
Proceedings of Machine Learning Research vol 65:1–29, 2017

Inapproximability of VC Dimension and Littlestone’s
Dimension

Pasin Manurangsi pasin@berkeley.edu and Aviad Rubinstein aviad@berkeley.edu
University of California, Berkeley

Abstract

We study the complexity of computing the VC Dimension and Littlestone’s Dimension.
Given an explicit description of a finite universe and a concept class (a binary matrix whose
(x,C)-th entry is 1 iff element x belongs to concept C), both can be computed exactly in
quasi-polynomial time (nO(log n)). Assuming the randomized Exponential Time Hypothesis
(ETH), we prove nearly matching lower bounds on the running time, that hold even for
approximation algorithms.

Keywords: VC Dimension; Littlestone’s Dimension; Hardness of Approximation.

1. Introduction

A common and essential assumption in learning theory is that the concepts we want to
learn come from a nice, simple concept class, or (in the agnostic case) they can at least
be approximated by a concept from a simple class. When the concept class is sufficiently
simple, there is hope for good (i.e. sample-efficient and low-error) learning algorithms.

There are many different ways to measure the simplicity of a concept class. The most
influential measure of simplicity is the VC Dimension, which captures learning in the PAC
model. We also consider Littlestone’s Dimension (Littlestone, 1988), which corresponds to
minimizing mistakes in online learning (see Section 2 for definitions). When either dimension
is small, there are algorithms that exploit the simplicity of the class, to obtain good learning
guarantees.

Two decades ago, it was shown (under appropriate computational complexity assumptions)
that neither dimension can be computed in polynomial time (Papadimitriou and Yannakakis,
1996; Frances and Litman, 1998); and these impossibility results hold even in the most
optimistic setting where the entire universe and concept class are given as explicit input
(a binary matrix whose (x,C)-th entry is 1 iff element x belongs to concept C). The
computational intractability of computing the (VC, Littlestone’s) dimension of a concept
class suggests that even in cases where a simple structure exists, it may be inaccessible to
computationally bounded algorithms (see Discussion below).

In this work we extend the results of (Papadimitriou and Yannakakis, 1996; Frances and
Litman, 1998) to show that the VC and Littlestone’s Dimensions cannot even be approxi-
mately computed in polynomial time. We don’t quite prove that those problems are NP-hard:

c© 2017 P. Manurangsi & A. Rubinstein.

Manurangsi Rubinstein

both dimensions can be computed (exactly) in quasi-polynomial (nO(logn)) time, hence it
is very unlikely that either problem is NP-hard. Nevertheless, assuming the randomized
Exponential Time Hypothesis (ETH)1 (Impagliazzo et al., 2001; Impagliazzo and Paturi,
2001), we prove essentially tight quasi-polynomial lower bounds on the running time - that
hold even against approximation algorithms.

Theorem 1 (Hardness of Approximating VC Dimension) Assuming Randomized
ETH, approximating VC Dimension to within a (1/2 + o(1))-factor requires nlog1−o(1) n

time.

Theorem 2 (Hardness of Approximating Littlestone’s Dimension) There exists
an absolute constant ε > 0 such that, assuming Randomized ETH, approximating
Littlestone’s Dimension to within a (1− ε)-factor requires nlog1−o(1) n time.

1.1. Discussion

As we mentioned before, the computational intractability of computing the (VC, Littlestone’s)
dimension of a concept class suggests that even in cases where a simple structure exists, it
may be inaccessible to computationally bounded algorithms. We note however that it is not
at all clear that any particular algorithmic applications are immediately intractable as a
consequence of our results.

Consider for example the adversarial online learning zero-sum game corresponding to
Littlestone’s Dimension: At each iteration, Nature presents the learner with an element
from the universe; the learner attempts to classify the element, and loses a point for every
wrong classification; at the end of the iteration, the correct (binary) classification is revealed.
The Littlestone’s Dimension is equal to the worst case loss of the Learner before learning
the exact concept. (see Section 2 for a more detailed definition.)

What can we learn from the fact that the Littlestone’s Dimension is hard to compute? The
first observation is that there is no efficient learner that can commit to a concrete mistake
bound. But this does not rule out a computationally-efficient learner that plays optimal
strategy and makes at most as many mistakes as the unbounded learner. We can, however,
conclude that Nature’s task is computationally intractable! Otherwise, we could efficiently
construct an entire worst-case mistake tree (for a concept class C, any mistake tree has at
most |C| leaves, requiring |C| − 1 oracle calls to Nature).

On a philosophical level, we think it is interesting to understand the implications of an
intractable, adversarial Nature. Perhaps this is another evidence that the mistake bound
model is too pessimistic?

Also, the only algorithm we know for computing the optimal learner’s decision requires
computing the Littlestone’s Dimension. We think that it is an interesting open question
whether an approximately optimal computationally-efficient learner exists.

1. The randomized ETH (rETH) postulates that there is no 2o(n)-time Monte Carlo algorithms that solves
3SAT on n variables correctly with probability at least 2/3 (i.e. 3SAT /∈ BPTIME(2o(n))).

2

Inapproximability of VC Dimension and Littlestone’s Dimension

In addition, let us note that in the other direction, computing Littlestone’s Dimension
exactly implies an exactly optimal learner. However, since the learner has to compute
Littlestone’s Dimension many times, we have no evidence that an approximation algorithm
for Littlestone’s Dimension would imply any guarantee for the learner.

Finally, we remark that for either problem (VC or Littlestone’s Dimension), we are not
aware of any non-trivial approximation algorithms.

1.2. Techniques

The starting point of our reduction is the framework of “birthday repetition” (Aaronson
et al., 2014). This framework has seen many variations in the last few years, but the high
level approach is as follows: begin with a hard-to-approximate instance of a 2CSP (such as
3-Color), and partition the vertices into

√
n-tuples. On one hand, by the birthday paradox,

even if the original graph is sparse, we expect each pair of random
√
n-tuples to share an

edge; this is crucial for showing hardness of approximation in many applications. On the
other hand our reduction size is now approximately N ≈ 2

√
n (there are 3

√
n ways to color

each
√
n-tuple), whereas by ETH solving 3-Color requires approximately T (n) ≈ 2n time,

so solving the larger problem also takes at least T (n) ≈ N logN time.

VC Dimension The first challenge we have to overcome in order to adapt this framework
to hardness of approximation of VC Dimension is that the number of concepts involved
in shattering a subset S is 2|S|. Therefore any inapproximability factor we prove on the
size of the shattered set of elements, “goes in the exponent” of the size of the shattering
set of concepts. Even a small constant factor gap in the VC Dimension requires proving a
polynomial factor gap in the number of shattering concepts (obtaining polynomial gaps via
“birthday repetition” for simpler problems is an interesting open problem (Manurangsi and
Raghavendra, 2016; Manurangsi, 2017)). Fortunately, having a large number of concepts is
also an advantage: we use each concept to test a different set of 3-Color constraints chosen
independently at random; if the original instance is far from satisfied, the probability of
passing all 2Θ(|S|) tests should now be doubly-exponentially small (2−2Θ(|S|))! More concretely,
we think of half of the elements in the shattered set as encoding an assignment, and the
other half as encoding which tests to run on the assignments.

Littlestone’s Dimension Our starting point is the reduction for VC Dimension outlined
in the previous paragraph. While we haven’t yet formally introduced Littlestone’s Dimension,
recall that it corresponds to an online learning model. If the test-selection elements arrive
before the assignment-encoding elements, the adversary can adaptively tailor his assignment
to pass the specific test selected in the previous steps. To overcome this obstacle, we
introduce a special gadget that forces the assignment-encoding elements to arrive first; this
makes the reduction to Littlestone’s Dimension somewhat more involved. Note that there is
a reduction by (Frances and Litman, 1998) from VC Dimension to Littlestone’s Dimension.
Unfortunately, their reduction is not (approximately) gap-preserving, so we cannot use it
directly to obtain Theorem 2 from Theorem 1.

3

Manurangsi Rubinstein

1.3. Related Work

The study of the computational complexity of the VC Dimension was initiated by Linial,
Mansour, and Rivest (Linial et al., 1991), who observed that it can be computed in quasi-
polynomial time. (Papadimitriou and Yannakakis, 1996) proved that it is complete for the
class LOGNP which they define in the same paper. (Frances and Litman, 1998) reduced the
problem of computing the VC dimension to that of computing Littlestone’s Dimension, hence
the latter is also LOGNP-hard. (It follows as a corollary of our Theorem 1 that, assuming
ETH, solving any LOGNP-hard problem requires quasi-polynomial time.)

Both problems were also studied in an implicit model, where the concept class is given in
the form of a Boolean circuit that takes as input an element x and a concept c and returns
1 iff x ∈ c. Observe that in this model even computing whether either dimension is 0 or not
is already NP-hard. Schafer proved that the VC Dimension is ΣP

3 -complete (Schaefer, 1999),
while the Littlestone’s Dimension is PSPACE-complete (Schaefer, 2000). (Mossel and Umans,
2002) proved that VC Dimension is ΣP

3 -hard to approximate to within a factor of almost 2;
can be approximated to within a factor slightly better than 2 in AM; and is AM-hard to
approximate to within n1−ε.

Another line of related work in the implicit model proves computational intractability of
PAC learning (which corresponds to the VC Dimension). Such intractability has been
proved either from cryptographic assumptions, e.g. (Kearns and Valiant, 1994; Kharitonov,
1993, 1995; Feldman et al., 2006; Kalai et al., 2008; Klivans and Sherstov, 2009; Klivans,
2016) or from average case assumptions, e.g. (Daniely and Shalev-Shwartz, 2016; Daniely,
2016). (Blum, 1994) showed a “computational” separation between PAC learning and
online mistake bound (which correspond to the VC Dimension and Littlestone’s Dimension,
respectively): if one-way function exist, then there is a concept class that can be learned
by a computationally-bounded learner in the PAC model, but not in the mistake-bound
model.

Recently, (Bazgan et al., 2016) introduced a generalization of VC Dimension which they call
Partial VC Dimension, and proved that it is NP-hard to approximate (even when given an
explicit description of the universe and concept class).

Our work is also related to many other quasi-polynomial lower bounds from recent years,
which were also inspired by “birthday repetition”; these include problems like Densest
k-Subgraph (Braverman et al., 2017; Manurangsi, 2017), Nash Equilibrium and related
problems (Braverman et al., 2015; Rubinstein, 2015; Babichenko et al., 2016; Rubinstein,
2016a; Bhaskar et al., 2016; Deligkas et al., 2016) and Community Detection (Rubinstein,
2016b). It is interesting to note that so far “birthday repetition” has found very different
applications, but they all share essentially the same quasi-polynomial algorithm: The
bottleneck in those problem is a bilinear optimization problem maxu,v u>Av, which we want
to approximate to within a (small) constant additive factor. It suffices to find an O(logn)-
sparse sample v̂ of the optimal v∗; the algorithm enumerates over all sparse v̂’s (Lipton et al.,
2003; Arora et al., 2012; Barman, 2015; Cheng et al., 2015). In contrast, the problems we
consider in this paper have completely different quasi-polynomial time algorithms: For VC
Dimension, it suffices to simply enumerate over all log |C|-tuples of elements (where C denotes

4

Inapproximability of VC Dimension and Littlestone’s Dimension

the concept class and log |C| is the trivial upper bound on the VC dimension) (Linial et al.,
1991). Littlestone’s Dimension can be computed in quasi-polynomial time via a recursive
“divide and conquer” algorithm (See Appendix A).

2. Preliminaries

For a universe (or ground set) U , a concept C is simply a subset of U and a concept class C
is a collection of concepts. For convenience, we sometimes relax the definition and allow the
concepts to not be subsets of U ; all definitions here extend naturally to this case.

The VC and Littlestone’s Dimensions can be defined as follows.

Definition 3 (VC Dimension Vapnik and Chervonenkis (1971)) A subset S ⊆ U is
said to be shattered by a concept class C if, for every T ⊆ S, there exists a concept C ∈ C
such that T = S ∩ C.

The VC Dimension VC-dim(C,U) of a concept class C with respect to the universe U is the
largest d such that there exists a subset S ⊆ U of size d that is shattered by C.

Definition 4 (Mistake Tree and Littlestone’s Dimension Littlestone (1988)) A
depth-d instance-labeled tree of U is a full binary tree of depth d such that every internal
node of the tree is assigned an element of U . For convenience, we will identify each node in
the tree canonically by a binary string s of length at most d.

A depth-d mistake tree (aka shattered tree Ben-David et al. (2009)) for a universe U and a
concept class C is a depth-d instance-labeled tree of U such that, if we let vs ∈ U denote the
element assigned to the vertex s for every s ∈ {0, 1}<d, then, for every leaf ` ∈ {0, 1}d, there
exists a concept C ∈ C that agrees with the path from root to it, i.e., that, for every i < d,
v`6i ∈ C iff `i+1 = 1 where `6i denote the prefix of ` of length i.

The Littlestone’s Dimension L-dim(C,U) of a concept class C with respect to the universe U
is defined as the maximum d such that there exists a depth-d mistake tree for U , C.

An equivalent formulation of Littlestone’s Dimension is through mistakes made in online
learning, as stated below. This interpretation will be useful in our proof.

Definition 5 (Mistake Bound) An online algorithm A is an algorithm that, at time step
i, is given an element xi ∈ U and the algorithm outputs a prediction pi ∈ {0, 1} whether x is
in the class. After the prediction, the algorithm is told the correct answer hi ∈ {0, 1}. For a
sequence (x1, h1), . . . , (xn, hn), prediction mistake of A is defined as the number of incorect
predictions, i.e.,

∑
i∈n 1[pi 6= hi]. The mistake bound of A for a concept class C is defined

as the maximum prediction mistake of A over all the sequences (x1, h1), . . . , (xn, hn) which
corresponds to a concept C ∈ C (i.e. hi = 1[xi ∈ C] for all i ∈ [n]).

Theorem 6 (Littlestone (1988)) For any universe U and any concept class C,
L-dim(C,U) is equal to the minimum mistake bound of C,U over all online algorithms.

The following facts are well-know and follow easily from the above definitions.

5

Manurangsi Rubinstein

Fact 7 For any universe U and concept class C, we have

VC-dim(C,U) 6 L-dim(C,U) 6 log |C|.

Fact 8 For any two universes U1,U2 and any concept class C,

L-dim(C,U1 ∪ U2) 6 L-dim(C,U1) + L-dim(C,U2).

2.1. Label Cover and PCP

As is standard in hardness of approximation, the starting point for our reductions will be
the following problem called Label Cover.

Definition 9 (Label Cover) A Label Cover instance L = (A,B,E,Σ, {πe}e∈E) consists
of a bipartite graph (A,B,E), an alphabet Σ, and, for every edge (a, b) ∈ E, a projection
constraint π(a,b) : Σ→ Σ.

An assignment (aka labeling) for L is a function φ : A ∪ B → Σ. The value of φ, valL(φ)
is defined as the fraction of edges (a, b) ∈ E such that π(a,b)(φ(a)) = φ(b); these edges are
called satisfied edges. The value of the instance L, val(L), is defined as the maximum value
among all assignments φ : A ∪B → Σ.

Throughout the paper, we often encounter an assignment that only labels a subset of A ∪B
but leaves the rest unlabeled. We refer to such assignment as a partial assignment to an
instance; more specifically, for any V ⊆ A∪B, a V -partial assignment (or partial assignment
on V) is a function φ : V → Σ. For notational convenience, we sometimes write ΣV to
denote the set of all functions from V to Σ.

We will use the following version of the PCP Theorem by Moshkovitz and Raz, which reduces
3SAT to the gap version of Label Cover while preserves the size to be almost linear.

Theorem 10 (Moshkovitz-Raz PCP Moshkovitz and Raz (2010)) For every n
and every ν = ν(n) > 0, solving 3SAT on n variables can be reduced to distinguishing between
the case that a bi-regular instance of Label Cover with |A|, |B|, |E| = n1+o(1)poly(1/ν) and
|Σ| = 2poly(1/ν) is satisfiable and the case that its value is at most ν.

2.2. Useful Lemmata

We end this section by listing a couple of lemmata that will be useful in our proofs.

Lemma 11 (Chernoff Bound) Let X1, . . . , Xn be i.i.d. random variables taking value
from {0, 1} and let p be the probability that Xi = 1, then, for any δ > 0, we have

Pr
[
n∑
i=1

Xi > (1 + δ)np
]
6

{
2−δ2np/3 if δ < 1,
2−δnp/3 otherwise.

6

Inapproximability of VC Dimension and Littlestone’s Dimension

Lemma 12 (Partitioning Lemma (Rubinstein, 2016b, Lemma 2.5)) For any
bi-regular bipartite graph G = (A,B,E), let n = |A|+ |B| and r =

√
n/ logn. When n is

sufficiently large, there exists a partition of A ∪B into U1, . . . , Ur such that

∀i ∈ [r], n2r 6 |Ui| 6
2n
r

and

∀i, j ∈ [r], |E|2r2 6 |(Ui × Uj) ∩ E|, |(Uj × Ui) ∩ E| 6
2|E|
r2 .

Moreover, such partition can be found in randomized linear time (alternatively, deterministic
nO(logn) time).

3. Inapproximability of VC Dimension

In this section, we present our reduction from Label Cover to VC Dimension, stated
more formally below. We note that this reduction, together with Moshkovitz-Raz PCP
(Theorem 10), with parameter δ = 1/ logn gives a reduction from 3SAT on n variables to VC
Dimension of size 2n1/2+o(1) with gap 1/2+o(1), which immediately implies Theorem 1.

Theorem 13 For every δ > 0, there exists a randomized reduction from a bi-regular Label
Cover instance L = (A,B,E,Σ, {πe}e∈E) such that |Σ| = Oδ(1) to a ground set U and a
concept class C such that, if n , |A|+ |B| and r ,

√
n/ logn, then the following conditions

hold for every sufficiently large n.

• (Size) The reduction runs in time |Σ|O(|E|poly(1/δ)/r) and |C|, |U| 6 |Σ|O(|E|poly(1/δ)/r).
• (Completeness) If L is satisfiable, then VC-dim(C,U) > 2r.
• (Soundness) If val(L) 6 δ2/100, then VC-dim(C,U) 6 (1 + δ)r with high probability.

In fact, the above properties hold with high probability even when δ and |Σ| are not constants,
as long as δ > log(1000n log |Σ|)/r.

We remark here that when δ = 1/ logn, Moshkovitz-Raz PCP produces a Label Cover
instance with |A| = n1+o(1), |B| = n1+o(1) and |Σ| = 2polylog(n). For such parameters, the
condition δ > log(1000n log |Σ|)/r holds for every sufficiently large n.

3.1. A Candidate Reduction (and Why It Fails)

To best understand the intuition behind our reduction, we first describe a simpler candidate
reduction and explain why it fails, which will lead us to the eventual construction. In this
candidate reduction, we start by evoking Lemma 12 to partition the vertices A ∪B of the
Label Cover instance L = (A,B,E,Σ, {πe}e∈E) into U1, . . . , Ur where r =

√
n/ logn. We

then create the universe U and the concept class C as follows:

• We make each element in U correspond to a partial assignment to Ui for some i ∈ [r],
i.e., we let U = {xi,σi | i ∈ [r], σi ∈ ΣUi}. In the completeness case, we expect to

7

Manurangsi Rubinstein

shatter the set of size r that corresponds to a satisfying assignment σ∗ ∈ ΣA∪B of the
Label Cover instance L, i.e., {xi,σ∗|Ui | i ∈ [r]}. As for the soundness, our hope is that,
if a large set S ⊆ U gets shattered, then we will be able to decode an assignment for L
that satisfies many constraints, which contradicts with our assumption that val(L) is
small. Note that the number of elements of U in this candidate reduction is at most
r · |Σ|O(|E|poly(1/δ)r) = 2Õ(

√
n) as desired.

• As stated above, the intended solution for the completeness case is {xi,σ∗|Ui | i ∈ [r]},
meaning that we must have at least one concept corresponding to each subset I ⊆ [r].
We will try to make our concepts “test” the assignment; for each I ⊆ [r], we will
choose a set TI ⊆ A ∪ B of Õ(

√
n) vertices and “test” all the constraints within TI .

Before we specify how TI is picked, let us elaborate what “test” means: for each
TI -partial assignment φI that does not violate any constraints within TI , we create a
concept CI,φI . This concept contains xi,σi if and only if i ∈ I and σi agrees with φI
(i.e. φI |TI∩Ui = σi|TI∩Ui). Recall that, if a set S ⊆ U is shattered, then each S̃ ⊆ S is
an intersection between S and CI,φI for some I, φI . We hope that the I’s are different
for different S̃ so that many different tests have been performed on S.
Finally, let us specify how we pick TI . Assume without loss of generality that r is even.
We randomly pick a perfect matching between r, i.e., we pick a random permutation
πI : [r] → [r] and let

(
πI(1), πI(2)

)
, . . . ,

(
πI(r − 1), πI(r)

)
be the chosen matching.

We pick TI such that all the constraints in the matchings, i.e., constraints between
UπI(2i−1) and UπI(2i) for every i ∈ [r/2], are included. More specifically, for every
i ∈ [r], we include each vertex v ∈ UπI(2i−1) if at least one of its neighbors lie in UπI(2i)
and we include each vertex u ∈ UπI(2i) if at least one of its neighbors lie in UπI(2i−1).
By Lemma 12, for every pair in the matching the size of the intersection is at most
2|E|
r2 , so each concept contains assignments to at most 2|E|

r variables; so the total size
of the concept class is at most 2r · |Σ|

2|E|
r .

Even though the above reduction has the desired size and completeness, it unfortunately
fails in the soundness. Let us now sketch a counterexample. For simplicity, let us assume
that each vertex in T[r] has a unique neighbor in T[r]. Note that, since T[r] has quite small
size (only Õ(

√
n)), almost all the vertices in T[r] satisfy this property w.h.p., but assuming

that all of them satisfy this property makes our life easier.

Pick an assignment σ̃ ∈ ΣV such that none of the constraints in T[r] is violated. From our
unique neighbor assumption, there is always such an assignment. Now, we claim that the set
Sσ̃ , {xi,σ̃|Ui | i ∈ [r]} gets shattered. This is because, for every subset I ⊆ [r], we can pick
another assignment σ′ such that σ′ does not violate any constraint in T[r] and σ′|Ui = σ̃|Ui if
and only if i ∈ I. This implies that {xi,σ̃|Ui | i ∈ I} = S ∩ C[r],σ′ as desired. Note here that
such σ′ exists because, for every i /∈ I, if there is a constraint from a vertex a ∈ Ui ∩A to
another vertex b ∈ T[r] ∩B, then we can change the assignment to a in such a way that the
constraint is not violated2; by doing this for every i /∈ I, we have created the desired σ′. As
a result, VC-dim(C,U) can still be as large as r even when the value of L is small.

2. Here we assume that |π−1
(a,b)(σ̃(b))| > 1; note that this always holds for Label Cover instances produced

by Moshkovitz-Raz construction.

8

Inapproximability of VC Dimension and Littlestone’s Dimension

3.2. The Final Reduction

In this subsection, we will describe the actual reduction. To do so, let us first take a closer
look at the issue with the above candidate reduction. In the candidate reduction, we can
view each I ⊆ [r] as being a seed used to pick a matching. Our hope was that many
seeds participate in shattering some set S, and that this means that S corresponds to an
assignment of high value. However, the counterexample showed that in fact only one seed
(I = [r]) is enough to shatter a set. To circumvent this issue, we will not use the subset I
as our seed anymore. Instead, we create r new elements y1, . . . , yr, which we will call test
selection elements to act as seeds; namely, each subset H ⊆ Y will now be a seed. The
benefit of this is that, if S ⊆ Y is shattered and contains test selection elements yi1 , . . . , yit ,
then at least 2t seeds must participate in the shattering of S. This is because, for each
H ⊆ Y , the intersection of S with any concept corresponding to H, when restricted to Y , is
always H ∩ {yi1 , . . . , yit}. Hence, each subset of {yi1 , . . . , yit} must come a from different
seed.

The only other change from the candidate reduction is that each H will test multiple
matchings rather than one matching. This is due to a technical reason: we need the number
of matchings, `, to be large in order get the approximation ratio down to 1/2 + o(1); in our
proof, if ` = 1, then we can only achieve a factor of 1− ε to some ε > 0. The full details of
the reduction are shown in Figure 1.

Before we proceed to the proof, let us define some additional notation that will be used
throughout.

• Every assignment element of the form xi,σi is called an i-assignment element; we
denote the set of all i-assignment elements by Xi, i.e., Xi = {xi,σi | σi ∈ ΣUi}. Let X
denote all the assignment elements, i.e., X =

⋃
iXi.

• For every S ⊆ U , let I(S) denote the set of all i ∈ [r] such that S contains an
i-assignment element, i.e., I(S) = {i ∈ [r] | S ∩ Xi 6= ∅}.
• We call a set S ⊆ X non-repetitive if, for each i ∈ [r], S contains at most one i-

assignment element, i.e., |S ∩ Xi| 6 1. Each non-repetitive set S canonically induces a
partial assignment φ(S) :

⋃
i∈I(S) Ui → Σ. This is the unique partial assignment that

satisfies φ(S)|Ui = σi for every xi,σi ∈ S
• Even though we define each concept as CI,H,σH where σH is a partial assignment to a

subset TH ⊆ A ∪B, it will be more convenient to view each concept as CI,H,σ where
σ ∈ ΣV is the assignment to the entire Label Cover instance. This is just a notational
change: the actual definition of the concept does not depend on the assignment outside
TH .
• For each I ⊆ [r], let UI denote

⋃
i∈I Ui. For each σI ∈ ΣUI , we say that (I, σI) passes

H ⊆ Y if σI does not violate any constraint within TH . Denote the collection of H’s
that (I, σI) passes by H(I, σI).
• Finally, for any non-repetitive set S ⊆ X and any H ⊆ Y, we say that S passes H if

(I(S), φ(S)) passes H. We write H(S) as a shorthand for H(I(S), φ(S)).

The output size of the reduction and the completeness follow almost immediately from
definition.

9

Manurangsi Rubinstein

Input: A bi-regular Label Cover instance L = (A,B,E,Σ, {πe}e∈E) and a parameter
δ > 0.
Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:
• Let r be

√
n/ logn where n = |A|+ |B|. Use Lemma 12 to partition A ∪B into r

blocks U1, . . . , Ur.
• For convenience, we assume that r is even. Moreover, for i 6= j ∈ [r], let Ni(j) ⊆ Ui

denote the set of all vertices in Ui with at least one neighbor in Uj (w.r.t. the
graph (A,B,E)). We also extend this notation naturally to a set of j’s; for J ⊆ [r],
Ni(J) denotes

⋃
j∈J Ni(j).

• The universe U consists of two types of elements, as described below.
– Assignment elements: for every i ∈ [r] and every partial assignment σi ∈ ΣUi ,

there is an assignment element xi,σi corresponding to it. Let X denote all the
assignment elements, i.e., X = {xi,σi | i ∈ [r], σi ∈ ΣUi}.

– Test selection elements: there are r test selection elements, which we will call
y1, . . . , yr. Let Y denote the set of all test selection elements.

• The concepts in C are defined by the following procedure.
– Let ` , 80/δ3 be the number of matchings to be tested.
– For each H ⊆ Y, we randomly select ` permutations π

(1)
H , . . . , π

(`)
H :

[r] → [r]; this gives us ` matchings (i.e. the t-th matching is(
π

(t)
H (1), π(t)

H (2)
)
, . . . ,

(
π

(t)
H (r − 1), π(t)

H (r)
)

). For brevity, let us denote the set
of (up to `) elements that i is matched with in the matchings by MH(i). Let
TH =

⋃
iNi(MH(i))

– For every I ⊆ [r], H ⊆ Y and for every partial assignment σH ∈ ΣTH that
does not violate any constraints, we create a concept CI,H,σH such that each
xi,σi ∈ X is included in CI,H,σH if and only if i ∈ I and σi is consistent with
σH , i.e., σi|Ni(MH(i)) = σH |Ni(MH(i)) whereas yi ∈ Y in included in CI,H,σH if
and only if y ∈ H.

Figure 1: Reduction from Label Cover to VC Dimension

Output Size of the Reduction. Clearly, the size of U is
∑
i∈[r] |Σ||Ui| 6 r · |Σ|n/r 6

|Σ|O(|E|poly(1/δ)/r). As for |C|, note first that the number of choices for I and H are both 2r.
For fixed I and H, Lemma 12 implies that, for each matching π(t)

H , the number of vertices
from each Ui with at least one constraint to the matched partition in π(t)

H is at most O(|E|/r2).
Since there are ` matchings, the number of vertices in TH = N1(MH(1)) ∪ · · · ∪ Nr(MH(r))
is at most O(|E|`/r). Hence, the number of choices for the partial assignment σH is at
most |Σ|O(|E|poly(1/δ)/r). In total, we can conclude that C contains at most |Σ|O(|E|poly(1/δ)/r)

concepts.

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , then the set Sσ∗ = {xi,σ∗|Ui |
i ∈ [r]} ∪ Y is shattered because, for any S ⊆ Sσ∗ , we have S = Sσ∗ ∩ CI(S),S∩Y,σ∗ . Hence,
VC-dim(C,U) > 2r.

10

Inapproximability of VC Dimension and Littlestone’s Dimension

The rest of this section is devoted to the soundness analysis.

3.3. Soundness

In this subsection, we will prove the following lemma, which, combined with the completeness
and output size arguments above, imply Theorem 13.

Lemma 14 Let (C,U) be the output from the reduction in Figure 1 on input L. If
val(L) 6 δ2/100 and δ > log(1000n log |Σ|)/r, then VC-dim(C,U) 6 (1 + δ)r w.h.p.

At a high level, the proof of Lemma 14 has two steps:

1. Given a shattered set S ⊆ U , we extract a maximal non-repetitive set Sno-rep ⊆ S
such that Sno-rep passes many (> 2|S|−|Sno-rep|) H’s. If |Sno-rep| is small, the trivial
upper bound of 2r on the number of different H’s implies that |S| is also small. As a
result, we are left to deal with the case that |Sno-rep| is large.

2. When |Sno-rep| is large, Sno-rep induces a partial assignment on a large fraction of
vertices of L. Since we assume that val(L) is small, this partial assignment must
violate many constraints. We will use this fact to argue that, with high probability,
Sno-rep only passes very few H’s, which implies that |S| must be small.

The two parts of the proof are presented in Subsection 3.3.1 and 3.3.2 respectively. We then
combine them in Subsection 3.3.3 to prove Lemma 14.

3.3.1. Part I: Finding a Non-Repetitive Set That Passes Many Tests

The goal of this subsection is to prove the following lemma, which allows us to, given a
shattered set S ⊆ U , find a non-repetitive set Sno-rep that passes many H’s.

Lemma 15 For any shattered S ⊆ U , there is a non-repetitive set Sno-rep of size |I(S)|
s.t. |H(Sno-rep)| > 2|S|−|I(S)|.

We will start by proving the following lemma, which will be a basis for the proof of
Lemma 15.

Lemma 16 Let C,C ′ ∈ C correspond to the same H (i.e. C = CI,H,σ and C ′ = CI′,H,σ′

for some H ⊆ Y, I, I ′ ⊆ [r], σ, σ′ ∈ ΣV).

For any subset S ⊆ U and any maximal non-repetitive subset Sno-rep ⊆ S, if Sno-rep ⊆ C
and Sno-rep ⊆ C ′, then S ∩ C = S ∩ C ′.

The most intuitive interpretation of this lemma is as follows. Recall that if S is shattered,
then, for each S̃ ⊆ S, there must be a concept CIS̃ ,HS̃ ,σS̃ such that S̃ = S ∩ CIS̃ ,HS̃ ,σS̃ . The
above lemma implies that, for each S̃ ⊇ Sno-rep, HS̃ must be different. This means that at
least 2|S|−|Sno-rep| different H’s must be involved in shattering S. Indeed, this will be the
argument we use when we prove Lemma 15.

11

Manurangsi Rubinstein

Proof of Lemma 16 Let S, Sno-rep be as in the lemma statement. Suppose for the
sake of contradiction that there exists H ⊆ Y, I, I ′ ⊆ [r], σ, σ′ ∈ ΣV such that Sno-rep ⊆
CI,H,σ, S

no-rep ⊆ CI′,H,σ′ and S ∩ CI,H,σ 6= S ∩ CI′,H,σ′ .

First, note that S∩CI,H,σ∩Y = S∩H∩Y = S∩CI′,H,σ′ ∩Y . Since S∩CI,H,σ 6= S∩CI′,H,σ′ ,
we must have S ∩ CI,H,σ ∩ X 6= S ∩ CI′,H,σ′ ∩ X . Assume w.l.o.g. that there exists
xi,σi ∈ (S ∩ CI,H,σ) \ (S ∩ CI′,H,σ′).

Note that i ∈ I(S) = I(Sno-rep) (where the equality follows from maximality of Sno-rep).
Thus there exists σ′i ∈ ΣUi such that xi,σ′i ∈ S

no-rep ⊆ CI,H,σ ∩ CI′,H,σ′ . Since xi,σ′i is in
both CI,H,σ and CI′,H,σ′ , we have i ∈ I ∩ I ′ and

σ|Ni(MH(i)) = σ′i|Ni(MH(i)) = σ′|Ni(MH(i)). (1)

However, since xi,σi ∈ (S ∩ CI,H,σ) \ (S ∩ CI′,H,σ′), we have xi,σi ∈ CI,H,σ \ CI′,H,σ′ . This
implies that

σ|Ni(MH(i)) = σi|Ni(MH(i)) 6= σ′|Ni(MH(i)),

which contradicts to (1).

In addition to the above lemma, we will also need the following observation, which states
that, if a non-repetitive Sno-rep is contained in a concept CI,H,σH , then Sno-rep must pass
H. This observation follows definitions.

Observation 17 If a non-repetitive set Sno-rep is a subset of some concept CI,H,σH , then
H ∈ H(Sno-rep).

With Lemma 16 and Observation 17 ready, it is now easy to prove Lemma 15.

Proof of Lemma 15 Pick Sno-rep to be any maximal non-repetitive subset of S.
Clearly, |Sno-rep| = |I(S)|. To see that |H(Sno-rep)| > 2|S|−|I(S)|, consider any S̃ such that
Sno-rep ⊆ S̃ ⊆ S. Since S is shattered, there exists IS̃ , HS̃ , σS̃ such that S ∩ CIS̃ ,HS̃ ,σS̃ = S̃.
Since S̃ ⊇ Sno-rep, Observation 17 implies that HS̃ ∈ H(Sno-rep). Moreover, from
Lemma 16, HS̃ is distinct for every S̃. As a result, |H(Sno-rep)| > 2|S|−|I(S)| as desired.

3.3.2. Part II: No Large Non-Repetitive Set Passes Many Tests

The goal of this subsection is to show that, if val(L) is small, then w.h.p. (over the
randomness in the construction) every large non-repetitive set passes only few H’s. This is
formalized as Lemma 18 below.

Lemma 18 If val(L) 6 δ2/100 and δ > 8/r, then, with high probability, for every non-
repetitive set Sno-rep of size at least δr, |H(Sno-rep)| 6 100n log |Σ|.

Note that the mapping Sno-rep 7→ (I(Sno-rep), φ(Sno-rep)) is a bijection from the collection of
all non-repetitive sets to {(I, σI) | I ⊆ [r], σI ∈ ΣUI}. Hence, the above lemma is equivalent
to the following.

12

Inapproximability of VC Dimension and Littlestone’s Dimension

Lemma 19 If val(L) 6 δ2/100 and δ > 8/r, then, with high probability, for every I ⊆ [r]
of size at least δr and every σI ∈ ΣUI , |H(I, σI)| 6 100n log |Σ|.

Here we use the language in Lemma 19 instead of Lemma 18 as it will be easier for us to
reuse this lemma later. To prove the lemma, we first need to bound the probability that
each assignment σI does not violate any constraint induced by a random matching. More
precisely, we will prove the following lemma.

Lemma 20 For any I ⊆ [r] of size at least δr and any σI ∈ ΣUI , if π : [r] → [r] is a
random permutation of [r], then the probability that σI does not violate any constraint in⋃
i∈[r]Ni(M(i)) is at most (1 − 0.1δ2)δr/8 where M(i) denote the index that i is matched

with in the matching
(
π(1), π(2)

)
, . . . ,

(
π(r − 1), π(r)

)
.

Proof Let p be any positive odd integer such that p 6 δr/2 and let i1, . . . , ip−1 ∈ [r]
be any p − 1 distinct elements of [r]. We will first show that conditioned on π(1) =
i1, . . . , π(p−1) = ip−1, the probability that σI violates a constraint induced by π(p), π(p+ 1)
(i.e. in Nπ(p)(π(p+ 1)) ∪Nπ(p+1)(π(p))) is at least 0.1δ2.

To see that this is true, let I>p = I\{i1, . . . , ip−1}. Since |I| > δr, we have |I>p| = |I|−p+1 >
δr/2 + 1. Consider the partial assignment σ>p = σI |UI>p . Since val(L) 6 0.01δ2, σ>p can
satisfy at most 0.01δ2|E| constraints. From Lemma 12, we have, for every i 6= j ∈ I>p, the
number of constraints between Ui and Uj are at least |E|/r2. Hence, there are at most
0.01δ2r2 pairs of i < j ∈ I>p such that σ>p does not violate any constraint between Ui and
Uj . In other words, there are at least

(|I>p|
2
)
− 0.01δ2r2 > 0.1δ2r2 pairs i < j ∈ I>p such that

σ>p violates some constraints between Ui and Uj . Now, if π(p) = i and π(p + 1) = j for
some such pair i, j, then φ(Sno-rep) violates a constraint induced by π(p), π(p+ 1). Thus,
we have

Pr

σI does not violate a constraint induced by π(p), π(p+ 1)

∣∣∣∣∣∣
p−1∧
t=1

π(t) = it

 6 1− 0.1δ2.

(2)

Let Ep denote the event that σI does not violate any constraints induced by π(p) and
π(p+ 1). We can now bound the desired probability as follows.

Pr

σI does not violate any constraint in
⋃
i∈[r]
Ni(M(i))

 6 Pr

 ∧
odd p∈[δr/2+1]

Ep


=

∏
odd p∈[δr/2+1]

Pr

Ep
∣∣∣∣∣∣

∧
odd t∈[p−1]

Et


(From (2)) 6

∏
odd p∈[δr/2+1]

(1− 0.1δ2)

6 (1− 0.1δ2)δr/4−1,

which is at most (1− 0.1δ2)δr/8 since δ > 8/r.

13

Manurangsi Rubinstein

We can now prove our main lemma.

Proof of Lemma 19 For a fixed I ⊆ [r] of size at least δr and a fixed σI ∈ ΣUI , Lemma 20
tells us that the probability that σI does not violate any constraint induced by a single
matching is at most (1−0.1δ2)δr/8. Since for each H ⊆ Y the construction picks ` matchings
at random, the probability that (I, σI) passes each H is at most (1− 0.1δ2)δ`r/8. Recall that
we pick ` = 80/δ3; this gives the following upper bound on the probability:

Pr[(I, σI) passes H] ≤ (1− 0.1δ2)δ`r/8 = (1− 0.1δ2)10r/δ2
6
(1

1 + 0.1δ2

)10r/δ2

6 2−r (3)

where the last inequality comes from Bernoulli’s inequality.

Inequality (3) implies that the expected number of H’s that (I, σI) passes is less than 1.
Since the matchings MH are independent for all H’s, we can apply Chernoff bound which
implies that

Pr[|H(I, σI)| > 100n log |Σ|] 6 2−10n log |Σ| = |Σ|−10n.

Finally, note that there are at most 2r|Σ|n different (I, σI)’s. By union bound, we have

Pr
[
∃I ⊆ [r], σI ∈ ΣUI s.t. |I| > δr AND |H(I, σI)| > 100n log |Σ|

]
6 (2r|Σ|n)

(
|Σ|−10n

)
6 |Σ|−8n,

which concludes the proof.

3.3.3. Putting Things Together

Proof of Lemma 14 From Lemma 18, every non-repetitive set Sno-rep of size at least
δr, |H(Sno-rep)| 6 100n log |Σ|. Conditioned on this event happening, we will show that
VC-dim(U , C) 6 (1 + δ)r.

Consider any shattered set S ⊆ U . Lemma 15 implies that there is a non-repetitive set
Sno-rep of size |I(S)| such that |H(Sno-rep)| > 2|S|−|I(S)|. Let us consider two cases:

1. |I(S)| 6 δr. Since H(Sno-rep) ⊆ P(Y), we have |S| − |I(S)| 6 |Y| = r. This implies
that |S| 6 (1 + δ)r.

2. |I(S)| > δr. From our assumption, |H(Sno-rep)| 6 100n log |Σ|. Thus, |S| 6 |I(S)|+
log(100n log |Σ|) 6 (1 + δ)r where the second inequality comes from our assumption
that δ > log(1000n log |Σ|)/r.

Hence, VC-dim(U , C) 6 (1 + δ)r with high probability.

14

Inapproximability of VC Dimension and Littlestone’s Dimension

4. Inapproximability of Littlestone’s Dimension

We next proceed to Littlestone’s Dimension. The main theorem of this section is stated
below. Again, note that this theorem and Theorem 10 implies Theorem 2.

Theorem 21 There exists ε > 0 such that there is a randomized reduction from any
bi-regular Label Cover instance L = (A,B,E,Σ, {πe}e∈E) with |Σ| = O(1) to a ground set U
and a concept classes C such that, if n , |A|+ |B|, r ,

√
n/ logn and k , 1010|E| log |Σ|/r2,

then the following conditions hold for every sufficiently large n.

• (Size) The reduction runs in time 2rk · |Σ|O(|E|/r) and |C|, |U| 6 2rk · |Σ|O(|E|/r).
• (Completeness) If L is satisfiable, then L-dim(C,U) > 2rk.
• (Soundness) If val(L) 6 0.001, then L-dim(C,U) 6 (2− ε)rk with high probability.

4.1. Why the VC Dimension Reduction Fails for Littlestone’s Dimension

It is tempting to think that, since our reduction from the previous section works for
VC Dimension, it may also work for Littlestone’s Dimension. In fact, thanks to Fact 7,
completeness for that reduction even translates for free to Littlestone’s Dimension. Alas,
the soundness property does not hold. To see this, let us build a depth-2r mistake tree for
C,U , even when val(L) is small, as follows.

• We assign the test-selection elements to the first r levels of the tree, one element per
level. More specifically, for each s ∈ {0, 1}<r, we assign y|s|+1 to s.
• For every string s ∈ {0, 1}r, the previous step of the construction gives us a subset of Y

corresponding to the path from root to s; this subset is simply Hs = {yi ∈ Y | si = 1}.
Let THs denote the set of vertices tested by this seed Hs. Let φs ∈ ΣV denote an
assignment that satisfies all the constraints in THs . Note that, since THs is of small
size (only Õ(

√
n)), even if val(L) is small, φs is still likely to exist (and we can decide

whether it exists or not in time 2Õ(
√
n)).

We then construct the subtree rooted at s that corresponds to φs by assigning each level
of the subtree xi,φs|Ui . Specifically, for each t ∈ {0, 1}>r, we assign x|t|−r+1,φt6r |U|t|−r+1
to node t of the tree.

It is not hard to see that the constructed tree is indeed a valid mistake tree. This is
because the path from root to each leaf l ∈ {0, 1}2r agrees with CI(l),Hl6r ,φl6r

(where
I(l) = {i ∈ [r] | li = 1}).

4.2. The Final Reduction

The above counterexample demonstrates the main difference between the two dimensions:
order does not matter in VC Dimension, but it does in Littlestone’s Dimension. By moving
the test-selection elements up the tree, the tests are chosen before the assignments, which
allows an adversary to “cheat” by picking different assignments for different tests. We would
like to prevent this, i.e., we would like to make sure that, in the mistake tree, the upper

15

Manurangsi Rubinstein

levels of the tree are occupied with the assignment elements whereas the lower levels are
assigned test-selection elements. As in the VC Dimension argument, our hope here is that,
given such a tree, we should be able to decode an assignment that passes tests on many
different tests. Indeed we will tailor our construction to achieve such property.

Recall that, if we use the same reduction as VC Dimension, then, in the completeness case,
we can construct a mistake tree in which the first r layers consist solely of assignment
elements and the rest of the layers consist of only test-selection elements. Observe that
there is no need for different nodes on the r-th layer to have subtrees composed of the same
set of elements; the tree would still be valid if we make each test-selection element only
work with a specific s ∈ {0, 1}r and create concepts accordingly. In other words, we can
modify our construction so that our test-selection elements are Y = {yI,i | I ⊆ [r], i ∈ [r]}
and the concept class is {CI,H,σH | I ⊆ [r], H ⊆ Y, σH ∈ ΣTH} where the condition that an
assignment element lies in CI,H,σH is the same as in the VC Dimension reduction, whereas
for yI′,i to be in CI,H,σH , we require not only that i ∈ H but also that I = I ′. Intuitively,
this should help us, since each yI,i is now only in a small fraction (6 2−r) of concepts;
hence, one would hope that any subtree rooted at any yI,i cannot be too deep, which would
indeed implies that the test-selection elements cannot appear in the first few layers of the
tree.

Alas, for this modified reduction, it is not true that a subtree rooted at any yI,i has small
depth; specifically, we can bound the depth of a subtree yI,i by the log of the number of
concepts containing yI,i plus one (for the first layer). Now, note that yI,i ∈ CI′,H,σH means
that I ′ = I and i ∈ H, but there can be still as many as 2r−1 · |Σ||TH | = |Σ|O(|E|/r) such
concepts. This gives an upper bound of r + O(|E| log |Σ|/r) on the depth of the subtree
rooted at yI,i. However, |E| log |Σ|/r = Θ(

√
n logn) = ω(r); this bound is meaningless here

since, even in the completeness case, the depth of the mistake tree is only 2r.

Fortunately, this bound is not useless after all: if we can keep this bound but make the
intended tree depth much larger than |E| log |Σ|/r, then the bound will indeed imply that
no yI,i-rooted tree is deep. To this end, our reduction will have one more parameter
k = Θ(|E| log |Σ|/r) where Θ(·) hides a large constant and the intended tree will have depth
2rk in the completeness case; the top half of the tree (first rk layers) will again consist of
assignment elements and the rest of the tree composes of the test-selection elements. The
rough idea is to make k “copies” of each element: the assignment elements will now be {xi,σi,j |
i ∈ [r], σi ∈ ΣUi , j ∈ [k]} and the test-selection elements will be {yI,i,j | I ⊆ [r]× [k], j ∈ [k]}.
The concept class can then be defined as {CI,H,σH | I ⊆ [r]× [k], H ⊆ [r]× [k], σH ∈ ΣTH}
naturally, i.e., H is used as the seed to pick the test set TH , yI′,i,j ∈ CI,H,σH iff I ′ = I and
(i, j) ∈ H whereas xi,σi,j ∈ CI,H,σH iff (i, j) ∈ I and σi|(I,σI) = σH |(I,σI). For this concept
class, we can again bound the depth of yI,i-rooted tree to be rk+O(|E| log |Σ|/r); this time,
however, rk is much larger than |E| log |Σ|/r, so this bound is no more than, say, 1.001rk.
This is indeed the desired bound, since this means that, for any depth-1.999rk mistake tree,
the first 0.998rk layers must consist solely of assignment elements.

Unfortunately, the introduction of copies in turn introduces another technical challenge: it
is not true any more that a partial assignment to a large set only passes a few tests w.h.p.
(i.e. an analogue of Lemma 19 does not hold). By Inequality (3), each H is passed with

16

Inapproximability of VC Dimension and Littlestone’s Dimension

probability at most 2−r, but now we want to take a union bound there are 2rk � 2r different
H’s. To circumvent this, we will define a map τ : P([r] × [k]) → P([r]) and use τ(H) to
select the test instead of H itself. The map τ we use in the construction is the threshold
projection where i is included in H if and only if, for at least half of j ∈ [k], H contains
(i, j). To motivate our choice of τ , recall that our overall proof approach is to first find a
node that corresponds to an assignment to a large subset of the Label Cover instance; then
argue that it can pass only a few tests, which we hope would imply that the subtree rooted
there cannot be too deep. For this implication to be true, we need the following to also hold:
for any small subset H ⊆ P([r]) of τ(H)’s, we have that L-dim(τ−1(H), [r]× [k]) is small.
This property indeed holds for our choice of τ (see Lemma 29).

With all the moving parts explained, we state the full reduction formally in Figure 2.

Input: A bi-regular Label Cover instance L = (A,B,E,Σ, {πe}e∈E).
Output: A ground set U and a concept class C.
The procedure to generate (U , C) works as follows:
• Let r, U1, . . . , Ur,N be defined in the same manner as in Reduction 1 and let
k , 1010|E| log |Σ|/r2.
• The universe U consists of two types of elements, as described below.

– Assignment elements: for every i ∈ [r], every partial assignment σi ∈ ΣUi and
every j ∈ [k], there is an assignment element xi,σi,j corresponding to it. Let
X denote all the assignment elements, i.e., X = {xi,σi,j | i ∈ [r], σi ∈ ΣUi , j ∈
[k]}.

– Test-selection elements: there are rk(2rk) test-selection elements, which we
will call yI,i,j for every i ∈ [r], j ∈ [k], I ⊆ [r]× [k]. Let Y denote the set of
all test-selection elements. Let Yi denote {yI,i,j | I ⊆ [r]× [k], j ∈ [k]}. We
call the elements of Yi i-test-selection elements.

• The concepts in C are defined by the following procedure.
– Let ` , 1000 be the number of matchings to be tested.
– For each H̃ ⊆ [r], we randomly select ` permutations π

(1)
H̃
, . . . , π

(`)
H̃

:
[r] → [r]; this gives us ` matchings (i.e. the t-th matching is(
π

(t)
H̃

(1), π(t)
H̃

(2)
)
, . . . ,

(
π

(t)
H̃

(r − 1), π(t)
H̃

(r)
)
). Denote the set of elements that

i is matched with in the matchings by MH̃(i). Let TH̃ =
⋃
iNi(MH̃(i))

– Let τ : P([r]× [k])→ P([r]) denote the threshold projection operation where
each i ∈ [r] is included in τ(H) if and only if H contains at least half of the
i-test-selection elements, i.e., τ(H) = {i ∈ [r] | |H ∩ Yi| > k/2}.

– For every I ⊆ [r]× [k], H ⊆ [r]× [k] and for every partial assignment στ(H) ∈
ΣTτ(H) that does not violate any constraints, we create a concept CI,H,στ(H)
such that each xi,σi,j ∈ X is included in CI,H,στ(H) if and only if (i, j) ∈ I and
σi is consistent with στ(H), i.e., σi|Ni(Mτ(H)(i)) = στ(H)|Ni(Mτ(H)(i)) whereas
each yI′,i,j ∈ Y in included in CI,H,στ(H) if and only if (i, j) ∈ H and I ′ = I.

Figure 2: Reduction from Label Cover to Littlestone’s Dimension

17

Manurangsi Rubinstein

Similar to our VC Dimension proof, we will use the following notation:

• For every i ∈ [r], let Xi , {xi,σi,j | σi ∈ ΣUi , j ∈ [k]}; we refer to these elements as the i-
assignment elements. Moreover, for every (i, j) ∈ [r]× [k], let Xi,j , {xi,σi,j | σi ∈ ΣUi};
we refer to these elements as the (i, j)-assignment elements.
• For every S ⊆ U , let I(S) = {i ∈ [r] | S ∩ Xi 6= ∅} and IJ(S) = {(i, j) ∈ [r] × [k] |
S ∩ Xi,j 6= ∅}.
• A set S ⊆ X is non-repetitive if |S ∩ Xi,j | 6 1 for all (i, j) ∈ [r]× [k].
• We say that S passes H̃ if the following two conditions hold:

– For every i ∈ [r] such that S∩Xi 6= ∅, all i-assignment elements of S are consistent
on TH̃ |Ui , i.e., for every (i, σi, j), (i, σ′i, j′) ∈ S, we have σi|Ui = σ′i|Ui .

– The canonically induced assignment on TH̃ does not violate any constraint (note
that the previous condition implies that such assignment is unique).

We use H(S) to denote the collection of all seeds H̃ ⊆ [r] that S passes.

We also use the following notation for mistake trees:

• For any subset S ⊆ U and any function ρ : S → {0, 1}, let C[ρ] , {C ∈ C | ∀a ∈ S, a ∈
C ⇔ ρ(a) = 1} be the collections of all concept that agree with ρ on S. We sometimes
abuse the notation and write C[S] to denote the collection of all the concepts that
contain S, i.e., C[S] = {C ∈ C | S ⊆ C}.
• For any binary string s, let pre(s) , {∅, s61, . . . , s6|s|−1} denote the set of all proper

prefixes of s.
• For any depth-d mistake tree T , let vT ,s denote the element assigned to the node
s ∈ {0, 1}6d, and let PT ,s , {vT ,s′ | s′ ∈ pre(s)} denote the set of all elements appearing
from the path from root to s (excluding s itself). Moreover, let ρT ,s : PT ,s → {0, 1}
be the function corresponding to the path from root to s, i.e., ρT ,s(vT ,s′) = s|s′|+1 for
every s′ ∈ pre(s).

Output Size of the Reduction The output size of the reduction follows immediately
from a similar argument as in the VC Dimension reduction. The only different here is that
there are 2rk choices for I and H, instead of 2r choices as in the previous construction.

Completeness. If L has a satisfying assignment σ∗ ∈ ΣV , we can construct a depth-rk
mistake tree T as follows. For i ∈ [r], j ∈ [k], we assign xi,σ∗|Ui ,j

to every node in the
((i−1)k+j)-th layer of T . Note that we have so far assigned every node in the first rk layers.
For the rest of the vertices s’s, if s lies in layer rk+ (i− 1)k+ j, then we assign yI(ρ−1

T ,s(1)),i,j

to it. It is clear that, for a leaf s ∈ {0, 1}rk, the concept CI(ρ−1
T ,s(1)),HT ,s,σ∗ agrees with the

path from root to s where HT ,s is defined as {(i, j) ∈ [r] × [k] | yI(ρ−1
T ,s(1)),i,j ∈ ρ

−1
T ,s(1)}.

Hence, L-dim(C,U) > 2rk.

4.3. Soundness

Next, we will prove the soundness of our reduction, stated more precisely below. For brevity,
we will assume throughout this subsection that r is sufficiently large, and leave it out of

18

Inapproximability of VC Dimension and Littlestone’s Dimension

the lemmas’ statements. Note that this lemma, together with completeness and output size
properties we argue above, implies Theorem 21 with ε = 0.001.

Lemma 22 Let (C,U) be the output from the reduction in Figure 2 on input L. If
val(L) 6 0.001, then L-dim(C,U) 6 1.999rk with high probability.

Roughly speaking, the overall strategy of our proof of Lemma 22 is as follows:

1. First, we will argue that any subtree rooted at any test-selection element must be
shallow (of depth 6 1.001rk). This means that, if we have a depth-1.999rk mistake
tree, then the first 0.998rk levels must be assigned solely assignment elements.

2. We then argue that, in this 0.998rk-level mistake tree of assignment elements, we
can always extract a leaf s such that the path from root to s indicates inclusion of a
large non-repetitive set. In other words, the path to s can be decoded into a (partial)
assignment for the Label Cover instance L.

3. Let the leaf from the previous step be s and the non-repetitive set be Sno-rep. Our
goal now is to show that the subtree rooted as s must have small depth. We start
working towards this by showing that, with high probability, there are few tests that
agree with Sno-rep. This is analogous to Part II of the VC Dimension proof.

4. With the previous steps in mind, we only need to argue that, when |H(Sno-rep)|
is small, the Littlestone’s dimension of all the concepts that contains Sno-rep (i.e.
L-dim(C[Sno-rep],U)) is small. Thanks to Fact 8, it is enough for us to bound
L-dim(C[Sno-rep],X) and L-dim(C[Sno-rep],Y) separately. For the former, our tech-
nique from the second step also gives us the desired bound; for the latter, we prove
that L-dim(C[Sno-rep],Y) is small by designing an algorithm that provides correct
predictions on a constant fraction of the elements in Y.

Let us now proceed to the details of the proofs.

4.3.1. Part I: Subtree of a Test-Selection Assignment is Shallow

Lemma 23 For any yI,i,j ∈ Y, L-dim(C[{yI,i,j}],U) 6 rk + (4|E|`/r) log |Σ| 6 1.001rk.

Note that the above lemma implies that, in any mistake tree, the depth of the subtree rooted
at any vertex s assigned to some yI,i,j ∈ Y is at most 1 + 1.001rk. This is because every
concept that agrees with the path from the root to s must be in C[{yI,i,j}], which has depth
at most 1.001rk.

Proof of Lemma 23 Consider any CI′,H,στ(H) ∈ C[{yI,i,j}],U). Since yI,i,j ∈ CI′,H,στ(H) ,
we have I = I ′. Moreover, from Lemma 12, we know that

∣∣∣Ni (Mτ(H)(i)
)∣∣∣ 6 4|E|`/r2,

which implies that |Tτ(H)| 6 4|E|`/r. This means that there are only at most |Σ|4|E|`/r
choices of στ(H). Combined with the fact that there are only 2rk choices of H, we have
|C[{yI,i,j}]| 6 2rk · |Σ|4|E|`/r. Fact 7 then implies the lemma.

19

Manurangsi Rubinstein

4.3.2. Part II: Deep Mistake Tree Contains a Large Non-Repetitive Set

The goal of this part of the proof is to show that, for mistake tree of X , C of depth slightly
less than rk, there exists a leaf s such that the corresponding path from root to s indicates
an inclusion of a large non-repetitive set; in our notation, this means that we would like to
identify a leaf s such that IJ(ρ−1

T ,s(1)) is large. Since we will also need a similar bound later
in the proof, we will prove the following lemma, which is a generalization of the stated goal
that works even for the concept class C[Sno-rep] for any non-repetitive Sno-rep. To get back
the desired bound, we can simply set Sno-rep = ∅.

Lemma 24 For any non-repetitive set Sno-rep and any depth-d mistake tree T of
X , C[Sno-rep], there exists a leaf s ∈ {0, 1}d such that |IJ(ρ−1

T ,s(1)) \ IJ(Sno-rep)| > d− r.

The proof of this lemma is a double counting argument where we count a specific class of
leaves in two ways, which ultimately leads to the above bound. The leaves that we focus on
are the leaves s ∈ {0, 1}d such that, for every (i, j) such that an (i, j)-assignment element
appears in the path from root to s but not in Sno-rep, the first appearance of (i, j)-assignment
element in the path is included. In other words, for every (i, j) ∈ IJ(PT ,s) \ IJ(Sno-rep), if
we define ui,j , inf

s′∈pre(s),vT ,s′∈Xi,j
|s′|, then sui,j+1 must be equal to 1. We call these leaves

the good leaves. Denote the set of good leaves of T by GT ,Sno-rep .

Our first way of counting is the following lemma. Informally, it asserts that different good
leaves agree with different sets H̃ ⊆ [r]. This can be thought of as an analogue of Lemma 16
in our proof for VC Dimension. Note that this lemma immediately gives an upper bound of
2r on |GT ,Sno-rep |.

Lemma 25 For any depth-d mistake tree T of X , C[Sno-rep] and any different good
leaves s1, s2 ∈ GT ,Sno-rep, if CI1,H1,σ1 agrees with s1 and CI2,H2,σ2 agrees with s2 for some
I1, I2, H1, H2, σ1, σ2, then τ(H1) 6= τ(H2).

Proof Suppose for the sake of contradiction that there exist s1 6= s2 ∈ GT ,Sno-rep ,
H1, H2, I1, I2, σ1, σ2 such that CI1,H1,σ1 and CI2,H2,σ2 agree with s1 and s2 respectively,
and τ(H1) = τ(H2). Let s be the common ancestor of s1, s2, i.e., s is the longest string
in pre(s1) ∩ pre(s2). Assume w.l.o.g. that (s1)|s|+1 = 0 and (s2)|s|+1 = 1. Consider the
node vT ,s in tree T where the paths to s1, s2 split; suppose that this is xi,σi,j . Therefore
xi,σi,j ∈ CI2,H2,σ2 \ CI1,H1,σ1 .

We now argue that there is some xi,σ′i,j (with the same i, j but a different assignment σ′i)
that is in both concepts, i.e. xi,σ′i,j ∈ CI2,H2,σ2 ∩ CI1,H1,σ1 . We do this by considering two
cases:

• If (i, j) ∈ IJ(Sno-rep), then there is xi,σ′i,j ∈ S
no-rep ⊆ CI1,H1,σ1 , CI2,H2,σ2 for some

σ′i ∈ ΣUi .
• Suppose that (i, j) /∈ IJ(Sno-rep). Since s1 is a good leaf, there is some t ∈ pre(s) such

that vT ,t = xi,σ′i,j for some σ′i ∈ ΣUi and t is included by the path (i.e. s|t|+1 = 1).
This also implies that xi,σ′i,j is in both CI1,H1,σ1 and CI2,H2,σ2 .

20

Inapproximability of VC Dimension and Littlestone’s Dimension

Now, since both xi,σi,j and xi,σ′i,j are in the concept CI2,H2,σ2 , we have (i, j) ∈ I2 and

σi|Ni(Mτ(H1)) = σ2|Ni(Mτ(H1)) = σ′i|Ni(Mτ(H1)). (4)

On the other hand, since CI1,H1,σ1 contains xi,σ′i,j but not xi,σi,j , we have (i, j) ∈ I1 and

σi|Ni(Mτ(H2)) 6= σ1|Ni(Mτ(H2)) = σ′i|Ni(Mτ(H2)). (5)

which contradicts (4) since τ(H1) = τ(H2).

Next, we will present another counting argument which gives a lower bound on the number
of good leaves, which, together with Lemma 25, yields the desired bound.

Proof of Lemma 24 For any depth-d mistake tree T of C[Sno-rep],X , let us consider the
following procedure which recursively assigns a weight λs to each node s in the tree. At the
end of the procedure, all the weight will be propagated from the root to good leaves.

1. For every non-root node s ∈ {0, 1}>1, set λs ← 0. For root s = ∅, let λ∅ ← 2d.
2. While there is an internal node s ∈ {0, 1}<d such that λs > 0, do the following:

(a) Suppose that vs = xi,σi,j for some i ∈ [r], σi ∈ ΣUi and j ∈ [k].
(b) If so far no (i, j)-element has appeared in the path or in Sno-rep, i.e., (i, j) /∈

IJ(PT ,s) ∪ IJ(Sno-rep), then λs1 ← λs. Otherwise, set λs0 = λs1 = λs/2.
(c) Set λs ← 0.

The following observations are immediate from the construction:

• The total of λ’s over all the tree,
∑
s∈{0,1}6d λd always remain 2d.

• At the end of the procedure, for every s ∈ {0, 1}6d, λs 6= 0 if and only if s ∈ GT ,Sno-rep .
• If s ∈ GT ,Sno-rep , then λs = 2|IJ(ρ−1

T ,s(1))\IJ(Sno-rep)| at the end of the execution.

Note that the last observation comes from the fact that λ always get divides in half when
moving down one level of the tree unless we encounter an (i, j)-assignment element for some
i, j that never appears in the path or in Sno-rep before. For any good leaf s, the set of such
(i, j) is exactly the set IJ(ρ−1

T ,s(1)) \ IJ(Sno-rep).

As a result, we have 2d =
∑
s∈GT ,Sno-rep 2|IJ(ρ−1

T ,s(1))\IJ(Sno-rep)|. Since Lemma 25 im-
plies that |GT ,Sno-rep | 6 2r, we can conclude that there exists s ∈ GT ,Sno-rep such that
|IJ(ρ−1

T ,s(1)) \ IJ(Sno-rep)| > d− r as desired.

4.3.3. Part III: No Large Non-Repetitive Set Passes Many Test

The main lemma of this subsection is the following, which is analogous to Lemma 18

Lemma 26 If val(L) 6 0.001, then, with high probability, for every non-repetitive set
Sno-rep of size at least 0.99rk, |H(Sno-rep)| 6 100n log |Σ|.

21

Manurangsi Rubinstein

Proof For every I ⊆ [r], let UI ,
⋃
i∈I Ui. For every σI ∈ ΣUI and every H̃ ⊆ Y, we

say that (I, σI) passes H̃ if σI does not violate any constraint in TH̃ . Note that this
definition and the way the test is generated in the reduction is the same as that of the
VC Dimension reduction. Hence, we can apply Lemma 19 with δ = 0.99, which implies
the following: with high probability, for every I ⊆ [r] of size at least 0.99r and every
σI ∈ ΣUI , |H(I, σI)| 6 100n log |Σ| where H(I, σI) denote the set of all H’s passed by (I, σI).
Conditioned on this event happening, we will show that, for every non-repetitive set Sno-rep

of size at least 0.99rk, |H(Sno-rep)| 6 100n log |Σ|.

Consider any non-repetitive set Sno-rep of size 0.99rk. Let σI(Sno-rep) be an assign-
ment on UI(Sno-rep) such that, for each i ∈ I(Sno-rep), we pick one xi,σi,j ∈ Sno-rep

(if there are more than one such x’s, pick one arbitrarily) and let σI(Sno-rep)|Ui = σi.
It is obvious that H(Sno-rep) ⊆ H(I(Sno-rep), σI(Sno-rep)). Since Sno-rep is non-
repetitive and of size at least 0.99rk, we have |I(Sno-rep)| > 0.99r, which means that
|H(I(Sno-rep), σI(Sno-rep))| 6 100n log |Σ| as desired.

4.3.4. Part IV: A Subtree Containing Sno-rep Must be Shallow

In this part, we will show that, if we restrict ourselves to only concepts that contain some
non-repetitive set Sno-rep that passes few tests, then the Littlestone’s Dimension of this
restrictied concept class is small. Therefore when we build a tree for the whole concept class
C, if a path from root to some node indicates an inclusion of a non-repetitive set that passes
few tests, then the subtree rooted at this node must be shallow.

Lemma 27 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],U) 6 1.75rk − |Sno-rep|+ r + 1000k
√
r log(|H(Sno-rep)|+ 1).

We prove the above lemma by bounding L-dim(C[Sno-rep],X) and L-dim(C[Sno-rep],Y)
separately, and combining them via Fact 8. First, we can bound L-dim(C[Sno-rep],X)
easily by applying Lemma 24 coupled with the fact that |IJ(Sno-rep)| = |Sno-rep| for every
non-repetitive Sno-rep. This immediately gives the following corollary.

Corollary 28 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],X) 6 rk − |Sno-rep|+ r.

We will next prove the following bound on L-dim(C[Sno-rep],Y). Note that Corollary 28,
Lemma 29, and Fact 8 immediately imply Lemma 27.

Lemma 29 For every non-repetitive set Sno-rep,

L-dim(C[Sno-rep],Y) 6 0.75rk + 500k
√
r log(|H(Sno-rep)|+ 1).

The overall outline of the proof of Lemma 29 is that we will design a prediction algorithm
whose mistake bound is at most 0.75rk + 1000k

√
r log |H(Sno-rep)|. Once we design this

22

Inapproximability of VC Dimension and Littlestone’s Dimension

algorithm, Lemma 6 immediately implies Lemma 29. To define our algorithm, we will need
the following lemma, which is a general statement that says that, for a small collection of
H’s, there is a some H̃∗ ⊆ [r] that agrees with almost half of every H in the collection.

Lemma 30 Let H ⊆ P([r]) be any collections of subsets of [r], there exists H̃∗ ⊆ [r] such
that, for every H̃ ∈ H, |H̃∗∆H̃| 6 0.5r+1000

√
r log(|H|+1) where ∆ denotes the symmetric

difference between two sets.

Proof We use a simple probabilistic method to prove this lemma. Let H̃r be a random
subset of [r] (i.e. each i ∈ [r] is included independently with probability 0.5). We will show
that, with non-zero probability, |H̃r∆H̃| 6 0.5r + 1000

√
r log(|H|+ 1) for all H̃ ∈ H, which

immediately implies that a desired H̃∗ exists.

Fix H̃ ∈ H. Observe that |H̃r∆H̃| can be written as
∑
i∈[r] 1[i ∈ (H̃r∆H̃)]. For each

i, 1[i ∈ (H̃r∆H̃)] is a 0, 1 random variable with mean 0.5 independent of other i′ ∈ [r].
Applying Chernoff bound here yields

Pr[|H̃r∆H̃| > 0.5r + 1000
√
r log(|H|+ 1)] 6 2− log2(|H|+1) 6

1
|H|+ 1 .

Hence, by union bound, we have

Pr[∃H̃ ∈ H, |H̃r∆H̃| > 0.5r + 1000
√
r log(|H|+ 1)] 6 |H|

|H|+ 1 < 1.

In other words, |H̃r∆H̃| 6 0.5r + 1000
√
r log(|H| + 1) for all H̃ ∈ H with non-zero

probability as desired.

We also need the following observation, which is an analogue of Observation 17 in the VC
Dimension proof; it follows immediately from definition of H(S).

Observation 31 If a non-repetitive set Sno-rep is a subset of some concept CI,H,στ(H),
then τ(H) ∈ H(Sno-rep).

With Lemma 30 and Observation 31 in place, we are now ready to prove Lemma 29.

Proof of Lemma 29 Let H̃∗ ⊆ [r] be the set guaranteed by applying Lemma 30 with
H = H(Sno-rep). Let H∗ , H̃∗ × [k].

Our prediction algorithm will be very simple: it always predicts according to H∗; i.e., on an
input3 y ∈ Y , it outputs 1[y ∈ H∗]. Consider any sequence (y1, h1), . . . , (yw, hw) that agrees
with a concept CI,H,στ(H) ∈ C[Sno-rep]. Observe that the number of incorrect predictions of
our algorithm is at most |H∗∆H|.

Since CI,H,στ(H) ∈ C[Sno-rep], Observation 31 implies that τ(H) ∈ H(Sno-rep). This means
that |τ(H)∆H̃∗| 6 0.5r+1000

√
r log(|H|+1). Now, let us consider each i ∈ [r]\(τ(H)∆H̃∗).

3. We assume w.l.o.g. that input elements are distinct; if an element appears multiple times, we know the
correct answer from its first appearance and can always correctly predict it afterwards.

23

Manurangsi Rubinstein

Suppose that i ∈ τ(H)∩ H̃∗. Since i ∈ τ(H), at least k/2 elements of Yi are in H and, since
i ∈ H̃∗, we have Yi ⊆ H∗. This implies that |(H∗∆H) ∩ Yi| 6 k/2. A similar bound can
also be derived when i /∈ τ(H) ∩ H̃∗. As a result, we have

|H∗∆H| =
∑
i∈[r]
|(H∗∆H) ∩ Yi|

=
∑

i∈τ(H)∆H̃∗
|(H∗∆H) ∩ Yi|+

∑
i∈[r]\(τ(H)∆H̃∗)

|(H∗∆H) ∩ Yi|

6 (|τ(H)∆H̃∗|)(k) + (r − |τ(H)∆H̃∗|)(k/2)
6 0.75rk + 500k

√
r log(|H|+ 1),

concluding our proof of Lemma 29.

4.3.5. Putting Things Together

Proof of Lemma 22 Assume that val(L) 6 0.001. From Lemma 26, we know that, with
high probability, |H(Sno-rep)| 6 100n log |Σ| for every non-repetitive set Sno-rep of size at
least 0.99rk. Conditioned on this event, we will show that L-dim(C,U) 6 1.999rk.

Suppose for the sake of contradiction that L-dim(C,U) > 1.999rk. Consider any depth-
1.999rk mistake tree T of C,U . From Lemma 23, no test-selection element is assigned to any
node in the first 1.999rk − 1.001rk − 1 > 0.997rk levels. In other words, the tree induced
by the first 0.997rk levels is simply a mistake tree of C,X . By Lemma 24 with Sno-rep = ∅,
there exists s ∈ {0, 1}0.997rk such that |IJ(ρ−1

T ,s(1))| > 0.997rk − r > 0.996rk.

Since |IJ(ρ−1
T ,s(1))| > 0.996rk, there exists a non-repetitive set Sno-rep ⊆ ρ−1

T ,s(1) of size
0.996rk. Consider the subtree rooted at s. This is a mistake tree of C[ρT ,s],U of depth
1.002rk. Since Sno-rep ⊆ ρ−1

T ,s(1), we have C[ρT ,s] ⊆ C[Sno-rep]. However, this implies

1.002rk 6 L-dim(C[ρT ,s],U)
6 L-dim(C[Sno-rep],U)

(From Lemma 27) 6 1.75rk − 0.996rk + r + 100k
√
r log(|H(Sno-rep)|+ 1)

(From Lemma 26) 6 0.754rk + r + 100k
√
r log(100n log |Σ|+ 1)

= 0.754rk + o(rk),

which is a contradiction when r is sufficiently large.

5. Conclusion and Open Questions

In this work, we prove inapproximability results for VC Dimension and Littlestone’s Di-
mension based on the randomized exponential time hypothesis. Our results provide an

24

Inapproximability of VC Dimension and Littlestone’s Dimension

almost matching running time lower bound of nlog1−o(1) n for both problems while ruling
out approximation ratios of 1/2 + o(1) and 1 − ε for some ε > 0 for VC Dimension and
Littlestone’s Dimension respectively. Even though our results help us gain more insights
on approximability of both problems, it is not yet completely resolved. More specifically,
we are not aware of any constant factor no(logn)-time approximation algorithm for either
problem; it is an intriguing open question whether such algorithm exists and, if not, whether
our reduction can be extended to rule out such algorithm. Another potentially interesting
research direction is to derandomize our construction; note that the only place in the proof
in which the randomness is used is in Lemma 19.

A related question which remains open, originally posed by Ben-David and Eiron Ben-David
and Eiron (1998), is that of computing the self-directed learning4 mistake bound. Similarly, it
may be interesting to understand the complexity of computing (approximating) the recursive
teaching dimension Doliwa et al. (2014); Moran et al. (2015).

Acknowledgement

We thank Shai Ben-David for suggesting the question of approximability of Littlestone’s
dimension, and several other fascinating discussions. We also thank Yishay Mansour and
COLT anonymous reviewers for their useful comments.

Pasin Manurangsi is supported by NSF Grants No. CCF 1540685 and CCF 1655215.

Aviad Rubinstein was supported by a Microsoft Research PhD Fellowship, as well as NSF
grant CCF1408635 and Templeton Foundation grant 3966. This work was done in part at
the Simons Institute for the Theory of Computing.

References

Scott Aaronson, Russell Impagliazzo, and Dana Moshkovitz. AM with multiple Merlins.
In IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC,
Canada, June 11-13, 2014, pages 44–55, 2014. doi: 10.1109/CCC.2014.13. URL http:
//dx.doi.org/10.1109/CCC.2014.13.

Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding overlapping
communities in social networks: toward a rigorous approach. In ACM Conference on
Electronic Commerce, EC ’12, Valencia, Spain, June 4-8, 2012, pages 37–54, 2012. doi:
10.1145/2229012.2229020. URL http://doi.acm.org/10.1145/2229012.2229020.

Yakov Babichenko, Christos H. Papadimitriou, and Aviad Rubinstein. Can almost everybody
be almost happy? In Proceedings of the 2016 ACM Conference on Innovations in
Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 1–
9, 2016. doi: 10.1145/2840728.2840731. URL http://doi.acm.org/10.1145/2840728.
2840731.

4. Roughly, self-directed learning is similar to the online learning model corresponding to Littlestone’s
dimension, but where the learner chooses the order elements; see Ben-David and Eiron (1998) for details.

25

http://dx.doi.org/10.1109/CCC.2014.13
http://dx.doi.org/10.1109/CCC.2014.13
http://doi.acm.org/10.1145/2229012.2229020
http://doi.acm.org/10.1145/2840728.2840731
http://doi.acm.org/10.1145/2840728.2840731

Manurangsi Rubinstein

Siddharth Barman. Approximating Nash equilibria and dense bipartite subgraphs via an
approximate version of caratheodory’s theorem. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 361–369, 2015. doi: 10.1145/2746539.2746566. URL http:
//doi.acm.org/10.1145/2746539.2746566.

Cristina Bazgan, Florent Foucaud, and Florian Sikora. On the approximability of partial
VC dimension. In Combinatorial Optimization and Applications - 10th International
Conference, COCOA 2016, Hong Kong, China, December 16-18, 2016, Proceedings, pages
92–106, 2016. doi: 10.1007/978-3-319-48749-6 7. URL http://dx.doi.org/10.1007/
978-3-319-48749-6_7.

Shai Ben-David and Nadav Eiron. Self-directed learning and its relation to the vc-dimension
and to teacher-directed learning. Machine Learning, 33(1):87–104, 1998. doi: 10.1023/A:
1007510732151. URL http://dx.doi.org/10.1023/A:1007510732151.

Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In COLT
2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18-21,
2009, 2009. URL http://www.cs.mcgill.ca/˜colt2009/papers/032.pdf#page=1.

Umang Bhaskar, Yu Cheng, Young Kun Ko, and Chaitanya Swamy. Hardness results for
signaling in Bayesian zero-sum and network routing games. In Proceedings of the 2016
ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands,
July 24-28, 2016, pages 479–496, 2016. doi: 10.1145/2940716.2940753. URL http:
//doi.acm.org/10.1145/2940716.2940753.

Avrim Blum. Separating distribution-free and mistake-bound learning models over
the boolean domain. SIAM J. Comput., 23(5):990–1000, 1994. doi: 10.1137/
S009753979223455X. URL http://dx.doi.org/10.1137/S009753979223455X.

Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best Nash
equilibrium in no(log n)-time breaks the exponential time hypothesis. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 970–982, 2015. doi: 10.1137/1.
9781611973730.66. URL http://dx.doi.org/10.1137/1.9781611973730.66.

Mark Braverman, Young Kun-Ko, Aviad Rubinstein, and Omri Weinstein. ETH hardness
for densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 1326–1341, 2017. doi: 10.1137/1.9781611974782.86.
URL http://dx.doi.org/10.1137/1.9781611974782.86.

Yu Cheng, Ho Yee Cheung, Shaddin Dughmi, Ehsan Emamjomeh-Zadeh, Li Han, and
Shang-Hua Teng. Mixture selection, mechanism design, and signaling. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 1426–1445, 2015. doi: 10.1109/FOCS.2015.91. URL
http://dx.doi.org/10.1109/FOCS.2015.91.

26

http://doi.acm.org/10.1145/2746539.2746566
http://doi.acm.org/10.1145/2746539.2746566
http://dx.doi.org/10.1007/978-3-319-48749-6_7
http://dx.doi.org/10.1007/978-3-319-48749-6_7
http://dx.doi.org/10.1023/A:1007510732151
http://www.cs.mcgill.ca/~colt2009/papers/032.pdf#page=1
http://doi.acm.org/10.1145/2940716.2940753
http://doi.acm.org/10.1145/2940716.2940753
http://dx.doi.org/10.1137/S009753979223455X
http://dx.doi.org/10.1137/1.9781611973730.66
http://dx.doi.org/10.1137/1.9781611974782.86
http://dx.doi.org/10.1109/FOCS.2015.91

Inapproximability of VC Dimension and Littlestone’s Dimension

Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 105–117, 2016. doi: 10.1145/2897518.2897520. URL
http://doi.acm.org/10.1145/2897518.2897520.

Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning DNF’s.
In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
June 23-26, 2016, pages 815–830, 2016. URL http://jmlr.org/proceedings/papers/
v49/daniely16.html.

Argyrios Deligkas, John Fearnley, and Rahul Savani. Inapproximability results for approxi-
mate Nash equilibria. CoRR, abs/1608.03574, 2016. URL http://arxiv.org/abs/1608.
03574.

Thorsten Doliwa, Gaojian Fan, Hans Ulrich Simon, and Sandra Zilles. Recursive teaching
dimension, vc-dimension and sample compression. Journal of Machine Learning Research,
15(1):3107–3131, 2014. URL http://dl.acm.org/citation.cfm?id=2697064.

Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. New
results for learning noisy parities and halfspaces. In 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California,
USA, Proceedings, pages 563–574, 2006. doi: 10.1109/FOCS.2006.51. URL http://dx.
doi.org/10.1109/FOCS.2006.51.

Moti Frances and Ami Litman. Optimal mistake bound learning is hard. Inf. Comput., 144
(1):66–82, 1998. doi: 10.1006/inco.1998.2709. URL http://dx.doi.org/10.1006/inco.
1998.2709.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi: 10.1006/jcss.2000.1727. URL http://dx.doi.org/
10.1006/jcss.2000.1727.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi: 10.1006/jcss.
2001.1774. URL http://dx.doi.org/10.1006/jcss.2001.1774.

Adam Tauman Kalai, Adam R. Klivans, Yishay Mansour, and Rocco A. Servedio.
Agnostically learning halfspaces. SIAM J. Comput., 37(6):1777–1805, 2008. doi:
10.1137/060649057. URL http://dx.doi.org/10.1137/060649057.

Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. doi: 10.1145/174644.174647.
URL http://doi.acm.org/10.1145/174644.174647.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18,
1993, San Diego, CA, USA, pages 372–381, 1993. doi: 10.1145/167088.167197. URL
http://doi.acm.org/10.1145/167088.167197.

27

http://doi.acm.org/10.1145/2897518.2897520
http://jmlr.org/proceedings/papers/v49/daniely16.html
http://jmlr.org/proceedings/papers/v49/daniely16.html
http://arxiv.org/abs/1608.03574
http://arxiv.org/abs/1608.03574
http://dl.acm.org/citation.cfm?id=2697064
http://dx.doi.org/10.1109/FOCS.2006.51
http://dx.doi.org/10.1109/FOCS.2006.51
http://dx.doi.org/10.1006/inco.1998.2709
http://dx.doi.org/10.1006/inco.1998.2709
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1137/060649057
http://doi.acm.org/10.1145/174644.174647
http://doi.acm.org/10.1145/167088.167197

Manurangsi Rubinstein

Michael Kharitonov. Cryptographic lower bounds for learnability of boolean functions on
the uniform distribution. J. Comput. Syst. Sci., 50(3):600–610, 1995. doi: 10.1006/jcss.
1995.1046. URL http://dx.doi.org/10.1006/jcss.1995.1046.

Adam R. Klivans. Cryptographic hardness of learning. In Encyclopedia of Algorithms, pages
475–477. 2016. doi: 10.1007/978-1-4939-2864-4 96. URL http://dx.doi.org/10.1007/
978-1-4939-2864-4_96.

Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersec-
tions of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009. doi: 10.1016/j.jcss.2008.07.008.
URL http://dx.doi.org/10.1016/j.jcss.2008.07.008.

Nathan Linial, Yishay Mansour, and Ronald L. Rivest. Results on learnability and the Vapnik-
Chervonenkis dimension. Inf. Comput., 90(1):33–49, 1991. doi: 10.1016/0890-5401(91)
90058-A. URL http://dx.doi.org/10.1016/0890-5401(91)90058-A.

Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using simple
strategies. In Proceedings 4th ACM Conference on Electronic Commerce (EC-2003), San
Diego, California, USA, June 9-12, 2003, pages 36–41, 2003. doi: 10.1145/779928.779933.
URL http://doi.acm.org/10.1145/779928.779933.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn., 2(4):285–318, April 1988. ISSN 0885-6125. doi: 10.1023/A:
1022869011914. URL http://dx.doi.org/10.1023/A:1022869011914.

Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the Fortieth-ninth Annual ACM Symposium on Theory of
Computing, STOC ’17, 2017. To appear.

Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity
of approximating dense CSPs. CoRR, abs/1607.02986, 2016. URL http://arxiv.org/
abs/1607.02986.

Shay Moran, Amir Shpilka, Avi Wigderson, and Amir Yehudayoff. Compressing and teaching
for low vc-dimension. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 40–51, 2015. doi:
10.1109/FOCS.2015.12. URL https://doi.org/10.1109/FOCS.2015.12.

Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5):
29:1–29:29, 2010. doi: 10.1145/1754399.1754402. URL http://doi.acm.org/10.1145/
1754399.1754402.

Elchanan Mossel and Christopher Umans. On the complexity of approximating the VC
dimension. J. Comput. Syst. Sci., 65(4):660–671, 2002. doi: 10.1016/S0022-0000(02)
00022-3. URL http://dx.doi.org/10.1016/S0022-0000(02)00022-3.

Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V-C dimension. J. Comput. Syst. Sci., 53(2):161–170, 1996. doi:
10.1006/jcss.1996.0058. URL http://dx.doi.org/10.1006/jcss.1996.0058.

28

http://dx.doi.org/10.1006/jcss.1995.1046
http://dx.doi.org/10.1007/978-1-4939-2864-4_96
http://dx.doi.org/10.1007/978-1-4939-2864-4_96
http://dx.doi.org/10.1016/j.jcss.2008.07.008
http://dx.doi.org/10.1016/0890-5401(91)90058-A
http://doi.acm.org/10.1145/779928.779933
http://dx.doi.org/10.1023/A:1022869011914
http://arxiv.org/abs/1607.02986
http://arxiv.org/abs/1607.02986
https://doi.org/10.1109/FOCS.2015.12
http://doi.acm.org/10.1145/1754399.1754402
http://doi.acm.org/10.1145/1754399.1754402
http://dx.doi.org/10.1016/S0022-0000(02)00022-3
http://dx.doi.org/10.1006/jcss.1996.0058

Inapproximability of VC Dimension and Littlestone’s Dimension

Aviad Rubinstein. ETH-hardness for signaling in symmetric zero-sum games. CoRR,
abs/1510.04991, 2015. URL http://arxiv.org/abs/1510.04991.

Aviad Rubinstein. Settling the complexity of computing approximate two-player Nash
equilibria. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 258–265,
2016a. doi: 10.1109/FOCS.2016.35. URL http://dx.doi.org/10.1109/FOCS.2016.35.

Aviad Rubinstein. Detecting communities is hard, and counting them is even harder. CoRR,
abs/1611.08326, 2016b. URL http://arxiv.org/abs/1611.08326.

Marcus Schaefer. Deciding the Vapnik-Cervonenkis dimension in ΣP
3 -complete. J. Comput.

Syst. Sci., 58(1):177–182, 1999. doi: 10.1006/jcss.1998.1602. URL http://dx.doi.org/
10.1006/jcss.1998.1602.

Marcus Schaefer. Deciding the k-dimension is PSPACE-complete. In Proceedings of the
15th Annual IEEE Conference on Computational Complexity, Florence, Italy, July 4-7,
2000, pages 198–203, 2000. doi: 10.1109/CCC.2000.856750. URL http://dx.doi.org/
10.1109/CCC.2000.856750.

Vladimir N. Vapnik and Alexey Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability & Its Applications, 16
(2):264–280, 1971. doi: 10.1137/1116025. URL http://dx.doi.org/10.1137/1116025.

Appendix A. Quasi-polynomial Algorithm for Littlestone’s
Dimension

In this section, we provides the following algorithm which decides whether L-dim(C,U) 6 d in
time O(|C| · (2|U|)d). Since we know that L-dim(C,U) 6 log |C|, we can run this algorithm for
all d 6 log |C| and compute Littlestone’s Dimension of C,U in quasi-polynomial time.

Theorem 32 (Quasi-polynomial Time Algorithm for Littlestone’s Dimension)
There is an algorithm that, given a universe U , a concept class C and a non-negative integer
d, decides whether L-dim(C,U) 6 d in time O(|C| · (2|U|)d).

Proof Our algorithm is based on a simple observation: if an element x belongs to at least
one concept and does not belong to at least one concept, the maximum depth of mistake
trees rooted at x is exactly 1 + min {L-dim(C[x→ 0],U),L-dim(C[x→ 1],U)}. Recall from
Section 4 that C[x→ 0] and C[x→ 1] denote the collection of concepts that exclude x and
the collection of concepts that include x respectively.

This yields the following natural recursive algorithm. For each x ∈ U such that C[x →
0], C[x→ 1] 6= ∅, recursively run the algorithm on (C[x→ 0],U , d−1) and (C[x→ 1],U , d−1).
If both executions return NO for some x, then output NO. Otherwise, output YES. When
d = 0, there is no need for recursion as we can just check whether |C| 6 1.

Finally, we note that the running time can be easily proved by induction on d.

29

http://arxiv.org/abs/1510.04991
http://dx.doi.org/10.1109/FOCS.2016.35
http://arxiv.org/abs/1611.08326
http://dx.doi.org/10.1006/jcss.1998.1602
http://dx.doi.org/10.1006/jcss.1998.1602
http://dx.doi.org/10.1109/CCC.2000.856750
http://dx.doi.org/10.1109/CCC.2000.856750
http://dx.doi.org/10.1137/1116025

	Introduction
	Discussion
	Techniques
	Related Work

	Preliminaries
	Label Cover and PCP
	Useful Lemmata

	Inapproximability of VC Dimension
	A Candidate Reduction (and Why It Fails)
	The Final Reduction
	Soundness
	Part I: Finding a Non-Repetitive Set That Passes Many Tests
	Part II: No Large Non-Repetitive Set Passes Many Tests
	Putting Things Together

	Inapproximability of Littlestone's Dimension
	Why the VC Dimension Reduction Fails for Littlestone's Dimension
	The Final Reduction
	Soundness
	Part I: Subtree of a Test-Selection Assignment is Shallow
	Part II: Deep Mistake Tree Contains a Large Non-Repetitive Set
	Part III: No Large Non-Repetitive Set Passes Many Test
	Part IV: A Subtree Containing Sno-rep Must be Shallow
	Putting Things Together

	Conclusion and Open Questions
	Quasi-polynomial Algorithm for Littlestone's Dimension

