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Abstract
Using differentiability assumptions on the loss function and a concentration inequality for bounded
second order differences it is shown that the generalization error for classification with L2 regular-
isation obeys a Bernstein-type inequality.
Keywords: generalisation, stability, concentration, Bernstein inequality

1. Introduction and Main Results

This work studies some properties of the function

g (x) = arg min
w∈H

1

n

n∑
i=1

` (〈xi, w〉) + λ ‖w‖2 , (1)

where (H, 〈., .〉 , ‖.‖) is a real Hilbert space, x is a sample of vectors x1, ..., xn drawn independently
from a distribution µ on the unit ball B of H , the non-negative real loss function ` is assumed to be
convex and to satisfy ` (0) = 1, and the regularization parameter λ satisfies 0 < λ < 1. For clarity
we consider classification only, with labels being absorbed in the data vectors. The first term on the
right hand side of (1) is called the empirical risk

L̂ (x) =
1

n

∑
i

` (〈xi, g (x)〉) .

A central question in learning theory is, to which extent the empirical risk can be used to bound the
true risk L (x) = Ex∼µ [` (〈x, g (x)〉)]. One wishes to bound the generalization error

∆ (x) = L (x)− L̂ (x)

in terms of the sample size n, the regularization parameter λ and properties of the loss function `.
Because of the dependence on the random sample x such bounds are necessarily probabilistic with
given violation probability δ.

One method to tackle this problem is to recognise the implicit constraint ‖w‖ ≤ λ−1/2 and
to reformulate (1) as a problem of empirical risk minimization over some hypothesis space whose
capacity is then controlled with empirical process theory (Anthony and Bartlett (1999), Bartlett
and Mendelson (2002) and others). Without additional information the resulting bounds on the
generalization error are worst-case bounds over the hypothesis space and of order 1/

√
n.

Another line of thought refrains from analysis of a hypothesis space and focuses on the stability
properties of the function g. If the loss function has appropriate Lipschitz properties then bounds on
the maximal dependence of g (x) on variations in any data point xi lead to high probability bounds
on ∆ (x). In a seminal paper Bousquet and Elisseeff (2002) prove the following result.
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Theorem 1 If ` is Lipschitz, there are finite quantities γ1 and γ2, depending on ` and λ only, such
that for every δ > 0 with probability at least 1− δ in x ∼ µn

∆ (x) ≤ γ1 (`, λ)

n
+

√
γ2 (`, λ) ln (1/δ)

n
.

Here the first term on the right hand side is a bound on the expectation E [∆ (x)], while the
second term is a bound on the estimation difference ∆ (x)−E [∆ (x)], which is obtained from the
bounded difference inequality (McDiarmid (1998), Boucheron et al. (2013)).

The derivation of Theorem 1 in Bousquet and Elisseeff (2002) is elegant and general, but the
bound leaves no room for potentially beneficial properties of the distribution µ. In some sense it still
is a worst-case bound. Here we propose an alternative bound in the case that ` has a third derivative.

Theorem 2 If ` ∈ C3 (R), then there are finite quantities α1 and α2, depending on ` and λ only,
such that for every δ ∈ (0, 1/e) with probability at least 1− δ in x ∼ µn

∆ (x) ≤ α1 (`, λ)

n
+
√

2σ2 (∆) ln (1/δ) +
α2 (`, λ) ln (1/δ)

n
,

where σ2 (∆) is the variance of ∆

σ2 (∆) = Ex∼µn
[(

∆ (x)− Ex′∼µn
(
∆
(
x′
)))2]

,

and the functionals αi : C3 (R)× (0, 1)→ R+ are given by

α1 (`, λ) =
2 max {1, c′, c′′}2

λ3/2

α2 (`, λ) =

(
68

λ3
+

24c′′′

λ4

)
max

{
1, c′, c′′

}3
,

with c(i) := sup|t|≤(1/λ)1/2
∣∣`(i) (t)

∣∣ and `(i) being the i-th derivative of `.

This is our main result, and before describing its merits we list some of its shortcomings, ac-
companied by respective apologies.

1. In practice λ is often chosen to decrease with increasing sample size as λ ≈ n−p. If we
want the last term to go to zero, we are forced to choose p < 1/4, or, if c′′′ = 0 as for the square
loss, p < 1/3. These exponents being impractical, the bound should really only be used to study
behavior of the algorithm for λ > 0 fixed, which we shall assume in the sequel. This might be
an artifact of the proof, but poor dependence on λ might also be a general problem of the stability
approach, as also noted in the discussion section of Bousquet and Elisseeff (2002), where we are
forced to p < 1/2 or p < 1/3.

2. The differentiability requirement is a severe limitation on the scope of the result. It excludes
the hinge loss, for example. As it stands, the only frequently used loss functions to which the
result applies are the square and the logistic loss. The assumption ` ∈ C3 is necessary to bound
second order differences of ∆ (x) by differentiation, but there might be some other method. Some
hope is inspired by the success of Bousquet and Elisseeff (2002) in bounding first order variations
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without the assumption of differentiability. Whether their method can be extended to second order
differences, or not, remains an open question.

3. The large constants in the definitions of the αi and the way in which the c(i) are combined
appear excessive. These expressions are not optimal, not even in the context of the given method of
proof, but they were deliberately chosen for a compact and readable appearance.

4. The restriction to classification, with labels being absorbed in the data vectors, avoids ad-
ditional but elementary complications and was made for reasons of presentation. The reader who
studies the proof will verify that the method can be extended to regression.

As a positive side of Theorem 2 first note that, as n increases, always with λ fixed, the O (1/n)
terms decay rapidly until the bound is dominated by the variance term, a behavior reminiscent of
Bernstein’s inequality. In fact, if we neglect the O (1/n) terms and solve for δ, we get, for t > 0,

Pr {∆ > t} . exp

(
−t2

2σ2 (∆)

)
,

which is the tailbound for a centered normal variable with variance σ2 (∆). It will become apparent
from the proof, that similar concentration properties hold for L, L̂ and, in a weak sense, for the
vector valued function g.

Next we argue that the term 2σ2 (∆) in Theorem 2 can never be larger than the term γ2 (`, λ) /n
in Theorem 1, in fact, it can never be larger than anything derived from the bounded difference
inequality. To show this we introduce some notation, which will be useful in the sequel.

With An we denote the algebra of bounded real-valued measurable functions on Bn (the space
of samples). For y, y′ ∈ B and k ∈ {1, ..., n} we define the difference operator Dk

y,y′ : An → An
for f ∈ An by(

Dk
y,y′f

)
(x) = f (x1, ..., xk−1, y, xk+1, ..., xn)− f

(
x1, ..., xk−1, y

′, xk+1, ..., xn
)

.

Note that
(
Dk
y,y′f

)
(x) is independent of xk.

The bounded difference inequality (McDiarmid (1998), Boucheron et al. (2013)) asserts, that
for any f ∈ An and t > 0

Pr {f − Ef > t} ≤ exp

 −2t2

supx∈Bn

∑
k supy,y′∈B

(
Dk
y,y′f (x)

)2
 .

In Bousquet and Elisseeff (2002), for f = ∆, the expression in the denominator of the exponent is
bounded by 2γ2 (`, λ) /n to prove Theorem 1. Now we define the k-th conditional variance as the
nonlinear operator σ2k : An → An

σ2k (f) (x) =
1

2
E(y,y′)∼µ2

(
Dk
y,y′f (x)

)2
.

This is just the variance of f in the k-th variable, conditional on all the other variables. We also
define the nonlinear operator Σ2 : An → An by Σ2 (f) =

∑
k σ

2
k (f). It is common knowledge
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that the variance of a bounded random variable is no larger than a quarter of the square of its range
(see Lemma 8 in Appendix A), so

sup
x∈Bn

Σ2 (∆) (x) ≤ 1

4
sup
x∈Bn

∑
k

sup
y,y′∈B

(
Dk
y,y′∆ (x)

)2
≤ γ2 (`, λ)

2n
.

The Efron Stein inequality (Efron and Stein (1981), Steele (1986), Boucheron et al. (2013)) on the
other hand, asserts that σ2 (f) ≤ E

[
Σ2 (f)

]
for f ∈ An, so

2σ2 (∆) ≤ 2E
[
Σ2 (∆)

]
≤ 2 sup

x∈Bn
Σ2 (∆) (x) ≤ γ2 (`, λ)

n
. (2)

So, once the O (1/n)-terms are out of the way, the bound in Theorem 2 can never be larger than the
one in Theorem 1, but, depending on µ, it may be significantly smaller. In fact, suppose that one
can show (by appropriate assumptions on the distribution), that for some constant c, p ∈ [1/2, 1]
and all δ > 0 with probability at most 1 − δ we have ∆ ≤ cn−p ln (1/δ). Then, since ∆ can be
shown to be bounded and letting δ = n−2p, it easily follows that σ2 (∆) ≤ Cn−2p ln (n) for some
other constant C. In this sense Theorem 2 inherits any fast-rate bound up to a logarithmic factor.
The case of finite dimensional H together with the square loss then furnishes an example.

In the proof of Theorem 2 the crucial property of the function ∆ is first- and second-order
stability: For some C1 and C2 (depending only on ` and λ) we have

max
k

sup
x∈Bn,y,y′∈B

Dk
y,y′∆ (x) ≤ C1/n

max
k 6=l

sup
x∈Bn,z,z′,y,y′∈B

Dl
z,z′D

k
y,y′∆ (x) ≤ C2/n

2.

So, in addition to uniform stability as in Bousquet and Elisseeff (2002), we require that, for any
training sample x, any variation of ∆, which is induced by modification of one data point, can not
change by more than C2/n

2, if we modify another data point. Similar results to Theorem 2 can be
obtained for any algorithm for which both these stability requirements can be verified.

Related to Theorem 2 is the following result, which is in some sense intermediate between
Theorem 1 and Theorem 2.

Theorem 3 If ` ∈ C2 then for every δ > 0 with probability at least 1− δ in x ∼ µn

∆ (x) ≤ α1 (`, λ)

n
+
√

2 sup
x∈Bn

Σ2 (∆) (x) ln (1/δ) +
2α1 (`, λ) ln (1/δ)

n

≤ α1 (`, λ)

 1

n
+ 3

√
2σ2x∼µ (x) ln (1/δ)

n
+

2 ln (1/δ)

n

 ,

where
σ2x∼µ (x) =

1

2
E(x,x′)∼µ2

∥∥x− x′∥∥2
is the variance of the identity map in B under the law µ.
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For small n the first inequality above is much stronger than Theorem 2, since α1 has a better
dependence on λ than α2. For large n it becomes weaker than Theorem 2 and stronger than Theorem
1 because of (2). In any case: if ` ∈ C3 we can always take the smallest of the three bounds. The
second inequality of Theorem 3 may be of independent interest.

The function (1) has been studied extensively (see e.g. Poggio and Girosi (1990), Cucker and
Smale (2002), Caponnetto and De Vito (2007)) from the perspectives of machine learning and
inverse-problem theory, with frequent focus on the square loss, but the author is not aware of dis-
tribution dependent results of comparable simplicity to Theorem 2. The present work is motivated
by a renewed interest in the stability approach because of its promise for the analysis of complex
learning machines (see Hardt et al. (2015)). The most challenging problem here is to improve on
the functions α1 and α2, both in their dependence on λ and on the differentiability assumptions.

The next section gives proofs of Theorem 2 and Theorem 3. Appendix A gives the proof of an
intermediate technical result, Appendix B contains a tabular summary of notation for the readers
convenience.

2. Proofs

Define two functionals B, J : An → R+
0 by

B (f) = max
k∈{1,...,n}

sup
x∈Bn,y,y′∈B

Dk
y,y′f (x)

J (f) =

 sup
x∈Bn

∑
k,l:k 6=l

sup
z,z′∈B

sup
x∈Bn,y,y′∈B

(
Dl
z,z′D

k
y,y′f (x)

)21/2

.

Observe that both B and J are positive homogeneous of order one and satisfy a triangle inequality.
The fact that the second order differences in J are for distinct indices will be the key to the proof of
Theorem 2. We have the following concentration results.

Theorem 4 Let f ∈ An, t > 0. Then (i)

Pr {f − Ef > t} ≤ exp

(
−t2

2 supx∈Bn Σ2 (f) (x) + 2B (f) t/3

)
and (ii)

Pr {f − Ef > t} ≤ exp

(
−t2

2σ2 (f) + J2 (f) /2 + (2B (f) /3 + J (f)) t

)
.

Part (i) appears in McDiarmid (1998) Theorem 3.8. Part (ii) is a very recent concentration
inequality, Corollary 5 in Maurer (2017).

Setting the probability in part (ii) equal to δ ∈ (0, 1/e) and solving for the deviation t it follows,
that with probability at least 1− δ in the draw of x ∼ µn we have

∆ (x)− E [∆] ≤
√

(2σ2 (∆) + J2 (∆) /2) ln (1/δ) + (2B (∆) /3 + J (∆)) ln (1/δ)

≤
√

2σ2 (∆) ln (1/δ) + 2 (B (∆) /3 + J (∆)) ln (1/δ) ,
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where we used
√
a+ b ≤

√
a +
√
b (several times) and

√
ln (1/δ) ≤ ln (1/δ), because δ ∈

(0, 1/e). To prove Theorem 2 it therefore suffices to establish the two inequalities

E [∆] ≤ α1 (`, λ) /n (3)

2 (B (∆) /3 + J (∆)) ≤ α2 (`, λ) /n. (4)

Both inequalities will follow from bounds on difference operators, and we now explain our (poten-
tially weak) strategy to bound expressions of the form Dk

y,y′f and Dl
z,z′D

k
y,y′f for f ∈ An.

Let B1 and B2 be Banach spaces, F : B1 → B2. We write F ∈ Cn if F is n-times Fréchet
differentiable at every point of B1. Recall that the Fréchet derivative of a function F : B1 → B2,
if it exists, at a point x ∈ B1 is a linear map F ′ (x) : B1 → B2 and that the directional derivative
F ′ (x) [v] for v ∈ B1 can be computed by the formula F ′ (x) [v] = ψ′ (0), where ψF,x,v : R→ B2 is
defined by ψF,x,v (t) = F (x+ tv) . The second Fréchet derivative of F at x, if it exists, is a bilinear
map F ′′ (x) : B1×B1 → B2 and for v, v′ ∈ B we have F ′′ (x) [v, v′] = ∂1∂2φF,x,v,v′ (0, 0), where
φF,x,v,v′ : R2 → B2 is defined by ψF,x,v,v′ (t, s) = F (x+ sv + tv′) .

Now let f ∈ An ∩ C1. For k ∈ {1, ..., n} and y ∈ H use k̂ (y) to denote the corresponding
member of Hn all of whose components are zero, except the k-th one, which is equal to y. The map
k̂ is a linear isometric embedding. Then for y, y′ ∈ B, by the fundamental theorem of calculus

Dk
y,y′f (x) = f

(
x + k̂ (y − xk)

)
− f

(
x + k̂

(
y′ − xk

))
=

∫ 1

0
ψ′
f,x,k̂(y−y′) (t) dt ≤ sup

x∈B

∣∣∣f ′ (x)
[
k̂
(
y − y′

)]∣∣∣ .
Also, if f ∈ An ∩ C2, then for y, y′, z, z′ ∈ B and l, k ∈ {1, ..., n}, likewise by the fundamental
theorem of calculus

Dl
z,z′D

k
y,y′f (x)

= f
(
x + k̂ (y − xk) + l̂ (z − xl)

)
− f

(
x + k̂

(
y′ − xk

)
+ l̂ (z − xl)

)
−f
(
x + k̂ (y − xk) + l̂

(
z′ − xl

))
+ f

(
x + k̂

(
y′ − xk

)
+ l̂ (z − xl)

)
=

∫ 1

0

∫ 1

0
∂1∂2φF,x,k̂(y−y′),l̂(z−z′) (t, s) dtds ≤ sup

x∈B

∣∣∣f ′′ (x)
[
k̂
(
y − y′

)
, l̂
(
z − z′

)]∣∣∣ .
The great weakness of this method is that we uniformly bound the derivatives, while their contribu-
tion to the total difference may only be on a set of very small measure, or there may be cancellations.
In Bousquet and Elisseeff (2002) for f = ∆ first order differences are bounded by the methods of
convex analysis instead. Since we don’t know how to extend these methods to second order differ-
ences, we proceed along the more awkward path of differentiation.

Proposition 5 Let k, l ∈ {1, ..., n}, k 6= l, y, y′ ∈ H , and ‖y‖ , ‖y′‖ ≤ 2. Then for every x ∈ Hn∣∣∣L′ (x)
[
k̂ (y)

]∣∣∣ ≤ ‖y‖max {1, c′, c′′}2

λ3/2n∣∣∣∆′ (x)
[
k̂ (y)

]∣∣∣ ≤ 3 ‖y‖max {1, c′, c′′}2

λ3/2n∣∣∣∆′′ (x)
[
k̂ (y) , l̂

(
y′
)]∣∣∣ ≤ 32 max {1, c′, c′′}3

λ3n2
+

12c′′′max {1, c′, c′′}3

λ4n2
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The proof of this proposition, which involves some tedious computations, will be given in Ap-
pendix A. Here we just show how to obtain the right order in n for the derivatives of the function g
as in (1) in the simpler case of the square loss. Then we have an explicit solution of (1),

g (x) = T−1 (x) z (x) ,

where T (x) is the operator v 7→ (1/n)
∑n

i=1 〈v, xi〉xi + 2λv and z (x) = (1/n)
∑n

i=1 xi. Now

we define ĝ (s, t) := g
(
x + tk̂ (y) + sl̂ (y′)

)
, T̂ (s, t) := T

(
x + tk̂ (y) + sl̂ (y′)

)
and ẑ (s, t) :=

z
(
x + tk̂ (y) + sl̂ (y′)

)
. Then ĝ = T̂−1ẑ. A standard argument shows that ‖ĝ‖ ≤ λ−1/2. Also T̂

is invertible with
∥∥∥T̂−1∥∥∥ ≤ 1/ (2λ), and

∥∥∥∂1T̂∥∥∥ ,∥∥∥∂2T̂∥∥∥ ≤ 4/n, and ‖∂1ẑ‖, ‖∂2ẑ‖ ≤ 2/n, since
‖y‖ ≤ 2, and only either the k-th or l-th term in the respective sums survive differentiation. Then,
always using ‖.‖ both for vector and operator norms,

‖∂1ĝ‖ =
∥∥∥T̂−1 (∂1T̂) T̂−1ẑ + T̂−1∂1ẑ

∥∥∥ ≤ ∥∥∥T̂−1∥∥∥∥∥∥∂1T̂∥∥∥ ‖ĝ‖+
∥∥∥T̂−1∥∥∥ ‖∂1ẑ‖

≤ 2/
(
λ3/2n

)
+ 1/ (λn) ≤ 3/

(
λ3/2n

)
.

Now
∥∥∥∂2T̂−1∥∥∥ =

∥∥∥−T̂−1 (∂2T̂) T̂−1∥∥∥ ≤ 1/
(
λ2n

)
, and ∂2∂1T̂ = 0 and ∂2∂1ẑ = 0, since k 6= l.

Thus

‖∂2∂1ĝ‖ =
∥∥∥(∂2T̂−1)(∂1T̂) ĝ + T̂−1

(
∂1T̂

)(
∂1

(
T̂−1ẑ

))
+
(
∂2T̂

−1
)

(∂1ẑ)
∥∥∥

≤
∥∥∥∂2T̂−1∥∥∥∥∥∥∂1T̂∥∥∥ ‖ĝ‖+

∥∥∥T̂−1∥∥∥∥∥∥∂1T̂∥∥∥ ‖∂1ĝ‖+
∥∥∥∂2T̂−1∥∥∥ ‖∂1ẑ‖

≤ 2

λ3/2n2
+

6

λ5/2n2
+

2

λ2n2
≤ 10

λ5/2n2
.

By definition of ĝ this gives the claimed order in n of the derivatives of g. Bounds on the derivatives
of L and L̂ then follow from standard differentiation rules. Appendix A gives a more general and
detailed version of these arguments.

Now we use Proposition 5 to prove the inequalities (3) and (4), and thus Theorem 2. Since B
has diameter 2 we get

B (∆) = max
k

sup
x∈Bn

sup
y,y′∈B

Dk
y,y′∆ (x) ≤ max

k
sup
x∈Bn

sup
y,y′∈B

∣∣∣∆′ (x)
[
k̂
(
y − y′

)]∣∣∣
≤ 6 max {1, c′, c′′}2

λ3/2n
=

3α1 (`, λ)

n
.

J (∆) =
√
n (n− 1) max

k 6=l
sup
x∈Bn

sup
z,z′∈B

sup
y,y′∈B

Dl
z,z′D

k
y,y′∆ (x)

≤ n max
k 6=l

sup
x∈Bn

sup
z,z′∈B

sup
y,y′∈B

∣∣∣∆′′ (x)
[
k̂
(
y − y′

)
, k̂
(
z − z′

)]∣∣∣
≤ 32 max {1, c, c′′}3

λ3n
+

12c′′′max {1, c′, c′′}3

λ4n
,
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so

2 (B (∆) /3 + J (∆)) ≤ 68 max {1, c, c′′}3

λ3n
+

24c′′′max {1, c′, c′′}3

λ4n

=
α2 (`, λ)

n
,

which proves (4).
Also, for any given x ∈ B we have

` (〈x, g (x)〉)− ` (〈x, g (x1, ..., xk−1, x, xk+1, ..., xn)〉) = Dk
xk,x

` (〈x, g (x)〉) .

But the expectation of the second term on the left, as x ∼ µ and x ∼ µn, is equal toEx∼µn [` (〈xi, g (x)〉)],
so

E [∆]) =
1

n

∑
k

E [` (〈x, g (x)〉)− ` (〈xk, g (x)〉)] =
1

n

∑
k

Ex∼µ,x∼µn
[
Dk
xk,x

` (〈x, g (x)〉)
]

≤ 1

n

∑
k

sup
x∈Bn

sup
y,y′∈B

Ex∼µ

[
Dk
y,y′` (〈x, g (x)〉)

]
= max

k
sup
x∈Bn

sup
y,y′∈B

Dk
y,y′L (x)

≤ max
k

sup
x∈Bn

sup
y,y′∈B

∣∣∣L′ (x)
[
k̂
(
y − y′

)]∣∣∣ ≤ 2 max {1, c′, c′′}2

λ3/2n
=
α1 (`, λ)

n
,

which proves (3). This completes the proof of Theorem 2.

Proof [of Theorem 3] Substitution of the above bound on B (∆) into the first concentration in-
equality of Theorem 4, solving for the deviation and using the bound (3) on E [∆] gives the first
inequality. For any x ∈ Bn we have

Σ2 (∆) (x) =
1

2

∑
k

E(y,y′)∼µ2

[(
Dk
y,y′∆ (x)

)2]
≤ 1

2

∑
k

E(y,y′)∼µ2

[
sup
x∈Bn

∣∣∣∆′ (x) k̂
(
y − y′

)∣∣∣2]

≤ 1

2

∑
k

E(y,y′)∼µ2

(6 max {1, c′, c′′}2

λ3/2n

)2 ∥∥y − y′∥∥2


=
9α2

1 (`, λ)σ2x∼µ (x)

n
.

Substitution in the first inequality then gives the second inequality.
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Appendix A. Differentiation

We will bound the derivatives of L and ∆ by first bounding the derivatives of the transformation
g : Bn → H and then applying simple differentiation rules.

We begin with some generalities on differentiation and implicit differentiation. If Y,X,Z are
Banach spaces and g : Y → X and f : X → Z are differentiable (we drop the ”Fréchet”) at x ∈ Y
and g (x) ∈ X respectively, the f ◦ g is differentiable at x and the derivative (f ◦ g)′ (x) can be
computed by the chain rule as

(f ◦ g)′ (x) [h] = f ′ (g (x))
[
g′ (x) [h]

]
for h ∈ Y.
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If f and g are also twice differentiable then so is f ◦ g and

(f ◦ g)′′ (x)
[
h, h′

]
= f ′′ (g (x))

[
g′ (x) [h] , g′ (x)

[
h′
]]

+ f ′ (g (x))
[
g′′ (x)

[
h, h′

]]
. (5)

Now suppose that f : Y ×X → Y , f ∈ C1. Then for every (y, x) ∈ Y ×X there are linear
maps A1 (y, x) : Y → Y and A2 (y, x) : X → Y , such that f ′ (y, x) [(k, h)] = A1 (y, x) [k] +
A2 (y, x) [h]. If also f ∈ C2 then the second derivative of f at (y, x) is a bilinear map f ′′ (y, x) :
(Y ×X)× (Y ×X)→ Y which can be written as a matrix (omitting the arguments (y, x))

f ′′ =

[
b1,1 b1,2
b2,1 b2,2

]
,

where b1,1 : Y × Y → Y , b1,2 : Y ×X → Y , b2,1 : X × Y → Y and b22 : X ×X → Y , are all
bilinear. For (k, h) and (k′, h′) in Y ×X

f ′′
[
(k, h) ,

(
k′, h′

)]
= b1,1

[
k, k′

]
+ b1,2

[
k, h′

]
+ b2,1

[
h, k′

]
+ b2,2

[
k, k′

]
.

We now summarize some properties of implicit differentiation. Most of it can be found in the
literature (Theorem 9.28 in Rudin (1964)), but we reproduce it here for completeness.

Theorem 6 Suppose that f : Y ×X → Y , f ∈ C2, that there is a function g : X → Y such that
f (g (x) , x) = 0 for all x ∈ X , and that A1 (y, x) is invertible for every (y, x) ∈ Y × X , with∥∥A−11 (y, x)

∥∥
∞ ≤ K <∞.

Then g ∈ C2 and we have for every x ∈ X with z := (g (x) , x) the formulas

g′ (x) [h] = −A1 (z)−1A2 (z) [h] for h ∈ X (6)

and

g′′ (x)
[
h, h′

]
= −A−11 (z)

(
b1,1 (z)

[
g′ (x) [h] ,g′ (x)

[
h′
]]
− b1,2 (z)

[
g′ (x) [h] , h′

]
−b2,1 (z)

[
h, g′ (x)

[
h′
]]

+ b2,2 (z)
[
h, h′

])
, for h, h′ ∈ X . (7)

Proof Define F (y, x) = (f (y, x) , x). As in the proof of the implicit function theorem (Theorem
9.28 in Rudin (1964)) one shows that F is a diffeomorphism. Since F ∈ C2 and inverses of
diffeomorphisms inherit differentiability properties G := F−1 ∈ C2. Then (g (x) , x) = G (0, x),
so g ∈ C2.

Let Φ : X → Y × X be defined by Φ (x) := (g (x) , x). Then for every x ∈ X the linear
operator Φ′ (x) : X → Y ×X is given by

Φ′ (x) [h] =
(
g′ (x) [h] , h

)
for h ∈ X .

By definition of Φ we have f ◦ Φ = 0, so also (f ◦ Φ)′ = (f ◦ Φ)′′ = 0, so by the chain rule for
h ∈ X

0 = (f ◦ Φ)′ (x) [h] = A1 (g (x) , x)
[
g′ (x) [h]

]
+A2 (g (x) , x) [h] .

Formula (6) now follows from applying A−11 .
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Also Φ′′ (x) is a bilinear map Φ′′ (x) : X×X → Y×X given by Φ′′ (x) [h,h′] = (g′′ (x) [h,h′] , 0)
for h, h′ ∈ X . Since (f ◦ Φ)′′ = 0 we have by the second order chain rule (5)

0 = (f ◦ Φ)′′ (x)
[
h, h′

]
= f ′′ (Φ (x))

[
Φ′ (x) [h] ,Φ′ (x)

[
h′
]]

+ f ′ (Φ (x))
[
Φ′′ (x)

[
h, h′

]]
= f ′′ (Φ (x))

[(
g′ (x) [h] , h

)
,
(
g′ (x)

[
h′
]
, h′
)]

+A1 (Φ (x))
[
g′′ (x)

[
h, h′

]]
,

which implies that g′′ (x) [h, h′] = −A1 (Φ (x))−1 f ′′ (Φ (x)) [(g′ (x) [h] , h) , (g′ (x) [h′] , h′)]. But,
dropping the arguments x, and Φ (x) = (g (x) , x) = z,

f ′′
[(
g′ [h] , h

)
,
(
g′ (x)

[
h′
]
, h′
)]

= b1,1
[
g′ [h] ,g′

[
h′
]]

+b1,2
[
g′ [h] ,h′

]
+b2,1

[
h,g′

[
h′
]]

+b2,2
[
h, h′

]
,

which gives (7).

Proposition 7 Let g be defined by (1), y, y′ ∈ H , ‖y‖ , ‖y′‖ ≤ 2, and k, l ∈ {1, ..., n} , k 6= l. Then
(i) ‖g (x)‖ ≤ λ−1/2.
(ii) If ` ∈ C2 then g ∈ C1 and∥∥∥g′ (x)

[
k̂ (y)

]∥∥∥ ≤ ‖y‖max {c′, c′′}
λ3/2n

.

(iii) If ` ∈ C3 then g ∈ C2 and∥∥∥g′′ (x)
[
k̂ (y) ,l̂

(
y′
)]∥∥∥ ≤ 6c′′′max {1, c′, c′′}2

λ4n2
+

8 max {1, c′, c′′}2

λ5/2n2
.

In the proof we will repeatedly use crude estimates of the form a1 (a1 + a2) ≤ 2a1 max {a1, a2} ≤
2 max {1, a1, a2}2, for a1, a2 ≥ 0.
Proof Since ` (0) = 1 we have

λ ‖g (x)‖2 ≤ 1

n

n∑
i=1

` (〈xi, 0〉) + λ ‖0‖2 = 1,

so that ‖g (x)‖ ≤ λ−1/2, which is (i). This in turn implies that
∣∣`(i) (〈z, g (x)〉)

∣∣ ≤ c(i) for all z ∈ B
and x ∈ Bn. Define a function f : H ×Hn → H by

f (w,x) =
1

n

∑
i

`′ (〈xi, w〉)xi + 2λw,

so if ` ∈ C(i+1) then f ∈ C(i) and f (g (x) ,x) = 0 by the necessary conditions for the minimum
in (1). We apply Theorem 6 with Y = H and X = Hn.

Next we find, for the first and second derivatives of the function f , the various functions Ai and
bij needed to apply Theorem 6. To find A1 and A2 we compute for v ∈ H

A1 (w,x) [v] =
d

dt (t=0)
f (w + tv,x) (0) =

1

n

∑
i

`′′ (〈xi, w〉) 〈xi, v〉xi + 2λv.

11
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Since ` is assumed convex and v 7→ 〈xi, v〉xi is positive semidefinite, we retain from this that
A1 (w,x) is invertible with operator norm

∥∥A−11 (w,x)
∥∥ ≤ (2λ)−1. Since f ∈ C(i) this shows that

also g ∈ C(i). Also

A2 (w,x)
[
k̂ (y)

]
=

d

dt (t=0)
f
(
w,x + tk̂ (y)

)
(0) =

1

n

[
`′′ (〈xk, w〉) 〈y, w〉xk + `′ (〈xk, w〉) y

]
.

From Theorem 6 we get∥∥∥g′ (x)
[
k̂ (y)

]∥∥∥ ≤
∥∥∥A−11 (g (x) ,x)A2 (g (x) ,x)

[
k̂ (y)

]∥∥∥
≤ (2λn)−1

∥∥`′′ (〈xk, g (x)〉) 〈y, g (x)〉xk + `′ (〈xk, g (x)〉) y
∥∥

≤ (2λn)−1
(
c′′λ−1/2 + c′

)
‖y‖ ≤ max

{
c′, c′′

}
λ−3/2n−1 ‖y‖ .

This proves (ii). Evidently the analogous bound holds for
∥∥∥g′ (x)

[
l̂ (y′)

]∥∥∥.

For the second derivatives first let v, v′ ∈ H and y,y′ ∈ Hn. Direct computation gives for any
(w,x) ∈ H ×Hn

b1,1 (w,x)
[
v, v′

]
=

1

n

∑
i

`′′′ (〈xi, w〉)
〈
xi, v

′〉 〈xi, v〉xi
b1,2 (w,x)

[
v,y′

]
=

1

n

∑
i

(
`′′′ (〈xi, w〉)

〈
y′i, w

〉
〈xi, v〉xi +

+ `′′ (〈xi, w〉)
〈
y′i, v

〉
xi + `′′ (〈xi, w〉) 〈xi, v〉 y′i

)
b2,1 (w,x)

[
y, v′

]
=

1

n

∑
i

(
`′′′ (〈xi, w〉) 〈yi, w〉

〈
xi, v

′〉xi +

+ `′′ (〈xi, w〉)
〈
yi, v

′〉xi + `′′ (〈xi, w〉)
〈
xi, v

′〉 yi)
b2,2 (w,x)

[
y,y′

]
=

1

n

∑
i

(
`′′′ (〈xi, w〉)

〈
y′i, w

〉
〈yi, w〉xi +

+ `′′ (〈xi, w〉) 〈yi, w〉 y′i + `′′ (〈xi, w〉)
〈
y′i, w

〉
yi
)
.

Substituting g (x) for w, k̂ (y) for y and l̂ (y′) for y′ we obtain the bounds∥∥b1,1 (g (x) ,x)
[
v, v′

]∥∥ ≤ c′′′ ‖v‖
∥∥v′∥∥∥∥∥b1,2 (g (x) ,x)

[
v, l̂
(
y′
)]∥∥∥ ≤ 1

n

(
c′′′

λ1/2
+ 2c′′

)
‖v‖

∥∥y′∥∥∥∥∥b2,1 (g (x) ,x)
[
k̂ (y) , v′

]∥∥∥ ≤ 1

n

(
c′′′

λ1/2
+ 2c′′

)∥∥v′∥∥ ‖y‖∥∥∥b2,2 (g (x) ,x)
[
k̂ (y) , l̂

(
y′
)]∥∥∥ = 0.
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The last identity depends crucially on the assumption that k 6= l. Then, using (7) in Theorem 6 and
substitution of the bounds in (ii) we get∥∥∥g′′ [k̂ (y) , l̂

(
y′
)]∥∥∥

≤ (2λ)−1
(∥∥∥b1,1 [g′ [k̂ (y)

]
,g′
[
l̂
(
y′
)]]∥∥∥+

∥∥∥b1,2 [g′ [k̂ (y)
]
,y′
]∥∥∥+

∥∥∥b2,1 [k̂ (y) , g′
[
l̂
(
y′
)]]∥∥∥)

≤ (2λ)−1
(
c′′′
∥∥∥g′ [k̂ (y)

]∥∥∥ ∥∥∥g′ [l̂ (y′)]∥∥∥+
1

n

(
c′′′

λ1/2
+ 2c′′

)∥∥∥g′ [k̂ (y)
]∥∥∥ ∥∥y′∥∥ +

+
1

n

(
c′′′

λ1/2
+ 2c′′

)∥∥∥g′ [l̂ (y′)]∥∥∥ ‖y‖)
≤ 2c′′′max {c′, c′′}2

λ4n2
+

4c′′′max {c′, c′′}
λ3n2

+
8c′′max {c′, c′′}

λ5/2n2

≤ 6c′′′max {1, c′, c′′}2

λ4n2
+

8 max {1, c′, c′′}2

λ5/2n2

In the third inequality we used the assumption ‖y‖ , ‖y′‖ ≤ 2, then we used λ ≤ 1.

Proof [of Proposition 5] For the empirical risk we find the derivatives

L̂′ (x)
[
k̂ (y)

]
=

1

n
`′ (〈xk, g (x)〉) 〈y, g (x)〉+

1

n

∑
i

`′ (〈xi, g (x)〉)
〈
xi, g

′ (x)
[
k̂ (y)

]〉
L̂′′ (x)

[
k̂ (y) ,l̂

(
y′
)]

=
1

n
`′′ (〈xl, g (x)〉)

〈
y′, g (x)

〉 〈
xl, g

′ (x)
[
k̂ (y)

]〉
+

+
1

n
`′′ (〈xk, g (x)〉) 〈y, g (x)〉

〈
xk, g

′ (x)
[
l̂
(
y′
)]〉

+
1

n

∑
i

`′′ (〈xi, g (x)〉)
〈
xi, g

′ (x)
[
l̂
(
y′
)]〉〈

xi, g
′ (x)

[
k̂ (y)

]〉
+

+
1

n
`′ (〈xk, g (x)〉)

〈
y, g′ (x)

[
l̂
(
y′
)]〉

+

+
1

n
`′ (〈xl, g (x)〉)

〈
y′, g′ (x)

[
k̂ (y)

]〉
+

+
1

n

∑
i

`′ (〈xi, g (x)〉)
〈
xi, g

′′ (x)
[
k̂ (y) , l̂

(
y′
)]〉

Substitution of the bounds on ‖g (x)‖,
∥∥∥g′ (x)

[
k̂ (y)

]∥∥∥,
∥∥∥g′ (x)

[
l̂ (y′)

]∥∥∥, ‖y‖ and ‖y′‖ gives

∣∣∣L̂′ (x)
[
k̂ (y)

]∣∣∣ ≤ 2 ‖y‖max {1, c′, c′′}2

λ3/2n∣∣∣L̂′′ (x)
[
k̂ (y) ,y′

]∣∣∣ ≤ 20 max {1, c′, c′′}3

λ3n2
+

6c′′′max {1, c′, c′′}3

λ4n2
.
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As for the expected risk

L′ (x)
[
k̂ (y)

]
= Ex

[
`′ (〈x, g (x)〉)

〈
x, g′ (x)

[
k̂ (y)

]〉]
L′′ (x)

[
k̂ (y) ,l̂

(
y′
)]

= Ex

[
`′′ (〈x, g (x)〉)

〈
x, g′ (x)

[
l̂
(
y′
)]〉〈

x, g′ (x)
[
k̂ (y)

]〉
+

+ `′ (〈X, g (x)〉)
〈
x, g′′ (x)

[
k̂ (y) ,l̂

(
y′
)]〉]

and substitution gives ∣∣∣L′ (x)
[
k̂ (y)

]∣∣∣≤‖y‖max {1, c′, c′′}2

λ3/2n
,

which is the first inequality to prove, and∣∣∣L′′ (x)
[
k̂ (y) ,l̂

(
y′
)]∣∣∣ ≤ 12 max {1, c′, c′′}3

λ3n2
+

6c′′′max {1, c′, c′′}3

λ4n2
.

Combining the inequalities for L and L̂ the proposition follows from |∆′ (x) [y]| ≤ |L′ (x) [y]| +∣∣∣L̂′ (x) [y]
∣∣∣ and |∆′′ (x) [y,y′]| ≤ |L′′ (x) [y,y′]|+

∣∣∣L̂′′ (x) [y,y′]
∣∣∣.

We conclude with an elementary bound on the variance of bounded variables.

Lemma 8 If a random variable X has values in [a, b] then σ2 (X) ≤ (b− a) /4.

Proof Since E [X] ∈ [a, b] we have

σ2 (X) = E [(X − EX) (X − a)] ≤ E [(b− EX) (X − a)] = (b− EX) (EX − a) .

The conclusion follows from elementary calculus.
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Appendix B. Table of notation

Symbol short description page
H, 〈., .〉 , ‖.‖ Hilbert space with inner product and norm 1
‖.‖ also used for operator norm in H 1
B unit ball of H 1
` loss function 1
L, L̂,∆ true risk, empirical risk, generalization error 1
α1, α2 real functions depending on ` and λ 2
c′, c′′, c′′′ bounds on derivatives of ` 2
σ2 (f) Variance of f 2
An algebra of bounded functions on Bn 3
Dk
y,y′ difference operator 3

σ2k (f) k-th conditional variance of f 3
Σ2 (f) sum of conditional variances 3
σ2x∼µ (x) variance of data distribution 4
B, J bounded difference and interaction functionals 5
C(i) (X) space of i times differentiable functions on X 6
F ′ (x) [v] derivative of F at x in direction v 6
F ′′ (x) [v, v′] second derivative of F at x in directions v and v′ 6
k̂, l̂ embedding H → Hn at k-th (l-th) coordinate 6
A1, A2 first derivatives in implicit differentiation 10
b1,1, b1,2, b2,1, b2,2 second derivatives in implicit differentiation 10
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