 ≤ γ, if one exists, in time(

(R+ s+ 6tt+1)D
)O(K(s+t)u)

log log(3 +
γ

λ
) .
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3.5. Instantiating the system of polynomial inequalities for GMMs

We now show how to use the system of polynomial inequalities developed in the previous subsection
for our initial goal: that is, encoding closeness between a well-behaved density estimate and a set of
shape-restricted polynomials (see Equation 1). Our fixed piecewise polynomial (p in the subsection
above) will be pdens. The set of piecewise polynomials we optimize over (the set P in the previous
subsection) will be the set Pε of all shape-restricted polynomials Pε,θ. Our S (the domain of θ) will
be Θ′k ⊆ Θk, which we define below. For each θ ∈ S, we associate it with Pε,θ. Moreover:

• Define

Θk,γ =

{
θ

∣∣∣∣
(

k∑
i=1

wi = 1

)
∧
(
∀ i ∈ [k] : (wi ≥ 0) ∧ (γ ≥ τi > 0) ∧ (−1 ≤ µi ≤ 1)

)}
,

that is, the set of parameters which have bounded means and variances. S is indeed semi-
algebraic, and membership in S can be encoded using 2k + 1 polynomial predicates, each
with degree D1 = 1.

• For any fixed parameter θ ∈ Θk, the shape-restricted polynomial Pθ has s = 2k breakpoints
by definition, and the breakpoints d1(θ), . . . , d2k(θ) of Pε,θ occur at

d2i−1(θ) =
1

τi
(µi − 2τi log(1/ε)) , d2i(θ) =

1

τi
(µi + 2τi log(1/ε)) , for all 1 ≤ i ≤ k .

Thus, for all parameters θ, the breakpoints d1(θ), . . . , d2k(θ) are the unique numbers so that
so that

τi·d2i−1(θ)−(µi − 2τi log(1/ε)) = 0 , τi·d2i(θ)−(µi + 2τi log(1/ε)) = 0 , for all 1 ≤ i ≤ k ,

and thus each of the d1(θ), . . . , d2k(θ) can be encoded as a polynomial equality of degree
D2 = 2.

• Finally, it is straightforward to verify that the map (x, θ)→ Pε,θ(x) is a polynomial of degree
D3 = O(log 1/ε) in (x, θ), at any point where x is not at a breakpoint of Pθ.

From the previous subsection, we know that the system of polynomial inequalities SK,pdens,Pε,Θk,γ (ν)

has two levels of quantification, each with O(k) variables, it has kO(k) polynomial constraints, and
has maximum degree O(log 1/ε) in the polynomial constraints. Hence, we have shown:

Corollary 16 For any fixed ε, the system of polynomial inequalities SK,pdens,Pε,Θk,γ (ν) encodes
Equation (1). Moreover, for all γ, λ ≥ 0, Renegar’s algorithm SOLVE-POLY-SYSTEM(SK,pdens,Pε,Θk,γ (ν), λ, γ)

runs in time (k log(1/ε))O(k4) log log(3 + γ
λ).

3.6. Overall learning algorithm

We now combine our tools developed so far and give an agnostic learning algorithm for the case of
well-behaved density estimates (see Algorithm 1).
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Algorithm 1 Algorithm for learning a mixture of Gaussians in the well-behaved case.
1: function LEARN-WELL-BEHAVED-GMM(k, ε, δ, γ)
2: . Density estimation. Only this step draws samples.
3: p′dens ← ESTIMATE-DENSITY(k, ε, δ)

4: . Rescaling
5: Let pdens be a rescaled and shifted version of p′dens such that the support of pdens is [−1, 1].

6: Let α and β be such that pdens(x) = p′dens

(
2(x−α)
β−α − 1

)
7: . Fitting shape-restricted polynomials
8: K ← 4k
9: ν ← ε

10: θ ← SOLVE-POLY-SYSTEM(SK,pdens,Pε,Θk,γ (ν), C 1
γ

(
ε
k

)2
, 3kγ)

11: while θ is “NO-SOLUTION” do
12: ν ← 2 · ν
13: θ ← SOLVE-POLY-SYSTEM(SK,pdens,Pε,Θk,γ (ν), C 1

γ

(
ε
k

)2
, 3kγ)

14: . Fix the parameters
15: for i = 1, . . . , k do
16: if τi ≤ 0, set wi ← 0 and set τi to be arbitrary but positive.
17: Let W =

∑k
i=1wi

18: for i = 1, . . . , k do
19: wi ← wi/W

20: . Undo the scaling
21: w′i ← wi

22: µ′i ←
(µi+1)(β−α)

2 + α
23: τ ′i ←

τi
β−α

24: return θ′

3.7. Analysis

Before we prove correctness of LEARN-WELL-BEHAVED-GMM, we introduce two auxiliary lem-
mas.

An important consequence of the well-behavedness assumption (see Definition 13) are the fol-
lowing robustness properties.

Lemma 17 (Parameter stability) Fix 2 ≥ ε > 0. Let the parameters θ, θ′ ∈ Θk be such that (i)
τi, τ

′
i ≤ γ for all i ∈ [k] and (ii) ‖θ − θ′‖2 ≤ C 1

γ

(
ε
k

)2, for some universal constant C. Then

‖Mθ −Mθ′‖1 ≤ ε .

Before we prove this lemma, we first need a calculation which quantifies the robustness of the
standard normal pdf to small perturbations.

Lemma 18 For all 2 ≥ ε > 0, there is a δ1 = δ1(ε) = ε

20
√

log(1/ε)
≥ O(ε2) so that for all δ ≤ δ1,

we have ‖N (x)−N (x+ δ)‖1 ≤ O(ε).
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Proof Note that if ε > 2 this claim holds trivially for all choices of δ since the L1-distance between
two distributions can only ever be 2. Thus assume that ε ≤ 2. Let I be an interval centered at 0
so that both N (x) and N (x + δ) assign 1 − ε

2 weight on this interval. By standard properties of
Gaussians, we know that |I| ≤ 10

√
log(1/ε). We thus have

‖N (x)−N (x+ δ)‖1 ≤
∫
I
|N (x)−N (x+ δ)| dx+ ε .

By Taylor’s theorem we have that for all x,∣∣∣e−(x+δ)2/2 − e−x2/2
∣∣∣ ≤ C · δ

for some universal constant C = maxx∈R
d

dx(e−
x2

2 ) ≤ 1. Since we choose δ1 ≤ ε

20
√

log(1/ε)
, we

must have that
‖N (x)−N (x+ δ)‖1 ≤ O(ε) ,

as claimed.

Proof [Proof of Lemma 17] Notice the `2 guarantee of Renegar’s algorithm (see Fact 5) also trivially
implies an `∞ guarantee on the error in the parameters θ; that is, for all i, we will have that the
weights, means, and variances of the two components differ by at most C 1

γ

(
ε
k

)2. By repeated
applications of the triangle inequality to the quantity in the lemma, it suffices to show the three
following claims:

• For any µ, τ ,
‖w1Nµ,τ (x)− w2Nµ,τ (x)‖1 ≤

ε

3k

if |w1 − w2| ≤ C 1
γ

(
ε
k

)2.

• For any τ ≤ γ,
‖Nµ1,τ (x)−Nµ2,τ (x)‖1 ≤

ε

3k

if |µ1 − µ2| ≤ C 1
γ

(
ε
k

)2.

• For any µ,
‖Nµ,τ1(x)−Nµ,τ2(x)‖1 ≤

ε

3k

if |τ1 − τ2| ≤ C 1
γ

(
ε
k

)2.

The first inequality is trivial, for C sufficiently small. The second and third inequalities follow from
a change of variables and an application of Lemma 18.

Recall that our system of polynomial inequalities only considers mean parameters in [−1, 1].
The following lemma shows that this restriction still allows us to find a good approximation once
the density estimate is rescaled to [−1, 1].
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Lemma 19 (Restricted means) Let g : R → R be a function supported on [−1, 1], i.e., g(x) = 0
for x /∈ [−1, 1]. Moreover, let θ∗ ∈ Θk. Then there is a θ′ ∈ Θk such that µ′i ∈ [−1, 1] for all
i ∈ [k] and

‖g −Mθ′‖1 ≤ 5 · ‖g −Mθ∗‖1 .
Proof Let A = {i |µ∗i ∈ [−1, 1]} and B = [k] \A. Let θ′ be defined as follows:

• w′i = w∗i for all i ∈ [k].

• µ′i = µ∗i for i ∈ A and µ′i = 0 for i ∈ B.

• τ ′i = τ∗i for all i ∈ [k].

From the triangle inequality, we have

‖g −Mθ′‖1 ≤ ‖g −Mθ∗‖1 + ‖Mθ∗ −Mθ′‖1 . (3)

Hence it suffices to bound ‖Mθ∗ −Mθ′‖1.
Note that for i ∈ B, the corresponding i-th component has at least half of its probability mass

outside [−1, 1]. Since g is zero outside [−1, 1], this mass of the i-th component must therefore
contribute to the error ‖g−Mθ∗‖1. Let 1[x /∈ [−1, 1]] be the indicator function of the set R\[−1, 1].
Then we get

‖g −Mθ∗‖1 ≥ ‖Mθ∗ · 1[x /∈ [−1, 1]]‖1 ≥
1

2

∥∥∥∥∥∑
i∈B

w∗i · Nµ∗i ,τ∗i

∥∥∥∥∥
1

.

For i ∈ A, the mixture components ofMθ∗ andMθ′ match. Hence we have

‖Mθ∗ −Mθ′‖1 =

∥∥∥∥∥∑
i∈B

w∗i · Nµ∗i ,τ∗i −
∑
i∈B

w′i · Nµ′i,τ ′i

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈B

w∗i · Nµ∗i ,τ∗i

∥∥∥∥∥
1

+

∥∥∥∥∥∑
i∈B

w′i · Nµ′i,τ ′i

∥∥∥∥∥
1

= 2 ·

∥∥∥∥∥∑
i∈B

w∗i · Nµ∗i ,τ∗i

∥∥∥∥∥
1

≤ 4 · ‖g −Mθ∗‖1 .

Combining this inequality with (3) gives the desired result.

We now prove our main theorem for the well-behaved case.

Theorem 20 Let δ, ε, γ > 0, k ≥ 1, and let f be the pdf of the unknown distribution. Moreover,
assume that the density estimate p′dens obtained in Line 3 of Algorithm 1 is γ-well-behaved. Then
the algorithm LEARN-WELL-BEHAVED-GMM(k, ε, δ, γ) returns a set of GMM parameters θ′ such
that

‖Mθ′ − f‖1 ≤ 60 ·OPTk + ε

with probability 1− δ. Moreover, the algorithm runs in time(
k · log

1

ε

)O(k4)

· log
1

ε
· log log

kγ

ε
+ Õ

(
k

ε2

)
.
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Proof First, we prove the claimed running time. From Fact 4, we know that the density estimation
step has a time complexity of Õ( k

ε2
). Next, consider the second stage where we fit shape-restricted

polynomials to the density estimate. Note that for ν = 3, the system of polynomial inequalities
Spdens,Pε(ν) is trivially satisfiable because the AK-norm is bounded by the L1-norm and the L1-
norm between the two (approximate) densities is at most 2 + O(ε). Hence the while-loop in the
algorithm takes at most O(log 1

ε ) iterations. Combining this bound with the size of the system
of polynomial inequalities (see Subsection 3.4.2) and the time complexity of Renegar’s algorithm
(see Fact 5), we get the following running time for solving all systems of polynomial inequalities
proposed by our algorithm: (

k · log
1

ε

)O(k4)

· log log
kγ

ε
· log

1

ε
.

This proves the stated running time.
Next, we consider the correctness guarantee. We condition on the event that the density estima-

tion stage succeeds, which occurs with probability 1− δ (Fact 4). Then we have

‖f − p′dens‖1 ≤ 4 ·OPTk + ε .

By assumption, the rescaled density estimate pdens is γ-well-behaved. Recalling Definition 13, this
means that there is a set of GMM parameters θ ∈ Θk such that τi ≤ γ for all i ∈ [k] and

‖pdens −Mθ‖1 = min
θ∗∈Θk

‖pdens −Mθ∗‖1

= min
θ∗∈Θk

‖p′dens −Mθ∗‖1

≤ min
θ∗∈Θk

‖p′dens − f‖1 + ‖f −Mθ∗‖1

≤ 4 ·OPTk + ε + min
θ∗∈Θk

‖f −Mθ∗‖1

≤ 5 ·OPTk + ε .

Applying the triangle inequality again, this implies that

‖pdens − Pε,θ‖1 ≤ ‖pdens −Mθ‖1 + ‖Mθ − Pε,θ‖1 ≤ 5 ·OPTk + 2ε .

This almost implies that Spdens,Pε(ν) is feasible for ν ≥ 5 · OPTk + 2ε. However, there are two
remaining steps. First, recall that the system of polynomial inequalities restricts the means to lie in
[−1, 1]. Hence we use Lemma 19, which implies that there is a θ̃ ∈ Θk such that µ̃i ∈ [−1, 1] and

‖pdens − Pε,θ̃‖1 ≤ 25 ·OPTk + 10ε .

Moreover, the system of polynomial inequalities works with the AK-norm instead of the L1-norm.
Using Lemma 14, we get that

‖pdens − Pε,θ̃‖AK ≤ ‖pdens − Pε,θ̃‖1 .

Therefore, in some iteration when

ν ≤ 2 · (25 ·OPTk + 10ε) = 50 ·OPTk + 20ε
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the system of polynomial inequalities Spdens,Pε,Θk,γ (ν) become feasible and Renegar’s algorithm
guarantees that we find parameters θ′ such that ‖θ′ − θ†‖2 ≤

ε
γ for some θ† ∈ Θk and

‖pdens −Mθ†‖AK ≤ 50 ·OPTk +O(ε) .

Note that we used well-behavedness here to ensure that the precisions in θ† are bounded by γ. Let
θ be the parameters we return. It is not difficult to see that ‖θ − θ†‖2 ≤ 2ε

γ . We convert this back to
an L1 guarantee via Lemma 14:

‖pdens −Mθ†‖1 ≤ 56 ·OPTk +O(ε) .

Next, we use parameter stability (Lemma 17) and get

‖pdens −Mθ‖1 ≤ 56 ·OPTk +O(ε) .

We now relate this back to the unknown density f . Let θ′ be the parameters θ scaled back to the
original density estimate (see Lines 21 to 23 in Algorithm 1). Then we have

‖p′dens −Mθ′‖1 ≤ 56 ·OPTk +O(ε) .

Using the fact that p′dens is a good density estimate, we get

‖f −Mθ′‖1 ≤ ‖f − p
′
dens‖1 + ‖p′dens −Mθ′‖1

≤ 4 ·OPTk + ε + 56 ·OPTk +O(ε)

≤ 60 ·OPTk +O(ε) .

As a final step, we choose an internal ε′ in our algorithm so that the O(ε′) in the above guarantee
becomes bounded by ε. This proves the desired approximation guarantee.

4. General algorithm for the univariate case

4.1. Preliminaries

As before, we let pdens be the piecewise polynomial returned by LEARN-PIECEWISE-POLYNOMIAL

(see Fact 4). Let I0, . . . , Is+1 be the intervals defined by the breakpoints of pdens. Recall that pdens

has degree O(log 1/ε) and has s + 2 = O(k) pieces. Furthermore, I0 and Is+1 are unbounded in
length, and on these intervals pdens is zero. By rescaling and translating, we may assume WLOG
that ∪si=1Ii is [−1, 1].

Recall that I is defined by the set of intervals {I1, . . . , Is}. We know that s = O(k). Intuitively,
these intervals capture the different scales at which we need to operate. We formalize this intuition
below.

Definition 21 For any Gaussian Nµ,τ , let L(Nµ,τ ) be the interval centered at µ on which Nµ,τ
places exactly W of its weight, where 0 < W < 1 is a universal constant we will determine later.
By properties of Gaussians, there is some absolute constant ω > 0 such that Nµ,τ (x) ≥ ωτ for all
x ∈ L(Nµ,τ ).
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Definition 22 Say a Gaussian Nµ,τ is admissible if (i) Nµ,τ places at least 1/2 of its mass in
[−1, 1], and (ii) there is a J ∈ I so that |J ∩ L(Nµ,τ )| ≥ 1/(8sτ) and so that

τ ≤ 1

|J |
· φ,

where
φ = φ(ε, k)

def
=

32k

ωε
m(m+ 1)2 · (

√
2 + 1)m ,

where m is the degree of pdens. We call the interval J ∈ I satisfying this property on which Nµ,τ
places most of its mass its associated interval.

Fix θ ∈ Θk. We say the `-th component is admissible if the underlying Gaussian is admissible
and moreover w` ≥ ε/k.

Notice that since m = O(log(1/ε)), we have that φ(ε, k) = poly(1/ε, k).

Lemma 23 (No Interaction Lemma) Fix θ ∈ Θk. Let Sgood(θ) ⊆ [k] be the set of ` ∈ [k] whose
corresponding mixture component is admissible, and let Sbad(θ) be the rest. Then, we have

‖Mθ − pdens‖1 ≥

∥∥∥∥∥∥
∑

`∈Sgood(θ)

w` · Nµ`,τ` − pdens

∥∥∥∥∥∥
1

+
1

2

∑
`∈Sbad(θ)

w` − 2ε.

We briefly remark that the constant 1
2 we obtain here is somewhat arbitrary; by choosing different

universal constants above, one can obtain any fraction arbitrarily close to one, at a minimal loss.
Proof Fix ` ∈ Sbad(θ), and denote the corresponding component N`. Recall that it has mean µ`
and precision τ`. Let L` = L(N`).

Let M−`θ (x) =
∑

i 6=`wiNµi,τi(x) be the density of the mixture without the `-th component.
We will show that

‖Mθ − pdens‖1 ≥ ‖M
−`
θ − pdens‖1 +

1

2
w` −

2ε

k
.

It suffices to prove this inequality because then we may repeat the argument with a different `′ ∈
Sbad(θ) until we have subtracted out all such `, and this yields the claim in the lemma.

If w` ≤ ε/k then this statement is obvious. IfN` places less than half its weight on [−1, 1], then
this is also obvious. Thus we will assume that w` > ε/k and N` places at least half its weight on
[−1, 1].

Let I` be the set of intervals in I which intersect L`. We partition the intervals in I` into two
groups:

1. Let L1 be the set of intervals J ∈ I` so that |J ∩ L`| ≤ 1/(8sτ`).

2. Let L2 be the set of intervals J ∈ I` not in L1 so that

τ` >
1

|J |
· φ .
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By the definition of admissibility, this is indeed a partition of I`.
We have

‖Mθ − pdens‖1 =
∥∥∥M−`θ +N` − pdens

∥∥∥
1

=

∫
L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣dx+

∫
Lc`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣dx

≥
∫
L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣ dx+

∫
Lc`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣dx− w` ∫

Lc`

N`(x) dx

≥
∫
L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣ dx+

∫
Lc`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣dx− (1−W )w` .

We split the first term on the RHS into two parts, given by our partition:∫
L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣ dx =

∑
J∈L1

∫
J∩L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣ dx

+
∑
J∈L2

∫
J∩L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣dx .

We lower bound the contribution of each term separately.

(1) We first bound the first term. Since for each J ∈ L1 we have |J ∩ L`| ≤ 1/(8sτ`), we know
that ∫

J∩L`
N`(x) dx ≤ 1

8s
(4)

and so∑
J∈L1

∫
J∩L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣dx ≥ ∑

J∈L1

∫
J∩L`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣ dx− |L1| · w` ·

1

8s

≥
∑
J∈L1

∫
J∩L`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣ dx− 1

8
w`

since I and thus L1 contains at most s intervals.

(2) We now consider the second term. Fix a J ∈ L2, and let pJ be the polynomial which is equal
to pdens on J . Since

∫
pdens ≤ 1 + ε ≤ 2 (as otherwise its L1-distance to the unknown density

would be more than ε) and pdens is nonnegative, we also know that
∫
J pJ ≤ 2. We require the

following fact (see Acharya et al. (2017)):

Fact 24 Let p(x) =
∑m

j=0 cjx
j be a degree-m polynomial so that p ≥ 0 on [−1, 1] and

∫ 1
−1 p ≤ β.

Then maxi|ci| ≤ β · (m+ 1)2 · (
√

2 + 1)m.

Consider the shifted polynomial qJ(u) = pJ(u ·(bJ−aJ)/2+(bJ +aJ)/2) where J = [aJ , bJ ]. By
applying Fact 24 to qJ and noting that

∫ 1
−1 qJ = (2/|J |) ·

∫
J pJ , we conclude that the coefficients

of qJ are bounded by
4

|J |
· (m+ 1)2 · (

√
2 + 1)m
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and thus
|qJ(u)| ≤ 4

|J |
·m(m+ 1)2 · (

√
2 + 1)m

for all u ∈ [−1, 1], and so therefore the same bound applies for pJ(x) for all x ∈ J .
But notice that since we assume that J ∈ L2, it follows that for all x ∈ J ∩ L`, we have that

N`(x) ≥ 8
k

ε
pJ(x) ,

and so in particular w`N`(x) ≥ 8pJ(x) for all x ∈ J ∩ L`. Hence we have∫
J∩L`

∣∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣∣dx =

∫
J∩L`

M−`θ (x) + w`N`(x)− pJ(x) dx

≥
∫
J∩L`

∣∣∣M−`θ (x)− pJ(x)
∣∣∣ dx+

∫
J∩L`

7

8
w`N`(x)− pJ(x) dx

≥
∫
J∩L`

∣∣∣M−`θ (x)− pJ(x)
∣∣∣ dx+

3w`
4

∫
J∩L`

N`(x) dx .

where the second line follows sinceM−`θ (x)+w`N`−pJ(x) ≥
∣∣∣M−`θ (x)− pJ(x)

∣∣∣+ 7
8w`N`(x)−

pJ(x) for all x ∈ J ∩ L`.
Thus∑
J∈L2

∫
J∩L`

∣∣M−`θ (x) + w`N`(x)− pdens(x)
∣∣dx ≥

∑
J∈L2

(∫
J∩L`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣dx+

3w`
4

∫
J∩L`

N`(x) dx

)
.

(5)

Moreover, by Equation (4), we know that∑
J∈L2

∫
J∩L`

N`(x) dx =

∫
L`

N`(x)dx−
∑
J∈L1

∫
J∩L`

N`(x) dx

≥W − 1

8
,

since L1 contains at most s intervals. Thus, the RHS of Equation (5) must be lower bounded by∑
J∈L2

∫
J∩L`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣dx+

3

4

(
W − 1

8

)
w` .
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Putting it all together. Hence, we have∫
L`

|Mθ(x)− pdens(x)|dx =
∑
J∈L1

∫
J∩L`

|Mθ(x)− pdens(x)|dx+
∑
J∈L2

∫
J∩L`

|Mθ(x)− pdens(x)|dx

≥
∑
J∈L1

∫
J∩L`

|M−`θ (x)− pdens(x)| dx+
∑
J∈L2

∫
J∩L`

|M−`θ (x)− pdens(x)| dx

+

[
3

4

(
W − 1

8

)
− 1

8

]
w`

≥
∫
L`

|M−`θ (x)− pdens(x)| dx+

[
3

4

(
W − 1

8

)
− 1

8

]
w` .

We therefore have

‖Mθ − pdens‖1 =

∫
L`

|Mθ(x)− pdens(x)| dx+

∫
Lc`

|Mθ(x)− pdens(x)|dx

≥
∫
L`

|Mθ(x)− pdens(x)| dx+

∫
Lc`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣ dx− ∫

Lc`

w`N`(x) dx

≥
∫
L`

|Mθ(x)− pdens(x)|dx+

∫
Lc`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣ dx− (1−W )w`

≥
∫
L`

|M−`θ (x)− pdens(x)| dx+

(
7

4
W − 39

32

)
w` +

∫
Lc`

∣∣∣M−`θ (x)− pdens(x)
∣∣∣dx

= ‖M−`θ − pdens‖1 +
1

2
w` ,

when we set W = 55/56.

4.2. A parametrization scheme for a single Gaussian

Intuitively, Lemma 23 says that for any θ ∈ Θk, there are some components which have bounded
variance and which can be close to pdens (the components in Sgood(θ)), and the remaining com-
ponents, which may have unbounded variance but which will be far away from pdens. Since we
are searching for a k-GMM which is close to pdens, in some sense we should not have to concern
ourselves with the latter components since they cannot meaningfully interact with pdens. Thus we
only need find a suitably robust parametrization for admissible Gaussians.

Such a parametrization can be obtained by linearly transforming the domain so that the associ-
ated interval gets mapped to [−1, 1]. Formally, fix a Gaussian Nµ,τ and an interval J . Then it can
be written as

Nµ,τ (x) =
τ̃

|J |/2
N
(
τ̃ · x−mid(J)

|J |/2
− µ̃

)
, (6)

for some unique µ̃ and τ̃ , where for any interval I , we define mid(I) to denote its midpoint. Call
these the rescaled mean with respect to J and rescaled precision with respect to J ofN , respectively.
Concretely, given µ, τ , and an interval J , the rescaled variance and mean with respect to J are
defined to be

τ̃ =
|J |
2
τ , µ̃ =

τ̃

|J |/2
(µ−mid(J)) .
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For any µ̃, τ̃ , we let N r,J
µ̃,τ̃ (x) denote the function given by the RHS of Equation (6). The following

two lemmas says that these rescaled parameters have the desired robustness properties.

Lemma 25 Let N r,J
µ̃,τ̃ be an admissible Gaussian with rescaled mean µ̃ and rescaled precision τ̃

with respect to its associated interval J ∈ I. Then µ̃ ∈ [−2sφ
ω , 2sφ

ω ] and
√

2π ·ω/(16s) ≤ τ̃ ≤ φ/2.

Proof We first show that
√

2π · ω/(16s) ≤ τ̃ ≤ φ/2. That the rescaled variance is bounded from
above follows from a simple change of variables and the definition of admissibility. By the definition
of admissibility, we also know that∫

J
N r,J
µ̃,τ̃ dx ≥

∫
J∩L(N r,Jµ̃,τ̃ )

N r,J
µ̃,τ̃ dx

≥ ωτ · |J ∩ L(N r,J
µ̃,τ̃ )|

≥ ω

8s
.

Furthermore, we trivially have

|J | · τ√
2π
≥
∫
J
N r,J
µ̃,τ̃ dx .

Thus, the precision τ must be at least
√

2πω/(8s|J |), and so its rescaled precision must be at least√
2πω/(16s), as claimed.

We now show that µ̃ ∈ [−2sφ
ω , 2sφ

ω ]. Because N r,J
µ̃,τ̃ is an admissible Gaussian with associated

interval J , we know that |J ∩ L(N r,J
µ̃,τ̃ )| ≥ 1/(8sτ). Moreover, we know that on J ∩ L(N r,J

µ̃,τ̃ ), we

have N r,J
µ̃,τ̃ (x) ≥ ωτ . Thus in particular∫

J
N r,J
µ̃,τ̃ dx ≥

∫
J∩L(N r,Jµ̃,τ̃ )

N r,J
µ̃,τ̃ dx ≥ ω

8s
.

Define J̃ to be the interval which is of length 8s|J |/ω around mid(J). We claim that µ ∈ J̃ ,
where µ is the mean of N r,J

µ̃,τ̃ .
Assume that mid(J) ≤ µ. Let J0 = J and inductively, for i < 4s/ω, let Ji be the interval

with left endpoint at the right endpoint of Ji−1 and with length |J |. That is, the Ji consist of 4s/ω
consecutive, non-intersecting copies of J starting at J and going upwards on the number line (for
simplicity of exposition we assume that 4s/ω is an integer). Let J† = ∪(4s/ω)−1

i=0 Ji. We claim that
µ ∈ J†. Suppose not. This means that µ is strictly greater than any point in any Ji. In particular,
this implies that for all i, ∫

Ji

N r,J
µ̃,τ̃ dx ≥

∫
Ji−1

N r,J
µ̃,τ̃ dx

≥
∫
J0

N r,J
µ̃,τ̃ dx

≥ ω

8s
.
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But then this would imply that

∫
J†
N r,J
µ̃,τ̃ dx =

(4s/ω)−1∑
i=0

∫
Ji

N r,J
µ̃,τ̃ dx ≥ 1

2
.

Notice that J† is itself an interval. But any interval containing at least 1/2 of the weight of any
Gaussian must contain its mean, which we assumed did not happen. Thus we conclude that µ ∈ J†.
Moreover, J† ⊆ J̃ , so µ ∈ J̃ , as claimed. If mid(J) ≥ µ then apply the symmetric argument with
Ji which are decreasing on the number line instead of increasing.

We have thus shown that µ ∈ J̃ . It is a straightforward calculation to show that this implies that
µ̃ ∈ [−4sτ

ω , 4sτ
ω ]. By the above, we know that τ ≤ φ/2 and thus µ̃ ∈ [−2sφ

ω , 2sφ
ω ], as claimed.

Lemma 26 For any interval J , and µ̃1, τ̃1, µ̃2, τ̃2 so that |τ̃i| ≤ 2φ for i ∈ {1, 2} and |µ̃1 − µ̃2|+
|τ̃1 − τ̃2| ≤ O((ε/(φk))2), we have

‖N r,J
µ̃1,τ̃1

(x)−N r,J
µ̃2,τ̃2

(x)‖1 ≤ ε .

Proof This follows by a change of variables and Lemma 18.

Moreover, this rescaled parametrization naturally lends itself to approximation by a piecewise
polynomial, namely, replace the standard normal Gaussian density function in Equation (6) with
P̃ε. This is the piecewise polynomial that we will use to represent each individual component in the
Gaussian mixture.

4.3. A parametrization scheme for k-GMMs

In the rest of this section, our parametrization will often be of the form described above. To distin-
guish this from the previous notation, for any θ ∈ Θk, and any set of k intervals J1, . . . , Jk, we will
let θr ∈ Θk denote the rescaled parameters so that if the i-th component in the mixture represented
by θ has parameters wi, µi, τi, then the i-th component in the mixture represented by θr has param-
eters wi, µ̃i, τ̃i so that Nµi,τi = N r,Ji

µ̃i,τ̃i
. Notice that the transformation between the original and the

rescaled parameters is a linear transformation, and thus trivial to compute and to invert.
The final difficulty is that we do not know how many mixture components have associated

interval J for J ∈ I. To deal with this, our algorithm simply iterates over all possible allocations
of the mixture components to intervals and returns the best one. There are O(k) possible associated
intervals J and k different components, so there are at most kO(k) different possible allocations. In
this section, we will see how our parametrization works when we fix an allocation of the mixture
components.

More formally, let A be the set of functions v : [s] → N so that
∑s

`=1 v(`) = k. These will
represent the number of components “allocated” to exist on the scale of each J`. For any v ∈ A,
define Iv to be the set of I` ∈ I so that v(`) 6= 0.

Fix θr ∈ Θk and v ∈ A. Decompose θr into (θr1, . . . , θ
r
s), where θr` contains the rescaled

parameters with respect to J` for the v(`) components allocated to interval J` (note that v(`) may
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be 0 in which case θ` is the empty set, i.e., corresponds to the parameters for no components). For
any 1 ≤ ` ≤ s, let

Mr
`,θr`

(x) =
∑
i

wi
τ̃i
|I`|/2

N
(
τ̃i ·

x−mid(I`)

|I`|/2
− µ̃i

)
,

where i ranges over the components that θj corresponds to, and defineMr
θr,v(x) =

∑s
`=1Mr

`,θr`
(x).

Similarly, define

P rε,`,θr`
(x) =

∑
i

wi
τ̃i
|I`|/2

P̃ε

(
τ̃i ·

x−mid(I`)

|J`|/2
− µ̃i

)
,

and define P rε,θr,v(x) =
∑s

`=1 P
r
ε,`,θr`

(x). Finally, for any v, define Prε,v to be the set of all such
P rε,θ,v.

We have:

Lemma 27 For any θr ∈ Θk, we have

‖Mr
θr,v − P rε,θr,v‖1 ≤ ε .

This follows from roughly the same argument as in the proof of Lemma 8, and so we omit the proof.
We now finally have all the necessary language and tools to prove the following theorem:

Corollary 28 Fix 2 ≥ ε > 0. There is some allocation v ∈ A and a set of parameters θr ∈ Θk so
that µ̃i ∈ [−2sφ

ω , 2sφ
ω ], 1/(8s) ≤ τ̃i ≤ φ/2, and w` ≥ ε/(2k) for all i. Moreover,

‖f −Mr
θr,v‖1 ≤ 19 ·OPTk +O(ε) .

Proof Let θ∗ ∈ Θk be so that ‖f −Mθ∗‖1 = OPTk, and let N ∗` denote its `-th component with
parameters w∗i , µ∗i , and τ∗i . Decompose [k] into Sgood(θ∗), Sbad(θ∗) as in Lemma 23.

By the guarantees of the density estimation algorithm, we know that∥∥∥∥∥∑
`

w∗`Nµ∗` ,τ∗` − pdens

∥∥∥∥∥
1

≤ 5OPTk + ε .

By Lemma 23, this implies that

5OPTk + ε ≥

∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` − pdens

∥∥∥∥∥∥
1

+
1

2

∑
`∈Sbad(θ∗)

w` − 2ε ,

from which we may conclude the following two inequalities:∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` − pdens

∥∥∥∥∥∥
1

≤ 5 ·OPTk + 3ε, (7)

∑
`∈Sbad(θ∗)

w∗` ≤ 10 ·OPTk + 6ε . (8)
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Let θ′ be defined so that for all ` ∈ Sgood(θ∗), the means and variances of the `-th component in θ′

are µ∗i and τ∗i , and so that for all ` ∈ Sbad(θ∗), the means of and variances of the `-th component in
θ′ are arbitrary but so that the underlying Gaussian is admissible. Let the weights of the components
in θ′ be the same as the weights in θ∗.

Then we have

‖Mθ′ − f‖1 =

∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` +
∑

`∈Sbad(θ∗)

w∗`Nµ′`,τ ′` − f

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` − f

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∑

`∈Sbad(θ∗)

w∗`Nµ′`,τ ′`

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` − f

∥∥∥∥∥∥
1

+
∑

`∈Sbad(θ∗)

w∗`

≤

∥∥∥∥∥∥
∑

`∈Sgood(θ∗)

w∗`Nµ∗` ,τ∗` − pdens

∥∥∥∥∥∥
1

+ ‖f − pdens‖1 +
∑

`∈Sbad(θ∗)

w∗`

≤ 19 ·OPTk +O(ε)

where the last line follows from Equation (7), the guarantee of the density estimation algorithm, and
Equation (8).

For each ` ∈ [k], let J` ∈ I denote the interval so that the `-th component of θ′ is admissible
with respect to J` Let θr be the rescaling of θ′ with respect to J1, . . . , J`. Then by Lemma 25, θr

satisfies that µ̃i ∈ [−2sφ
ω , 2sφ

ω ] and
√

2π ·ω/(16s) ≤ τ̃i ≤ φ/2 for all i. Let v ∈ A be chosen so that
v(i) is the number of times that Ii appears in the sequence J1, . . . , Jk. ThenMθ′ and v satisfies all
conditions in the lemma, except possibly that the weights may be too small.

Thus, let θ be the set of parameters whose means and precisions are exactly those of θ′, but for
which the weight of the `-th component is defined to bew` = max(ε/(2k), w∗` ) for all 1 ≤ ` ≤ k−1

and wk = 1 −
∑k−1

`=1 w`. It is easy to see that θ ∈ Θk; moreover, ‖Mθ −Mθ′‖1 ≤ ε. Then it is
easy to see that θ and v together satisfy all the conditions of the lemma.

4.4. The full algorithm

At this point, we are finally ready to describe our algorithm LEARNGMM which agnostically and
properly learns an arbitrary mixture of k Gaussians. Informally, our algorithm proceeds as follows.
First, using ESTIMATE-DENSITY, we learn a p′dens that with high probability is ε-close to the un-
derlying distribution f in L1-distance. Then, as before, we may rescale the entire problem so that
the density estimate is supported on [−1, 1]. Call the rescaled density estimate pdens.

As before, it suffices to find a k-GMM that is close to pdens inAK-distance, forK = 4k−1. The
following is a direct analog of Lemma 14. We omit its proof because its proof is almost identical to
that of Lemma 14.

Lemma 29 Let ε > 0, v ∈ A, k ≥ 2, θr ∈ Θk, and K = 4(k − 1) + 1. Then we have

0 ≤ ‖pdens − P rε,θr,v‖1 − ‖pdens − P rε,θr,v‖AK ≤ 8 ·OPTk +O(ε) .
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Our algorithm enumerates over all v ∈ A and for each v finds a θr approximately minimizing

‖pdens − P rε,θr,v‖AK .

Using the same binary search technique as before, we can transform this problem into log 1/ε fea-
sibility problems of the form

‖pdens − P rε,θr,v‖AK < η . (9)

Fix v ∈ A, and recall Prε,v is the set of all polynomials of the form P rε,θr,v. Let Θvalid
k denote the

set of θr ∈ Θk so that µ̃i ∈ [−2sφ
ω , 2sφ

ω ],
√

2πω/(8s) ≤ τ̃ ≤ φ/2, and wi ≥ ε/(2k), for all i. For
any θr ∈ Θvalid

k , canonically identify it with P rε,θr,v. By almost exactly the same arguments used
in Section 3.5, it follows that the class Prε,v, where θ ∈ Θvalid

k , satisfies the conditions in Section
3.4, and that the system of polynomial equations SK,pdens,Prε,v(ν) has two levels of quantification
(each with O(k) bound variables), has kO(k) polynomial constraints, and has maximum degree
O(log(1/ε)). Thus, we have

Corollary 30 For any fixed ε, ν, and for K = 4k − 1, we have that SK,pdens,Prε,ν ,Θvalid
k

(ν) encodes

Equation (9) ranging over θ ∈ Θvalid
k . Moreover, for all γ, λ ≥ 0,

SOLVE-POLY-PROGRAM(SK,pdens,Prε,ν ,Θvalid
k

(ν), λ, γ)

runs in time
(k log(1/ε))O(k4) log log(3 +

γ

λ
) .

For each v, our algorithm then performs a binary search over η to find the smallest (up to
constant factors) η so that Equation (9) is satisfiable for this v, and records both ηv, the smallest
η for which Equation (9) is satisfiable for this v, and the output θv of the system of polynomial
inequalities for this choice of η. We then return θv′ so that the ηv′ is minimal over all v ∈ A. The
pseudocode for LEARNGMM is in Algorithm 2.

The following theorem is our main technical contribution:

Theorem 31 LEARNGMM(k, ε, δ) takes Õ((k+log 1/δ)/ε2) samples from the unknown distribu-
tion with density f , runs in time (

k log
1

ε

)O(k4)

+ Õ

(
k

ε2

)
,

and with probability 1− δ returns a set of parameters θ ∈ Θk so that ‖f −Mθ‖1 ≤ 58 ·OPT + ε.

Proof The sample complexity follows simply because ESTIMATE-DENSITY draws Õ((k+log 1/δ)/ε2)
samples, and these are the only samples we ever use. The running time bound follows because
|A| = kO(k) and from Corollary 30. Thus it suffices to prove correctness.

Let θ be the parameters returned by the algorithm. It was found in some iteration for some
v ∈ A. Let v∗, θ∗ be those which are guaranteed by Corollary 28. We have

‖pdens−P rε,θ∗,v∗‖AK ≤ ‖pdens−f‖1+‖f−Mr
θ∗,v∗‖1+‖Mr

θ∗,v∗−P rε,θ∗,v∗‖1 ≤ 23·OPTk+O(ε) .

By the above inequalities, the system of polynomial equations is feasible for η ≤ 46 ·OPTk +O(ε)
in the iteration corresponding to v∗ (Corollary 28 guarantees that the parameters θ∗ are sufficiently

37



LI SCHMIDT

Algorithm 2 Algorithm for proper learning an arbitrary mixture of k Gaussians.
1: function LEARNGMM(k, ε, δ)
2: . Density estimation. Only this step draws samples.
3: p′dens ← ESTIMATE-DENSITY(k, ε, δ)

4: . Rescaling
5: . pdens is a rescaled and shifted version of p′dens such that the support of pdens is [−1, 1].

6: Let pdens(x)
def
= p′dens

(
2(x−α)
β−α − 1

)
7: . Fitting shape-restricted polynomials
8: for v ∈ A do
9: ηv, θ

r
v ← FINDFITGIVENALLOCATION(pdens, v)

10: Let θ so that θr = θrv′ so that ηv′ is minimal over all ηv (breaking ties arbitrarily).
11: . Round weights back to be on the simplex
12: for i = 1, . . . , k − 1 do
13: wi ← wi − ε/2k (This guarantees that

∑k−1
i=1 wi ≤ 1; see analysis for details)

14: If wi > 1, set wi = 1

15: wk ← 1−
∑k−1

i=1 wi
16: . Undo the scaling
17: w′i ← wi

18: µ′i ←
(µi+1)(β−α)

2 + α
19: τ ′i ←

τi
β−α

20: return θ′

21: function FINDFITGIVENALLOCATION(pdens, v)
22: ν ← ε
23: Let C1 be a universal constant sufficiently small.
24: Let λ← min(C1(ε/(φk))2, 1/16s, ε/(4k))
25: . This choice of precision provides robustness as needed by Lemma 26, and also ensures

that all the weights and precisions returned must be non-negative.
26: Let ψ ← 6ksφ/ω + 3kφ/2 + 1
27: . By Corollary 28, this is a bound on how large any solution of the polynomial program can

be.
28: θr ← SOLVE-POLY-SYSTEM(Spdens,Prε,v ,Θvalid

k
(ν), λ, ψ)

29: while θr is “NO-SOLUTION” do
30: ν ← 2 · ν
31: θr ← SOLVE-POLY-SYSTEM(Spdens,Prε,v ,Θvalid

k
(ν), λ, ψ)

32: return θr, ν

bounded). Hence, for some ηv∗ ≤ η, the algorithm finds some θ′ so that there is some θ′′ so that
‖θ′ − θ′′‖2 ≤ C1(ε/(φk))2, which satisfies Spdens,Prε,v∗ ,Θvalid

k
(νv∗).

Let θ1 be the set of parameters computed by the algorithm before rounding the weights back to
the simplex (i.e. at Line 11). By our choice of precision in solving the polynomial program, (i.e. by
our choice of λ on Line 24 of Algorithm 2), we know that the precisions of the returned mixture are
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non-negative (so each component is a valid Gaussian). It was found in an iteration corresponding to
some v ∈ A, and there is some ηv ≤ ηv∗ ≤ 46 ·OPTk +O(ε) and some θ′1 satisfying the system of
polynomial equalities for v and ηv, so that ‖θ1 − θ′1‖2 ≤ C1(ε/(φk))2. Let θ be the set of rescaled
parameters obtained after rounding the weights of θ1 back to the simplex. It is straightforward to
check that θ ∈ Θk, and moreover, ‖Mr

θ,v −Mr
θ′1,v
‖1 ≤ 2ε, and so ‖P rε,θ,v − P rε,θ′1,v‖1 ≤ O(ε).

We therefore have

‖f −Mθ‖1 ≤ ‖f − pdens‖1 + ‖pdens − P rε,θ,v‖1 + ‖P rε,θ,v −Mr
ε,θ,v‖1

(a)

≤ 4 ·OPT + ε+ 8 ·OPT +O(ε) + ‖pdens − P rε,θ,v‖AK + ε

(b)

≤ 12 ·OPT +O(ε) + ‖pdens − P rε,θ′1,v‖AK
(c)

≤ 58 ·OPT +O(ε) ,

where (a) follows from Lemmas 29 and 27, (b) follows from the arguments above, and (c) follows
since θ′1 satisfies the system of polynomial inequalities for ηv ≤ 46 ·OPTk +O(ε).

As a final step, we choose an internal ε′ in our algorithm so that theO(ε′) in the above guarantee
becomes bounded by ε. This proves the desired approximation guarantee and completes the proof.

4.5. Further classes of distributions

Finally, we briefly show how to use our algorithm to properly learn other parametric classes of
univariate distributions. Let C be a class of parametric distributions on the real line, parametrized
by θ ∈ S for S ⊆ Ru. For each θ, let Fθ ∈ C denote the pdf of the distribution parametrized by θ in
C. To apply our algorithm in this setting, it suffices to show the following:

1. (Simplicity of C) For any θ1 and θ2, the function Fθ1 − Fθ2 has at most K zero crossings. In
fact it also suffices if any two such functions have “essentially” K zero crossings.

2. (Simplicity of S) S is a semi-algebraic set.

3. (Representation as a piecewise polynomial) For each θ ∈ S and any ε > 0, there is a a
piecewise polynomial Pε,θ so that ‖Pε,θ − Fθ‖1 ≤ ε. Moreover, the map (x, θ) 7→ Pε,θ(x) is
jointly polynomial in x and θ at any point so that x is not at a breakpoint of Pε,θ. Finally, the
breakpoints of Pε,θ also depend polynomially on θ.

4. (Robustness of the Parametrization) There is some robust parametrization so that we may
assume that all “plausible candidate” parameters are ≤ 2poly(1/ε), and moreover, if ‖θ1 −
θ2‖ ≤ 2−poly(1/ε), then ‖Fθ1 − Fθ2‖ ≤ ε.

Assuming C satisfies these conditions, our techniques immediately apply. In this paper, we do not
attempt to catalog classes of distributions which satisfy these properties. However, we believe such
classes are often natural and interesting. We give evidence for this below, where we show that our
framework produces proper and agnostic learning algorithms for mixtures of two more types of
simple distributions. The resulting algorithms are both sample optimal (up to log factors) and have
nearly-linear running time.

39



LI SCHMIDT

4.5.1. LEARNING MIXTURES OF SIMPLE DISTRIBUTION

As a brief demonstration of the generality of our technique, we show that our techniques give
proper and agnostic learning algorithms for mixtures of k exponential distributions and Laplace
distributions (in addition to mixtures of k Gaussians) which are nearly-sample optimal, and run in
time which is nearly-linear in the number of samples drawn, for any constant k.

We now sketch a proof of correctness for both classes mentioned above. In general, the robust-
ness condition is arguably the most difficult to verify of the four conditions required. However, it
can be verified that for mixtures of simple distributions with reasonable smoothness conditions the
appropriate modification of the parametrization we developed in Section 4 will suffice. Thus, for
the classes of distributions mentioned, it suffices to demonstrate that they satisfy conditions (1) to
(3).

Condition 1: It follows from the work of Tossavainen (2006) that the difference of k exponential
distributions or k Laplace distributions has at most 2k zero crossings.

Condition 2: This holds trivially for the class of mixtures of exponential distributions. We need a
bit of care to demonstrate this condition for Laplace distributions since a Laplace distribution with
parameters µ, b has the form

1

2b
e−|x−µ|/b

and thus the Taylor series is not a polynomial in x or the parameters. However, we may sidestep
this issue by simply introducing a variable y in the polynomial program which is defined to be
y = |x− µ|.

Condition 3: It can easily be shown that a truncated degree O(log 1/ε) Taylor expansion (as of
the form we use for learning k-GMMs) suffices to approximate a single exponential or Laplace
distribution, and hence a O(k)-piecewise degree O(log 1/ε) polynomial suffices to approximate a
mixture of k exponential or Laplace distributions up to L1-distance ε.

Thus for both of these classes, the sample complexity of our algorithm is Õ(k/ε2), and its
running time is (

k log
1

ε

)O(k4)

+ Õ

(
k

ε2

)
,

similar to the algorithm for learning k-GMMs. As for k-GMMs, this sample complexity is nearly
optimal, and the running time is nearly-linear in the number of samples drawn, if k is constant.

5. Our high-dimensional algorithm

In this section, we extend our univariate proper learning algorithm to learn mixtures of spherical
Gaussians in high dimensions. At a high level, our algorithm proceeds as follows:

1. We approximate the covariance of each component to low accuracy.

2. We employ a recursive spectral algorithm to produce a clustering of the samples with the
following guarantee: with high probability, all samples from the same mixture component
are assigned to the same cluster. Moreover, the component means in each cluster differ by at
most Õ(k). For each cluster, we also estimate the total weight of all mixture components in
the cluster to high accuracy. We then consider each cluster as a separate subproblem.
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3. In each cluster, we compute an approximate PCA of the sample covariance matrix to produce
a k-dimensional subspace S which is approximately the span of the component means. More-
over, we use an approximation of the (k+ 1)st eigenvalue of the sample covariance matrix as
an estimate for the component precision τ = 1/σ.

4. Let k′ be the number of components in a cluster. We then find a set of (poly(k′))O(k′) “good”
directions in this subspace and estimate the density of the unknown distribution on each of
these directions. Next, we run our univariate learning algorithm simultaneously on all of
these directions to find a single mixture of k′ spherical Gaussians (with common covariance)
in Rk′ satisfying the following property: on each direction we consider, the projection of this
mixture is close (in total variation distance) to the projection of the unknown distribution on
this direction. We output this mixture embedded in Rd.

5. Finally, we combine the estimates in each cluster and output the resulting mixture.

There is an additional twist here: a priori, we do not know how many mixture components each
cluster contains. We get around this issue by enumerating over all possible ways to split the compo-
nents into each cluster, producing 2O(k) different proper hypotheses. We then perform hypothesis
selection over this set.

Steps 1 to 3 are essentially the algorithm presented in Acharya et al. (2014), but we use faster
approximate PCA techniques and better concentration bounds. Our exposition of Steps 1 to 3 pri-
marily serves to clarify and strengthen the argument presented in Acharya et al. (2014), and also
to show that the approximate PCA guarantees suffice for our purposes. Our main contribution is
Step 4 in which we extend our univariate proper learning algorithm to the k-dimensional setting.
The main challenge is to show that univariate density estimates suffice for proper learning in the
k-dimensional space.

5.1. Preliminaries

We adapt our notation from the previous sections to the high-dimensional setting. In the following,
we use d as the full ambient dimension, i.e., our samples are d-dimensional real vectors. We denote
vectors with lower case letters in bold face and let ‖u‖2 denote the Euclidean norm of a vector u.
Moreover, we let ‖A‖op denote the `2 operator norm (or spectral norm) of a matrix A, and we use
upper case letters in bold face for matrices. Since we focus on mixtures of spherical Gaussians, it
suffices to quantify the normal pdf with a mean vector µ ∈ Rd and a scalar precision parameter
τ = 1/σ, which gives:

Nµ,τ (x) = (2π)−d/2τd · e−
1
2
τ2‖x−µ‖22 .

As before, we denote the set of valid k-GMM parameters with Θk, where a valid parameter vector
θ ∈ Θk now satisfies τi = τ for all i ∈ [k]. We associate these parameters with the d-dimensional
mixture of Gaussians

Mθ(x) =

k∑
i=1

wi · Nµi,τi(x) .

If v ∈ Rd is a unit vector, we let v · θ denote the set of parameters of the univariate marginal
distribution induced by projecting the distributionMθ along v. That is, v ·θ is the set of parameters
with the same weights wj and precision τj as the set of parameters θ, but with means v · µj .
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Formally, we consider the following problem: given m independent samples x1, . . . ,xm ∈ Rd
drawn from the distributionMθ∗ , where θ∗ satisfies τ∗i = τ∗j for all i, j, our goal is to recover a set
of parameters θ ∈ Θk so that we have the L1-norm guarantee ‖Mθ∗ −Mθ‖1 ≤ O(ε). We also
provide agnostic guarantees for our algorithm, building upont the recent work of Diakonikolas et al.
(2016a).

We are generally interested in the regime where the parameter k is constant and the parameters
d and 1/ε are growing. In particular, we will assume that d > k, that 1/ε > k, and that d ≥
O(log(k/δ)), where δ is the failure probability of our algorithm.

In the following arguments, we often need to find the top k eigenvectors of our data matrix
A ∈ Rd×m given by the samples xi. In all instances, it turns out that an approximate notion of the
top k eigenvectors suffices for our algorithm, which allows us to use computationally more efficient
algorithms. In particular, we use the following algorithm, which is essentially the randomized block
Krylov method analyzed in Musco and Musco (2015) applied to the matrixAAT :

Theorem 32 (Musco and Musco (2015)) Fix ε > 0. Let A ∈ Rd×n be an arbitrary matrix. Then
there is an algorithm APPROXPCA(A, k, ε) that runs in timeO(kdn/

√
ε) and returns an orthonor-

mal basis V = {v1, . . . ,vk}, or equivalently, a projector ΠV onto span(V ), so that

‖AAT −ΠVAA
T ‖2 ≤ (1 + ε)σk+1 ,

where σk+1 is the (k+1)st largest singular value ofA. Moreover, if u1, . . . ,ud are the left singular
vectors ofA sorted in decreasing order of their corresponding singular values, we have

|viAATvi − uiAATui| ≤ εσk+1 .

5.1.1. INFORMATION THEORETIC TOOLS

KL divergence and Pinsker’s inequality The KL divergence (or relative entropy) is a well-
studied “measure” of distance between probability distributions. In our setting, it can be defined
as follows.

Definition 33 (KL divergence) Let P,Q be two probability density functions over Rd. Then

DKL(P ||Q) =

∫
Rd

log
P (x)

Q(x)
P (x) dx .

In our analysis here, we are mainly interested in the KL divergence because it allows us to establish
upper bounds on the total variation distance between two distributions:

Theorem 34 (Pinsker’s inequality, see e.g. Tsybakov (2008)) Let P,Q be two probability density
functions over Rd. Then

‖P −Q‖1 ≤
√

2DKL(P ||Q) .

Moreover, the KL divergence between two multivariate Gaussians has a convenient closed form:

Fact 35 Let P,Q be normal distributions with means µ1,µ2 and covariance matrices Σ1,Σ2.
Assume that det(Σ1),det(Σ2) > 0. Then

dKL(P ||Q) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)TΣ2(µ2 − µ1) + log
|Σ1|
|Σ0|

)
.

Together, these two statements imply the following:

Corollary 36 Let P = Nµ1,1 and Q = Nµ2,1. Then ‖P −Q‖1 ≤ O(‖µ1 − µ2‖2).
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Data Processing Inequality We require the following well-known version of the Data Processing
Inequality:

Theorem 37 (Data Processing Inequality, see e.g. Cover and Thomas (2006)) LetD,D′ be dis-
tributions on some abstract measurable space, and let F be a random function. Define F (D) to be
the distribution given by first drawing a random sample x from D and then outputting F (x) (where
F may be randomly chosen from the random family). We adopt the same definition for F (D′). Then

dTV (F (D), F (D′)) ≤ dTV (D,D′) .

For any subspace S and probability distribution D, let DS denote the projection of D onto S, i.e.,
to draw a sample from DS , we first draw a sample from D and then project it onto S. Letting F
be the function which projects samples from D onto S, so that DS = F (D), we see that this is a
special case of the setting in the Data Processing inequality. Hence, as a corollary, we obtain:

Corollary 38 Let D,D′ be two distributions, and let S be any subspace. Then

‖DS −D′S‖1 ≤ ‖D −D′‖1 .

5.1.2. CONCENTRATION BOUNDS

In this subsection, we establish concentration results that we will require in the future. We require
the following preliminaries. The first bounds the largest deviation of any single point from a Gaus-
sian:

Fact 39 (Folklore) Fix δ > 0. Let y1, . . . , yn be n independent samples from the standard univari-
ate Gaussian distribution. Then, with probability 1− δ, we have supi∈[n] |yi| ≤

√
log(n/δ).

The second bounds the deviation of the mean of the samples:

Fact 40 (Folklore) Fix ε, δ > 0. Let y1, . . . ,yn be n = O
(
d+log(1/δ)

ε2

)
independent samples from

N0,1. Then with probability 1− δ, ∥∥∥∥∥ 1

n

n∑
i=1

yi

∥∥∥∥∥
2

≤ ε .

Theorem 41 (Corollary 5.50 in Vershynin (2010)) Fix ε, δ > 0. Let y1, . . . ,yn be n = O
(
d+log(1/δ)

ε2

)
independent samples from N0,1. Then with probability 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

yiy
T
i − I

∥∥∥∥∥
op

≤ ε .

This allows us to show the following:

Corollary 42 Fix ε, δ > 0. Let y1, . . . ,yn be n = O
(
d+log(1/δ)

ε2

)
independent samples fromNµ,1,

and let µ ∈ Rd be arbitrary. Then with probability 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

(yi + µ)(yi + µ)T − (I + µµT )

∥∥∥∥∥
op

≤ O(ε(1 + ‖µ‖2)) .
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Proof By expanding out the LHS, we get that

1

n

n∑
i=1

(yi + µ)(yi + µ)T − (I + µµT ) =
1

n

n∑
i=1

yiy
T
i − I +

1

n

n∑
i=1

yiµ
T + µT

(
1

n

n∑
i=1

yi

)
.

We then have∥∥∥∥∥ 1

n

n∑
i=1

(yi + µ)(yi + µ)T − (I + µµT )

∥∥∥∥∥
op

≤

∥∥∥∥∥ 1

n

n∑
i=1

yiy
T
i − I

∥∥∥∥∥
op

+ 2‖µ‖2

∥∥∥∥∥ 1

n

n∑
i=1

yi

∥∥∥∥∥
2

≤ ε+ 2ε‖µ‖2 ,

where the last line follows from Fact 40 and Theorem 41.

We now give bounds for the rate of convergence of the sample mean and covariance for a mixture
of GaussiansMθ with shared covariance I . In the following, let x1, . . . ,xn be n samples fromMθ.
For component j, let Sj denote the subset of the samples that were drawn from component j. We
let ŵj = |Sj |/n be the empirical mixing weights, and we let µ̂ = 1

n

∑
xi be the empirical mean.

Furthermore, we let µ̃ =
∑
ŵjµj and

C̃ = σ2I +

k∑
j=1

ŵj(µj − µ̃)(µj − µ̃)T (10)

be the mean and covariance with the empirical mixing weights instead of the true mixing weights.
We also define

γ = max
j
ŵj‖µj − µ̃‖22 , (11)

which will be an important parameter for us later.
In the concentration argument below, we ignore all components with ŵj = 0 because we often

divide by ŵj . It is easy to see that this does not affect any guarantees we prove in this subsection.
We first show that the empirical mean is close to µ̃:

Lemma 43 Fix ε, δ > 0, and let n = O(d+log(k/δ)
ε2

). With probability 1− δ, we have

‖µ̃− µ̂‖2 ≤ O(k1/2ε) .

Proof By Fact 40, we know that with probability 1− δ/k,∥∥∥∥∥∥µj − 1

|Sj |
∑
i∈Sj

xi

∥∥∥∥∥∥
2

≤ O

(
ε

ŵ
1/2
j

)
.
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We then have that with probability 1− δ,∥∥∥∥∥µ′ − 1

n

n∑
i=1

xi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑
j=1

ŵjµj − ŵj 1

|Sj |
∑
i∈Sj

xj

∥∥∥∥∥∥
2

≤
k∑
j=1

ŵj

∥∥∥∥∥∥µj − 1

|Sj |
∑
i∈Sj

xj

∥∥∥∥∥∥
2

≤
k∑
j=1

O(ŵ
1/2
j ε)

≤ O(k1/2ε) ,

since
∑

j ŵj = 1.

This immediately leads to the following corollary:

Corollary 44 Fix ε, δ, and let n = O(d+log(k/δ)
ε2

). With probability 1−O(δ), for all j, we have∣∣‖µi − µ̂‖2 − ‖µi − µ′‖2∣∣ ≤ O(k1/2ε) .

Now we turn to bounding the covariance:

Lemma 45 Fix ε, δ > 0, and let n = O(d+log(k/δ)
ε2

). With probability 1−O(δ), we have that∥∥∥∥∥ 1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T − C̃

∥∥∥∥∥
op

≤ O(k1/2ε+ εkγ1/2 + kε2) ,

where C̃ is as defined in Equation (10).

Proof
We write

1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T =

k∑
j=1

ŵj
1

|Sj |
∑
i∈Sj

(xi − µ̂)(xi − µ̂)T .

Note that∑
i∈Sj

(xi − µ̂)(xi − µ̂)T =
∑
i∈Sj

(xi − µj + µj − µ̂)(xi − µj + µj − µ̂)T

=
∑
i∈Sj

(xi − µj)(xi − µj)T + (µj − µ̂)
∑
i∈Sj

(xi − µj)T

+

∑
i∈Sj

(xi − µj)

 (µj − µ̂)T + |Sj |(µj − µ̂)(µj − µ̂)T .
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By Fact 40 and Theorem 41, the following inequalities hold with probability 1−O(δ):∥∥∥∥∥∥ 1

|Sj |
∑
i∈Sj

(xi − µj)(xi − µj)T − I

∥∥∥∥∥∥
op

≤ ε

ŵ
1/2
j

, and

∥∥∥∥∥∥ 1

|Sj |
(µj − µ̂)

∑
i∈Sj

(xi − µj)T
∥∥∥∥∥∥

2

≤ ‖µj − µ̂‖2
ε

ŵ
1/2
j

and so, putting things together via triangle inequalities, we have∥∥∥∥∥ 1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)T − C̃

∥∥∥∥∥
op

≤
k∑
j=1

|Sj |
n

(
ε

ŵ
1/2
j

+ 2‖µj − µ̂‖2
ε

ŵ
1/2
j

)

≤ k1/2ε+ 2ε
k∑
j=1

ŵ
1/2
j ‖µj − µ̂‖2

≤ k1/2ε+ 2ε
k∑
j=1

ŵ
1/2
j (‖µj − µ̃‖2 + ‖µ̃− µ̂‖2)

≤ k1/2ε+ 2ε
k∑
j=1

ŵ
1/2
j

(
‖µj − µ̃‖2 +O(k1/2ε)

)
= O(k1/2ε+ εkγ1/2 + kε2) ,

where the second to last line follows from Corollary 44 and the last line follows from the definition
of γ (Equation (11)).

5.2. The algorithm

We now formally define our algorithm LEARNMULTIVARIATEGMM in Algorithm 3. To prove
the desired proper learning guarantee, we analyze the distortion incurred when projecting high di-
mensional GMMs along a line. In particular, we are interested in the L1-distance between two high
dimensional mixtures, and the L1-distance between the same two mixtures projected onto a line. By
classical arguments (the Data Processing Inequality), it is clear that the L1-distance cannot increase
due to the projection. For our arguments, we need the opposite direction, i.e., we want to show
that univariate projection does not decrease the total variation distance too much. To this effect, we
define the following quantity.

Definition 46 (Projected separation) Let ε > 0 be theL1-distance separation in the high-dimensional
space, let k ∈ N be the number of components per mixture, and let V ⊂ Sk−1 be a given set of
direction in Rk. Then we define the projected separation ζ ∈ R to be

ζ(ε, k, V ) = inf
θ′,θ′′:‖Mθ′−Mθ′′‖1≥ε

max
v∈V

‖Mv·θ′ −Mv·θ′′‖1 , (12)

where the minimum is taken over all k-dimensional mixtures of Gaussians with parameters θ′, θ′′ so
that all covariances in all mixture components are σ2I for some common σ.
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The projected separation ζ(ε, k, V ) measures how much the distance between any two mixtures
of k Gaussians in Rk with the same spherical covariance can decrease if we only consider directions
in V . When the parameters are well-understood, we sometimes simply write ζ for this quantity.

A priori, it is not clear that the projected separation ζ is non-zero. Indeed, for a small set V ,
the separation ζ can in general be zero. However, it is not too hard to show that there is a set of
directions Vε,k of size |Vε,k| = (1/ε)O(k) so that ζ(ε, k, Vε,k) = Ω(ε) (take V to be an ε-net for
Sk−1). With this choice of V , our algorithm roughly recovers the sample and time guarantees of
the prior work Acharya et al. (2014). However, we believe that the bound on the cardinality of V
can be improved significantly: Conjecture 1 implies that for all k, there is a set of directions Vk
with size |Vk| = (poly(k))O(k) so that ζ(ε, k, Vk) = Ωk(ε). A crucial aspect of this conjecture is
that the cardinality of Vk is independent of ε. Such a set of directions Vk would allow us to achieve
a significantly better time complexity than Acharya et al. (2014) for any fixed k. In particular, we
would separate the exponential dependence between 1/ε and k. In Subsection 9, we show that in
the case of two mixture components (i.e., k = 2), we can indeed give a set of directions V such that
the cardinality |V | is independent of ε.

The overall guarantee of our algorithm is the following:

Theorem 47 LEARNMULTIVARIATEGMM(k, ε, δ, V ) requires

N = Õk

(
d

ε4
+
d+ log(|V |/δ)

ζ2

)
samples and time

Õk

(
|V |
ζ2

+ d2

(
1

ε4
+

1

ζ2

)
·min

(
1

ε
,

√
1

ζ

)
+

(
|V | log

1

ζ

)O(|V |2)
)

and with probability 1− δ, it returns a mixture of k GaussiansMθ so that ‖Mθ −Mθ∗‖1 ≤ ε .

We state our dependence on k explicitly in Section 10 but suppress it here for clarity. An important
consequence of Theorem 47 is the following: assuming Conjecture 1, our algorithm has both good
time and sample complexity:

Corollary 48 Assuming Conjecture 1, the sample complexity of our algorithm LEARNMULTIVARI-
ATEGMM is Õk

(
d
ε4

)
and its running time is Õk

(
d2

ε5

)
.

We believe that Conjecture 1 holds for all values of k and give numerical evidence in Section
11. Proving Conjecture 1 is a promising direction for future work. Here, we prove a version of
Conjecture 1 for the k = 2 case with ζ = ε3, which directly gives the following result:

Corollary 49 There is a set of directions V of constant size that can also be computed in constant
time so that the following guarantee holds: the algorithm LEARNMULTIVARIATEGMM(2, ε, δ, V )
returns a mixture of two GaussiansMθ so that ‖Mθ−Mθ∗‖1 ≤ ε with probability 1−δ. Moreover,
the algorithm requires Õ

(
d log(1/δ)

ε6

)
samples and runs in time Õ

(
d2

ε7.5

)
.

Corollary 49 gives the best known time complexity for proper learning of a high-dimensional 2-
GMM with shared spherical covariance.
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Algorithm 3 Our algorithm for learning a mixture of multivariate Gaussians with the same covari-
ance.

1: function LEARNMULTIVARIATEGMM(ε, δ, V )
2: . Step 1: get a coarse estimate of the shared variance σ
3: σ1 = COARSEESTIMATESIGMA(k).
4: In all later steps, we divide all samples by σ1.

5: Let S1, . . . , Sk be k sets of independent samples, each containing n samples, where

n = Õ

(
dk9 log(k/δ)

ε4
+
dk7/2 log(|V |/δ)

ζ2

)
.

6: . Step 2: recursive spectral projection clustering
7: Run RECURSIVESPECTRALPROJECTION(S1, . . . , Sk, δ).
8: Let t be the iteration that RECURSIVESPECTRALPROJECTION returns on.
9: Let Tt be the returned clustering tree.

10: Let St1, . . . , S
t
k′ be the partition of St induced by T .

11: for cluster Cr do

12: . Step 3: Find an approximation for the subspace spanned by the means.
13: . We also obtain a more accurate estimate of the covariance.
14: Let Πr, σ̂r = FINDAPPROXSUBSPACEANDCOVARIANCE(k, St, ε, δ, ζ, Tt, r)
15: If the number of samples in Cr is at least a O(1/k) fraction of all the samples, let

σ̂ = σ̂r.
16: for ` = 1, . . . , k do

17: . Step 4: Find a proper estimate for the current cluster.
18: . This step relies on density estimation and a system of polynomial inequalities.
19: θr,` ← FITPOLYPROGRAMMULTIVARIATE(`,Πr, S

t
r, σ̂, ε, δ).

20: . Hypothesis selection since we do not know how many components are in each cluster
21: for all sets of positive integers β1, . . . , β` so that

∑
βr = k do

22: Form a hypothesis
∑
ŵrMθr,β`

.

23: Perform hypothesis selection on all hypotheses formed this way.
24: return the winning hypothesis.

6. Spectral projection clustering

In this section, we describe our algorithm for clustering via recursive spectral projections. As a first
step, we obtain an estimate for the common covariance.

6.1. Finding a rough estimate for the covariance of each component

Similar to Acharya et al. (2014), we use an algorithm COARSEESTIMATESIGMA(k) that works as
follows: take n+ 1 samples y1, . . . ,yn+1 and output σ1 = mini,j ‖yi − yj‖2. This algorithm goes
back to at least Bishop (1995) (see also Dasgupta and Schulman (2007)).
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Lemma 50 (Lemma 4 in Acharya et al. (2014)) If d ≥ O(log(n/δ)), then with probability 1− δ,
we have |σ2

1 − σ2| ≤ O(σ2) .

Thus by dividing all samples by σ1 and working with the distribution that results from this trans-
formation, we may assume that σ = Θ(1). We make this assumption for the rest of this section.
It can be easily verified that all the concentration inequalities we proved previously still hold when
σ = Θ(1), just with possibly different constant factors.

6.2. The projection clustering algorithm

In this section, we describe our algorithm for clustering via recursive spectral projections. The most
basic objects we will use to cluster are what we call clustering directions.

Definition 51 A clustering direction for a k-GMMM with error δ is a unit vector v ∈ Rd such that
there exists a proper, nonempty subset of components C ( [k] with the following property: With
probability 1− δ over a draw x ∼M, we have that the sample x was drawn from the components
in C if and only if vTx > 0.

Thus, a clustering direction gives a single linear test that implies a non-trivial clustering for the
k-GMMM. To cluster further, we may then take additional samples, use this test to partition them
into two clusters, and then recursively partition the two clusters with new clustering directions. We
formalize this process as clustering trees.

Definition 52 A clustering tree is a binary tree so that no node has only one children. Each non-
leaf node is labeled with a linear function label : Rd → R. Given any point x ∈ Rd, we define
its associated leaf node to be the leaf node that one arrives at by recursively navigating the tree
starting from the root, at each step traversing to the left child if label(x) < 0, and traversing to the
right child otherwise.

Intuitively, a clustering tree partitions Rd into intersections of halfspaces, and we can use this
partition to cluster points from mixtures of Gaussians:

Definition 53 Fix a mixture of k GaussiansM, and let T be a clustering tree with k′ ≤ k leaves.
We say that that the tree T is a valid clustering tree for M with error probability δ if there is a
partition {C1, . . . , Ck′} of the components ofM such that the following property holds: if x is a
sample drawn from any component in Ci, then its associated leaf node is the i-th leaf node with
probability at least 1 − δ. Given a set of samples x1, . . . ,xn drawn fromM, we say T perfectly
clusters the samples if there are no two samples xi and xi′ such that both xi and xi′ are drawn
from the same component but associated to different leaf nodes.

6.3. Analysis of RECURSIVESPECTRALPROJECTION

At a high level, the clustering algorithm proceeds as follows. First, the algorithm draws k sets of N
i.i.d. samples, where

N = Õ

(
k4(d+ log k/δ) max

(
1

ε4
,

1

ζ2

))
,
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1: function RECURSIVESPECTRALPROJECTION(S1, . . . , Sk, δ)
2: Let T0 be the empty tree.
3: for ` = 1, . . . , k do
4: Cluster samples in S` using T`−1 into clusters C`1, . . . , C

`
k′′ for some k′′ ≤ k.

5: Each cluster is associated with a leaf node of T`−1.
6: for m = 1, . . . , k′′ do
7: µ̂`(C`m)← 1

|C`m|
∑

i∈C`m xi

8: LetB`
m be the matrix whose columns are 1√

|C`m|
(xi − µ̂`(C`m)) for i ∈ C`m.

9: {v} = APPROXPCA(B`
m, 1, 1/10).

10: Let λ = vT
(
B`
m

) (
B`
m

)T
v.

11: if λ ≤ O(k3 log(kn/δ)) then
12: . In this case we return a single cluster
13: Do not split the samples
14: else
15: . In this case, we partition the samples and recursively cluster each partition.
16: Project the xi − µ̂`(C`m) onto v and sort them.
17: Find the maximum gap between two consecutive values vT (xi − µ̂`(C`m)).
18: Associate to leaf node m the function label(v) = vT (x− µ̂`(C`m))
19: Attach two new child nodes to node m in T`.
20: Let T` be the new tree.
21: if T` = T`−1 then
22: return T` and the samples S`.

and divides them into sets S1, . . . , Sk. The algorithm then iteratively builds a clustering tree using
these sets of samples one at a time, never reusing a previous set of samples. In a nutshell, the result-
ing tree is a valid clustering tree for the underlying mixture with error probability O(poly(δ, 1/k)),
so that only components with means that are suitably close together land in the same cluster. How-
ever, we do not wish to put any constraints on the weights or means of the true, underlying GMM.
In this regime it is not straightforward to prove a statement directly in terms of the underlying pa-
rameters.10 Therefore, our result must be stated in a way that depends on the samples drawn, but
we show that this is sufficient for our purposes.

Since our results are stated relative to the specific set of samples drawn, it will be useful to
define the following quantities. For any ` = 1, . . . , k, let ŵ`j be the fraction of samples in the set S`
that come from component j. For any set of components C ⊆ [k], let µ̂`(C) be the empirical mean
of the samples from set S` that come from C, and let ŵ`(C) =

∑
j∈C ŵ

`
j . Let

µ̃`(C) =
∑
j∈C

ŵ`j
ŵ`(C)

µj

be the mean within cluster C using the empirical weights instead of the true weights.

10. Consider a mixture component with very small weight but very large mean. It does not contribute meaningfully to
the density of the overall mixture but significantly affects terms involving all underlying means and weights.
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We also define

C̃`(C) = σ2I +
∑
j∈C

ŵ`j
ŵ`(C)

(
µj − µ̃`(C)

)(
µj − µ̃`(C)

)T
, and

γ`(C) = max
j∈C

ŵ`j
ŵ`(C)

∥∥∥µj − µ̃`(C)
∥∥∥2

2
.

With this, we may now state the key result for this section:

Theorem 54 Fix δ > 0. Let S1, . . . , Sk be independent sets of samples, where each Si contains n
i.i.d. samples fromM, and where n is chosen sufficiently large so that

n ≥ c
(
d+ log(1/δ) + log(kn)

ε2

)
,

for some universal constant c. Let T = RECURSIVESPECTRALPROJECTION(S1, . . . , Sk, δ), and
let t be the iteration in which the algorithm terminates. Then, with probability 1 − δ, we have
that T perfectly clusters St. Moreover, if C1, . . . , Ck′ is the clustering induced by T , we have that
γt(Cp) ≤ O(k3 log(k/δ)), for all p = 1, . . . , k′ satisfying ŵt(Cp) ≥ O(ε/k).

Our analysis consists of two parts. First, we show that if we extend the current clustering tree
in a given iteration, then the extended tree remains a clustering tree for M with error probability
1− δ. Next, we show that if we terminate in iteration t, we also have γt ≤ O(k3 log(k/δ)).
Proof [Proof of Theorem 54] We proceed inductively to show that the following property holds
in step ` ∈ [k] with probability at least 1 − O(δ/k): If T`−1 is a clustering tree with error
O(δ/poly(k,N)) and associated clustering C1, . . . , Cm, then:

1. For every cluster Cp with ŵ`(Cp) ≥ O(ε/k) and γ`(Cp) ≥ O(k2 log(k/δ′)), we output a
clustering direction with error δ/(kN).

2. For every clusterCp with ŵ`(Cp) ≥ O(ε/k) for which we do not output a clustering direction,
we must have γ`(Cp) ≤ O(k3 log(k/δ′)).

First, since T`−1 is a clustering tree with error O(δ/poly(N, k)), we may assume with probability
1− δ/k that it misclassifies no points in S`. Fix any cluster Cp. We may assume that some nonzero
number of samples from the set S` land in the clusterCp, as otherwise the algorithm trivially satisfies
the desired guarantees in this iteration for this cluster. Now, restricted to the components in the
cluster Cp, the resulting distribution is still a GMM with pdf given by

MCp =
∑
j∈Cp

wj
w(Cp)

Nµj ,τj (x) .

Moreover, in the set S` we have ŵ`(Cp) · n samples from this GMMMCp . Let S`,p denote this set
of samples. Moreover, define

Ĉ`
p =

1

ŵ`(C)n

∑
i∈S`,p

(xi − µ̂`(C))(xi − µ̂`(C))T
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to be the empirical covariance within this cluster Cp. Lemma 45 implies that with probability
1−O(δ/k), we have

∥∥∥Ĉ`
p − C̃`(Cp)

∥∥∥
op
≤ O

(
k1/2 ε√

ŵ`(Cp)
+

ε√
ŵ`(Cp)

kγ`(Cp)
1/2 + k

ε2

ŵ`(Cp)

)
≤ O

(
k
√
ε+ kγ`(Cp)

1/2√ε
)

for all Cp with ŵ`(Cp) ≥ ε/k, since we are assuming throughout this entire section that ε < 1/k.
We now show that this concentration suffices to give a clustering direction if the components

within this cluster are too far apart:

Lemma 55 Let β ≥ σk2 log(kn/δ).
Assume that γ`(Cp) ≥ 5σβ = Θ(β), and let A be a matrix such that ‖A − C̃`(Cp)‖op ≤

O
(
β
√
ε+ kγ`(Cp)

1/2√ε
)
. Then ‖A‖op ≥ Ω(β). Moreover, if v is any direction so that vTAv ≥

4β = Θ(β), then it is a clustering direction forMCp with error probability δ/kn.

Proof We start with the first claim. Recall that γ`(Cp) = maxj
ŵ`j

ŵ`(Cp)
‖µj − µ̃`(Cp)‖22. Let i be

the corresponding index, i.e.,

i = arg max
j∈[k]

√
ŵ`j

ŵ`(Cp)
‖µj − µ̃`(Cp)‖22 ,

and let u =
µi−µ̃`(Cp)
‖µi−µ̃`(Cp)‖2

. Then

uTAu ≥ uT C̃`(Cp)u−O
(
β
√
ε+ kγ`(Cp)

1/2√ε
)

=
∑
j∈Cp

ŵ`j
ŵ`(Cp)

〈u,µj − µ̃`(Cp)〉2 + 1−O
(
β
√
ε+ kγ`(Cp)

1/2√ε
)

≥ γ`(Cp)/σ + 1−O
(
β
√
ε+ kγ`(Cp)

1/2√ε
)

≥ 4β .

This establishes that ‖A‖op ≥ 4β.
Next, let v be a direction satisfying vTAv ≥ 4σβ. Then by a similar argument as above, we

know that ∑
j∈Cp

ŵ`j
ŵ`(Cp)

〈v,µj − µ̃`(Cp)〉2 ≥ 2β .

We now claim that there must be indices i and i′ so that

|〈v,µi〉 − 〈v,µi′〉| ≥
√
β = O(k

√
log(nk/δ)) .

By basic Gaussian concentration (see Fact 39), the maximum of n samples from a univariate Gaus-
sian with variance σ deviates by at most σ

√
log(nk/δ) from the mean with probability 1− δ′/kn.

Hence v is a clustering direction forMCp with error probability δ/kn as stated in the lemma.
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Suppose that the claim is not true. Since µ̃`(Cp) is a weighted average of the µj , this implies
that

|〈v,µi〉 − 〈v, µ̃`(Cp)〉| ≤
√
β .

But then we have ∑
j∈Cp

ŵ`j
ŵ`(Cp)

〈v,µj − µ̃`(Cp)〉2 ≤
∑
j∈Cp

ŵ`j
ŵ`(Cp)

β = β ,

which is a contradiction.

The lemma shows that if γ`(Cp) is sufficiently large, and we have an estimate A of the matrix
C̃`(Cp) up to spectral error O(β), then ‖A‖op is large, and our algorithm produces a clustering
direction forMCp . We now establish the converse: if the spectral norm of A is large, then γ`(Cp)
must be large. We show this implication by proving the contrapositive:

Lemma 56 LetA be so that ‖A− C̃`(Cp)‖op ≤ O(β). Then ‖A‖op ≤ O(kγ`(Cp) + β + 1).

Proof Indeed, we have

‖A‖op ≤ ‖C̃`(Cp)‖op +O(β)

≤

∥∥∥∥∥∥
∑
j∈Cp

ŵ`j
ŵ`(Cp)

(µj − µ̃`(Cp))(µj − µ̃`(Cp))T
∥∥∥∥∥∥

op

+ 1 +O(β)

≤
∑
j∈Cp

γ`(Cp) + 1 +O(β)

≤ O(kγ`(Cp) + β)

as claimed.

Putting this together, we have:

Corollary 57 LetB ∈ Rd×n be a matrix and letA = BBT . Assume we have

‖A− C̃`(Cp)‖op ≤ O(k log(k/δ)
√
ε+

(
γ`(Cp)

)1/2√
ε) .

Then one of the following two cases holds: (i) If we also have ‖A‖op ≤ O(kβ), then γ`(Cp) ≤
O(kβ) = O(k3 log(kn/δ)). (ii) Otherwise, APPROXPCA(B, 1, 1/10) produces a clustering di-
rection with error probability δ/kn.

Proof The first conclusion follows from Lemma 55. On the other hand, suppose that ‖A‖op ≥
Ω(kβ). Then by Lemma 55, we have γ`(Cp) ≥ Ω(β) which by Lemma 55 gives the desired con-
clusion.

This proves the induction. Note that this implies that RECURSIVESPECTRALPROJECTION can only
add at most k leaves, since each time it must peel off at least one component. Repeated application
of this result, and union bounding over all recursive calls of RECURSIVESPECTRALPROJECTION

finally completes the proof of Theorem 54.
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7. Finding the subspace spanned by the means

In this section, let t denote the iteration in which RECURSIVESPECTRALPROJECTION terminates.
Let C1, . . . , Ck′ be the final clustering returned by RECURSIVESPECTRALPROJECTION, and let the
set of samples from set St belonging to cluster Cp be denoted St,p. By the above, we may assume
that our algorithm knows this clustering perfectly. Moreover, for each p with ŵt(Cp) ≥ O(ε/k),
we have γt(Cp) = O(k3 log(k/δ)). It will be useful for us to reuse the samples in St because we
then know that the ŵt quantities are the same as the criteria used in the previous clustering step.

We now give an algorithm to find the subspace spanned by the means of the Gaussian mixture
within any cluster Cp satisfying γt(Cp) ≥ O(ε/k). Moreover, the algorithm also gives a much finer
estimate for σ.

We denote subspaces with upper case letters. For a subspace V , we let V ⊥ be the orthogonal
complement of V . We define ΠV to be an orthogonal projection onto the subspace V .

Algorithm 4 Algorithm for approximating finding the subspace spanned by the means
1: function FINDAPPROXSUBSPACEANDCOVARIANCE(k, S, ε, δ, ζ)
2: µ̂ = 1

|S|
∑

i∈S xi.

3: LetA be the matrix whose columns are xj−µ̂√
|S|

.

4: V ← APPROXPCA(A, k + 1,min(ε2/k2, ζ/k)).
5: Let vk+1 be the (k + 1)-st vector returned. Let σ̂2 ← vTk+1AA

Tvk+1.
6: return ΠV , an orthogonal projector onto the subspace V , and σ̂2

Lemma 58 Fix ε, δ > 0. Let p be so that ŵt(Cp) ≥ O(ε/k). Then, with probability 1− δ, if V is
the subspace output by
FINDAPPROXSUBSPACEANDCOVARIANCE(k, St,p, ε, δ, ζ), we have

‖ΠV ⊥(µj − µ̂(Cp))‖2 ≤ O

 ε

k1/2
√
ŵtj

 for all j ∈ Cp . (13)

Moreover, if ŵt(Cp) ≥ Ω(1/k), we have that |σ̂ − σ| ≤ (1 + ζ)σ.

Proof By Lemma 45, since we assume that γt(Cp) ≤ Õ(k3) we know that we have except with
probability 1− δ,

‖AAT − C̃t(Cp)‖op ≤
1

ŵt(Cp)
min

(
ε2

k2
,
ζ

k

)
.

The second claim then immediately follows from the guarantees of APPROXPCA. By the guarantees
of APPROXPCA, we know that

‖ΠUAA
T −AAT ‖op ≤

(
1 +

1

ŵt(Cp)
ε2/k

)
σk+1(A)

where σk+1(A) denotes the (k + 1)-st largest singular value ofA. Because

‖AAT − C̃t(Cp)‖op ≤
1

ŵt(Cp)
ε2/k
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this immediately implies (since the k + 1st eigenvalue of C is 1) that

σk+1(A) ≤ σ2

(
1 +

1

ŵt(Cp)
ε2/k

)2

= σ2

(
1 +

1

ŵt(Cp)
O(ε2/k)

)
,

where the last line follows since 1
ŵt(Cp)ε

2/k = O(ε) by our assumption about ŵt(Cp), and since
(1 + x)2 = (1 +O(x)) for x ≥ 0 small.

Hence since ‖ΠUAA
T −ΠU C̃

t(Cp)‖op ≤ ‖AAT − C̃t(Cp)‖op, we have that by the triangle
inequality,

‖ΠU C̃
t(Cp)− C̃t(Cp)‖op ≤ ‖ΠU C̃

t(Cp)−ΠAAT ‖op + ‖ΠAAT −AAT ‖op + ‖AAT − C̃t(Cp)‖op

≤ σ2(1 +
1

ŵt(Cp)
O(ε2/k)) .

Equivalently, this gives

‖ΠU⊥C̃
t(Cp)‖op

2 ≤ σ4(1 +
1

ŵt(Cp)
O(ε2/k))2 = σ4(1 +

1

ŵt(Cp)
O(ε2/k)) .

By definition, we have

‖ΠU⊥C̃
t(Cp)‖op

2 = max
‖v‖2=1

vTΠU⊥C̃
t(Cp)C̃

t(Cp)
TΠT

U⊥v

= max
‖v‖2=1

vTΠU⊥(M + σ2I)(M + σ2I)TΠT
U⊥v

= max
‖v‖2=1

(vTΠU⊥M
2ΠT

U⊥v + 2σ2vTΠU⊥MΠT
U⊥v + σ4vTΠU⊥ΠT

U⊥v)

= max
‖u‖2=1,u∈U

uTM2u+ 2σ2uTMu+ σ4 ,

whereM =
∑k

j=1

ŵtj
ŵt(Cp)(µj−µ′)(µj−µ′)T . Since this quantity is at most (1+ 1

ŵt(Cp)O(ε2/k))σ4

and since σ = Θ(1), this implies that

max
‖u‖2=1,u∈U

uTMu ≤ 1

ŵt(Cp)
O(ε2/k)

which is equivalent to the fact that ‖ΠU⊥MΠT
U⊥
‖op ≤ 1

ŵt(Cp)O(ε2/k). For all j, we have ŵj(µj−
µ)(µj − µ)T �M , and so

ŵtj
ŵt(Cp)

‖ΠU⊥(µj − µ)‖22 ≤ ‖ΠU⊥MΠT
U⊥‖op ≤

1

ŵk′(Cp)
O(ε2/k)

and thus

‖ΠS⊥(µj − µ′)‖2 ≤ O

 ε

k1/2
(
ŵtj

)1/2

 .
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We can then apply Corollary 44 (with parameter ε2/k) and another triangle inequality to conclude
the proof.

We now show that this implies that projecting onto this subspace U can only affect the total
variation distance by at most O(ε).

Theorem 59 LetMθ∗ denote the underlying mixture, and let U be a subspace which satisfies (13)
afterO(k4(d+log(k/δ))/ε4) samples. Then with probability 1−δ, we have ‖Mθ1−MθS‖1 ≤ O(ε)
where θ1 has the same parameters θ∗ except the mean of component j isµj−µ̂, and θU is the mixture
with the same parameters as θ∗, except for all j, component j has mean ΠS(µj − µ̂).

Proof Let θ′1 be equal to θ1 except if component j had wj ≤ O(ε/k) we now set wj = 0, and let
θ′S be the same for θU . Let J be the set of components which have nonzero weight after this step.
11 By the triangle inequality, it is clear that it suffices to show that ‖Mθ′1

−Mθ′S
‖1 ≤ O(ε). By

Bernstein’s inequality, since we take O(k4(d+ log(k/δ))/ε4) samples, we know that for all j, with
probability 1 − δ/k, we have that |ŵtj − wj | ≤ O(ε/k) and thus by a union bound, we know that
ŵtj ≥ Ω(wj) for all j. Thus in particular by Lemma 58, we know that for all j with wj 6= 0,

‖µj − µ̂−ΠU (µj − µ̂)‖2 ≤ O

 ε

k1/2
√
ŵtj


≤ O

(
ε

k1/2w
1/2
j

)
.

We now have

‖Mθ1 −MθS‖1 ≤ ‖Mθ′1
−Mθ′S

‖1 + 2ε

=

∥∥∥∥∥∥
∑
j∈J

wj

(
Nµj−µ̂,σ −NΠU (µj−µ̂),σ

)∥∥∥∥∥∥
1

+ 2ε

≤
∑
j∈J

wj

∥∥∥Nµj−µ̂,σ −NΠU (µj−µ̂),σ

∥∥∥
1

+ 2ε

(a)

≤
∑
j∈J

wjO

(
ε

k1/2w
1/2
j

)
+ 2ε

≤
∑
j∈J

O

(
w

1/2
j ε

k1/2

)
+ 2ε

≤ O(ε) ,

where (a) follows by Fact 35.

11. This is not technically a valid parameter set because the wi do not sum to 1, but the meaning should be clear, we
simply work with the associated subdistributions.
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Thus we have shown that we can find this subspace and project onto it to essentially reduce the
problem to a k-dimensional problem. We also make a further simplification: because we now have
an estimate of σ up to multiplicative (1 + ζ) error, it can be shown that this error is negligible, and
so for simplicity of exposition we will assume for the rest of the section that we have σ exactly.
Thus we will assume for the rest of the section that σ = 1.

8. The k-dimensional system of polynomial inequalities

We now give an outline of the subroutine FITPOLYPROGRAMMULTIVARIATE. In a nutshell, we
extend our system of polynomial inequalities from Section 3 to the k-dimensional setting. To de-
couple this k-dimensional analysis from the surrounding d-dimensional algorithm, we assume that
we are drawing samples from a k-dimensional k-GMM with parameters θ†.

As before, our system of polynomial inequalities is based on univariate density estimates. First,
we show that we can simultaneously estimate a large number of directions with only a modest
overhead in the sample complexity. In the following sequence of lemmas, we let 0 < C1 < C2 <
C3 < 1 be constants that we do not specify further.

Lemma 60 Let V ⊂ Sk−1 be a fixed set of directions. Moreover, let ε > 0 and let x1, . . . ,xn be
samples from the distributionMθ† where

n = Õ

(
k + log(|V |/δ)

ζ2

)
.

For all v ∈ V , let pdens,v be the result of ESTIMATEDENSITY(k, ζ, δ′) on the samples 〈x1, v〉, . . . , 〈xn, v〉
for δ′ = δ/|V |. Then with probability 1− δ, we have

‖pdens,v −Mv·θ†‖1 ≤ C1 · ζ

for all v ∈ V .

Proof The guarantee of ESTIMATEDENSITY for any fixed direction v ∈ V immediately gives the
desired L1-approximation guarantee with probability 1 − δ′. The claim then follows from a union
bound over all directions v ∈ V .

Using these univariate density estimate pdens,v, we now consider the following system of poly-
nomial inequalities. This system Sk-dim,V is essentially a conjunction of the univariate constraints
for each direction. For simplicity, we only state the version for well-behaved parameters here. We
adopt the same notation as in Section 3.

Sk-dim,V (ν) = SV,K,p,P,S(ν) = ∀a(1)
1 , . . . a

(1)
K , b

(1)
1 , . . . , b

(1)
K , . . . , a

(|V |)
1 , . . . a

(|V |)
K , b

(|V |)
1 , . . . , b

(|V |)
K :

∃d(1)
1 , . . . , d(1)

s , ξ
(1)
1 . . . ξ

(1)
t . . . d

(|V |)
1 , . . . , d(|V |)

s , ξ
(|V |)
1 . . . ξ

(|V |)
t :

valid-parametersS(θ)

∧
∧

i∈[|V |]

correct-breakpointsP(θ, d(i))

∧
∧

i∈[|V |]

AK-boundedp,P(θ, ν, a(i), b(i), c(i), d(i), ξ(i)) .
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By construction of Sk-dim,V , there is a set of k-dimensional k-GMM parameters such that the
constraints are satisfied for sufficiently large ν. In particular, the parameters θ† satisfy Sk-dim,V (ν)
for ν = O(ζ). The proof of the following lemma follows the same argument as in the univariate
case, so we omit further details.

Lemma 61 There is a set of k-GMM parameters θ ∈ Θk such that all constraints in Sk-dim,V (ν)
are satisified for ν = C2 · ζ.

Next, we show that a set of GMM parameters satisfying Sk-dim,V is close toMθ† .

Lemma 62 Let θ ∈ Θk be a set of k-GMM parameters such that all constraints in Sk-dim,V (ν) are
satisified for ν ≤ C3 · ζ. Then we have ‖Mθ −Mθ†‖1 ≤ ε.

Proof Since θ is feasible for Sk-dim,V (C3 · ζ), we have ‖Mv·θ−Mv·θ†‖1 ≤
ζ
2 < ζ for all directions

v ∈ V by the construction of Sk-dim,V .
Now assume ‖Mθ −Mθ†‖1 ≥ ε. Since ζ is defined as

ζ(ε, k, V ) = inf
θ′,θ′′:‖Mθ′−Mθ′′‖1≥ε

max
v∈V
‖Mv·θ′ −Mv·θ′′‖1

we get
ζ(ε, k, V ) ≤ max

v∈V
‖Mv·θ −Mv·θ†‖1 < ζ,

which gives a contradiction. Hence ‖Mθ −Mθ†‖1 < ε.

We now translate this approximation guarantee in the k-dimensional space ofMθ† back to the
original d-dimensional space. We use the following notation: for a matrix Π ∈ Rk×d, we write Πθ
for the set of k-GMM parameters where the matrix Π is applied to each component mean.

Theorem 63 Let θ̂ ∈ Θk be the set of k-GMM parameters returned by FITPOLYPROGRAMMULTIVARIATE.
Moreover, let Π ∈ Rk×d be an orthogonal projection matrix such that θ† = Πθ∗.Then

‖MΠTΠθ∗ −MΠT θ̂
‖1 ≤ O(ε) .

Proof To simplify notation, we write NΠ,µ(x) for the multivariate Gaussian pdf with covariance
matrix I and mean Πµ, i.e., the pdf of the Gaussian distribution in the space spanned by the
projector Π. Similarly, we writeNΠ,µ(x) for the pdf of the Gaussian distribution in the orthogonal
subspace. Since we assume a spherical covariance matrix for each component, we have

Nµ(x) = NI,µ(x) = NΠ,µ(x) · NΠ,µ(x) ,

which follows directly from the definition of the multivariate normal pdf and Pythagoras’ Theorem.
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We now use this identity to factorize our integrand in the L1-difference betweenMΠTΠθ∗ and
M

ΠT θ̂
:∫

x
|MΠTΠθ∗(x)−M

ΠT θ̂
(x)| dx

=

∫
x

∣∣∣∣∣
k∑
i=1

w∗i · NΠTΠµ∗i
(x)−

k∑
i=1

ŵi · NΠT µ̂i(x)

∣∣∣∣∣ dx
=

∫
x

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x) · NΠ,ΠTΠµ∗(x)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x) · NΠ,ΠT µ̂i
(x)

∣∣∣∣∣ dx
=

∫
x

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x) · NΠ,0(x)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x) · NΠ,0(x)

∣∣∣∣∣dx
=

∫
x
NΠ,0(x) ·

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x)

∣∣∣∣∣ dx .
Next, we decompose the d-dimensional integral into two parts. One part (using integration variable
x2) is over the space spanned by the projector Π, the other part (using integration variable x1) is
over the orthogonal complement of Π. Hence we get:∫

x
NΠ,0(x) ·

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x)

∣∣∣∣∣dx
=

∫
x1

∫
x2

NΠ,0(x1) ·

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x2)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x2)

∣∣∣∣∣dx2 dx1

=

∫
x1

NΠ,0(x1)

∫
x2

·

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x2)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x2)

∣∣∣∣∣dx2 dx1 .

Recall that Πµ∗i = µ†i and ΠΠT = Ik, which gives∫
x1

NΠ,0(x1) ·
∫
x2

∣∣∣∣∣
k∑
i=1

w∗i · NΠ,ΠTΠµ∗i
(x2)−

k∑
i=1

ŵi · NΠ,ΠT µ̂i(x2)

∣∣∣∣∣ dx2 dx1

=

∫
x1

NΠ,0(x1)

∫
x2

∣∣∣∣∣
k∑
i=1

w∗i · Nµ†i (x2)−
k∑
i=1

ŵi · Nµ̂i(x2)

∣∣∣∣∣ dx2 dx1

=

∫
x1

NΠ,0(x1)

∫
x2

∣∣∣Mθ†(x2)−M
θ̂(x2)

∣∣∣ dx2 dx1

=

∫
x1

NΠ,0(x1) ·O(ε) dx1 ,

where the last line used that θ̂ is a solution of our system of polynomial inequalities (see Lemma
62). SinceNΠ,0(x1) is a pdf, it integrates to 1. This shows that the entire integral evaluates toO(ε),
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which completes the proof.

Finally, we analyze the running time of FITPOLYPROGRAMMULTIVARIATE.

Theorem 64 FITPOLYPROGRAMMULTIVARIATE runs in time(
|V | · k · log

1

ζ

)O(|V |2k5)

+ Õ

(
|V | · k

ζ2

)
.

Proof As in the univariate case, we solve our system of polynomial inequalities with Renegar’s al-
gorithm SOLVE-POLY-SYSTEM. So in order to obtain a bound on the time complexity, we consider
the following quantities:

• As in the univariate case, all polynomials in the predicates of Sk-dim,V have degree O(log 1
ζ ).

• For each direction v ∈ V , we require kO(k) constraints (see Section 3). Hence the total
number of constraints is |V | · kO(k).

• We have O(k2) free variables (the k vectors of means in Rk and the k component weights).

• Our system of polynomial inequalities has two levels of quantification. In each level, we have
|V | · k bound variables for encoding the AK-constraints and the order of the breakpoints of
the piecewise polynomials.

Substituting these quantities into Fact 5 gives the statement of the theorem.

9. Proof of a variant of Conjecture 1 for k = 2

In this section, we specialize our results to the case of 2-GMMs with components equally weighted
(so weights 1/2). Define

ζ1/k(ε, k, V ) = inf
θ′,θ′′:‖Mθ′−Mθ′′‖1≥ε ,
all weights are 1/k

max
v∈V

‖Mv·θ′ −Mv·θ′′‖1 , (14)

which is the same as ζ except we focus only on 2-GMMs with weight 1/2.
Recall our notation for univariate projections of GMMs: If v ∈ Rd is a unit vector and θ is a set

of GMM parameters, we let v · θ denote the set of parameters of the univariate marginal distribution
induced by projecting the distributionMθ along v. That is, v · θ is the set of parameters with the
same weights wj and precision τj as the set of parameters θ, but with means 〈v,µj〉. For a specific
GMM F =Mθ, we write Fv for this univariate projection in order to simplify notation.

This section is devoted to the proof of the following theorem:

Theorem 65 There is a set of directions V in R2 of constant size that can be constructed in constant
time so that for all ε > 0, we have ζ1/k(ε, 2, V ) = Ω(ε3).

We prove this theorem in two parts: first, we show a constant size net has a direction which
preserves all mean distances up to some multiplicative constant. We then show that this guarantee
suffices to preserve the distance between two GMMs.
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9.1. Preserving vector differences via nets

We begin by proving that a random direction preserves the distances between means acceptably and
then show that a constant-size net is sufficiently correlated with this random direction. Since these
bounds hold for more than two dimensions, we state them for general Rd as opposed to only R2.
We use the following standard definition of a net, but denote the accuracy parameter with φ instead
of ε in order to avoid confusion with the L1-accuracy parameter ε.

Definition 66 For any φ > 0, a set of directions V in Rd is a φ-net for the unit sphere if for all unit
vectors u, there is a v ∈ V such that ‖u− v‖2 ≤ φ.

Lemma 67 Let U = {u1, . . . ,um} ⊂ Rd be a set of m unit vectors with d ≥ 2. Then there exists
a unit vector g ∈ Rd such that for all u ∈ U we have |〈u, g〉| ≥ 1

4m
√
d

.

Proof We show that a random Gaussian vector g′ ∼ N0, 1
d
I gives a “good” direction g = g′

‖g′‖2
with

non-zero probability.
First, we consider the inner product between the random vector g′ and a single u ∈ U . Due

to the rotational symmetry of the multivariate standard normal distribution, it suffices to consider
〈g′, e1〉 for e1 = (1, 0, . . . , 0)T . Let y ∼ N0,1 and note that g′1 and y√

d
have the same distributions.

Hence

P
(
|〈g′,u〉| ≤ 1

2m
√
d

)
= P

(
|〈g′, e1〉| ≤

1

2m
√
d

)
= P

(
|g′1| ≤

1

2m
√
d

)
= P

(
|y| ≤ 1

2m

)
≤ 1

2πm

where the last line follows from uniformly bounding the standard normal pdf by its maximum at 0.
Applying a union bound now gives

P
(
∀u ∈ U : |〈g′,u〉| ≥ 1

2m
√
d

)
≥ 1−m · P

(
|〈g′,u〉| ≤ 1

2m
√
d

)
= 1− 1

2π
≥ 3

4
.

It remains to show that the norm of the vector g′ is not too large so that the normalization
g′

‖g′‖2
does not distort the inner products |〈g′,ui〉| significantly. Standard tail bounds for the χ2-

distribution show that for any d ≥ 2 we have P(‖g′‖2 ≤ 2) ≥ 3
4 . So with probability at least 1

2 , the
random vector g′ satisfies both ‖g′‖2 ≤ 2 and |〈g′,u〉| ≥ 1

2m
√
d

for all u ∈ U . Conditioning on
this event, we get that

|〈g,u〉| =
1

‖g′‖2
|〈g′,u〉| ≥ 1

4m
√
d
.

Lemma 68 LetU = {u1, . . . ,um} ⊂ Rd be a set ofm unit vectors with d ≥ 2. Moreover, letN be
a 1

8m
√
d

-net for the d-dimensional unit sphere. Then there exists a v ∈ N such that |〈u,v〉| ≥ 1
8m
√
d

for all u ∈ U .
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Proof Consider the good direction g ∈ Rd from Lemma 67. Since N is a 1
8m
√
d

-net, we can write

the vector g as g = v + e where v ∈ N and e ∈ Rd with ‖e‖2 ≤
1

8m
√
d

. For any u ∈ U we then
have:

〈u,v〉 = 〈u, g − e〉 = 〈u, g〉 − 〈u, e〉

≥ 1

4m
√
d
− |〈u, e〉|

≥ 1

4m
√
d
− ‖u‖2‖e‖2

≥ 1

4m
√
d
− 1

8m
√
d

=
1

8m
√
d
.

This completes the proof.

As a result, we have:

Corollary 69 Let V be a 1
48
√

2
-net for the 2-dimensional unit sphere. Then for all vectorsµ1,µ2,µ3,µ4,

there is some v ∈ V so that |〈µi,v〉 − 〈µj ,v〉| ≥ 1
48
√

2
‖µi − µj‖2 for all i, j.

Proof For all i 6= j, let uij = (µi − µj)/‖µi − µj‖2. There are
(

4
2

)
= 6 such uij . By Lemma

68, we know that there is a v ∈ V so that |〈v,uij〉| ≥ 1
48
√

2
for all i, j. Thus for this v, we have

|〈v,µi〉 − 〈v,µj〉| ≥ 1
48
√

2
‖µi − µj‖2, as claimed.

9.2. Preserving mean distances preserves TV distance

We now proceed to our main theorem of this section.

Theorem 70 Let F =M1/2,1/2,µ1,µ2,1,1 andG =M1/2,1/2,ν1,ν2,1,1 be two mixtures of Gaussians
in R2. Moreover, let v be a unit vector with the following property: there is a constant C > 0 such
that for all a, b ∈ {µ1,µ2,ν1,ν2}, we have ‖a− b‖2 ≤ C|〈v,a〉 − 〈v, b〉|. Then if ‖F −G‖1 ≥
Ω(ε), we also have ‖Fv −Gv‖1 ≥ Ω(ε3), with hidden constants depending only on C.

Proof For all i, let µ′i = 〈v,µi〉 and ν ′i = 〈v,νi〉. First, observe that if there is a matching of
the components π so that |µ′i − ν ′π(i)| ≤ O(ε) for i = 1, 2, then by the guarantee of the net, this
implies that ‖µi − νπ(i)‖ ≤ O(ε), which immediately implies that ‖F − G‖1 ≤ O(ε). Hence we
may assume that there is a component which is at least Ω(ε) away from the rest. WLOG, we may
assume that |µ′1 − ν ′i| > Ω(ε), for i = 1, 2.

We now split into two cases:

Case 1: µ′1 < ν ′1 ≤ ν ′2 ≤ µ′2. In this case, let F1(x) = M1/2,1/2,µ′1,ν
′
2,1,1

, that is, we move the
second component of F to the second component of G. Then F1(x) ≥ F (x) for all x ≤ ν ′2.
However,

G(x)− F1(x) =
1

2
Nν′1,1(x)− 1

2
Nµ′1,1(x) ,
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and thus, on an interval I of length Ω(ε) with right endpoint at ν ′1, we have that G(x) −
F1(x) ≥ Ω(ε2). Hence,G(x)−F (x) ≥ Ω(ε2), and therefore

∫
|F (x)−G(x)|dx ≥

∫
I G(x)−

F (x)dx ≥ Ω(ε3).

Case 2: µ′1 < ν ′1 ≤ µ′2 ≤ ν ′2.
Let F1(x) = M1/2,1/2,µ′1,ν

′
2,1,1

, that is, we move the second component of the first mixture
to have mean ν ′2. We then clearly have that for all x ≤ µ′1, F1(x) ≤ Fv(x). But we also have
that

F1(x)−Gv(x) =
1

2
Nµ′1,1(x)− 1

2
Nν′1,1(x)

for all x ≤ µ′1. Using |µ′1 − ν1| ≥ Ω(ε), a simple calculation now yields∫ µ′1

−∞
Nµ′1,1(x)−Nν′1,1(x) dx ≥ Ω(ε) .

Combining the above inequalities with Nµ′1,1(x)−Nν′1,1(x) ≥ 0 for all x ≤ µ′1 this gives

‖Fv −Gv‖1 ≥
∫ µ′1

−∞
|Fv(x)−Gv(x)|dx

=

∫ µ′1

−∞
Fv(x)−Gv(x) dx

≥
∫ µ′1

−∞
F1(x)−Gv(x) dx

≥ wF

∫ µ′1

−∞
Nµ′1,1(x)−Nν′1,1(x) dx

≥ wF · Ω(ε)

≥ Ω(ε2) ,

which is in fact stronger than we need.

This completes the case analysis and hence also the proof of the theorem.

9.3. Putting it together

To complete this subsection, we must simply put the above pieces together in conjunction with the
following theorem, which says that φ-nets can be constructed efficiently:

Fact 71 (Dadush (2013)) There is a deterministic algorithm that constructs a φ-net N for Sd−1

such that |N | ≤ ( 1
φ)O(d). Moreover, the algorithm runs in time ( 1

φ)O(d).

This immediately gives us as a corollary:

Corollary 72 There is a set of directions V in R2 of constant size which can be constructed in
constant time so that for all ε > 0, we have ζ(ε, 2, V ) ≥ Ω(ε3).
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10. Putting the multivariate algorithm together

We take a second to recap and put all the ingredients together to finally prove Theorem 47.
Proof [Proof of Theorem 47] We first bound the sample complexity. We have that:

1. COARSEESTIMATESIGMA takes k + 1 samples.

2. By Theorem 54, RECURSIVESPECTRALPROJECTION with our choice δ′ = poly(δ, 1/k, 1/|V |)
takes

N2 = Õ

(
k4(d+ log k/δ) max

(
1

ε4
,

1

ζ2

))
,

samples.

3. FINDAPPROXSUBSPACEANDCOVARIANCE takes

N2 = Õ

(
k9(d+ log(k/δ)

ε4
+ k7/2d+ log(k/δ)

ζ2

)
samples, and finally,

4. FITPOLYPROGRAMMULTIVARIATE takes

N3 = Õ

(
k + log(|V |/δ)

ζ2

)
samples.

Thus overall we take

Õ

(
k4(d+ log k/δ) max

(
1

ε4
,

1

ζ2

)
+
k9(d+ log(k/δ)

ε4
+
k7/2(d+ log(k/δ)) + log(|V |/δ)

ζ2

)

= Õk

(
d

ε4
+
d+ log(|V |/δ)

ζ2

)
samples. We now bound our runtime. We have that:

1. COARSEESTIMATESIGMA takes time O(k2).

2. By Theorem 54, RECURSIVESPECTRALPROJECTION takes time

dk4(d+ log k/δ) max

(
1

ε4
,

1

ζ2

)
per iteration, and we do at most k iterations.

3. The runtime of a single iteration of FINDAPPROXSUBSPACEANDCOVARIANCE is bounded
by the time it takes to run APPROXPCA(A, k + 1,min(ε2/k2, ζ/k)) on a matrix A of size
d×N2. We need to do this k times, so the runtime of this is

Õ

((
k11(d+ log(k/δ)

ε4
+ k11/2d+ log(k/δ)

ζ2

)
min

(
k

ε
,

√
k

ζ

)
· d

)
.
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4. Finally, the runtime of the system of polynomial inequalities step is(
|V | · k · log

1

ζ

)O(|V |2k5)

+ Õ

(
|V | · k

ζ2

)
.

Thus the overall runtime is

Õk

(
|V |
ζ2

+ d2

(
1

ε4
+

1

ζ2

)
·min

(
k

ε
,

√
k

ζ

)
+

(
|V | log

1

ζ

)O(|V |2)
)
,

which simplifies to the expression in the theorem.

10.1. Generalizing to different spherical covariances

We remark that our algorithm naturally generalizes to learn mixture of Gaussians with different
covariances if additional structural results about Gaussian mixtures are available. In particular, we
require the following conjecture (in addition to Conjecture 1):

Conjecture 73 Let θ and θ′ be two sets of k-GMM parameters in k dimensions. Let A ∈ Rd×k
be any matrix with orthonormal columns, i.e., an isometric embedding of Rk into Rd. If ‖Mθ −
Mθ′‖1 ≤ ε holds, then ‖MAθ −MAθ′‖1 < O(ε).

Roughly speaking, this says that if there is a subspace S of dimension k so that all the means of
both mixtures are in S, and when projected on this subspace the two mixtures are close, then the
two mixtures were close originally. When all the covariances are equal, it is easy to show that this
holds, and we tacitly use this fact in the proof of Theorem 63.

Assuming both of our (purely geometric) conjectures, our algorithm naturally generalizes to
provably learn arbitrary mixtures of spherical Gaussians. We believe that this is an interesting
direction for future work.

10.2. Making the algorithm agnostic

In recent work, Diakonikolas et al. (2016a) give an efficient algorithm for achieving a similar guar-
antee as RECURSIVESPECTRALPROJECTION and FINDAPPROXSUBSPACEANDCOVARIANCE that
runs in polynomial time even in the presence of malicious noise. Roughly speaking, their model is
the following:

Definition 74 Fix a distribution F , and ε > 0. An ε-corrupted set of samples from D is generated
via the following process: first, draw x′1, . . . ,x

′
m independently from F . Then, an O(ε) fraction of

these samples is adversarially corrupted, and the samples are returned in any order.

Then their results imply the following:

Fact 75 (Diakonikolas et al. (2016a)) LetMθ be an unknown k-GMM with all covariances equal
to I . Fix ε, δ > 0, and let x1, . . .xn be an ε-corrupted set of samples fromMθ, where

n ≥ Ω̃k

(
d+ log 1/δ

ε2

)
.
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There is an algorithm AGNOSTICLEARNSUBSPACE(ε, τ,x1, . . . ,xn) that runs in time poly(k, d, 1/ε,
log 1/δ) and outputs with probability 1− δ a valid clustering tree T forMθ with error probability
1−O(ε). Moreover, for each leaf ` of T , the algorithm outputs a k-dimensional subspace U ` with
projector Π` so that if C` is the set of components associated with `, then∑

`

∑
j∈C`

wj

∥∥∥Nµj ,1 −NΠ`µj ,1

∥∥∥
1
≤ Õk(

√
ε) .

At this point, the algorithm in Diakonikolas et al. (2016a) performs an exhaustive search over the
identified subspace U ` and then a tournament to ascertain the component means. This leads to a
running time of (1/ε)O(k), i.e., a running time exponential in k. Here, we show at a high level that
our techniques for properly learning a GMM can be combined with the approach of Diakonikolas
et al. (2016a) and lead to a faster algorithm under Conjecture 1.

Suppose for simplicity that AGNOSTICLEARNSUBSPACE returns a single cluster. Let U be
the subspace associated to that cluster, and let its projector be Π. Furthermore, let Πθ denote the
set of parameters which are identical to θ except the mean of component j is now at Πµj . Our
algorithm at this point is in fact unchanged: let V be set of directions within U , and simply run
FITPOLYPROGRAMMULTIVARIATE using V and a fresh set of ε-corrupted samples12 fromMθ of
size at least

n ≥ Ω̃

(
k + log(|V |/δ)

ε2

)
.

We then postprocess the output as before.
We sketch the correctness of this algorithm below. First, the correctness of the subroutine

FITPOLYPROGRAMMULTIVARIATE requires that the density estimates along each line are still
close to the truth. This guarantee is not proved for ESTIMATE-DENSITY in this strong error model.
However, for correctness, ESTIMATE-DENSITY requires only that the VC-Inequality holds for the
AK-norm Acharya et al. (2017), and it can be easily verified that the VC-Inequality still holds under
this strong adversary up to an additive ε error.

Thus, if we let θ̂ be the set of parameters output by our algorithm, by the same arguments as
before, we know that with probability 1 − δ, for every direction v ∈ V , it holds that ‖Mv·θ −
M

v·θ̂‖1 ≤ O(ε). By the same arguments as above, if we let ζ−1 be so that ζ(ζ−1, k, V ) = O(ε),
we have that

‖MΠθ −Mθ̂
‖1 ≤ ζ−1 ,

and so overall, we have
‖Mθ −Mθ̂

‖1 ≤ Õk(ζ
−1 +

√
ε) ,

and the runtime of the entire algorithm is

poly(k, d, 1/ε, log 1/δ) +

(
|V | · k · log

1

ζ

)O(|V |2k5)

+ Õ

(
|V | · k

ζ2

)
.

This has two consequences:

12. Technically as the problem is stated one cannot simply draw an additional set of ε-corrupted samples, however one
can simply draw a larger set of samples initially and partition them into two groups randomly. It is not hard to show
that this suffices, and so we omit the details for simplicity of exposition.
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1. By Theorem 65, we know that for mixtures of two Gaussians with weights 1/2 and equal
covariance, we have ζ1/k(ε, 2, V ) = Ω(ε3), so that ζ−1 = Ω(ε1/3), and |V | = O(1). These
arguments imply that there is an algorithm that runs in time poly(k, d, 1/ε, log 1/δ) + Õ(1)
for agnostically learning such a mixture up to error O(ε1/3).

2. Under Conjecture 1, so that ζ = Ok(ε) and so ζ−1 = Ok(ε), this algorithm achieves error
Õk(
√
ε) while avoiding the (1/ε)O(k) running time of the algorithm in Diakonikolas et al.

(2016a).

11. Numerical experiments for Conjecture 1

In order to test our Conjecture 1, we conduct several numerical experiments in three to five di-
mensions, i.e., for the cases k ∈ {3, 4, 5} (since Theorem 70 already proves a slightly weaker
version of Conjecture 1 for k = 2, so we do not explore this case in further detail). In each experi-
ment, we investigate how the k-dimensional L1-difference between two k-GMMs compares to the
L1-difference on a random one-dimensional projection. More formally, we fix a family of two k-
GMMsM1,κ andM2,κ with a “scale parameter” κ and vary κ in order to change the L1-difference
‖M1,κ−M2,κ‖1. For each setting of κ, we then estimate the following two quantities via a Monte
Carlo simulation:

• The maximum L1-difference of all directions:

∆κ,max = max
u∈Sk−1

‖M1,κ
u −M2,κ

u ‖1 .

• The median L1-difference of all directions:

∆κ,median = max

{
δ

∣∣∣∣ Pu∈Sk−1

[
‖M1,κ

u −M2,κ
u ‖1 ≥ δ

]
≥ 1

2

}
.

In particular, we are interested in the ratios ρκ,max = ∆κ,max/‖M1,κ −M2,κ‖1 and ρκ,median =
∆κ,median/‖M1,κ −M2,κ‖1. The quantity ρκ,max is relevant for Conjecture 1 because a large value
of ρκ,max indicates that there is at least one “good” direction u that achieves an L1-difference com-
parable to ‖M1,κ−M2,κ‖1 on its projection. If such a direction exists, a fine enough netN ⊂ Sk−1

should always have a member u′ ∈ N such that u′ also achieves a large L1-difference on its pro-
jection. Similarly, a large value of ρκ,median indicates that there is not only a single good direction
but that at least half of the directions capture a non-negligible amount of the L1-difference between
M1,κ andM2,κ. Note that the Data Processing Inequality (Corollary 38) gives an upper bound of
1 for both ρκ,max and ρκ,median.

For each dimension (or equivalently, number of mixture components) k ∈ {3, 4, 5}, we conduct
experiments with two families of k-GMMs. To limit the number of parameters, we choose Ik as
common spherical covariance matrix in all test cases.

• A random instance in which each component mean is chosen as a random unit vector. The
component weights are drawn from a Dirichlet distribution with parameters α1 = . . . = αk =
1, i.e., the weight vectors are from a uniform distribution over the probability simplex.
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• A structured instance in which we plant the following two-dimensional “cross pattern” in
orthogonal pairs of dimensions.

Let µ1
1 = (0, 0) and µ1

2 = (1, 1) for the first mixtureM1. Let µ2
1 = (1, 0) and µ2

2 = (0, 1)
for the second mixtureM2.

All components have the same weight. This arrangement is interesting because projecting
along the standard normal basis vectors e1 = (1, 0) and e2 = (0, 1) collapses the two mixtures
so that the projections along e1 and e2 always have L1-difference zero although ‖M1,κ −
M2,κ‖1 can be large. If the number of dimensions / mixture components is odd, we set the
weight of the last component to zero.

For two k-GMMsM1 andM2 as defined above, we derive a family of k-GMMsM1,κ andM2,κ

by multiplying each component mean with κ.
Since there are no closed-form expressions for theL1-differences between mixtures of Gaussian,

we resort to numerical integration in order to approximate the quantities ‖M1,κ −M2,κ‖1, ρκ,max,
and ρκ,median. We implemented our experiments in the Julia programming language (version 0.4)
and used the Cubature.jl13 package for computing approximations of the L1-differences in one
and multiple dimensions. The numerical integration routines in Cubature.jl are based on standard
quadrature / cubature algorithms Gentleman (1972); Genz and Malik (1980); Berntsen et al. (1991).

In our experiments, we vary κ from 10−1 to 10−6, which results in k-dimensionalL1-differences
‖M1,κ −M2,κ‖1 that span several orders of magnitude. In all experiments, we set the numerical
integration parameters so that the relative precision of our integration approximations is at least
10−3. We estimate the quantities ∆κ,max and ∆κ,median by drawing 100, 000 uniformly random
directions from the k-dimensional unit sphere and projectingM1,κ andM2,κ onto each direction.
Figure 2 shows plots of our results.

For all GMM families and dimensions we considered, the ratios ρκ,max and ρκ,median are essen-
tially constant over the entire range of the scale parameter τ tested. This indicates that for small
learning error tolerances ε, we do not require an increasingly larger number of univariate projections
in order to “find” the k-dimensional L1-difference ε = ‖M1,κ −M2,κ‖1. So at least for the cases
tested in our experiments, Conjecture 1 holds.

12. An algorithm for agnostically learning GMMs using the L2-norm

Our algorithms from the previous sections offer strong theoretical guarantees for learning under the
L1-norm, but they rely heavily on subroutines for solving system of polynomial inequalities. While
these systems have a small size depending only on k and log 1/ε, they also have a complicated
structure involving two levels of quantification. Asymptotically (for large n, or equivalently, small
ε), the size of the initial density estimation phase dominates. But for practical samples sizes of say
n ≤ 106, solving the system of polynomial inequalities is signifiantly more expensive. In order
to overcome this barrier, we now present a variant of our univariate algorithm that relies only on
unquantified systems of polynomial inequalities. While the modified algorithm achieves only a
weaker learning guarantee, it also offers a significantly better time complexity: the running time of
the GMM fitting phase improves from (k log 1/ε)O(k4) to (k log 1/ε)O(k), which is a crucial step
towards making the algorithm practical. Moreover, our experiments demonstrate that our modified
algorithm still achieves a good empirical sample complexity, even for the L1-norm.

13. https://github.com/stevengj/Cubature.jl
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Figure 2: Results of our numerical experiments. All x-axes are for the full k-dimensional L1-
differences ε = ‖M1,κ −M2,κ‖1. The y-axes contain the projected 1-dimensional L1-
difference ratios ρκ,max and ρκ,median. The data agrees with our Conjecture 1. In particular,
the ratios ρκ,max and ρκ,median are essentially constant over a wide range of ‖M1,κ −
M2,κ‖1. This indicates that a net with size independent of 1/ε satisfies the conditions of
our conjecture.
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12.1. Description of the algorithm

We now describe our modified algorithm and give theoretical guarantees. The focus of this sec-
tion is not to give the best possible guarantees for the problem of properly learning a GMM since
we have addressed this question in the previous sections. Instead, our goal is to give meaningful
guarantees for an algorithm that we can also study experimentally. In the next section, we then con-
duct experiments with our algorithm for learning a 2-GMM, both in the agnostic and non-agnostic
setting.

As mentioned above, the major obstacle for applying our univariate algorithm on real data is the
running time for solving the system of polynomial inequalities. While our system with two levels of
quantification is impractical, small unquantified systems of polynomial inequalities are within the
reach of modern software. In particular, we consider systems of the following form:

min p(x) s.t.

qi(x) ∆i 0,∀i = 1, . . . ,m ,

where ∆i ∈ {<,≥,=, 6=,≤, <} for each i = 1, . . . ,m.
To the best of our knowledge, the best theoretical running time for approximately solving such

systems is still given by Renegar’s algorithm. But as we will see in the next section, our algo-
rithm based on the Mathematica computer algebra system can numerically solve our systems of
polynomial inequalities in acceptable time.

The system of polynomial inequalities presented in Section 3 uses quantification to encode the
validity of the constraints and to encode the (unknown) breakpoints that achieve the AK-distance
between the density estimate and our shape-restricted polynomial. To massage our system of poly-
nomial inequalities into one without quantifiers, we make the following to changes.

• Instead of enforcing validity of the parameter ordering, we enumerate over all exp(O(k))
possible arrangements for the break points of the optimal shape constrained piecewise poly-
nomial fit.

• To remove the quantifiers used for encoding theAK-distance, we instead use the L2-distance.
Once the ordering of the intervals is fixed, optimizing the L2-distance can be written as opti-
mizing an unquantified system of polynomial inequalities.

Thus, for each such possible arrangement, we get a candidate hypothesis. After solving the un-
quantified system of polynomial inequalities for each arrangement, we can perform a tournament
amongst these candidates to choose the best fit, or simply choose the candidate with the smallest
error to the density estimate.

12.2. Analysis

Our analysis here requires a somewhat stronger guarantee for the density estimation stage. In par-
ticular, we need that the density estimate is not only close in L1-distance, but also L∞-distance.
While the density estimation procedure of Acharya et al. (2017) does not formally give this guar-
antee, we find that it usually holds in practice. Moreover, we require a bound on the maximum
precision (smallest variance) of any single component, similar to Section 3. However, this is not a
severe restriction: if the maximum precision of any single component is too large compared to the
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rest, then we can cluster the samples belonging to this component and focus on the remainder. For
simplicity of exposition, we do not consider this case.

We follow the notation of Section 3. Let pdens be a given, fixed piecewise polynomial supported
on [−1, 1] with breakpoints c1, . . . , cr. For any θ ∈ Θk, let the breakpoints of the shape constrained
piecewise polynomial associated to θ be d1(θ), . . . , ds(θ). Let Φ′ be the set of permutations of the
variables

{c1, . . . , cr, d1(θ), ds(θ),−1, 1} ,

so that the ci appear in order. For any φ = (φ1, . . . , φt) ∈ Φ′, as before, let

ordered′pdens,φ(θ)
def
=
∧

(φi ≤ φi+1) .

Observe that each predicate here is at most a degree four polynomial in the parameters. Moreover,
let

Qpdens,φ(θ) =
t−1∑
i=1

∫ φi+1

φi

(pdens(x)− Pε,θ(x))2 dx .

Observe that if θ satisfies ordered′pdens,φ(θ), then Qpdens,φ(θ) is just a polynomial in θ. In partic-
ular, the problem

S(θ) = min Qpdens,φ(θ) s.t. ordered′pdens,φ(θ)

is an unquantified system of polynomial inequalities whose solution is the set of parameters θ sat-
isfying the ordering constraints on θ imposed on φ with smallest L2-error to the density estimate.
Our full algorithm simply enumerates over all φ ∈ Φ′ and for each one finds a θ∗φ by optimiz-
ing this problem. At the end, the algorithm returns the θ∗φ with smallest L1-error to pdens over all
arrangements φ ∈ Φ′.

The formal pseudocode is given in Algorithm 5.
A full analysis of the algorithm must deal with the fact that we cannot solve the program exactly.

Moreover, we must prove that correcting the weights and scaling does not substantially change the
output of our algorithm. Since these steps are straightforward, we ignore them for simplicity of
exposition.

First, let us bound the runtime of the algorithm:

Theorem 76 LEARN-L2-GMM(k, ε, δ) runs in time

Õ

(
k + log 1/δ

ε2

)
+ (k log 1/ε)O(k) .

Proof As before, the running time of density estimation is

Õ

(
k + log 1/δ

ε2

)
.

Hence, it suffices to bound the time the algorithm spends in the GMM fitting part afterwards.
Observe that the running time of our postprocessing is dominated by the time it takes to solve the

exp(O(k)) systems of polynomial inequalities. Each system of polynomial inequalities has O(k)
unknown variables, O(k) constraints, and polynomials of degree O(log 1/ε). Hence by Renegar’s
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Algorithm 5 Algorithm for learning a mixture of Gaussians using L2-guarantees.
1: function LEARN-L2-GMM(k, ε, δ, γ)
2: . Density estimation. Only this step draws samples.
3: p′dens ← ESTIMATE-DENSITY(k, ε, δ)

4: . Rescaling
5: Let pdens be a rescaled and shifted version of p′dens such that the support of pdens is [−1, 1].

6: Let α and β be such that pdens(x) = p′dens

(
2(x−α)
β−α − 1

)
7: . Fitting shape-restricted polynomials
8: K ← 4k
9: for φ ∈ Φ′ do

10: Let θ∗φ = SOLVE-POLY-PROGRAM(Sφ, poly(ε, 1/K), poly(1/ε,K)).
11: Let errφ =

∫
|Pε,θ∗φ(x)− pdens(x)|dx.

12: Let θ∗ = arg minφ∈Φ′ errφ, and let w1, . . . , wk be its weights.

13: . Fix the parameters
14: for i = 1, . . . , k do
15: if τi ≤ 0, set wi ← 0 and set τi to be arbitrary but positive.
16: Let W =

∑k
i=1wi

17: for i = 1, . . . , k do
18: wi ← wi/W

19: . Undo the scaling
20: w′i ← wi

21: µ′i ←
(µi+1)(β−α)

2 + α
22: τ ′i ←

τi
β−α

23: return θ′

algorithm, each individual system can be solved in time (k log 1/ε)O(k). So the overall running time
for the GMM fitting part is

exp(O(k)) · (k log 1/ε)O(k) = (k log 1/ε)O(k) .

Let us now prove correctness of our algorithm.

Theorem 77 Let f be the underlying distribution, and let θ be so that
∫
|f(x) −Mθ(x)| dx =

OPTk. Let pdens be supported on [−1, 1] so that
∫
|pdens(x)−Mθ(x)|d(x) < O (OPTk + ε) and

supx∈R |pdens(x)−Mθ(x)| ≤ O (OPTk + ξ). Then LEARN-L2-GMM(k, , δ) outputs a k-GMM
M

θ̂
so that with probability 1− δ, we have that∫

|f(x)−M
θ̂
(x)| dx ≤ O

(√
(OPTk + ε)(OPTk + τmaxε+ ξ) + OPTk + ε

)
.

Here, τ2
max = maxki=1 τ

2
i , where τ1, . . . , τk are the precisions for the components ofMθ.
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Let us briefly pause to explain this theorem. When τmax and ξ are both reasonable (i.e., τmax = O(1)
and ξ = O(ε)), this expression simplifies to

∫
|f −Mθ|dx ≤ O(OPTk + ε), which is our typical

guarantee.
Proof We proceed in two steps. First, we show that there must be a solution p with small L2 error.
Then, we show that this solution also has small variational distance.

Observe that if P̃ε(x) is as in Definition 7, from Taylor’s theorem we have that supx∈R |P̃ε(x)−
N (x)| ≤ ε. In particular, since Pve,θ is the mixture of the scaled Taylor expansions of each compo-
nent of degree O(log 1/ε), this implies that

sup
x∈R
|Pε,θ(x)−Mθ(x)| ≤

k∑
i=1

wiτi|P̃ε(τi(x− µi))−N (τi(x− µi))| ≤ τmaxε .

Hence by assumption, we have supx∈R |pdens(x) − Pε,θ(x)| ≤ O(OPTk + ξ + τmaxε). Thus, by
Hölder’s inequality we must have that∫

(pdens(x)− Pε,θ(x))2dx ≤
∫
|pdens(x)− Pε,θ(x)|dx · sup

x∈R
|pdens(x)− Pε,θ(x)|

≤ O ((OPTk + ε)(OPTk + ξ + τmaxε)) .

Let φ ∈ Φ′ be the ordering satisfied by the breakpoints of pdens and Pε,θ. Let θ∗φ be the output of
Renegar’s algorithm for our system of polynomial inequalities this φ. By the above, we know that∫

(pdens(x)− Pε,θ∗φ)2dx ≤ O ((OPTk + ε)(OPTk + ξ + τmaxε)).
We now seek to show that this θ∗φ must have small variational distance to pdens and f . Indeed,

by Jensen’s inequality, we have that(∫ 1

−1

∣∣∣pdens(x)− Pε,θ∗φ
∣∣∣ dx)2

≤ 2(pdens(x)− Pε,θ∗φ)2dx ,

and hence ∫ 1

−1

∣∣∣pdens(x)− Pε,θ∗φ
∣∣∣ dx ≤ O (√(OPTk + ε)(OPTk + ξ + τmaxε)

)
.

Moreover, since
∫ 1
−1 pdens(x)dx = 1 and pdens(x) ≥ 0, this implies that∫ 1

−1
|Pε,θ∗φ |dx ≥ 1−O

(√
(OPTk + ε)(OPTk + ξ + τmaxε)

)
.

Since ∫
|Pε,θ∗φ |dx ≤

∫
|Pε,θ∗φ −Mθ∗φ

|dx+

∫
|Mθ∗φ

|dx ≤ 1 + ε ,

this implies that∫
x 6∈[−1,1]

|Pε,θ∗φ |dx ≤ O
(√

(OPTk + ε)(OPTk + ξ + τmaxε)
)

+ ε .

Thus altogether we must have that∫ ∣∣∣pdens(x)− Pε,θ∗φ
∣∣∣ dx ≤ O (√(OPTk + ε)(OPTk + ξ + τmaxε)

)
+ ε ,
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and hence by the triangle inequality, we have∫ ∣∣∣f −Mθ∗φ

∣∣∣ dx ≤ O (√(OPTk + ε)(OPTk + ξ + τmaxε) + OPTk + ε
)
,

as claimed.

13. Experiments with our univariate algorithm

We now investigate the emprirical performance of our algorithm proposed in the previous section.
We emphasize that the experiments here are only a preliminary evaluation of our algorithm with a
focus on empirical sample complexity. We believe that the running time of our algorithm can be
improved significantly by going beyond the black-box solver provided in Mathematica.

Before we start with a description of our experiments, we give a brief overview of our imple-
mentation. Our algorithm consists of three parts:

1. The piecewise polynomial density estimation algorithm of Acharya et al. (2017). The algo-
rithm is written in a combination of Python and C++.

2. A Python program that produces a set of candidate arrangements for a given density estimate.
For each arrangement, the Python program also produces a system of polynomial inequalities
in the form of a Mathematica program.

3. A set of automatically generated Mathematica progams (one per arrangement) for finding the
GMM parameters. Each program first carries out the symbolic computations for producing
the relevant error polynomials and then solves the corresponding system of polynomial in-
equalities. We use the Mathematica function NMinimize to numerically solve the systems of
polynomial inequalities.

For the error polynomials, we use a degree-6 Chebyshev approximation. We found this approx-
imation sufficient to achieve a good learning error. For the improper density estimate in the first
stage of our algorithm, we use a piecewise polynomial with 5 pieces and degree 5.

We conduct experiments with our algorithm on the task of properly learning a univariate 2-
GMM (see Figure 3). We consider two variants of this task: in the noiseless / non-agnostic version,
the samples come from a true 2-GMM. In the noisy / agnostic version, we have perturbed the 2-
GMM by making its left tail slightly heavier (the probability mass of the noise is 0.05). The noisy
version is significantly more challenging since the learning algorithm has to be robust to the noise
in the distribution.

We compare our algorithm to three baselines:

• The improper learning algorithm of Acharya et al. (2017). This is an interesting comparision
for two reasons: first, the algorithm of Acharya et al. (2017) offers (nearly) optimal ttime and
sample complexity for the task of improperly learning a 2-GMM. Moreover, the improper
algorithm is the first step in our proper learning algorithm. So comparing the performance
of the improper algorithm with our proper algorithm allows us to study the impact of our
regularization in the form of proper learning.
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Noiseless 2-GMM Perturbed 2-GMM Comparison

Figure 3: Our test distributions. Left plot: the noiseless 2-GMM. Middle plot: the slightly perturbed
2-GMM. Note that the left tail is slightly heavier. The total probability mass of the noise
is 0.05. Right plot: the two densities laid on top of each other.

• Kernel density estimation, which is a standard technique for density estimation / improper
learning. We use the Epanechnikov kernel because it offers the best guarantees and Silver-
man’s rule for bandwidth selection (we also tried other bandwidths but found Silverman’s
rule to work best). We use the implementation of kernel density estimation provided by
scikit-learn.

• The Expectation-Maximization (EM) algorithm, which is a popular algorithm for learning
GMMs. The EM algorithm maximizes the likelihood of the data but is not guaranteed to
reach a global maximum. Instead, the EM algorithm is typically run with many random
initializations to find a good solution. We use 1000 random initializations and verified that
more random initializations did not improve the performance of the EM algorithm in our tests
significantly. We use the implementation of the EM algorithm provided by scikit-learn.

All experiments were conducted on a laptop computer with a 2.8 GHz Intel Core i7 CPU and
16 GB of RAM. For the Mathematica part of our algorithm, we used Mathematica 10.4. Every data
point in the following experiments was averaged over 10 independent trials.

13.1. Noiseless experiments

In this set of experiments, we compare the empirical sample complexity and running time of the four
algorithms. We varied the sample size from n = 103 to n = 105 and recorded the running times
and L1-difference between the ground truth GMM and the hypothesis produced by the algorithm.
See Figure 4 for the corresponding results.

The experiments show that our proper learning algorithm has a better empirical sample com-
plexity than both kernel density estimation and the improper learning algorithm. Moreover, the
sample complexity is competitive with the EM algorithm. Interestingly, our postprocessing of the
improper density estimate significantly improves the average L1-error: for n = 105 samples, our
proper learning algorithm has an average L1-error of 0.006, while the improper algorithm achieves
only an average error of 0.015, i.e., our proper GMM fitting improves the learning accuracy by more
than a factor of two.
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In terms of time complexity, solving the system of polynomial inequalities with a black-box
method occurs a significant overhead in terms of running time. For n = 105 samples, our algorithm
takes about 45 minutes to complete. As mentioned above, we believe that is possible to signifi-
cantly improve this running time, which is an interesting direction for future work. As predicted by
our theoretical analysis, the running time of our algorithm is essentially independent of n for the
values of n studied here because the time spent on solving the systems of polynomial inequalities
dominates the overall running time.

13.2. Experiments with noise

Next, we study the learning accuracy of the four algorithms when the samples come from a slightly
perturbed 2-GMM as opposed to a true 2-GMM. As before, we varied the sample size from n =
103 to n = 105 and recorded the learning errors (we omit another runnig time plot because the
running times are comparable to the noiseless case above). This time, we record two different error
quantities: (i) The L1-distance to the density of the perturbed 2-GMM we draw samples from.
(ii) The L1-distance to the density of the original (unperturbed) 2-GMM. The improper learning
algorithms like kernel density estimation and the algorithm of Acharya et al. (2017) aim to minimize
the first quantity. While our guarantees in the previous sections are also with respect to the density
from which we draw samples, it is also interesting to see whether our algorithm can “de-noise” the
distribution and produce an estimate that is close to the original, unperturbed 2-GMM. See Figure
5 for the corresponding results.

The results show several points. While the EM algorithm offered the best learning accuracy in
the noiseless case, it fails to provide accurate approximations of the underlying distribution in the
noisy case. It is well known that the EM algorithm is not robust to outliers, and our experiments
confirm this point. The EM algorithm fails because samples in the tail of a Gaussian have a very
small likelihood. As a result, the EM algorithm decides to shift a significant fraction of a GMM
component towards the outliers and increases the variance of this component (see Figure 1 in the
introduction). This leads to a larger error inL1-norm, both to the perturbed and unperturbed 2-GMM
density. We remark that we ran the EM algorithm with a large number of random initializations and
observed no significant difference between 1, 000 and 10, 000 restarts. Hence we belive that the
worse performance of the EM algorithm is due to the unsuitable objective function and not its
failure to find a good objective value.

For approximating the perturbed 2-GMM density, the improper learning methods (kernel density
estimation and the algorithm of Acharya et al. (2017)) offer the best learning accuracy for large n.
This is because the perturbed 2-GMM cannot be approximated better than OPT2 by our proper
learning algorithm. It is worth noting that for n = 105, our algorithm achieves an L1-error to the
perturbed density of about 0.05, i.e., almost exactly the size of the perturbation from the original
2-GMM. For small n = 103, our algorithm still improves over the improper learning algorithm and
is competitive with kernel density estimation.

Finally, we consider the L1-error to the original, unperturbed 2-GMM. Here, our algorithm
offers the best approximation by a significant margin. For n = 105, our algorithm achieves an
average L1-error of 0.024, while the improper algorithm and kernel density estimation achieve
only about 0.056. An approximation of 0.05 is a natural bottleneck for the improper algorithms
in this case because the total mass of the perturbation is 0.05. Interestingly, our algorithm is able
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Figure 4: Results for learning a 2-GMM without noise / non-agnostically. The left plot shows
the running time of the four algorithms. As predicted by our theory, the running time
of our proper learning algorithm is essentially independent of the sample size in this
regime because the running time is dominated by the time spent on solving our systems of
polynomial inequalities. The right plot shows the learning error. Our algorithm improves
over both kernel density estimation and the improper learning baseline. Moreover, our
algorithm is competitive with the EM algorithm.
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Figure 5: Results for learning a perturbed 2-GMM / agnostic learning (the total probability mass
of the perturbation is 0.05, see Figure 3). The left plot shows the L1-learning error with
respect to the perturbed density. The right plot shows the L1-learning error with respect to
the unperturbed 2-GMM. In both cases, the EM algorithm does not produce an accurate
hypothesis. In contrast, our algorithm is competitive up to the natural noise floor when
the error is measured w.r.t. the perturbed density. When the error is measured w.r.t. the
original 2-GMM, our algorithm succeeds to “denoise” the perturbed distribution.
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to approximate the original 2-GMM better than this perturbation, i.e., the algorithm succceeds in
“denoising” the perturbed distribution.
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