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Abstract
A number of statistical estimation problems can be addressed by semidefinite programs (SDP).

While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP
solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer
and Monteiro proposed a non-convex rank-constrained formulation, which has good performance
in practice but is still poorly understood theoretically.

In this paper we study the rank-constrained version of SDPs arising in MaxCut and in Z2 and
SO(d) synchronization problems. We establish a Grothendieck-type inequality that proves that
all the local maxima and dangerous saddle points are within a small multiplicative gap from the
global maximum. We use this structural information to prove that SDPs can be solved within
a known accuracy, by applying the Riemannian trust-region method to this non-convex problem,
while constraining the rank to be of order one. For the MaxCut problem, our inequality implies that
any local maximizer of the rank-constrained SDP provides a (1−1/(k−1))×0.878 approximation
of the MaxCut, when the rank is fixed to k.

We then apply our results to data matrices generated according to the Gaussian Z2 synchro-
nization problem, and the two-groups stochastic block model with large bounded degree. We prove
that the error achieved by local maximizers undergoes a phase transition at the same threshold as
for information-theoretically optimal methods.
Keywords: Semidefinite programming, non-convex optimization, MaxCut, group synchronization,
Grothendieck inequality

1. Introduction

A successful approach to statistical estimation and statistical learning suggests to estimate the object
of interest by solving an optimization problem, for instance motivated by maximum likelihood, or
empirical risk minimization. In modern applications, the unknown object is often combinatorial,
e.g. a sparse vector in high-dimensional regression or a partition in clustering. In these cases, the
resulting optimization problem is computationally intractable and convex relaxations have been a
method of choice for obtaining tractable and yet statistically efficient estimators.
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In this paper we consider the following specific semidefinite program

maximize 〈A,X〉
subject to Xii = 1, i ∈ [n],

X � 0 ,

(MC-SDP)

as well as some of its generalizations. This SDP famously arises as a convex relaxation of the
MaxCut problem1, whereby the matrix A is the opposite of the adjacency matrix of the graph to be
cut. In a seminal paper, Goemans and Williamson (Goemans and Williamson, 1995) proved that
this SDP provides a 0.878 approximation of the combinatorial problem. Under the unique games
conjecture, this approximation factor is optimal for polynomial time algorithms (Khot et al., 2007).

More recently, SDPs of this form (see below for generalizations) have been studied in the con-
text of group synchronization and community detection problems. An incomplete list of references
includes Singer (2011), Singer and Shkolnisky (2011), Bandeira et al. (2014), Guédon and Ver-
shynin (2016), Montanari and Sen (2016), Javanmard et al. (2016), Hajek et al. (2016), Abbe et al.
(2016). In community detection, we try to partition the vertices of a graph into tightly connected
communities under a statistical model for the edges. Synchronization aims at estimating n elements
g1, . . . , gn in a group G, from the pairwise noisy measurement of the group differences g−1

i gj . Ex-
amples include Z2 synchronization in which G = Z2 = ({+1,−1}, · ) (the group with elements
{+1,−1} and usual multiplication), angular synchronization in which G = U(1) (the multiplica-
tive group of complex numbers of modulo one), and SO(d) synchronization in which we need to
estimate n rotations R1, . . . , Rn ∈ SO(d) from the special orthogonal group. In this paper, we will
focus on Z2 synchronization and SO(d) synchronization.

Although SDPs can be solved to arbitrary precision in polynomial time (Nesterov, 2013),
generic solvers do not scale well to large instances. In order to address the scalability problem,
Burer and Monteiro (2003) proposed to reduce the problem dimensions by imposing the rank
constraint rank(X) ≤ k. This constraint can be solved by setting X = σσT where σ ∈ Rn×k. In
the case of (MC-SDP), we obtain the following non-convex problem, with decision variable σ:

maximize 〈σ,Aσ〉
subject to σ = [σ1, . . . , σn]T ∈ Rn×k,

‖σi‖2 = 1, i ∈ [n].

(k-Ncvx-MC-SDP)

Provided that k ≥
√

2n, the solution of (MC-SDP) corresponds to the global maximum of (k-
Ncvx-MC-SDP) (Barvinok, 1995; Pataki, 1998; Burer and Monteiro, 2003). Recently, Boumal
et al. (2016) proved that, as long as k ≥

√
2n, for almost all matrices A, the problem (k-Ncvx-

MC-SDP) has a unique local maximum which is also the global maximum. This paper proposed
to use the Riemannian trust-region method to solve the non-convex SDP problem, and provided
computational complexity guarantees on the resulting algorithm.

While the theory of Boumal et al. (2016) suggests the choice k = O(
√
n), it has been observed

empirically that setting k = O(1) yields excellent solutions and scales well to large scale appli-
cations (Javanmard et al., 2016). In order to explain this phenomenon, Bandeira et al. (2016) con-
sidered the Z2 synchronization problem with k = 2, and established theoretical guarantees for the

1. In the MaxCut problem, we are given a graphG = (V,E) and want to partition the vertices in two sets as to maximize
the number of edges across the partition.
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local maxima, provided the noise level is small enough. A different point of view was taken in a re-
cent unpublished technical note (Montanari, 2016), which proposed a Grothendieck-type inequality
for the local maxima of (k-Ncvx-MC-SDP). In this paper we continue and develop the preliminary
work in Montanari (2016), to obtain explicit computational guarantees for the non-convex approach
with rank constraint k = O(1).

As mentioned above, we extend our analysis beyond the MaxCut type problem (k-Ncvx-MC-
SDP) to treat an optimization problem motivated by SO(d) synchronization. SO(d) synchronization
(with d = 3) has applications to computer vision (Arie-Nachimson et al., 2012) and cryo-electron
microscopy (cryo-EM) (Singer and Shkolnisky, 2011). A natural SDP relaxation of the maximum
likelihood estimator is given by the Orthogonal-Cut SDP problem

maximize 〈A,X〉
subject to Xii = Id, i ∈ [m],

X � 0,

(OC-SDP)

with decision variable X . Here A,X ∈ Rn×n are matrices with blocks denoted by (Aij)1≤i,j≤m,
(Xij)1≤i,j≤m, where n = md and Aij , Xij ∈ Rd×d. This semidefinite program is also known as
Orthogonal-Cut SDP. In the context of SO(d) synchronization, Aij ∈ Rd×d is a noisy measurement
of the pairwise group differences R−1

i Rj where Ri ∈ SO(d).
By imposing the rank constraint rank(X) ≤ k, we obtain a non-convex analogue of (OC-SDP),

namely:
maximize 〈σ,Aσ〉
subject to σ = [σ1, . . . , σm]T ∈ Rn×k,

σTi σi = Id, i ∈ [m].

(k-Ncvx-OC-SDP)

Here the decision variables are matrices σi ∈ Rk×d.
According to the result in Burer and Monteiro (2003), as long as k ≥ (d + 1)

√
m, the global

maximum of the problem (k-Ncvx-OC-SDP) coincides with the maximum of the problem (OC-
SDP). As proved in Boumal et al. (2016), with the same value of k for almost all matrices A,
the non-convex problem has no local maximum other than the global maximum. Boumal (2015)
proposed to choose the rank k adaptively: as k is not large enough, increase k to find a better
solution. However, none of these works considers k = O(1), which is the focus of the present
paper (under the assumption that d is of order one as well).

1.1. Our contributions

A main result of our paper is a Grothendieck-type inequality that generalizes and strengthens the
preliminary technical result of Montanari (2016). Namely, we prove that for any ε-approximate
concave point σ of the rank-k non-convex SDP (k-Ncvx-MC-SDP), we have

SDP(A) ≥ f(σ) ≥ SDP(A)− 1

k − 1
(SDP(A) + SDP(−A))− n

2
ε , (1)

where SDP(A) denotes the maximum value of the problem (MC-SDP) and f(σ) is the objective
function in (k-Ncvx-MC-SDP). An ε-approximate concave point is a point at which the eigenvalues
of the Hessian of f( · ) are upper bounded by ε (see below Definition 1 for formal statements).
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Surprisingly, this result connects a second order local property, namely the highest local curva-
ture of the cost function, to its global position. In particular, all the local maxima (corresponding to
ε = 0) are within a 1/k-gap of the SDP value. Namely, for any local maximizer σ∗, we have

f(σ∗) ≥ SDP(A)− 1

k − 1
(SDP(A) + SDP(−A)) . (2)

All the points outside this gap, with an nε/2-margin have a direction of positive curvature of at least
size ε.

Figure 1 illustrates the landscape of the rank-k non-convex MaxCut SDP problem (k-Ncvx-
MC-SDP). We show that this structure implies global convergence rates for approximately solving
(k-Ncvx-MC-SDP). We study the Riemannian trust-region method in Theorem 3. In particular, we
show that this algorithm with any initialization returns a 0.878 × (1 − O(1/k)) approximation of
the MaxCut of a random d-regular graph in O(nk2) iterations, cf. Theorem 5.

Gap = 1
k�1

⇣
SDP(A) + SDP(�A)

⌘

kSDP(A)

SDP(A) + SDP(�A)

n"/2

a saddle point with
" curvature

global optimizer a local optimizerSDP(A)

�SDP(�A)

Gap

Figure 1: The landscape of rank-k non-convex SDP

In the case of Z2 synchronization, we show that for any signal-to-noise ratio λ > 1, all the
local maxima of the rank-k non-convex SDP correlate non-trivially with the ground truth when
k ≥ k∗(λ) = O(1) (Theorem 6). Furthermore, Theorem 7 provides a lower bound on the corre-
lation between local maxima and the ground truth that converges to one when λ goes to infinity.
These results improve over the earlier ones of Bandeira et al. (2016) and Boumal et al. (2016), by
establishing the tight phase transition location, and the correct qualitative behavior. We extend these
results to the two-groups symmetric Stochastic Block Model.

For SO(d) synchronization, we consider the problem (k-Ncvx-OC-SDP) and generalize our
main Grothendieck-type inequality to this case, cf. Theorem 9. Namely, for any ε-approximate
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concave point σ of the rank-k non-convex Orthogonal-Cut SDP (k-Ncvx-OC-SDP), we have

f(σ) ≥ SDPo(A)− 1

kd − 1
(SDPo(A) + SDPo(−A))− n

2
ε, (3)

where kd = 2k/(d + 1), SDPo(A) denotes the maximum value of the problem (OC-SDP) and
f(σ) is the objective function in (k-Ncvx-OC-SDP). We expect that the statistical analysis of local
maxima, as well as the analysis of optimization algorithms, should extend to this case as well, but
we leave this to future work.

1.2. Notations

Given a matrix A = (Aij) ∈ Rm×n, we write ‖A‖1 = max1≤j≤n
∑m

i=1 |Aij | for its
operator `1-norm, ‖A‖op or ‖A‖2 for its operator `2-norm (largest singular value), and
‖A‖F = (

∑m
i=1

∑n
j=1A

2
ij)

1/2 for its Frobenius norm. For two matrices A,B ∈ Rm×n, we write
〈A,B〉 = Tr(ATB) for the inner product associated to the Frobenius norm 〈A,A〉 = ‖A‖2F . In
particular for two vectors u, v ∈ Rn, 〈u, v〉 corresponds to the inner product of the vectors u and v
associated to the Euclidean norm on Rn. We denote by ddiag(B) the matrix obtained from B by
setting to zero all the entries outside the diagonal.

Given a real symmetric matrix A ∈ Rn×n, we write SDP(A) for value of the SDP problem
(MC-SDP). That is,

SDP(A) = max{〈A,X〉 : X � 0, Xii = 1, i ∈ [n]}. (4)

Optimization is performed over the convex set of positive-semidefinite matrices with diagonal en-
tries equal to one, also known as the elliptope. We write Rg(A) = SDP(A) + SDP(−A) for the
length of the range of the SDP with data A (noticing that for every matrix X in the elliptope, we
have SDP(A) ≥ 〈A,X〉 ≥ −SDP(−A)).

For the rank-k non-convex SDP problem (k-Ncvx-MC-SDP), we define the manifoldMk as

Mk = {σ ∈ Rn×k : σ = (σ1, σ2, . . . , σn)T, ‖σi‖2 = 1} ∼= Sk−1 × Sk−1 × . . .× Sk−1
︸ ︷︷ ︸

n times

. (5)

where Sk−1 ≡ {x ∈ Rk : ‖x‖2 = 1} is the unit sphere in Rk. Given a real symmetric matrix
A ∈ Rn×n, for σ ∈Mk, we write f(σ) = 〈σ,Aσ〉 the objective function of the rank-k non-convex
SDP (k-Ncvx-MC-SDP). Our optimization algorithm makes use of the Riemannian gradient and
the Hessian of the function f . We anticipate their formulas here, deferring to Section 3.1 for further
details. Defining Λ = ddiag

(
AσσT

)
, the gradient is given by:

gradf(σ) = 2
(
A− Λ

)
σ . (6)

The Hessian is uniquely defined by the following holding for all u, v in the tangent space TσMk:

〈v,Hessf(σ)[u]〉 = 2〈v, (A− Λ)u〉. (7)

2. Main results

First we define the notion of approximate concave point of a function f on a manifoldM.
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Definition 1 [Approximate concave point] Let f be a twice differentiable function on a Riemannian
manifoldM. We say σ ∈M is an ε-approximate concave point of f onM, if σ satisfies

〈u,Hessf(σ)[u]〉 ≤ ε〈u, u〉, ∀u ∈ TσM,

where Hessf(σ) denotes the Riemannian (intrinsic) Hessian of f at point σ, TσM is the tangent
space, and 〈 · , · 〉 is the scalar product on TσM.

Note that an approximate concave point may not be a stationary point, or may not even be an
approximate stationary point. Both local maximizers and saddles with largest eigenvalue of the
Hessian close to zero are approximate concave points.

The classical Grothendieck inequality relates the global maximum of a non-convex optimization
problem to the maximum of its SDP relaxation (Grothendieck, 1996; Khot and Naor, 2012). Our
main tool is instead an inequality that applies to all approximate concave ponts in the non-convex
problem.

Theorem 2 For any ε-approximate concave point σ ∈ Mk of the rank-k non-convex problem
(k-Ncvx-MC-SDP), we have

f(σ) ≥ SDP(A)− 1

k − 1
(SDP(A) + SDP(−A))− n

2
ε. (8)

2.1. Fast Riemannian trust-region algorithm

We can use the structural information in Theorem 2, to develop an algorithm that approximately
solves the problem (k-Ncvx-MC-SDP), and hence the MaxCut SDP (MC-SDP). The algorithm we
propose is a variant of the Riemannian trust-region algorithm.

The Riemannian trust-region algorithm (RTR) Absil et al. (2007) is a generalization of the trust-
region algorithm to manifolds. To maximize the objective function f on the manifold M, RTR
proceeds as follows: at each step, we find a direction ξ ∈ TσM that maximizes the quadratic
approximation of f over a ball of small radius ησ

ξ∗ ≡ arg max
{
f(σ) + 〈gradf(σ), ξ〉+ 〈ξ,Hessf(σ)[ξ]〉, ξ ∈ TσM , ‖ξ‖ ≤ ησ

}
,

(RTR-update)

where gradf(σ) is the manifold gradient of f , and the radius ησ is chosen to ensure that the higher
order terms remain small. The next iterate σnew = PM(σ + ξ∗) is obtained by projecting σ + ξ∗

back onto the manifold.
Solving the trust-region problem (RTR-update) exactly is computationally expensive. In order

to obtain a faster algorithm, we adopt two variants in the RTR algorithm. First, if the gradient of
f at the current estimate σt is sufficiently large, we only use gradient information to determine the
new direction: we call this a gradient-step; if the gradient is small (i.e. we are at an approximately
stationary point), we try to maximize uniquely the Hessian contribution: we call this an eigen-
step. Second, in an eigen-step, we only approximately maximize the Hessian contribution. Let us
emphasize that these two variants are commonly used and we do not claim they are novel.

For the non-convex MaxCut SDP problem (k-Ncvx-MC-SDP), we describe the algorithm con-
cretely as follows. In each step, first we find a direction ut using the direction-finding routine
outlined below2.

2. Throughout the paper, points σ ∈ Mk and vectors u ∈ TσMk are represented by matrices σ, u ∈ Rn×k and hence
the norm on TσMk is identified with the Frobenius norm ‖u‖F .
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DIRECTION-FINDING ALGORITHM

Input : Current position σt; parameter µG;
Output : Searching direction ut with ‖ut‖F = 1;
1: Compute ‖gradf(σt)‖F ;
2: If ‖gradf(σt)‖F > µG
3: Return ut = gradf(σt)/‖gradf(σt)‖F ;
4: Else
5: Use power method to construct a direction ut ∈ TσMk such that

‖ut‖F = 1, 〈ut,Hessf(σt)[ut]〉 ≥ λmax(Hessf(σt))/2,
and 〈ut, gradf(σt)〉 ≥ 0; Return ut.

6: End

Given this direction ut, we update our current estimate by σt+1 = PMk
(σt + ηtut) with ηt an

appropriately chosen step size. We consider two specific implementations for the parameter µG and
the choice of step size:

(a) Take µG = ∞, which means that only eigen-steps are used. In this implementation, we take
the step size ηtH = 〈ut,Hessf(σt)[ut]〉/(100‖A‖1).

(b) Take µG = ‖A‖2. When ‖gradf(σt)‖F > µG, we choose the step size ηtG =
µG/(20‖A‖1). When ‖gradf(σt)‖F ≤ µG, we choose the step size ηtH =
min{

√
λtH/(216‖A‖1);λtH/(12‖A‖2)}, where λtH = 〈ut,Hessf(σt)[ut]〉.

In each eigen-step, we need to compute a direction u ∈ TσMk such that ‖u‖F = 1 and
〈u,Hessf(σ)[u]〉 ≥ λmax(Hessf(σ))/2. This can be done using the following power method.
(Note that the condition 〈ut, gradf(σt)〉 ≥ 0 can always be ensured eventually by replacing ut by
−ut.)

POWER METHOD

Input : σ, Hessf(σ); parameters NH , µH ;
Output : u ∈ TσMk, such that ‖u‖F = 1 and 〈u,Hessf(σ)[u]〉 ≥ λmax(Hessf(σ))/2;
1: Sample a u0 uniformly randomly on TσMk with ‖u0‖F = 1;
2: For i = 1, . . . , NH

3: ui ← Hessf(σ)[ui−1] + µH · ui−1;
4: ui ← ui/‖ui‖F ;
5: End
6: Return uN .

The shifting parameter µH can be chosen as 4‖A‖1 which is an upper bound of ‖Hessf(σ)‖op.
We take the parameter NH = C · ‖A‖1 log n/λmax(Hessf(σ)) with a large absolute constant C.
In practice, when choosing the parameter NH , we do not know λmax(Hessf(σ)) for each σ, but
we can replace it by a lower bound, or estimate it using some heuristics. It is a classical result that
–with high probability– the power method with this number of iterations finds a solution ut with the
required curvature (Kuczyński and Woźniakowski, 1992).

7
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Theorem 3 There exists a universal constant c such that, for any matrix A and ε > 0, the Fast
Riemannian Trust-Region method with step size as described above for each iteration and initialized
with any σ0 ∈Mk returns a point σ∗ ∈Mk with

f(σ∗) ≥ SDP(A)− 1

k − 1
(SDP(A) + SDP(−A))− n

2
ε, (9)

within the following number of steps with each implementation

(a) Taking µG =∞ (i.e. only eigen-steps are used), then it is sufficient to run TH ≤ c ·n‖A‖21/ε2

steps.

(b) Taking µG = ‖A‖2, then it is sufficient to run T = TH + TG steps in which there are
TH ≤ c · nmax

(
‖A‖22/ε2, ‖A‖1/ε

)
eigen-steps and TG ≤ c · Rg(A)‖A‖1/‖A‖22 gradient-

steps.

The gap Rg(A)/(k−1) = (SDP(A)+SDP(−A))/(k−1) in Eq. (9), is due to the fact that Theorem
2 does not rule out the presence of local maxima within an interval Rg(A)/(k − 1) from the global
maximum. It is therefore natural to set ε = 2Rg(A)/(n(k − 1)), to obtain the following corollary.

Corollary 4 There exists a universal constant c such that for any matrix A, the Fast Riemannian
Trust-Region method with step size as described above for each iteration and initialized with any
σ0 ∈Mk returns a point σ∗ ∈Mk with

f(σ∗) ≥ SDP(A)− 2

k − 1
(SDP(A) + SDP(−A)) (10)

within the following number of steps with each implementation

(a) Taking µG =∞ , then it is sufficient to run TH ≤ c · nk2 (n‖A‖1/Rg(A))2 eigen-steps.

(b) Taking µG = ‖A‖2, then it is sufficient to run T = TH + TG steps in which there are TH ≤
c ·nmax

(
n2k2‖A‖22/Rg(A)2, nk‖A‖1/Rg(A)

)
eigen-steps and TG ≤ c ·Rg(A)‖A‖1/‖A‖22

gradient-steps.

In order to develop some intuition on these complexity bounds, let us consider two specific
examples.

Consider the problem of finding the minimum bisection of a random d-regular graph G, with
adjacency matrix AG. A natural SDP relaxation is given by the SDP (MC-SDP) with A = AG −
EAG = AG − (d/n)11T the centered adjacency matrix. For this choice of A, we have ‖A‖1 ≤ 2d,
‖A‖2 = 2

√
d− 1(1 + on(1)) (Friedman, 2003), SDP(A) = 2n

√
d− 1 + o(n) and SDP(−A) =

2n
√
d− 1 + o(n) (Montanari and Sen, 2016) (with high probability). Using implementation (a)

(only eigen-steps), the bound on the number of iterations in Corollary 4 scales as TH = O(ndk2).
In implementation (b), we choose µG = Θ(

√
d), and the number of gradient-steps and eigen-

steps scale respectively as TG = O(n
√
d) and TH = O(nkmax(k,

√
d)). In terms of floating

point operations, in each gradient-step, the computation of the gradient costs O(ndk) operations;
in each eigen-step, each iteration of the power method costs O(ndk) operations and the number
of iterations in each power method scales as O(k

√
d log n). Implementation (b) presents a better

scaling. The total number of floating point operations to find a (1−O(1/k)) approximate solution of

8
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the minimum bisection SDP of a random d-regular graph is (with high probability) upper bounded
by O(n2k3d3/2 max(k,

√
d) log n).

As a second example, consider the MaxCut problem for a d-regular graph G, with adjacency
matrix AG. This can be addressed by considering the SDP (MC-SDP) with A = −AG, and the
corresponding non-convex version (k-Ncvx-MC-SDP). As shown in the next section, finding a
2Rg(A)/(n(k − 1))-approximate concave point of (k-Ncvx-MC-SDP) yields an (1 − O(1/k)) ×
0.878-approximation of the MaxCut of G. For this choice of A, we have ‖A‖1 = d, ‖A‖2 = d,
and Rg(A) = Θ(nd). Therefore, in implementation (a) where all the steps are eigen-step, the num-
ber of iterations given by Corollary 4 scales as TH = O(nk2). In implementation (b), we choose
µG = Θ(d), and the number of gradient-steps and eigen-steps scale respectively as TG = O(n) and
TH = O(nk2). In terms of floating point operations, the computational costs of one gradient-step
and one eigen-step power iteration are the same (which are O(ndk)) as in the example of mini-
mum bisection SDP. The number of iterations in the power method scales as O(k log n). There-
fore, the two approaches are equivalent. The total number of floating point operations to find a
(1 − O(1/k)) × 0.878 approximate solution of the MaxCut of a d-regular graph is upper bounded
by O(n2dk4 log n).

Let us emphasize that the complexity bound in Theorem 3 is not superior to the ones available
for some alternative approaches. There is a vast literatures that studies fast SDP solvers (Arora
et al., 2005; Arora and Kale, 2007; Steurer, 2010; Garber and Hazan, 2011). In particular, Arora
and Kale (2007) and Steurer (2010) give nearly linear-time algorithms to approximate (MC-SDP).
These algorithms are different from the one studied here, and rely on the multiplicative weight
update method (Arora et al., 2012). Using sketching techniques, their complexity can be further
reduced (Garber and Hazan, 2011). However, in practice, the Burer-Monteiro approach studied here
is extremely simple and scales well to large instances (Burer and Monteiro, 2003; Javanmard et al.,
2016). Empirically, it appears to have better complexity than what is guaranteed by our theorem.
It would be interesting to compare the multiplicative weight update method and the non-convex
approach both theoretically and experimentally.

2.2. Application to MaxCut

Let AG ∈ Rn×n denote the weighted adjacency matrix of a non-negative weighted graph G. The
MaxCut of G is given by the following integer program

MaxCut(G) = max
xi∈{−1,+1}

1

4

n∑

i,j=1

AG,ij(1− xixj). (11)

We consider the following semidefinite programming relaxation

SDPCut(G) = max
X�0,Xii=1

1

4

n∑

i,j=1

AG,ij(1−Xij). (12)

Denote by X∗ the solution of this SDP. Goemans and Williamson Goemans and Williamson
(1995) proposed a celebrated rounding scheme using this X∗, which is guaranteed to find an
α∗-approximate solution to the MaxCut problem (11), where α∗ ≡ minθ∈[0,π] 2θ/(π(1 − cos θ)),
α∗ > 0.87856.

9
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The corresponding rank-k non-convex formulation is given by

max
σ





1

4

n∑

i,j=1

AG,ij(1− 〈σi, σj〉) : σi ∈ Sk−1, ∀i ∈ [n]



 . (13)

Applying Theorem 2, we obtain the following result.

Theorem 5 For any k ≥ 3, if σ∗ is a local maximizer of the rank-k non-convex SDP problem (13),
then using σ∗ we can find an α∗× (1−1/(k−1)) ≥ 0.878× (1−1/(k−1))-approximate solution
of the MaxCut problem (11). If σ∗ is a 2Rg(AG)/(n(k−1))-approximate concave point, then using
σ∗ we can find an α∗ × (1 − 2/(k − 1)) ≥ 0.878 × (1 − 2/(k − 1))-approximate solution of the
MaxCut problem.

The proof is deferred to Section 5.1.

2.3. Z2 synchronization

Recall the definition of the Gaussian Orthogonal Ensemble. We write W ∼ GOE(n) if W ∈ Rn×n
is symmetric with (Wij)i≤j independent, with distribution Wii ∼ N(0, 2/n) and Wij ∼ N(0, 1/n)
for i < j.

In the Z2 synchronization problem, we are required to estimate the vector u ∈ {±1}n from
noisy pairwise measurements

A(λ) =
λ

n
uuT +Wn , (14)

where Wn ∼ GOE(n), and λ is a signal-to-noise ratio. The random matrix model (14) is also
known as the ‘spiked model’ (Johnstone, 2001) or ‘deformed Wigner matrix’ and has attracted
significant attention across statistics and probability theory (Baik et al., 2005).

The Maximum Likelihood Estimator for recovering the labels u ∈ {±1}n is given by

ûML(A) = arg max
x∈{±1}n

〈x,Ax〉 .

A natural SDP relaxation of this optimization problem is given –once more– by (MC-SDP).
It is known that Z2 synchronization undergoes a phase transition at λc = 1. For λ ≤ 1, no

statistical estimator û(A) achieves scalar product |〈û(A), u〉| bounded away from 0 as n → ∞.
For λ > 1, there exists an estimator with |〈û(A), u〉| bounded away from 0 (‘better than random
guessing’) (Korada and Macris, 2009; Deshpande et al., 2015). Further, for λ < 1 it is not possible3

to distinguish whether A is drawn from the spiked model or A ∼ GOE(n) with probability of error
converging to 0 as n→∞. This is instead possible for λ ≥ 1.

It was proved in Montanari and Sen (2016) that the SDP relaxation (MC-SDP) –with a suitable
rounding scheme– achieves the information-theoretic threshold λc = 1 for this problem. In this
paper, we prove a similar result for the non-convex problem (k-Ncvx-MC-SDP). Namely, we show
that for any signal-to-noise ratio λ > 1 there exists a sufficiently large k such that every local
maximizer has a non trivial correlation to the ground truth. Below we denote by Crn,k(A) the set
of local maximizers of problem (k-Ncvx-MC-SDP).

3. To the best of our knowledge, a formal proof of this statement has not been published. However, a proof can be
obtained by the techniques of Mossel et al. (2015).

10
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Theorem 6 For any λ > 1, there exists a function k∗(λ) > 0, such that for any k > k∗(λ), with
high probability, any local maximizer σ of the rank-k non-convex SDP (k-Ncvx-MC-SDP) problem
has non-vanishing correlation with the ground truth parameter. Explicitly, there exists ε = ε(λ) > 0
such that

lim
n→∞

P
(

inf
σ∈Crn,k(A)

1

n
‖σTu‖2 ≥ ε

)
= 1 . (15)

The proof of this theorem is deferred to Section 5.2.
Note that this guarantee is weaker than the one of (Montanari and Sen, 2016), which also

presents an explicit rounding scheme to obtain an estimator û ∈ {+1,−1}n. However, we ex-
pect that the techniques of Montanari and Sen (2016) should be generalizable to the present setting.
A simple rounding scheme takes the sign of principal left singular vector of σ. We will use this
estimator in our numerical experiments in Section 4.

This theorem can be compared with the one of Bandeira et al. (2016) which uses k = 2 but
requires λ > 8. As a side result which improves over Bandeira et al. (2016) for k = 2, we obtain
the following lower bound on the correlation for any k ≥ 2.

Theorem 7 For any k ≥ 2, the following holds almost surely

lim inf
n→∞

inf
σ∈Crn,k

1

n2
‖σTu‖22 ≥ 1−min

(
16

λ
,

1

k
+

4

λ

)
. (16)

The proof is deferred to Section 5.3. Our lower bound converges to 1 at large λ, which is the
qualitatively correct behavior.

2.4. Stochastic block model

The planted partition problem (two-groups symmetric stochastic block model), is another well-
studied statistical estimation problem that can be reduced to (MC-SDP) (Montanari and Sen, 2016).
We write G ∼ G(n, p, q) if G is a graph over n vertices generated as follows (for simplicity of
notation, we assume n even). Let u ∈ {±1}n be a vector of labels that is uniformly random with
uT1 = 0. Conditional on this partition, edges are drawn independently with

P((i, j) ∈ E|u) =

{
p, if ui = uj ,
q, if ui 6= uj .

We consider the case when p = a/n and q = b/n with a, b = O(1), and a > b, and denote
by d = (a + b)/2 the average degree. A phase transition occurs as the following signal-to-noise
parameter increases

λ(a, b) ≡ a− b√
2(a+ b)

.

For λ > 1 there exists an efficient estimator that correlates with the true labels with high probability
(Massoulié, 2014; Mossel et al., 2013), whereas no estimator exists below this threshold, regardless
of its computational complexity (Mossel et al., 2015).

The Maximum Likelihood Estimator of the vertex labels is given by

ûML(G) = arg max
{
〈x,AGx〉 : x ∈ {+1,−1}n, 〈x,1〉 = 0

}
, (SBM-MLE)

11
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where AG is the adjacency matrix of the graph G. This optimization problem can again be attacked
using the relaxation (MC-SDP), whereA = AG ≡ (AG−d/n ·11T)/

√
d is the scaled and centered

adjacency matrix.
In order to emphasize the relationship between this problem and Z2 synchronization, we rewrite

AG = (λ/n)uuT+E whereET = E has zero mean and (Eij)i<j are independent with distribution

Eij =

{
1√
d
(1− pij), with probability pij ,

− pij√
d
, with probability 1− pij ,

where pij = a/n for ui = uj and pij = b/n for ui 6= uj . In analogy with Theorem 6, we have the
following results on the rank-constrained approach to the two-groups stochastic block model.

Theorem 8 Consider the rank-k non-convex SDP (k-Ncvx-MC-SDP) with A = AG the centered,
scaled adjacency matrix of graph G ∼ G(n, a/n, b/n). For any λ = λ(a, b) > 1, there exists an
average degree d∗(λ) and a rank k∗(λ), such that for any d ≥ d∗(λ) and k ≥ k∗(λ), with high
probability, any local maximizer σ has non-vanishing correlation with the true labels. Explicitly,
there exists an ε = ε(λ) > 0 such that

lim
n→∞

P
(

inf
σ∈Crn,k

1

n
‖σTu‖22 ≥ ε

)
= 1 . (17)

The proof of this theorem can be found in Section 5.4. As mentioned above, efficient algorithms
that estimate the hidden partition better than random guessing for λ > 1 and any d > 1 have
been developed, among others, in Massoulié (2014); Mossel et al. (2013). However, we expect the
optimization approach (k-Ncvx-MC-SDP) to share some of the robustness properties of semidefinite
programming (Moitra et al., 2016), while scaling well to large instances.

2.5. SO(d) synchronization

In SO(d) synchronization we would like to estimate m matrices R1, . . . , Rm in the special orthog-
onal group

SO(d) = {R ∈ Rd×d : RTR = Id,det(R) = 1} ,
from noisy measurements of the pairwise group differences Aij = R−1

i Rj + Wij for each pairs
(i, j) ∈ [m]× [m]. Here Aij ∈ Rd×d is a measurement, and Wij ∈ Rd×d is noise. Let n = md, we
denote matrix A ∈ Rn×n the observation matrix with (i, j)’th sub-matrix Aij .

The Maximum Likelihood Estimator for recovering the group elements Ri ∈ SO(d) solves the
problem of the form

max
σ1...σm∈SO(d)

m∑

i,j=1

〈σi, Aijσj〉 ,

which can be relaxed to the Orthogonal-Cut SDP (OC-SDP). The non-convex rank-constrained
approach fixes k > d, and solves the problem (k-Ncvx-OC-SDP). This is a smooth optimization
problem with objective function f(σ) = 〈σ,Aσ〉 over the manifold Mo,d,k = O(d, k)m, where
O(d, k) = {σ ∈ Rk×d : σTσ = Id} is the set of k × d orthogonal matrices. We also denote the
maximum value of the SDP (OC-SDP) by

SDPo(A) = {〈A,X〉 : X � 0, Xii = Id, i ∈ [m]}. (18)

In analogy with the MaxCut SDP, we obtain the following Grothendieck-type inequality.

12



SOLVING SDPS VIA THE GROTHENDIECK INEQUALITY

Theorem 9 For an ε-approximate concave point σ ∈ Mo,d,k of the rank-k non-convex
Orthogonal-Cut SDP problem (k-Ncvx-OC-SDP), we have

f(σ) ≥ SDPo(A)− 1

kd − 1
(SDPo(A) + SDPo(−A))− n

2
ε (19)

where kd = 2k/(d+ 1).

The proof of this theorem is a generalization of the proof of Theorem 2, and is deferred to Section
5.5.

3. Proof of Theorem 2

In this section we present the proof of Theorem 2, while deferring other proofs to Section 5. Notice
that the present proof is simpler and provides a tighter bound with respect to the one of Monta-
nari (2016). Before passing to the actual proof, we make a few remarks about the geometry of
optimization onMk.

3.1. Geometry of the manifoldMk

The setMk as defined in (5) is a smooth submanifold of Rn×k. We endowMk with the Riemannian
geometry induced by the Euclidean space Rn×k. At any point σ ∈Mk, the tangent space is obtained
by taking the differential of the equality constraints

TσMk =
{
u ∈ Rn×k : u = (u1, u2, . . . , un)T , 〈ui, σi〉 = 0, i ∈ [n]

}
.

In words, TσMk is the set of matrices u ∈ Rn×k such that each row ui of u is orthogonal to the
corresponding row σi of σ. Equivalently, TσMk is the direct product of the tangent spaces of the
n unit spheres Sk−1 ⊆ Rk at σ1,. . . , σn. Let P⊥ be the orthogonal projection operator from Rn×k
onto TσMk. We have

P⊥(u) =
(
P⊥1 (u1), . . . ,P⊥n (un)

)T

=
(
u1 − 〈σ1, u1〉σ1, . . . , un − 〈σn, un〉σn

)T

= u− ddiag
(
uσT

)
σ,

where we denoted by ddiag : Rn×n → Rn×n the operator on the matrix space that sets all off-
diagonal entries to zero.

In problem (k-Ncvx-MC-SDP), we consider the cost function f(σ) = 〈σ,Aσ〉 on the submani-
foldMk. At σ ∈Mk, we denote∇f(σ) and gradf(σ) respectively the Euclidean gradient in Rn×k
and the Riemannian gradient of f . The former is ∇f(σ) = 2Aσ, and the latter is the projection of
the first onto the tangent space:

gradf(σ) = P⊥(∇f(σ)) = 2
(
A− ddiag

(
AσσT

))
σ .

We will write Λ = Λ(σ) = ddiag
(
AσσT

)
and often drop the dependence on σ for simplicity. At

σ ∈ Mk, let ∇2f(σ) and Hessf(σ) be respectively the Euclidean and the Riemannian Hessian of

13



MEI MISIAKIEWICZ MONTANARI OLIVEIRA

f . The Riemannian Hessian is a symmetric operator on the tangent space and is given by projecting
the directional derivative of the gradient vector field (we use D to denote the directional derivative):

∀u ∈ TσMk, Hessf(σ)[u] = P⊥ (Dgradf(σ)[u]) = P⊥[2(A−Λ)u−2ddiag(AσuT+AuσT)σ].

In particular, we will use the following identity

∀u, v ∈ TσMk, 〈v,Hessf(σ)[u]〉 = 2〈v, (A− Λ)u〉, (20)

where we used that the projection operator P⊥ is self-adjoint and 〈vi, σi〉 = 0 by definition of the
tangent space. We observe that the Riemannian Hessian has a similar interpretation as in Euclidean
geometry, namely it provides a second order approximation of the function f in a neighborhood of
σ.

3.2. Proof of Theorem 2

Let σ be an ε-approximate concave point of f(σ) onMk. Using the definition and Equation (20),
we have (for Λ = ddiag(AσσT))

∀u ∈ TσMk, 〈u, (Λ−A)u〉 ≥ −1

2
ε〈u, u〉 . (21)

Let V = [v1, . . . , vn]T ∈ Rn×n be such that X = V V T is an optimal solution of (MC-SDP)
problem. Let G ∈ Rk×n be a random matrix with independent entries Gij ∼ N(0, 1/k), and denote
by P⊥i = Ik − σiσTi ∈ Rk×k the projection onto the subspace orthogonal to σi in Rk.

We use G to obtain a random projection W = [P⊥1 Gv1, . . . ,P
⊥
nGvn]T ∈ TσMk. From (21),

we have
E〈W, (Λ−A)W 〉 ≥ −1

2
εE〈W,W 〉,

where the expectation is taken over the random matrix G.

14
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The left hand side of the last equation gives

E〈W, (Λ−A)W 〉

=E
n∑

i,j=1

(Λ−A)ij〈P⊥i Gvi,P⊥j Gvj〉

=E
n∑

i,j=1

(Λ−A)ij

〈
P⊥i G

n∑

s=1

vises,P
⊥
j G

n∑

t=1

vjtet

〉

=

n∑

i,j=1

(Λ−A)ij

n∑

s,t=1

visvjtE[〈P⊥i Ges,P⊥j Get〉]

=

n∑

i,j=1

(Λ−A)ij

n∑

s,t=1

visvjtδst
1

k
Tr(P⊥i P⊥j )

=

n∑

i,j=1

(Λ−A)ij〈vi, vj〉
1

k
Tr
(
Ik − σiσTi − σjσTj + σiσ

T
i σjσ

T
j

)

=
n∑

i,j=1

(Λ−A)ij〈vi, vj〉
(

1− 2

k
+

1

k
〈σi, σj〉2

)

=

(
1− 1

k

)
Tr(Λ)−

(
1− 2

k

)
SDP(A)− 1

k

n∑

i,j=1

Aij〈vi, vj〉 (〈σi, σj〉)2,

whereas the right hand side verifies

E〈W,W 〉 = E
n∑

i=1

〈P⊥i Gvi,P⊥i Gvi〉 =
n∑

i=1

(
1− 2

k
+

1

k
‖σi‖22

)
=

(
1− 1

k

)
n.

Note that Tr(Λ) = f(σ). Crucially, if we let X̄ij = 〈vi, vj〉(〈σi, σj〉)2, we have X̄ii = 1 and
X̄ � 0. Thus we have SDP(−A) ≥ 〈−A, X̄〉. Therefore, we have

(
1− 1

k

)
f(σ)−

(
1− 2

k

)
SDP(A) +

1

k
SDP(−A) ≥ −1

2
εn

(
1− 1

k

)
.

Rearranging the terms gives the conclusion.

4. Numerical illustration

In this section we carry out some numerical experiments to illustrate our results. We also find
interesting phenomena which are not captured by our analysis.

Although Theorem 3 provides a complexity bound for the Riemannian trust-region method
(RTR), we observe that (projected) gradient ascent also converges very fast. That is, gradient ascent
rapidly increases the objective function, is not trapped at a saddle point, and converges to a local
maximizer eventually. In Figure 2, we take A ∼ GOE(1000), and use projected gradient ascent to
solve the optimization problem (k-Ncvx-MC-SDP) with a random initialization and fixed step size.
Figure 2a shows that the objective function increases rapidly and converges within a small interval
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Figure 2: Projected gradient ascent algorithm to optimize (MC-SDP) with A ∼ GOE(1000): (a)
f(σ) as a function of the iteration number for a single realization of the trajectory; (b) ‖gradf(σ)‖F
as a function of the iteration number.

from the local maximum (which is upper bounded by the value SDP(A)). Also the gap between
the value obtained by this procedure and the value SDP(A) decreases rapidly with k. Figure 2b
shows that the Riemannian gradient decreases very rapidly, but presents some non-monotonicity.
We believe these bumps occur when the iterates are close to saddle points.
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×
2

0

0.5

1

1.5

2

2.5

3

3.5

k = 10.
k = 15.
k = 20.

(a)
k
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SDP(A)− f(σ∗)
Rg(A)/(15(k − 1))

(b)

Figure 3: Geometric properties of the rank-k non-convex SDP, where A ∼ GOE(1000). (a).
λmax(Hessf(σ)) versus (SDP(A) − f(σ))/n × 2. (b). SDP(A) − f(σ∗) for different k, where
σ∗ ∈Mk is a local maximizer.

In Figure 3, we examine some geometric properties of the rank-k non-convex SDP. As above,
we explore the landscape of this problem by projected gradient ascent. In Figure 3a, we plot the
curvature λmax(Hessf(σ)) versus the gap from the SDP value (SDP(A) − f(σ))/n × 2 along
the iterations. When f(σ) is far from SDP(A), there is a linear relationship between these two
quantities, which is consistent with Theorem 2. In Figure 3b, we plot the gap between SDP(A)
and f(σ∗) for a local maximizer σ∗ ∈ Mk that is produced by projected gradient ascent, for
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different values of k. These data are averaged over 10 realizations of the random matrix A. This
gap converges to zero as k gets large, and is upper bounded by the curve Rg(A)/(15(k − 1)). This
coincides with Theorem 2, which predicts that this gap must be smaller than Rg(A)/(k − 1). Note
however that –in this case– Theorem 2 is overly pessimistic, and the gap appears to decrease very
rapidly with k.

k
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C
u
t 
v
a
lu

e

×10
4
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1.48
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Figure 4: Cut value found by rounding local maximizer of rank-k non-convex SDP, for Erdős-Rényi
random graphs with n = 1000 and average degree d = 50. Data are averaged over 10 realizations.

Now we turn to study the MaxCut problem. Note that Theorem 5 gives a guarantee for the
approximation ratio for the cut induced by any local maximizer of the rank-k non-convex SDP (k-
Ncvx-MC-SDP). In Figure 4, we take the graph to be an Erdős-Rényi graph with n = 1000 and
average degree d = 50. We plot the cut value found by rounding the maximizer of the rank-k
non-convex SDP, for k from 2 to 10, and also for k = n which corresponds to the (MC-SDP).
Surprisingly, the cut value found by solving rank-k non-convex problem is typically bigger than the
cut value found by solving the original SDP. This provides a further reason to adopt the non-convex
approach (k-Ncvx-MC-SDP). It appears to provide a significantly tight relaxation for random in-
stances.

In order to study Z2 synchronization, we consider the matrix A = (λ/n)uuT + Wn where
Wn ∼ GOE(n) for n = 1000. Figure 5a shows the correlation ‖σTu‖22/n2 of a local maximizer
σ ∈Mk produced by projected gradient ascent, with the ground truth u. In Figure 5b we construct
label estimates û(A) = sign(v1(σ)) where v1(σ) is the principal left singular vector of σ ∈ Rn×k.
We plot the correlation (〈û, u〉/n)2 as a function of λ. In both cases, results are averaged over 10
realizations of the matrix A. Surprisingly, the resulting correlation is strongly concentrated, despite
the fact that gradient ascent converges to a random local maximum σ ∈Mk.

Finally, we turn to the SO(3) synchronization problem, and study the local maximizer of the
Orthogonal-Cut SDP (OC-SDP). We sample a matrix A ∼ GOE(300), and find the local maxi-
mum of the rank-k non-convex Orthogonal-Cut SDP (k-Ncvx-OC-SDP). In Figure 6 we plot the
gap between SDPo(A) and f(σ∗) for a local maximizer σ∗ ∈ Rn×k produced by projected gra-
dient ascent for different k. This gap converges to zero as k is larger, and is upper bounded by
Rg(A)/(20(kd − 1)). This is in agreement with Theorem 9, which predicts that the gap is smaller
than Rg(A)/(kd − 1).
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Figure 5: Z2 synchronization: correlation between estimator and ground truth ‖σTu‖22/n2 and
〈ûT, u〉2/n versus λ.
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Figure 6: SDPo(A)− f(σ∗) for different k, where σ∗ ∈Mo,d,k is a local maximizer.

5. Other proofs

5.1. Proof of Theorem 5

Note that problem (13) is equivalent to problem (k-Ncvx-MC-SDP) with matrixA = −AG. Apply-
ing Theorem 2, and noting that the elements of AG are non-negative, we for any local maximizer
σ∗ of the problem (13), and any X∗ optimal solution of the SDP (12),

〈σ∗,−AGσ∗〉 ≥〈−AG, X∗〉 −
1

k − 1
(〈−AG, X∗〉+ SDP(AG))

=〈−AG, X∗〉 −
1

k − 1
(〈−AG, X∗〉+

n∑

i,j=1

AG,ij).
(22)
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Thus, we have

1

4

n∑

i,j=1

AG,ij(1− 〈σ∗i , σ∗j 〉) =
1

4

n∑

i,j=1

AG,ij +
1

4
〈σ∗,−AGσ∗〉

≥1

4

n∑

i,j=1

AG,ij +
1

4
[〈−AG, X∗〉 −

1

k − 1
(〈−AG, X∗〉+

n∑

i,j=1

AG,ij)]

=

(
1− 1

k − 1

)
× 1

4

n∑

i,j=1

AG,ij(1−X∗ij) =

(
1− 1

k − 1

)
× SDPCut(G)

≥
(

1− 1

k − 1

)
×MaxCut(G).

(23)

Applying the randomized rounding scheme of Goemans and Williamson (1995), we sample a
vector u ∼ N(0, Ik), and define v ∈ {±1}n by vi = sign(〈σ∗i , u〉), then we obtain

E


1

4

n∑

i,j=1

AG,ij(1− 〈vi, vj〉)


 ≥ α∗×

1

4

n∑

i,j=1

AG,ij(1−〈σ∗i , σ∗j 〉) ≥ α∗
(

1− 1

k − 1

)
MaxCut(G).

Therefore, for any local maximizer σ∗, it gives an α∗ × (1 − 1/(k − 1))-approximate solution of
the MaxCut problem.

If σ∗ is an ε = 2Rg(AG)/(n(k−1))-approximate concave point, using Theorem 2 and the same
argument, we can prove that it gives an α∗ × (1− 2/(k − 1))-approximate solution of the MaxCut
problem.

5.2. Proof of Theorem 6

Let A(λ) = λ/n ·uuT +Wn. For any local maximum σ ∈ Crn,k of the rank-k non-convex MaxCut
SDP problem, according to Theorem 2, we have

f(σ) ≥ SDP(A(λ))− 1

k − 1
(SDP(A(λ)) + SDP(−A(λ))).

Therefore

λ

n
‖σTu‖22 ≥

(
1− 1

k − 1

)
SDP

(
λ

n
uuT +Wn

)
− 1

k − 1
SDP

(
−λ
n
uuT −Wn

)
−
〈
Wn, σσ

T
〉

≥
(

1− 1

k − 1

)
SDP

(
λ

n
uuT +Wn

)
− 1

k − 1
SDP (−Wn)− SDP (Wn) .

(24)
Using the convergence of the SDP value as proved in (Montanari and Sen, 2016, Theorem 5),

for any λ > 1, there exists ∆(λ) > 0 such that, for any δ > 0, the following holds with high
probability

1

n
SDP (±Wn) ≤ 2 + δ, and

1

n
SDP

(
λ

n
uuT +Wn

)
≥ 2 + ∆(λ) .
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Therefore, we have with high probability

1

n2
‖σTu‖22 ≥

1

λ

[(
2 + ∆(λ)

)
×
(

1− 1

k − 1

)
−
(

1 +
1

k − 1

)
× (2 + δ)

]

=

(
1− 1

k − 1

)
∆(λ)

λ
− 4 + δ

k − 1
· 1

λ
− δ

λ
.

(25)

Since ∆(λ) > 0 for λ > 1, there exists a k∗(λ) such that the above expression is greater than ε for
sufficiently small ε and δ, which concludes the proof.

5.3. Proof of Theorem 7

We decompose the proof into two parts. In part (a), we prove that almost surely

lim inf
n→∞

inf
σ∈Cn,k

1

n2
‖σTu‖22 ≥ 1− 1

k
− 4

λ
,

using only the second order optimality condition. In part (b), we incorporate the first order optimal-
ity condition and prove that as λ ≥ 12k, we have almost surely

lim inf
n→∞

inf
σ∈Cn,k

1

n2
‖σTu‖22 ≥ 1− 16

λ
.

Proof

PART (a)

The proof of this part is similar to the proof of Theorem 2. We replace the matrixA by the expression
A = uuT + ∆, where u ∈ {±1}n and ∆ = n/λ · Wn. Let g ∈ Rk, g ∼ N(0, 1/k · Ik), and
W = [P⊥1 gu1, . . . ,P

⊥
n gun]T ∈ TσMk, where P⊥i = Ik − σiσTi ∈ Rk×k. Due to the second order

optimality condition, similar to the calculation in Theorem 2, we have for any local maximizer σ of
the rank-k non-convex SDP problem:

0 ≤ Eg〈W, (Λ(σ)−A)W 〉 =

(
1− 1

k

)
f(σ)−

(
1− 2

k

) n∑

i,j=1

Aijuiuj−
1

k

n∑

i,j=1

Aijuiuj〈σi, σj〉2.

Plugging in the expression of A, we obtain

(
1− 1

k

)
〈uuT+∆, σσT〉−

(
1− 2

k

)
(n2+〈u,∆u〉)− 1

k

n∑

i,j=1

[
〈σi, σj〉2 + ∆ijuiuj〈σi, σj〉2

]
≥ 0.

Letting X̄ij = uiuj〈σi, σj〉2, we have
(

1− 1

k

)
‖σTu‖22 ≥

(
1− 2

k

)
n2 −

(
1− 1

k

)
〈σ,∆σ〉+

(
1− 2

k

)
〈u,∆u〉+

1

k

n∑

i,j=1

[
〈σi, σj〉2 + ∆ijX̄ij

]
.
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Recall that rank(σσT) = k, and Tr(σσT) = n. Thus, we get the lower bound

n∑

i,j=1

〈σi, σj〉2 = ‖σσT‖2F =
k∑

i=1

λ2
i (σσ

T) ≥ 1

k

(
k∑

i=1

λi(σσ
T)

)2

=
1

k

(
Tr(σσT)

)2
=
n2

k
.

Also note that X̄ is a feasible point of (MC-SDP). Therefore,
(

1− 1

k

)
‖σTu‖22 ≥

(
1− 2

k
+

1

k2

)
n2 −

(
1− 1

k

)
〈σ,∆σ〉+

(
1− 2

k

)
〈u,∆u〉+

1

k
〈∆, X̄〉

≥
(

1− 1

k

)2

n2 −
(

1− 1

k

)
SDP(∆)−

(
1− 1

k

)
SDP(−∆)

≥
(

1− 1

k

)2

n2 − 2

(
1− 1

k

)
n‖∆‖op

which implies that

lim inf
n→∞

inf
σ∈Cn,k

1

n2
‖σTu‖22 ≥ lim inf

n→∞
(1− 1

k
− 2

λ
‖Wn‖op) = 1− 1

k
− 4

λ
, a.s. (26)

where we used the fact that for a GOE matrix Wn, we have limn→∞ ‖Wn‖op = 2 almost surely
(Anderson et al., 2010).

PART (b)

In part (a) we only used the second order optimality condition. In this part of the proof, we will
incorporate the first order optimality condition. Note that as λ < 12k, the bound in part (a) is better.
So in this part, we only consider the case when λ ≥ 12k.

Without loss of generality, let u = 1, the vector with all entries equal to one. Let σ ∈ Rn×k
be a local optimizer of the rank-k non-convex SDP problem. We remark that the cost function is
invariant by a right rotation of σ. We can therefore assume that σ = (v1, . . . , vk) where vi ∈ Rn
and 〈vi, vj〉 = 0 for i 6= j (take the SVD decomposition σ = UΣV T and consider σ̃ = UΣ). Let
X = σσT and A(λ) = (λ/n) · 11T +Wn. For simplicity, we will sometimes omit the dependence
on λ and write A = A(λ).

We decompose the proof into the following steps.

Step 1 Upper bound on 〈1, vj〉2/n2, for j = 2, . . . , k, using the first order optimality condition.
The first order optimality condition gives Aσ = ddiag(AσσT)σ, which implies that

(Avi) ◦ vj = (Avj) ◦ vi,

for any i 6= j, where we denoted u ◦ v the entry-wise product of u and v. Replacing A by its
expression gives

((
λ

n
11T +Wn

)
vi

)
◦ vj =

((
λ

n
11T +Wn

)
vj

)
◦ vi,

which implies
〈1, vi〉vj − 〈1, vj〉vi =

n

λ
[− (Wnvi) ◦ vj + (Wnvj) ◦ vi] .
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We take the norm of this expression and, recalling that 〈vi, vj〉 = 0, we obtain

〈1, vi〉2‖vj‖22 + 〈1, vj〉2‖vi‖22 ≤
n2

λ2

[
‖(Wnvi) ◦ vj‖2 + ‖(Wnvj) ◦ vi‖2

]2
. (27)

Notice that ‖vj‖∞ ≤ 1,∀j ∈ [k], hence

〈1, vi〉2‖vj‖22 + 〈1, vj〉2‖vi‖22 ≤
n2

λ2

[
‖Wnvi‖2 + ‖Wnvj‖2

]2

≤n
2

λ2
‖Wn‖2op

[
‖vi‖2 + ‖vj‖2

]2

≤2n2

λ2
‖Wn‖2op

(
‖vi‖22 + ‖vj‖22

)
.

(28)

Without loss of generality, let us assume that ‖v1‖2 ≥ ‖vj‖2 for j ≥ 2 which implies

〈1, vj〉2‖v1‖22 ≤
4n2

λ2
‖Wn‖2op ‖v1‖22, for j ≥ 2.

We deduce the following upper bound

lim sup
n→∞

sup
σ∈Crn,k

1

n2
〈1, vj〉2 ≤

16

λ2
, a.s. (29)

for j = 2, . . . , k, where we use the fact that for a GOE matrix Wn, we have limn→∞ ‖Wn‖op = 2
almost surely.

Step 2 Lower bound on 〈1, v1〉2/n2.
We combine equation (26) and (29) to get almost surely

lim inf
n→∞

inf
σ∈Crn,k

1

n2
〈1, v1〉2 = lim inf

n→∞
inf

σ∈Crn,k


 1

n2
‖σT1‖22 −

1

n2

k∑

j=2

〈1, vj〉2

 ≥ 1− 1

k
− 4

λ
− 16k

λ2
.

Since we assumed that λ ≥ 12k and k ≥ 2, we obtain, almost surely,

lim inf
n→∞

inf
σ∈Crn,k

1

n2
〈1, v1〉2 ≥ 1− 1

k
− 4

12k
− 16k

144k2
≥ 1

4
. (30)

The second inequality above is loose but it is sufficient for our purposes.

Step 3 Upper bound on ‖va‖22 for a ∈ {2, . . . , k}.
In Equation (28), let us take i = 1 and j = a ∈ {2, . . . , k}, we have

〈1, v1〉2‖va‖22 + 〈1, va〉2‖v1‖22 ≤
2n2

λ2
‖Wn‖2op

(
‖v1‖22 + ‖va‖22

)
≤ 2n3

λ2
‖Wn‖2op . (31)

Combining equation (31) and (30) results in the following upper bound for λ ≥ 12k,

lim sup
n→∞

sup
σ∈Crn,k

1

n
‖va‖22 ≤

32

λ2
, (32)
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holding almost surely for any a ∈ {2, . . . , k}.
Step 4 Lower bound on f(σ).

By second order optimality of σ, for any vectors {ξi}ni=1 satisfying 〈σi, ξi〉 = 0, we have
〈ξ, (Λ − A)ξ〉 ≥ 0 where ξ = [ξ1, . . . , ξn]T and Λ = ddiag(AσσT). Take ξi = ea − 〈σi, ea〉σi,
where ea is the a-th canonical basis vector in Rk, a ∈ {2, . . . , k}. Noting that σ = (σ1, . . . , σn)T =
(v1, . . . , vk), we have 〈σi, ea〉 = va,i. Therefore, we have

〈ξi, ξj〉 = 1− v2
a,i − v2

a,j +Xijva,iva,j . (33)

Using the second order stationarity condition with this choice of ξi, we have

0 ≤
n∑

i,j=1

(Λ−A)ij〈ξi, ξj〉

=

n∑

i,j=1

(Λ−A)ij(1− v2
a,i − v2

a,j +Xijva,iva,j)

=

n∑

i=1

Λii(1− v2
a,i)−

n∑

i,j=1

Aij(1− 2v2
a,i +Xijva,iva,j),

which implies

f(σ) =Tr(Λ) ≥
n∑

i=1

Λiiv
2
a,i +

n∑

i,j=1

Aij(1− 2v2
a,i +Xijva,iva,j)

=〈1, A1〉+
n∑

i=1

Λiiv
2
a,i − 2

n∑

i,j=1

Aijv
2
a,i +

n∑

i,j=1

AijXijva,iva,j

≡〈1, A1〉+B1 +B2 +B3.

(34)

Consider the first term B1. It is easy to see that the second order stationary condition implies
(Λ−A)ii ≥ 0. Thus, we have

B1 =

n∑

i=1

Λiiv
2
a,i ≥

n∑

i=1

Aiiv
2
a,i =

n∑

i=1

(λ/n+Wn,ii)v
2
a,i

≥
n∑

i=1

Wn,iiv
2
a,i ≥ −max

i∈[n]
|Wn,ii| ·

n∑

i=1

v2
a,i

≥− ‖Wn‖op‖va‖22.

Next consider the second term B2. We have

|B2| =2|〈1, A(va ◦ va)〉| = 2|〈1, (λ/n · 11T +Wn)(va ◦ va)〉|
≤2λ‖va‖22 + 2|〈1,Wn(va ◦ va)〉| ≤ 2λ‖va‖22 + 2

√
n‖Wn‖op‖va ◦ va‖2

≤2λ‖va‖22 + 2
√
n‖Wn‖op‖va‖2.

where the last inequality is because |va,i| ≤ 1 so that ‖va ◦ va‖2 ≤ ‖va‖2.
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Finally, consider the last term B3.

B3 =〈va, ((λ/n · 11T +Wn) ◦X)va〉
=λ/n · 〈va, Xva〉+ 〈va, (Wn ◦X)va〉
≥〈va, (Wn ◦X)va〉 ≥ −‖Wn ◦X‖op‖va‖22
≥− ‖Wn‖op‖va‖22,

where the last inequality used a fact that if X ∈ Rn×n is in the elliptope, we have ‖W ◦ X‖op ≤
‖W‖op for any W ∈ Rn×n.

Here is the justification of the above fact. For X in the elliptope, we have Xii = 1 and X � 0.
For any Z satisfying Z � 0 and Tr(Z) ≤ 1, X ◦ Z also satisfies X ◦ Z � 0 and Tr(X ◦ Z) ≤ 1.
Therefore, using the variational representation of the operator norm, we have

‖W ◦X‖op = max

{
sup

Z�0,Tr(Z)≤1
〈W ◦X,Z〉, sup

Z�0,Tr(Z)≤1
〈−W ◦X,Z〉

}

= max

{
sup

Z�0,Tr(Z)≤1
〈W,X ◦ Z〉, sup

Z�0,Tr(Z)≤1
〈−W,X ◦ Z〉

}

≤max

{
sup

Y�0,Tr(Y )≤1
〈W,Y 〉, sup

Y�0,Tr(Y )≤1
〈−W,Y 〉

}
= ‖W‖op.

Step 5 Finish the proof.
Noting that f(σ) = λ/n · ‖σT1‖22 + 〈σ,Wnσ〉 and 〈1, A1〉 = nλ + 〈1,Wn1〉, we rewrite

Equation (34) as following

1

n2
‖σT1‖22 ≥ 1− 1

λn
(〈σ,Wnσ〉 − 〈1,Wn1〉) +

1

λn
(B1 +B2 +B3).

Plug in the lower bound of B1, B2, B3, we have almost surely

lim inf
n→∞

inf
σ∈Crn,k

1

n2
‖σT1‖22

≥ lim inf
n→∞

inf
σ∈Crn,k

{
1− 2

λ
‖Wn‖op −

1

λn
(2‖Wn‖op‖va‖22 + 2λ‖va‖22 + 2

√
n‖Wn‖op‖va‖2)

}

≥1− 4

λ
− 1

λ
(2× 2× 32

λ2
+ 2λ× 32

λ2
+ 2× 2×

√
32

λ
)

≥1− 16

λ
.

Here we used Equation (32), λ ≥ 12k ≥ 24, and the fact that for a GOE matrix Wn, we have
limn→∞ ‖Wn‖op = 2 almost surely.
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5.4. Proof of Theorem 8

Proof The proof is similar to the proof of Theorem 6, where the GOE matrix Wn is replaced by the
noise matrix E.

Applying Theorem 2 with the matrix AG(λ), similar to Equation (24), we have

λ

n
‖σTu‖22 ≥

(
1− 1

k − 1

)
SDP

(
AG(λ)

)
− 1

k − 1
SDP (−E)− SDP (E) . (35)

According to (Montanari and Sen, 2016, Theorem 8), the gap between the SDPs with the two
different noise matrices is bounded with high probability by a function of the average degree d
∣∣∣∣
1

n
SDP(AG(λ))− 1

n
SDP(A(λ))

∣∣∣∣ < C
log d

d1/10
and

∣∣∣∣
1

n
SDP(±E)− 1

n
SDP (±Wn)

∣∣∣∣ < C
log d

d1/10
,

where A(λ) = λ/n · uuT + Wn corresponds to the Z2 synchronization model and C = C(λ) is a
function of λ bounded for any fixed λ.

According to (Montanari and Sen, 2016, Theorem 5), for any δ > 0 and λ > 1, there exists a
function ∆(λ) > 0 such that with high probability, we have

1

n
SDP (±Wn) ≤ 2 + δ, and

1

n
SDP

(
λ

n
uuT +Wn

)
≥ 2 + ∆(λ). (36)

Combining the above results, we have for any δ > 0, with high probability

inf
σ∈Crn,k

1

n2
‖σTu‖22 ≥

(
1− 1

k − 1

)
∆(λ)

λ
− 4 + δ

k − 1
· 1

λ
− δ

λ
− 2

C(λ)

λ
· log d

d1/10
.

For a sufficiently small ε > 0, taking δ sufficiently small, and taking successively d and k
sufficiently large, the above expression will be greater than ε, which concludes the proof.

5.5. Proof of Theorem 9

We decompose the proof into three parts. In the first part, we do the calculation for a general non-
convex problem. In the second part, we focus on the non-convex problem (k-Ncvx-OC-SDP). In
the third part, we prove a claim we made in the second part.
Proof

PART 1

First, let’s consider a general SDP problem. Given a symmetric matrix A ∈ Rn×n, symmetric
matrices B1, B2, . . . , Bs ∈ Rn×n and real numbers c1, . . . , cs ∈ R, we consider the following
SDP:

max
X∈Rn×n

〈A,X〉

subject to 〈Bi, X〉 = ci, i ∈ [s],

X � 0.

(37)
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Let B = [B1, . . . , Bs] and c = (c1, . . . , cs). We denote SDP(A,B, c) the maximum of the above
SDP problem:

SDP(A,B, c) = max{〈A,X〉 : X � 0, 〈Bi, X〉 = ci, i ∈ [s]}.

We assume SDP(A,B, c) <∞.
For a fixed integer k, the Burer-Monteiro approach considers the following non-convex problem:

maximize f(σ) = 〈σ,Aσ〉
subject to 〈σ,Biσ〉 = ci, i ∈ [s],

(38)

with decision variable σ ∈ Rn×k
Define the manifoldMB,c

k = {σ ∈ Rn×k : 〈σ,Biσ〉 = ci, i ∈ [s]}. At each point σ ∈ MB,c
k ,

the tangent space is given by TσMB,c
k = {U ∈ Rn×k : 〈U,Biσ〉 = 0, i ∈ [s]}. We denote PT (U)

the projection of U ∈ Rn×k onto TσMB,c
k :

PT (U) = U −
s∑

i,j=1

Mij〈Bjσ, U〉Biσ.

where M = ((〈Biσ,Bjσ〉)sij=1)−1 ∈ Rs×s. The Riemannian gradient is therefore given by

gradf(σ) = 2(A−
s∑

i=1

λiBi)σ

with λi =
∑s

j=1MijTr(BjAσσT). We will write Λ = Λ(σ) =
∑s

i=1 λiBi. The Riemannian

Hessian Hessf(σ) applied on the direction U ∈ TσMB,c
k gives

〈U,Hessf(σ)[U ]〉 = 2〈U, (A− Λ)U〉.

Therefore, according to the definition of the ε-approximate concave point σ ∈MB,c
k , we have

∀Y ∈ TσMB,c
k , 〈Y, (Λ−A)Y 〉 ≥ −1

2
ε〈Y, Y 〉.

Let V ∈ Rn×n such that X∗ = V V T is a solution of the general SDP problem (37), and
G ∈ Rk×n, Gij ∼ N(0, 1/k) i.i.d., be a random mapping from Rn onto Rk. Let σ be a local
maximizer of the rank-k non-convex SDP (38), and take Y = PT (V GT), a random projection of
V ∈ Rn×n onto TσMB,c

k . Due to the definition of the approximate concave point, we have

E〈PT (V GT), (Λ−A)PT (V GT)〉 ≥ −ε
2
E〈PT (V GT),PT (V GT)〉

where the expectation is taken over the random mapping G. Expanding the left hand side gives

0 ≤〈V, (Λ−A)V 〉 − 2E〈V GT − PT (V GT), (Λ−A)V GT〉
+ E〈V GT − PT (V GT), (Λ−A)(V GT − PT (V GT))〉+

ε

2
E〈PT (V GT),PT (V GT)〉.

(39)
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The second term in the last equation gives

E
〈
V GT − PT

(
V GT

)
, (Λ−A)V GT

〉

=E

〈
s∑

i,j=1

Mij

〈
Bjσ, V G

T
〉
Biσ, (Λ−A)V GT

〉

=
s∑

i,j=1

MijE
[〈
Biσ, (Λ−A)V GT

〉〈
Bjσ, V G

T
〉]

=

s∑

i,j=1

MijE
[〈
V T (Λ−A)Biσ,G

T
〉〈

V TBjσ,G
T
〉]

=
1

k

s∑

i,j=1

Mij

〈
V T (Λ−A)Biσ, V

TBjσ
〉

=
1

k

〈
(Λ−A) , V V T

s∑

i,j=1

MijBjσσ
TBi

〉
.

(40)

The third term gives

E
〈
V GT − PT

(
V GT

)
, (Λ−A)

(
V GT − PT

(
V GT

))〉

=E

〈
s∑

i,j=1

Mij

〈
Bjσ, V G

T
〉
Biσ, (Λ−A)

s∑

k,l=1

Mkl

〈
Blσ, V G

T
〉
Bkσ

〉

=

s∑

ijkl=1

MijMklE
[
〈Biσ, (Λ−A)Bkσ〉

〈
Bjσ, V G

T
〉〈

Blσ, V G
T
〉]

=
1

k

s∑

ijkl=1

MijMkl

〈
Bi, (Λ−A)Bkσσ

T
〉〈

X∗Bj , Blσσ
T
〉
.

(41)

For the fourth term, we have

E〈PT (V GT),PT (V GT)〉

=E
∥∥∥V G−

s∑

i,j=1

Mij

〈
Bjσ, V G

T
〉
Biσ

∥∥∥
2

F

=E 〈V G, V G〉 − E
∥∥∥

s∑

i,j=1

Mij

〈
Bjσ, V G

T
〉
Biσ

∥∥∥
2

F

=n−
n∑

ij=1

n∑

kl=1

MijMkl 〈Biσ,Bkσ〉E
[〈
V TBjσ,G

〉〈
V TBlσ,G

〉]

=n− 1

k

n∑

ij=1

n∑

kl=1

MijMkl 〈Biσ,Bkσ〉 ·
〈
V TBjσ, V

TBlσ
〉
.

(42)
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PART 2

Now let’s consider the case of the rank-k non-convex Orthogonal-Cut SDP problem (k-Ncvx-OC-
SDP). There are s = d(d + 1)/2 ×m constraints corresponding to the set {(Bi, ci) : i ∈ [s]} =
{(Eii, 1) : i ∈ [n]}⋃∪mt=1{((Eij +Eji)/

√
2, 0) : (t− 1)d+ 1 ≤ i < j ≤ td}, where Eij = eie

T
j .

We will denoteMo,d,k the optimization manifold:

Mo,d,k = {σ ∈ Rmd×k : σ = (σ1, . . . , σm)T, σTi σi = Id, i ∈ [m]}.

It is straightforward to verify that for any σ ∈ Mo,d,k, we have (〈Biσ,Bjσ〉)sij=1 = Is. Thus,
we have M = Is. In the following calculation, we write X = σσT. Recall that X∗ is a global
maximizer of problem (OC-SDP), and X∗ = V V T.

Now, let us calculate each term in Equation (39), for the specific problem (k-Ncvx-OC-SDP).
For the second term in Equation (39), we derived Equation (40). One can check with some calcula-
tions that for any σ ∈Mo,d,k, we have

s∑

i,j=1

MijBjσσ
TBi =

d+ 1

2
In.

For the fourth term in Equation (39), we derived Equation (42). Following the calculation in Equa-
tion (42), we have

n∑

ij=1

n∑

kl=1

MijMkl 〈Biσ,Bkσ〉 ·
〈
V TBjσ, V

TBlσ
〉

=
n∑

ij=1

〈Biσ,Bjσ〉 ·
〈
V TBiσ, V

TBjσ
〉

=
n∑

i=1

〈
V TBiσ, V

TBiσ
〉

=
d+ 1

2
n.

For the third term in Equation (39), we derived Equation (41). Following the calculation in Equation
(41), we have

s∑

ijkl=1

MijMkl〈Bi, (Λ−A)BkX〉〈X∗Bj , BlX〉

=
s∑

kl=1

〈Bk, (Λ−A)BlX〉〈X∗Bk, BlX〉

=

n∑

ij=1

(Λ−A)ij

s∑

kl=1

〈Bk, EijBlX〉〈X∗Bk, BlX〉

=
d+ 1

2
Tr
(
(Λ−A)X̄

)

where we define X̄ = 2/(d + 1) · (∑s
kl=1〈Bk, EijBlX〉〈X∗Bk, BlX〉)ni,j=1. Here, we claim that

X̄ is a feasible point of the Orthogonal-Cut SDP problem (OC-SDP). We will prove this claim in
part 3.
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For any feasible point X of the Orthogonal-Cut SDP problem (OC-SDP), we have f(σ) =
〈Λ, X〉. Therefore, from Equation (39), we obtain

f(σ)− SDPo(A) = 〈V ΛV 〉 − 〈V,AV 〉

≥1

k

(
2 · d+ 1

2
〈(Λ−A), V V T〉 − d+ 1

2
〈(Λ−A), X̄〉

)
− n

2
ε

(
1− d+ 1

2k

)

=
1

k

(
(d+ 1)(f(σ)− SDPo(A))− d+ 1

2
(f(σ)− 〈A, X̄)

)
− n

2
ε

(
1− d+ 1

2k

)

≥
(

2
d+ 1

2k
(f(σ)− SDPo(A))− d+ 1

2k
(f(σ) + SDPo(−A))

)
− n

2
ε

(
1− d+ 1

2k

)

Letting kd = 2k/(d+ 1), rearranging the above inequality, we have
(

1− 1

kd

)
f(σ)−

(
1− 2

kd

)
SDPo(A) +

1

kd
SDPo(−A) ≥ −n

2
ε

(
1− 1

kd

)
,

which finally gives the desired inequality

f(σ) ≥ SDPo(A)− 1

kd − 1
(SDPo(A) + SDPo(−A))− n

2
ε.

PART 3

Now, let us check that X̄ is a feasible point of the Orthogonal-Cut SDP problem (OC-SDP). The
reason is given by the following Fact (a) and (b).
Fact (a). X̄ is P.S.D.. Indeed, for any v ∈ Rn, recall that X = σσT and X∗ = V V T, we have

〈v, X̄v〉 =
2

d+ 1
·

s∑

kl=1

〈vTBkσ, vTBlσ〉〈V TBkσ, V
TBlσ〉

=
2

d+ 1
· Tr((〈vTBkσ, vTBlσ〉)sk,l=1 · (〈V TBkσ, V

TBlσ〉)sk,l=1).

The matrix (〈vTBkσ, vTBlσ〉)sk,l=1 = ZTZ � 0, where Z = [vec(vTB1σ), . . . , vec(vTBsσ)].
Similarly, we have (〈V TBkσ, V

TBlσ〉)sk,l=1 � 0. Thus, 〈v, X̄v〉 ≥ 0 for any v ∈ Rn. Then X̄ is
P.S.D..
Fact (b) The (i, i)’th block of X̄ equals Id. To show this, we assume d ≥ 2, and due to the
symmetry, we just need to check X̄11 = 1 and X̄12 = 0. We denote Jij = Eiiδij + (Eij +
Eji)/

√
2 · (1− δij), and we rewrite X̄ij as

X̄ij =
2

d+ 1
·
m∑

a=1

∑

(k,s,l,t)∈Γa

〈Eij , JksXJlt〉〈X∗, JksXJlt〉
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where Γa = {(k, s, l, t) : 1 + (a− 1)d ≤ k ≤ s ≤ ad, 1 + (a− 1)d ≤ l ≤ t ≤ ad}. We have the
following series of simplification

X̄11 =
2

d+ 1
·
m∑

a=1

∑

(k,s,l,t)∈Γa

〈E11, JksXJlt〉〈X∗, JksXJlt〉

=
2

d+ 1
·

∑

(k,s,l,t)∈Γ1

〈E11, JksXJlt〉〈X∗, JksXJlt〉

=
2

d+ 1
·

∑

(k,s,l,t)∈Γ1

〈E11, JksJlt〉〈Jks, Jlt〉 =
2

d+ 1
·
∑

1≤k≤s≤d
〈E11, JksJks〉

=
2

d+ 1
·




d∑

k=1

〈E11, EkkEkk〉+
∑

1≤k<l≤d

1

2
〈E11, Ekk + Ell〉




=
2

d+ 1
·
(

1 +
d− 1

2

)
= 1.

The third equality used the fact that X and X∗ are feasible point so that their (i, i)’th block are Id.
Similarly, we have

X̄12 =
2

d+ 1
·

∑

(k,s,l,t)∈Γ1

〈E12, JksXJlt〉〈X∗, JksXJlt〉

=
2

d+ 1
·

∑

(k,s,l,t)∈Γ1

〈E12, JksJlt〉〈Jks, Jlt〉 =
2

d+ 1
·
∑

1≤k≤s≤d
〈E12, JksJks〉 = 0.

The last equality is because JksJks is always a diagonal matrix.
Therefore, we proved that X̄ is a feasible point of the Orthogonal-Cut SDP problem (OC-SDP).

5.6. Proof of Theorem 3

Given a point σ ∈ Mk and a tangent vector u ∈ TσMk with ‖u‖F = 1, we denote σ(t) =
PMk

(σ + tu) the update with searching direction u and step size t. The next three lemmas ensure
a sufficient increment of the objective function at each step of the RTR algorithm.

Lemma 10 (Gradient-step) Fix µG ≤ 2‖A‖1. For any point σ ∈ Mk such that ‖gradf(σ)‖F ≥
µG, taking searching direction u = gradf(σ)/‖gradf(σ)‖F and step size η = µG/(20‖A‖1), we
have

f(σ(η))− f(σ) ≥ µ2
G

40‖A‖1
.
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Proof The second order expansion of f(σ(t)) around 0 with t ≤ 1 gives

f(σ(t))− f(σ) ≥ (f ◦ σ)′(0)t− sup
ξ∈[0,t]

1

2
(f ◦ σ)′′(ξ)t2

≥ 〈gradf(σ), u〉t− 1

2
‖A‖1 · (4 + 8t+ 8t2) · t2

≥ ‖gradf(σ)‖F t− 10‖A‖1t2.

The second inequality used the bound on the second order derivative in Lemma 14 in Appendix
A.1. Now we take t = µG/(20‖A‖1). Since µG ≤ 2‖A‖1, we have t ≤ 1. Plugging this t into the
above equation completes the proof.

Lemma 11 (Eigen-step) For any point σ ∈ Mk, and u ∈ TσMk satisfying ‖u‖F = 1,
〈u, gradf(σ)〉 ≥ 0, and λH = λH(σ, u) = Hessf(σ)[u, u] > 0, choosing η = λH/(100‖A‖1), we
have

f(σ(η))− f(σ) ≥ λ3
H

4 · 104‖A‖21
.

Proof The third order expansion of f(σ(t)) around 0 for t ≤ 1 gives

f(σ(t))− f(σ) ≥ 〈gradf(σ(0)), u〉t+
1

2
〈u,Hessf(σ(0))[u]〉t2 − 1

6
sup
ξ∈[0,t]

(f ◦ σ)′′′(ξ)t3

≥ 1

2
λHt

2 − 1

6
‖A‖1 · (12 + 36t+ 48t2 + 48t3) · t3

≥ 1

2
λHt

2 − 24‖A‖1t3.

The second inequality used the bound on the third order derivative in Lemma 15 in Appendix
A.1. Now we take t = λH/(100‖A‖1). Note that we always have λH(σ, u) ≤ ‖Hessf(σ)‖2 ≤
‖A − Λ‖2 ≤ 2‖A‖1, and therefore we have t ≤ 2‖A‖1/(100‖A‖1) ≤ 1. Plugging this t into the
above equation completes the proof.

The last lower bound on the increment of objective function for eigen-step used the loose bound
in Lemma 15. Using Lemma 16, we can give an improved bound for the eigen-step when the norm
of the gradient is small. In particular we take µG = ‖A‖2.

Lemma 12 (Improved bound for eigen-step) For any point σ ∈ Mk with ‖gradf(σ)‖F ≤
µG = ‖A‖2, and u ∈ TσMk satisfying ‖u‖F = 1, 〈u, gradf(σ)〉 ≥ 0 and λH = λH(σ, u) =

Hessf(σ)[u, u] > 0, choosing η = min
(√

λH/(216‖A‖1), λH/(12‖A‖2)
)

, we have

f(σ(η))− f(σ) ≥ 1

4
λHη

2 = min

(
λ2
H

864‖A‖1
,

λ3
H

576‖A‖22

)
.
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Proof The third order expansion of f(σ(t)) around 0 for t ≤ 1 gives

f(σ(t))− f(σ) ≥ 〈gradf(σ(0)), u〉t+
1

2
〈u,Hessf(σ(0))[u]〉t2 − 1

6
sup
ξ∈[0,t]

(f ◦ σ)′′′(ξ)t3

≥ 1

2
λHt

2 − 1

6
(6‖A‖2 + 3‖gradf(σ(0))‖F ) · t3 − 1

6
‖A‖1 · (42 + 72t+ 48t2) · t4

≥ 1

2
λHt

2 − 3

2
‖A‖2t3 − 27‖A‖1t4.

The first inequality used the improved bound on the third order derivative of Lemma
16 in Appendix A.1, which imply in particular ‖gradf(σ)‖F ≤ ‖A‖2. Taking t =

min
(√

λH/(216‖A‖1), λH/(12‖A‖2)
)
< 1 completes the proof.

We are now at a good position to prove Theorem 3.
Proof Denote f∗ = SDP(A)−1/(k−1)·(SDP(A)+SDP(−A)) and g(σ) = f∗−f(σ). Let T be the
number of iterations and {σ0, σ1, . . . , σT } ⊂ Mk the iterates returned by our RTR algorithm from
an arbitrary initialization σ0 ∈ Mk. We are only interested in the convergence rate as g(σ) > 0,
namely the convergence rate below the gap. Since our algorithm is an ascent algorithm, without loss
of generality, we assume g(σ0), . . . , g(σT ) > 0 (otherwise the theorem will hold automatically).

At each point σ ∈Mk, Theorem 2 gives the following lower bound on the highest curvature

λH,max(σ) = sup
u∈TσMk

〈u,Hessf(σ)[u]〉
〈u, u〉 ≥ 2

g(σ)

n
> 0.

We will use this information to bound the algorithm’s convergence rate.
Case 1. First, we consider the case when all the RTR steps are eigen-steps. In each iteration, the

algorithm constructs an update direction ut with curvature λH(σt, ut) ≥ λH,max(σt)/2. According
to Lemma 12, we have

g(σt)− g(σt+1) ≥ λ3
H(σt)

32 · 104‖A‖21
≥ g(σt)3

32 · 104‖A‖21n3
,

which implies g(σt+1) ≤ g(σt). Thus, we have

1

g(σt+1)2
− 1

g(σt)2
≥
(

g(σt)2

g(σt+1)2
+

g(σt)

g(σt+1)

)
· 1

32 · 104‖A‖21n
≥ 1

16 · 104‖A‖21n3
.

Summing over t = 0, . . . , T − 1, we have

1

g(σT )2
− 1

g(σ0)2
=

∑

0≤t≤T−1

1

g(σt+1)2
− 1

g(σt)2
≥ 1

16 · 104‖A‖21n3
T

Therefore, we obtain the convergence rate g(σT ) ≤ 400‖A‖1n
√
n/T . This implies that

f(σT ) ≥ SDP(A)− 1

k − 1
(SDP(A) + SDP(−A))− n

2
ε

as soon as T ≥ 64 · 104 · n‖A‖21/ε2.
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Case 2. Then, we consider the case where we set µG = ‖A‖2, and we use the gradient step as
‖gradf(σ)‖F > µG, and use the eigen-step as ‖gradf(σ)‖F ≤ µG. First let us bound the number
of gradient steps. According to Lemma 10, we have

TG
µ2
G

40‖A‖1
≤ g(σ0)− g(σT ) ≤ Rg(A).

Hence, we deduce the upper bound TG ≤ 40 · ‖A‖1Rg(A)/‖A‖22.
Then let us bound the number of eigen-steps. Let us denote I and J ⊂ {0, 1, . . . , T − 1}

the subsets of indices corresponding to eigensteps with respectively λH ≥ 3‖A‖22/(2‖A‖1) and
λH < 3‖A‖22/(2‖A‖1). According to Lemma 12, we have for all t ∈ J

1

g(σt+1)
− 1

g(σt)
≥ 1

864‖A‖1n2

g(σt)

g(σt+1)
≥ 1

864‖A‖1n2
,

whereas for t ∈ I
1

g(σt+1)2
− 1

g(σt)2
≥ 1

576‖A‖22n3

(
g(σt)

g(σt+1)
+

g(σt)2

g(σt+1)2

)
≥ 1

288‖A‖22n3
.

Summing the contributions of the above two equations gives the convergence rate

g(σT ) ≤ c ·max

(
‖A‖1

n2

T
, ‖A‖2n

√
n

T

)

for a universal constant c. This guarantees that g(σT ) ≤ nε/2 as soon as T ≥
c̃ · nmax

(
‖A‖22/ε2, ‖A‖1/ε

)
for some universal constant c̃.
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Appendix A. Some technical steps

A.1. Technical lemmas on (f ◦ σ)(t)

In this section, we give an upper bound to the second and third derivatives of (f ◦ σ)(t) =
〈σ(t), Aσ(t)〉 (these notations are defined below). These bounds are important in bounding the
complexity of the Riemannian trust-region method in solving the non-convex SDP problem.

Fix a point σ ∈ Mk ⊂ Rn×k on the manifold, and a tangent vector u ∈ TσMk = {u =
[u1, . . . , ui]

T ∈ Rn×k : ui ∈ Rk, 〈σi, ui〉 = 0, ∀i ∈ [n]} with ‖u‖F = 1. Let σ(t) = PMk
(σ + tu)

be the orthogonal projection of σ + tu onto the manifold Mk. For a given symmetric matrix
A ∈ Rn×n, let f(σ) = 〈σ,Aσ〉. We would like to study the derivatives of (f ◦ σ)(t) = f(σ(t))
with respect to t. Furthermore, we define ui(t) = ui/

√
1 + t2‖ui‖22, u(t) = [u1(t), . . . , un(t)]T,

D(t) = diag([‖u1(t)‖22, . . . , ‖un(t)‖22]), and Λ(t) = ddiag(Aσ(t)σ(t)T). For convenience, we will
denote σ̃ = σ(t), ũ = u(t), D̃ = D(t), and Λ̃ = Λ(t).

Lemma 13 For any σ ∈Mk and u ∈ TσMk, let σ(t) = PMk
(σ + tu). We have ∀t ∈ R

σ′(t) =− tD(t)σ(t) + u(t),

σ′′(t) =
[
−D(t) + 3t2D(t)2

]
σ(t)− 2tD(t)u(t),

σ′′′(t) =
[
9tD(t)2 − 15t3D(t)3

]
σ(t) +

[
−3D(t) + 9t2D(t)2

]
u(t).

(43)
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Proof To calculate the first three derivatives of σ(t), we expand each row of σ(t + r) up to third
order in r:

σi(t+ r)

=
σi + tui + rui√
1 + (t+ r)2‖ui‖22

=
σi + tui + rui√

1 + t2‖ui‖22
·
(

1− 1

2
· 2rt‖ui‖22 + r2‖ui‖22

1 + t2‖ui‖22
+

3

8

(
2rt‖ui‖22 + r2‖ui‖22

1 + t2‖ui‖22

)2

− 5

16

(
2rt‖ui‖22 + r2‖ui‖22

1 + t2‖ui‖22

)3

+ o(r3)

)

=σi(t) +
{[
−t‖ui(t)‖22

]
σi(t) + ui(t)

}
r

+

{[
−1

2
‖ui(t)‖22 +

3

2
t2‖ui(t)‖42

]
σi(t) +

[
−t‖ui(t)‖22

]
ui(t)

}
r2

+

{[
3

2
t‖ui(t)‖42 −

5

2
t3‖ui(t)‖62

]
σi(t) +

[
−1

2
‖ui(t)‖22 +

3

2
t2‖ui(t)‖42

]
ui(t)

}
r3 + o(r3).

By matching each expansion coefficient to the corresponding derivative, we obtain the desired
result.

Lemma 14 For (f ◦ σ)(t) as defined above

sup
ξ∈[0,t]

|(f ◦ σ)′′(ξ)| ≤ ‖A‖1 · (4 + 8t+ 8t2), ∀t ≥ 0. (44)

Proof We explicitly calculate the second derivative

(f ◦ σ)′′(t) =〈σ′(t),∇2f(σ(t))[σ′(t)]〉+ 〈∇f(σ(t)), σ′′(t)〉
=〈σ′(t), 2Aσ′(t)〉+ 〈2Aσ(t), σ′′(t)〉
=〈−tD̃σ̃ + ũ, 2A[−tD̃σ̃ + ũ]〉+ 〈2Aσ̃, [−D̃ + 3t2D̃2]σ̃ − 2tD̃ũ〉
=2〈ũ, (A− Λ̃)ũ〉 − 4t[〈ũ, AD̃σ̃〉+ 〈Aσ̃, D̃ũ〉] + t2[2〈D̃σ̃, AD̃σ̃〉+ 6〈Aσ̃, D̃2σ̃〉].

Noticing that ‖u(t)‖F ≤ ‖u(0)‖F = 1, we can use the bounds derived in Appendix A.2 to obtain
the following inequality

∣∣(f ◦ σ)′′(t)
∣∣ ≤ 2|〈ũ, (A− Λ̃)ũ〉|+ 4t[|〈ũ, AD̃σ̃〉|+ |〈Aσ̃, D̃ũ〉|]
+ t2[2|〈D̃σ̃, AD̃σ̃〉|+ 6|〈Aσ̃, D̃2σ̃〉|]
≤ 4‖A‖1 + 8t‖A‖1 + 8t2‖A‖1.
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Lemma 15 For (f ◦ σ)(t) as defined above

sup
ξ∈[0,t]

|(f ◦ σ)′′′(ξ)| ≤ ‖A‖1 · (12 + 36t+ 48t2 + 48t3), ∀t ≥ 0. (45)

Proof We explicitly calculate the third derivative

(f ◦ σ)′′′(t) =〈∇f(σ(t)), σ′′′(t)〉+ 3〈σ′(t),∇2f(σ(t))[σ′′(t)]〉
=〈∇f(σ̃), [9tD̃2 − 15t3D̃3]σ̃ + [−3D̃ + 9t2D̃2]ũ〉

+ 3〈−tD̃σ̃ + ũ,∇2f(σ̃)[(−D̃ + 3t2D̃2)σ̃ − 2tD̃ũ]〉
=− 6[〈σ̃, AD̃ũ〉+ 〈ũ, AD̃σ̃〉] + [18〈σ̃, AD̃2σ̃〉+ 6〈D̃σ̃, AD̃σ̃〉 − 12〈ũ, AD̃ũ〉]t

+ [18〈σ̃, AD̃2ũ〉+ 12〈D̃σ̃, AD̃ũ〉+ 18〈ũ, AD̃2σ̃〉]t2

+ [−30〈σ̃, AD̃3σ̃〉 − 18〈D̃σ̃, AD̃2σ̃〉]t3.

The inequality is obtained by upper bounding each term using the bounds derived in Appendix A.2.

The above bound on the third derivative of order ‖A‖1 as t → 0. The next lemma proves a
bound of order ‖A‖2 + ‖gradf(σ(0))‖F as t → 0. If ‖gradf(σ(0))‖F is small, this improves the
above bound.

Lemma 16 For (f ◦ σ)(t) as defined above, an improved bound on its third derivative gives

sup
ξ∈[0,t]

|(f ◦ σ)′′′(ξ)| ≤ 6‖A‖2 + 3‖gradf(σ(0))‖F + ‖A‖1 · (42t+ 72t2 + 48t3), ∀t ≥ 0.

(46)

Proof From the proof in the previous lemma, we have

|(f ◦ σ)′′′(t)| ≤ 6
(
|〈σ̃, AD̃ũ〉|+ |〈ũ, AD̃σ̃〉|

)
+ ‖A‖1 · (36t+ 48t2 + 48t3) ..

We next bound more carefully g(t) = 〈σ(t), AD(t)u(t)〉. Simple calculation gives us

u′(t) = −t ·D(t)u(t) and D′(t) = −2t ·D(t)2.

Hence,
g′(t) =〈σ′(t), AD(t)u(t)〉+ 〈σ(t), AD′(t)u(t)〉+ 〈σ(t), AD(t)u′(t)〉

=〈−tD̃σ̃ + ũ, AD̃ũ〉+ 〈σ,A(−2tD̃2)ũ〉+ 〈σ̃, AD̃(−tD̃ũ)〉
=〈ũ, AD̃ũ〉+ [−〈D̃σ̃, AD̃ũ〉 − 3〈σ̃, AD̃2ũ〉]t.

According to the bounds in Appendix A.2, we have

|g′(t)| ≤ ‖A‖2 + 4t‖A‖1.
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In the meanwhile, we have

|g(0)| = |〈σ,ADu〉| = |〈(A− Λ)σ,Du〉| = |〈1
2

gradf(σ(0)), Du〉| ≤ 1

2
‖gradf(σ(0))‖F .

According to the Taylor expansion of g(t) around 0 and t ≥ 0 at first order, we have

|g(t)| ≤ |g(0)|+ t sup
ξ∈[0,t]

|g′(ξ)| ≤ 1

2
‖gradf(σ(0))‖F + t‖A‖2 + 4t2‖A‖1.

Hence the improved bound follows.

A.2. All the bounds
In this section we give all the bounds used in the proof of Lemma 14, 15 and 16. Let σ ∈ Mk

and u ∈ Rn×k with ‖u‖F ≤ 1. Note that here we do not require u ∈ TσMk. Denote D =
diag([‖u1‖22, . . . , ‖un‖22]) and Λ = ddiag(AσσT). We have the following bound for each term.

1.
|〈σ,ADu〉| =|〈Du,Aσ〉|

≤max
i
‖(Aσ)i‖2

≤‖A‖1.

2.
|〈u,ADσ〉| =|〈u, ddiag(AuσT)u〉|

≤max(|diag(AuσT)|)
= max

i
|〈σi, (Au)i〉|

≤max
i
‖(Au)i‖2

≤‖Au‖F
≤‖A‖2‖u‖F
≤‖A‖2.

3.
|〈u,ADu〉| ≤‖ADu‖F

≤‖A‖2‖Du‖F
≤‖A‖2.

4.

|〈Dσ,ADσ〉| =|〈u, ddiag(ADσσT)u〉|
≤max

i
(|ddiag(ADσσT)ii|)

≤max
i
‖(ADσ)i‖2

≤‖AD‖1
≤|A|∞
≤‖A‖1.

5.

|〈Aσ,D2σ〉| =|〈u, ddiag(AσσT)Du〉|
≤max

i
(|ddiag(AσσT)iiDii|)

≤max
i

(ddiag(AσσT)ii)

≤max
i

(〈σi, (Aσ)i〉)

≤max
i
‖(Aσ)i‖2

≤‖A‖1.
6.

|〈u, (A− Λ)u〉|
≤‖A− Λ‖2
≤‖A‖2 + max

i
|ddiag(AσσT)ii|

≤‖A‖2 + ‖A‖1
≤2‖A‖1.

7.
|〈Dσ,ADu〉| =|〈ADσ,Du〉|

≤max
i
‖(ADσ)i‖2

≤‖A‖1.
8.

|〈σ,AD2u〉〉| ≤max
i
‖(Aσ)i‖2

≤‖A‖1.
9.

|〈u,AD2σ〉| ≤max
i
‖(AD2σ)i‖2

≤‖AD2‖1
≤‖A‖1.
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10.

|〈σ,AD3σ〉| =|〈u, ddiag(AσσT)D2u〉|
≤max(ddiag(AσσT)D2)

≤max(ddiag(AσσT))

≤‖A‖1.

11.

|〈Dσ,AD2σ〉| =|〈u, ddiag(ADσσT)Du〉|
≤max

i
(|ddiag(ADσσT)iiDii|)

≤max
i
|〈σi, (ADσ)i〉|

≤‖AD‖1
≤‖A‖1.
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