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Abstract
One can learn any hypothesis class H with O(log |#|) labeled examples. Alas, learning with so
few exampl i i i i i O(log|#|)
ples requires saving the examples in memory, and this requires |X| memory

states, where X is the set of all labeled examples. This motivates the question of how many labeled
examples are needed in case the memory is bounded.
Previous work showed, using techniques such as linear algebra and Fourier analysis, that par-

ities cannot be learned with bounded memory and less than \H\Q(l) examples. One might wonder
whether a general combinatorial condition exists for unlearnability with bounded memory, as we
have with the condition V Cdim(H) = oo for PAC unlearnability.

In this paper we give such a condition. We show that if an hypothesis class #, when viewed
as a bipartite graph between hypotheses A and labeled examples X, is mixing, then learning it
requires |”H|Q(1) examples under a certain bound on the memory. Note that the class of parities is
mixing. Moreover, as an immediate corollary, we get that most hypothesis classes are unlearnable
with bounded memory. Our proof technique is combinatorial in nature and very different from
previous analyses.
Keywords: Bounded space, Lower bound, Mixing, PAC learning, Time-space tradeoff, VC-dimension

1. Introduction

1.1. Space Bounded Learning

In learning theory one wishes to learn an hypothesis drawn from a class H of hypotheses by receiv-
ing random labeled examples (Valiant, 1984). For simplicity, we focus on finite classes of Boolean
hypotheses. For instance, H can be the family of parities ®;csx; for different S C {1,...,n}, and
random labeled examples are pairs ((x1,...,Zn), Bicsz;) for random (z1,...,x,) € {0,1}". We
denote by A’ the family of labeled examples, so |#| = 2™ and |X| = 2" +1.

The fundamental theorem of statistical learning implies that learning is possible after seeing
O(log |H|) labeled examples, since most labeled examples would cut the number of feasible hy-
potheses by a factor of about two. Alas, learning with so few examples requires saving the exam-
ples in memory, and this requires | X’ \O(logm‘) memory states. A recent line of work asks how the
number of required labeled examples changes if we restrict the memory of the learner (see Shamir
(2014); Steinhardt et al. (2016)).
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To understand the quantitative aspects of space bounded learning, we’ll need two observations:

e Memory states: At least || memory states are needed in order to exactly distinguish |H|
possible hypotheses. The focus is on bounds on the number of memory states that are signif-
icantly larger than |H]|.

e Examples: At most O(|H|log|H|) examples always suffice for learning, even if the number
of memory states is only |#|, since the learner can enumerate the hypotheses one by one,
ruling out the current hypothesis if an inconsistent labeled example comes up. The question
is whether one can prove a lower bound on the number of examples that comes close to ~ |H|.

We refer to hypothesis classes that require ]’H|Q(1) examples for learning with bounded space
as unlearnable under the space constraint. Note that || is exponentially worse than the number of
examples O(log |H|) sufficient without memory constraints.

Raz (2016) was the first to prove lower bounds on space-bounded learning. He considered the
class of parities mentioned above, as suggested in Steinhardt et al. (2016). Raz showed that either
| X |Q(logm|) = 29n?) memory states or \H|Q(1) = 294" examples are needed for learning this
class. In other words, he showed that parities are unlearnable with 20(n?) memory states. His work
was then generalized in Kol et al. (2017) to parities on [ < n/2 variables, and this in turn gives lower
bounds for classes that contain such parities. Raz’s work and its generalization were constrained
to learning parities and used techniques such as linear algebra and Fourier analysis. This begs the
question of proving lower bounds for more general hypothesis classes.

1.2. This Work

We give a simple, combinatorial, sufficient condition for a Boolean hypothesis class to be unlearn-
able with sufficiently bounded memory. The condition includes parity classes and is about the
“mixing” properties of the hypothesis class when viewed as a graph, as explained next.

An hypothesis class can be described by a bipartite graph whose vertices are the hypotheses
‘H and the labeled examples X, and whose edges connect every hypothesis h € H to the labeled
examples (z,y) € X that are consistent with it, i.e., h(z) = y. Mixing is defined as follows,
similarly to the Expander Mixing Lemma (Hoory et al., 2006):

Definition 1 (Mixing) We say that a bipartite graph (A, B, E) with average left degree d is d-
mixing if for any A’ C A, B’ C B it holds that

A'||B'
E(A,B') - ”B”)JA’ <d\/|4|B]

For example, for parities d = \/W and |H| = 2|X|. In general we say that an hypothesis class
is mixing if the corresponding bipartite graph is O(\/W )-mixing. Mixing classes are such that,
even if one knows that the underlying hypothesis h was taken from a (sufficiently large) subset A’
of the hypotheses, knowing that & is consistent with at least one example of a (sufficiently large)
set B’ of labeled examples reveals very little further information on h besides its membership in
A’. Additionally, for mixing classes, even an approximation of the underlying hypothesis typi-
cally uniquely determines the hypothesis, since (for the most part) different hypotheses differ on a
substantial number of labeled examples (see the paper for a formal statement and proof). Hence,
PAC-learning implies exact learning for mixing classes.
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A learning algorithm that has A memory states and uses 7' labeled examples is a branching
program of length 7" and width A, given by a directed multi-graph with vertices in T + 1 layers
containing A vertices each. The algorithm starts with an arbitrary vertex in the first layer. Each
vertex, except those in the last layer, has out degree exactly |X| and is marked with a unique labeled
example. The algorithm transitions from one memory state to another according to the labeled
example it received. When the learning algorithm reaches the last layer it outputs an hypothesis that
depends on the memory state it ended up with.

We prove that mixing hypothesis classes are unlearnable when the memory is bounded by
roughly |H|'25 memory states.

Theorem 2 (Main theorem) For any constant s; € (0, 1), there are constants s2, s3 > 0 such that
if the hypotheses graph is d-mixing, |H| > so, and the number of memory states is bounded by

1.25
(!HI X \) . 1
2 1.25 )
d (1 + 1|‘6)((i|2> |H’51
then any learning algorithm that returns the underlying hypothesis with probability at least 1/3
must observe at least |H|* labeled examples.

In Section 12 we show two consequences of the main theorem. One immediate consequence that
uses the fact that random graphs are mixing (see e.g., Krivelevich and Sudakov (2006)), is that
almost all hypothesis classes are unlearnable with bounded memory. Note that unlike for circuits,
such a result does not follow from counting arguments'. Another consequence of the main theorem
is that any hypothesis class that forms an “error correcting code” (i.e., any two hypotheses in H do
not agree on many examples) cannot be learned with bounded memory.

Our work provides a general framework for proving lower bounds on space bounded learning.
The framework is combinatorial and fundamentally different from Raz’s analysis. In the next sub-
section we compare our results to previous work. We end the introduction with an outline of the
proof.

1.3. Previous Work

Shamir (in a private communication) and later, and independently, Steinhardt, Valiant, and Wager
Steinhardt et al. (2016) asked if one can show a lower bound on the number of examples needed,
given an upper bound on the number of memory states. Specifically, Steinhardt et al. (2016) focused
on the class of parities and conjectured that |’H\Q(1) examples are needed if the number of memory
states is sufficiently smaller than |X'|'°8 1. Raz (2016) proved the conjecture of Steinhardt et al.
(2016), thus showing a tight lower bound for parities. Later this work was generalized in Kol
et al. (2017), using similar techniques, to parities on [ < n/2 variables. Unlike those previous
works that were limited to parities, we provide a general framework to prove lower bounds on space
bounded learning that works for all mixing classes. Parities are mixing, as are random hypothesis
classes. For the latter previous techniques did not apply. Moreover, our proof is combinatorial
and fundamentally different from those in Raz (2016); Kol et al. (2017). Our method suggests

X|/2
[H] )
states and 7" labeled examples is about A*7!¥|. For parameters of interest, like A = |#|® and T = |H|®", the
number of learners is much larger than the number of hypotheses classes.

1. The number of possible hypotheses classes is (2‘ < 21" \whereas the number of learners with A memory
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a combinatorial sufficient condition for unlearnability with bounded memory, as we have with the
condition VC'dim(H) = oo for PAC unlearnability. The downside of the result in the main theorem
is that the bound on the number of memory states is only roughly |#|!-2> as opposed to |#{|(log [X])
of Raz (2016). We hope that by building on the new framework we present it will be possible to
prove optimal lower bounds for wide classes of hypotheses.

1.4. Related Work

Raz established a result closely related to ours Raz (2017) shortly after our paper appeared as a
technical report on the ECCC. Like our work, Raz shows that a mixing condition for the hypothesis
class implies time-space tradeoffs for learning the class. Comparing the two results:

e Combinatorial vs. Algebraic mixing: Our result is premised on a combinatorial mixing con-
dition (on the number of edges between every two large sets of vertices) whereas Raz’s result
is based on a linear algebraic mixing condition (about the largest singular value). Roughly
speaking, linear algebraic mixing implies combinatorial mixing (as in the Expander Mix-
ing Lemma), whereas algebraic mixing implies weaker combinatorial mixing (as in Bilu and
Linial (2006)).

e Labeled examples: Both works show a lower bound of |#|®*(}) on the number of labeled
examples needed given bounded space.

e Space: Raz shows a stronger lower bound on the space complexity: roughly (log|#|)?
rather than roughly 1.25log |#| in our paper. Recall that the best possible lower bound is
log |H|log |X|, which could be much higher than (log |#|)? Kol et al. (2017).

Subsequently to those works, we were able to use the framework presented in the current work to
match Raz’s bound Moshkovitz and Moshkovitz (2017). We hope that our framework could be used
to prove optimal results for wide families of hypotheses.

1.5. Proof Outline

We define a measure for the progress that the learner makes during the execution of the algorithm,
which we call certainty. Certainty measures how well the learner managed to narrow down the can-
didates for the underlying hypothesis. The certainty is low when the algorithm starts, and should be
high when the algorithm ends. Our analysis argues that when the memory is bounded the certainty
cannot increase much after seeing a new labeled example. It thereby implies that the number of
labeled examples that the learner sees must be large.

Assume a probability distribution over hypotheses in 7. For a memory state m at time ¢, let
Pr(m) be the probability that the algorithm lands in m when the underlying hypothesis is drawn
from the distribution and the examples are chosen at random. Let Pr(h|m) be the probability that h
is the underlying hypothesis conditioned on the algorithm being in state m. We define the certainty

of a memory m by
> " Pr(hjm)*.
h

Note that a memory with low certainty is one for which many different hypotheses are possible. We
define the average certainty of a set of memories M at time ¢ by taking the weighted sum of the
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individual certainties
cer'(M) = Z Pr(m) ZPr(h|m)2.
meM h
When we refer to the certainty of the algorithm we typically refer to the certainty of the full set of
memory states, or to the certainty of this set after the removal of a few memories (we’ll explain the
reason for removing memories shortly).

If the underlying hypothesis is picked uniformly from a set of ©(|#|) hypotheses, then at the
start time the certainty is O(1/ |H|). In contrast, an algorithm that identifies the underlying hypoth-
esis with high probability must have large certainty in its final time step. We prove that assuming
the memory is bounded, at each time step ¢ — ignoring some low probability sequences of examples
— there exists a high probability set of memories My, a large set of hypotheses H; such that for h
picked uniformly from Hy,

cer™ (M1 1) < cer'(My)(1 + |H|79),

for some small constant e > 0. This implies that Q2(|#|) labeled examples are needed.

As an example, consider the enumerator algorithm that goes through the hypotheses in order.
The algorithm maintains a current hypothesis at each time step. If the labeled example is inconsis-
tent with the current hypothesis, the algorithm moves on to the next hypothesis. If the underlying
hypothesis is one of the first few hypotheses the algorithm considers, the algorithm is likely to
identify that. Moreover, the certainty of the first memory states (the ones associated with the first
hypotheses) is high after sufficiently many time steps. However, if one omits the first hypotheses
and memory states, the certainty is low.

In order to bound the certainty we analyze the knowledge graph associated with the algorithm
at every time step t. The knowledge graph is a bipartite graph on memory states and hypotheses,
defined as follows.

Definition 3 (knowledge graph) The knowledge graph at time ¢ of a learning algorithm with mem-
ory states M for an hypothesis class H is a bipartite multigraph G; = (H, M, E;) where an edge
(h,m) € Ey corresponds to a series of t labeled examples (x1,y1), . . ., (x4, y¢) with h(z;) = y; for
every 1 < i <t and the algorithm ends up in memory state m after receiving these t examples.

At the start time the knowledge graph always has one memory state that is connected to all hy-
potheses. We think of such a knowledge graph as “expanding”. Formally, we define a non-standard
expansion property that we name “K-expander” (“K” is for “knowledge graph”) that applies to this
knowledge graph.

Definition 4 We say that a distribution p over the memories is B-enlarging if for every memory m
it holds that p(m) < %m).

Definition 5 (K-expander) A knowledge graph Gy = (H, M, E}) is an (o, 3, €)-K-expander if for
any S C H, |S| > a|H|, and any B-enlarging distribution T over the memories

|S|
Pr(S|IT) < — +e.
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At the first time step, there is just one enlarging distribution over memories: the one that picks
the starting memory state with probability 1. We show that the knowledge graph of any algorithm
for a mixing hypothesis class H at any early enough time step is K-expanding with small €. In
contrast, the knowledge graph of an algorithm that successfully identified the underlying hypothesis
is not K-expanding.

We use an inductive argument to analyze for every time ¢:

1. The K-expansion of the knowledge graph.
2. The certainty of the algorithm.

Towards 1 we show that a K-expanding knowledge graph of a learner with low certainty cer’(M;)
remains K-expanding after the (¢ + 1)’th step. Towards 2 we show that K-expansion at time ¢ + 1
prevents the learner from increasing the certainty at time ¢ + 1. We discuss these proofs next.

Preservation of K-expansion: Fix a large set of possible hypotheses S C H, |S| > «|H]|, and
a [J-enlarging distribution 7" over the memories at time ¢ + 1. Note that T" induces a distribution
T’ over the memories at time ¢ that is 3-enlarging as well. Moreover, the probability of the labeled
examples leading from 7”7 to T has to be large. From the K-expansion at time ¢, we know that
Pr(S|T") < |S|/|H| + €. The challenge is to argue that the example seen after time ¢ does not
reveal much information about the underlying hypothesis and its membership in S. Concretely,
we’d like to show that Pr(S|T) is not much larger than Pr(S|7”). Since the certainty at time ¢ is
low, we can focus only on time-¢t memory states m for which there are many possible underlying
hypotheses. For such memory states, because of the mixing property of the hypothesis class, there
can be only a small fraction of “bad” labeled examples that reveal much information about the
underlying hypothesis. Since the probability of labeled examples leading from 7" to T" has to be
large, the probability of “bad” examples is low even within those.

Certainty remains low: Since the memory size is bounded, a typical memory state at time ¢ + 1
has many sources, i.e., large in-degree in the branching program. We consider two extreme cases:

Heavy source: There is a large set of possible labeled examples S C X such that the algorithm
progresses from one memory m’ at time ¢ to a memory m at time ¢ + 1 if it is given any labeled
example taken from S. For instance, the enumerator algorithm we discussed above has heavy
sources: each time ¢ + 1 memory m has two memories at time ¢ that lead to it, the one associated
with the same hypothesis, m/ and the one associated with the previous hypothesis, m/. For example,
m/ is connected to m with | X| /2 labeled examples.

The case of heavy sources is the simplest to handle, and does not require any assumptions about
the K-expansion of the knowledge graph, only the assumption of low certainty at time ¢. The idea is
to focus on time-f memory states with low certainty, i.e., those that have many possible hypotheses.
For such memory states that transition to a time-(¢ + 1) memory state via any one of many labeled
examples, the mixing property of the hypothesis class implies that most possible time-¢ hypotheses
are still viable for the time-(¢ + 1) memory state. In other words, the time-(¢ + 1) memory state has
low certainty as well.

Many source: Here there is a large number of time ¢ memories M that lead to one memory
m at time ¢ 4+ 1. For instance, the memory states of an algorithm that stores only the last labeled
example have many sources.

The K-expansion of the knowledge graph ensures that the time-(¢ + 1) memory state m receives
no substantial information about the underlying hypothesis h from the time-t memories leading to
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it. The challenge is to account for the information that is received from the example seen after time
t. Roughly speaking, a full bit of information about & may be deduced from the example, and

Pr(hlm) < 2.2Pr(h|M).

We use the low certainty at time ¢ and the K-expansion to argue that the “confusion” due to the
many different sources M compensates for the information received from the example.

Every time ¢ + 1 memory can have both heavy and many sources. We show how to decompose
almost all of the sources to either heavy or many, combining both analyses to argue that the certainty
does not increase substantially.

2. Preliminaries
2.1. Probability

Claim 1 Let p be a probability distribution over a set A with ), » p(i)2 < r. Then, for every
A" C At holds that ) 4, p(i) < \/|A'|r.

Proof Using Jensen’s inequality:

(;1/’ ZP(Z)> < j/’ Zp(i)Q

1A’ i€ A’

Or equivalently,

i€ A’

Claim 2 (generalized law of total probability) For any events A, B and a partition of the sample
space C1,...,Cyp,
Pr(A|B) = > Pr(A|B,C;) Pr(Ci|B).
%

Proof

Z Pr(A|B,C;) Pr(Ci|B) = Z Plra(r?igB’Cgl) Plgrc(g)B)

)

1
= ]_DI‘(_B)ZZ:PI‘(A7B7C,L)
_ Pr(A,B)
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Claim 3 (generalized Bayes’ theorem) For any three events A, B, C,

Pr(A|C)

Pr(4|B,0) = Pr(B|4, O)p pre

Proof

Pr(A|C)  Pr(B,A,C)Pr(A,C)Pr(C)
(BIA OIS BIG) ~ Pr(A,C) PrC)Pi(B,C)
Pr(B, A, C)

Pr(B,C)

= Pr(4|B,C)

Let us prove a simple claim that states that the probability of event conditioning on a set of
disjoint events is actually a weighted sum.

Claim 4 Suppose B, ..., B,, are some disjoint events. Then,

Pr(B;)
Bl U. Bn) '

Pr(A|B;U... ZPr AlBi)

Proof

Pr(An(Bi1U...UBy,))
Pr(B1U...UBy,)
Pr((ANBy)U...U(ANBy))
Pr(B1U...UBy,)
2lim1 PT(A N B)
Pl"(Bl U...UB )

Pr(A|BiU...UB,) =

2.2. Mixing

For a bipartite graph (A, B, E'), A are the left vertices and B are the right vertices. For sets S C
A, T C Blet
E(S,T) ={(a,b) € Ela € S,beT}.

For a € A (and similarly for b € B) the neighborhood of a is I'(a) = {b € B|(a,b) € E}, and the
degree of a is d, = |['(a)|. If all d, are equal, we say that the graph is d,-left regular or just left
regular. We similarly define right regularity.
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Definition 6 (mixing) We say that a bipartite graph (A, B, E) with average left degree d 4 is d-
mixing if forany S C A, T C B it holds that

ST
]1E<S,T>|— ST o, /fsT
1Bl/dx

Claim 5 (Union of mixing graphs is mixing) [f (A, By, E1) is d-mixing with average left degree
dy and (A, Ba, E») is d-mixing with average left degree dy and |B1| = | Ba| then (A, By U By, By U

: A -
Ey)is2d + %Vh — da|-mixing.

Proof Fix S C A,T C B; U By, and denote T} = B; NT and T, = Bs; N T. Notice that the
average left degree in the new graph is di + dz and |B1 U B| = 2|B1| = 2|Bs|.

|1S]IT| |S||Tx |5||3|
S o . S, Ty)| — _
‘|E(S?T>‘ |BIUB2l/d1+d2 ’E(S,TI)‘—i_‘E( ’ 2)| Q‘Bll/d1+d2 2‘B2l/d1+d2
|S|IT3] |S]1T2]
< ||E(S,T1)| — E(S,T1)| —
< 1B 7l - G+ 1B T -
ISIITy [S]TA S| 7| [S]|T3]
IBl‘/dl Q‘Bll/dl—‘rdg |BQI/d2 2|B2‘/d1+d2
< dy/I[S|[Th| + dV/IS[|T2] +
ISITa] |, di+da| |S|[T3] d2_d1+d2
|Bi| 2 |Ba| 2
[S||T'| |d1 — do]
< 2d/|5||T|+ —5——F7—
< VI +
A
< <2d+ 2||Bl|’dl_d2> VISIIT]

Definition 7 (sampler) A bipartite graph (A, B, E) is an (e, €')-sampler if for every T C B it

holds that T(a) N T )
a) N
P —_— | > < !
A<' e |B] > ©

where a is sampled uniformly.

T
We say that a vertex a € A samples T correctly if "F(?;’ — f;} < e. The sampler property

implies that there are only a few vertices S C A that do not sample 1" correctly.

Claim 6 (Mixing implies sampler) [f a bipartite graph (A, B, E) is d-mixing and d s-left regular
2d?|B|

then it is also an (e, m)—samplerfor any € > 0.
A
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. I'(a)NT T T IT(a)NT
Proof leTgB.. DeﬁneSlz{a€A|% JB‘| > €}, ng{aeAHB" ()m | > €}
Let us bound the size of each of these sets:

T 51T
|S1|da <+6 < |E(S1,T)| < +d+/ ST,
|B| |B/da
where the right inequality follows from the mixing property and the left inequality follows from the

definition of Sy. This means that
‘SlfdAe < dv/ ‘SlHT’
&7 S| _ B
<

S =1
Sil<Be A < B
Similarly for So,
1S 17| 7| S| @B
—d T < |E da —
Bljdy ~ VIS 1BE D) <182lda {5 =€ ) = 4 < g

We will use the previous claim with d4 = |B|/2 and thus we will know that the bipartite graph is

an (e )-sampler for any € > 0.

8d2
" [BllAle2
3. Hypotheses Graph

The hypotheses graph associated with a hypothesis class A and labeled examples X is a bipartite
graph whose vertices are hypotheses in H and labeled examples in X, and whose edges connect
every hypothesis h € H to the labeled examples (z,y) € X that are consistent with h, i.e., h(z) =
Y.

Let us explore a few examples of hypothesis classes with mixing property.

parity. The hypotheses in PARITY (n) are all the vectors in {0, 1}", except the zero vector
and the labeled examples are {0,1} x {0,1}" (i.e., |H| = 2" and |X| =2 -2").

Lemma 8 (Lindsey’s Lemma) Let H be a n X n matrix whose entries are 1 or —1 and every two
rows are orthogonal. Then, for any S,T C [n],

> Hij| < VISI[TIn.

ieS,jeT

Lindsey’s Lemma and Claim 5 imply that the hypotheses graph of PARITY (n) is m—
mixing.

random class. For each hypothesis & and an example x, we have h(z) = 1 with probability
1/2. The hypotheses graph is a random bipartite graph. It is well known that this graph is mixing
(see Krivelevich and Sudakov (2006)).

We can rephrase Claim 6 for the hypotheses graph and get

Proposition 9 If a graph (H, X, E) is d-mixing then it is also (e 5 )-sampler for any € > 0.

"M X e

10
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3.1. H-expander

The main notion of expansion we will use for the hypotheses graph is H-expander, as we define next
(H stands for Hypotheses graph). This notion follows from mixing (Definition 6).

Definition 10 (H-expander) A left regular bipartite graph (A, B, E) with left degree d is an
(o, B, €)-H-expander if for every T C B, S C A, with |S| > o|A|, |T'| > B|B| it holds that

|S[IT]
|B|/da

|E(S,T)| - < €lS||T.
For example, the hypotheses graph (#, X', E) is left regular with left degree |X'| /2, so in this case
the denominator | B|/d 4 will be equal to 2.

Note the following simple observation that relates mixing and H-expander.

Proposition 11 If a graph (H, X, E) is d-mixing then it is also (o, 8, ——24—) — H-expander,
p If a graph ) g (@, 8, =) P
forany o, B € (0,1).

In the next claim we will prove that the the degree of each vertex is similar (N |d“‘)
Claim 7 (near regularity) Suppose that a bipartite graph (A, B, E) is an («, 3, €)-H-expander,

then except for 23| B| vertices in B, the degree of the vertex is in []A\(dA/]B|—e) ]A\(dA/]B|+e)].

Proof Define the two sets
Ty = {b € B||E(A,b)| < [A[(da/|B| —€)}, T>={be€ B[|E(A,b)| > |A|(da/|B| +¢€)}.

We will prove that the size of each of these sets is at most 3| B|. By the definition of T} we know
that
[E(A, Th)| < |A[(da/|B| = €)[Th].

By the H-expander property, if | 77| > (| B| then

da
Al (3 - <) < 1B,

and we get a contradiction. Similar argument also holds for 75. |

4. The Correct Hypothesis Must be Returned

A PAC learner needs only to find an approximation of the underlying hypothesis A*. In other words,
if D is the underlying distribution over the labeled examples X, then the learning algorithm should
return an hypothesis A that agree with h* with high probability over D. A PAC learner should return
such an hypothesis for any D, specifically when D is the uniform distribution. In this case h should
agree with h* on most of the examples. In this section we prove that a PAC learner for a mixing
hypothesis class must in fact identify the underlying hypothesis exactly (with high probability).

To show this, we point to a large number of hypotheses that are all far from one another. We
do so in two steps. First, we show in the next claim that for each hypothesis, number of hypotheses
that agree with it on at least 3/4 of the examples is small. Then we use Turdn’s theorem to prove
that in such a case there must be a large subset of hypotheses that are all far from each other.

11
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Claim 8 If a bipartite (A, B, E) with average left degree d 4 is d-mixing then for every set T C B,

the number of vertices a € A with |E(a,T)| > 5}5' is at most

(i)
7]\ da

Proof Denote S = {a € A||E(a,T)| > r52/5-}. This implies that | E(S, T)| >

L5|S||T]
|Bl/da

. From the
definition of d-mixing we know that

ST
B, 1) < WL L q /1577

|B| /da

Combining these two inequalities,

LSISIT] _ ISITL o s

Bl/ds = |Bl/da

This means

ISHT dy/STTT

2|B|/d 4

e (2@)2
T da

Or, in other words,

Lemma 12 (Turan’s theorem) Let G be any graph with n vertices without a r + 1-clique, then the
number of edges in G is at most
(1-3)%
1—2). 2
T 2

Claim 9 [fthe hypotheses graph (H, X, E) is d-mixing, then there is a subset of hypotheses H C
H, with |H| > .

See Aigner (1995) for more details.

1 6 =, such that every two hypotheses hi,hy € H have agreement less than 3 /4,

() = ha(a)}| < & 121,

Proof For any hypothesis h, use the previous claim with 7" equal to all the neighbors of h (there
are |X'|/2 such neighbors). Thus, only ?)IQP?I of the hypotheses agree with h on at least 3 of the
examples. For the sake of the proof, create a graph with vertices H that are connected if they agree
on less than 3/4 fraction of the examples. To prove the claim, we need to find a large clique in the
new graph.

The number of edges in the graph is at least ( lg‘) — 32d2. Using Turan’s theorem, if there is no

clique of size r + 1, then
1\ [HE (1A 2| H|
1—-) — > —32d
(=) = (5) -

12
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1\ _ HI(H] = 1) = 16025
1 >
< ) - [P

2
AT i
S ]

16d2
1+ Ed 1
r

_—
H|
rz ‘%Ld'z

5. Knowledge Graph

Definition 13 (knowledge graph) The knowledge graph at time t of a learning algorithm with
memory states M for an hypothesis class H is a bipartite multigraph Gy = (H, M, E}) where
an edge (h,m) € E; corresponds to a series of t labeled examples (x1,y1),. .., (xt,y:) with
h(z;) = y; for every 1 < i < t and the algorithm ends up in memory state m after receiving
these t examples.

At each step we will remove a tiny fraction of the edges from the knowledge graph and we
focus only on the memories M; — denote this graph by Gj. We can read of from this graph the
probability ¢;(h, m) which indicates the probability that the algorithm reached memory m after ¢
steps and all examples are labeled by h. The probability ¢;(h, m) is proportional to the number of
edges E;(m, h) between a memory m and a hypothesis h (in the graph G}). We can also observe the
conditional probability ¢;(m|h) which is the probability that the algorithm reached memory state m
given that all the examples observed after ¢ steps are consistent with hypothesis h. We can deduce
the probability of a memory state m : g;(m) = ) _;, q:(m|h)g.(h). We can also find the probability
of a set of memories M C M, (M) = 1 q:(m). If the algorithm, after ¢ steps, is in memory

state m, we can deduce the probability that the true hypothesis is h, ¢;(h|m) = w.

qt m)

5.1. K-expander

In a later section we will prove that the knowledge graph preserves a pseudo-random property. To
this proof a stronger notion than sampler is needed. Specifically, not only sets should sample well a
set of hypotheses but also a large set of distributions. Notice that the knowledge graph can be highly
irregular, e.g., there can be few memories connected to most hypotheses, whereas other memories
may not be connected to any hypothesis. Our definitions are tailored to irregular graphs.

Definition 14 (5-enlarging) Ler 0 < 8 < 1. We say that a distribution p over memories is 3-

enlarging with respect to a probability distribution q over memories if for every memory m, p(m) <
q(m)

ERE

13
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Any distribution is S-enlarging for sufficiently small 3. Only ¢ is 1—enlarging. When ¢ is uniform
the definition merges with the definition of min-entropy.
For any 3-enlarging distribution p with respect to a distribution ¢,

L= > pm)< Y am)/f= Y  alm) =4

m|p(m)#0 m|p(m)#£0 m|p(m)#0

this means that the support of a S-enlarging distribution defines a set of memories with g-weight at
least (5.

Definition 15 (K-expander) The knowledge graph (H, X, E) is an («, 3, €) — K-expander if for
any S C H with |S| > o|H| and a (-enlarging distribution T it holds that

15|
Pr(S|T) < + €.

(K in K-expander stands for Knowledge graph).

In the rest of the section we prove that the knowledge graph at time ¢ = 1 is a K-expander.
We can assume without loss of generality that the knowledge graph after the first example is the
hypotheses graph (since the algorithm can save in memory the first example). From Proposition 11
we know that the hypotheses graph is a (aq, 51, €1) — H-expander, for any a1, 3; € (0,1) and

2d . Later (in Section 11) we will choose a1, (1.

€6 = —22
Va1 H|B1]X]

Definition 16 Define M, to be all memories m (i.e., examples) with degree
(HI(1/2 —€1) < dp < [H|(1/2 + €1).
We remark that using Claim 7, M; must be large.

Claim 10 If the hypotheses graph is d-mixing and €; < 1/4, then G is an
(a1, B1,8€1 + 1) — K-expander.

Proof
To show that the hypotheses graph is a K-expander, fix H C H and a S-enlarging distribution
p. Denote

- 1H]
Err(H) = {z|Pr(H|x) > | + €}

(we pick e later). From the definition of M; and Err(H) we know that
|H|
|E(H, Err(H))| > ) +e) |H|(1/2 —e1)|Err(H)|
The right term is equal to

|H||Err(H))]

5 — |H||Err(H)|er + €|H|(1/2 — €1)|Err(H)|

14
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From the mixing property (Definition 6) we know that

E H
| ”( )l ’—I—d\/]Err H)|[H| > |E(H, Err(H))|.

Combining the last two inequalities we get
E )| H H||E
| ”( [Err WAL o fiEercya] > HIErrE) ”"( N B Bre(E)er + dHI(1/2 — 1) Brr(H))

dv/|Err(H)||H| > (e|H|(1/2 — €1) — |H|er) | Err(H))|
d\/ﬁ > \/|Err(H)|

(e H(1/2 = e1) — |Hler)
d?|H]|
(e H[(1/2 — e1) — |Hle1)?

The maximal value of the left term is, using €; < 1/4,

> |Err(H)|

d2
|H(e/4 —e1)?

‘We need to bound

S Pr(Hle)p) = Y Pr(Hla)p)+ Y. Pr(Hlz)p()

zeX ¢ Err(H) x€Err(H)
1| .
< > +e)p@)+ Y. 1-p(a)
¢ Err(H) ’,H‘ x€Err(H)
|H| q1(z)
< Tatet >
|H| z€Err(H) B
. |H| IH|(1/2 + €1)
definition of < — +e+
( WS gt 2 /2 - el
|H | d2 (1/2+¢€1)
< g7 tet :
|| [H(e/4—€1)? (1/2—e1)|X[B
|H| d? (14 8€1)
€1 <1/4) < —+e€e+ :
SV S gt A —ar B

Take € = 8¢; and notice that by the definition of €1,

d2 o d2 _041,81
H 2 4
1| | 2d

Va1 |H|B1|X|

3

Thus, the term we would like to bound is at most 8e; + a151 g < 8e1 + ag. [ |

15
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6. Certainty

Throughout the analysis we will maintain a substantial set of memories M; C M and a set of
hypotheses H; C H. At time ¢t we pick the underlying hypothesis uniformly from H; and only
consider memories in M. Initially, /1 = H and M is as defined in Definition 16. At later times,
H; and M, will exclude certain bad hypotheses and memories.

In this section we define the key notion of certainty. The certainty of a memory captures the
information it has on the underlying hypothesis, whereas the certainty of an hypothesis captures
the information it has on the memory state to be reached assuming the hypothesis was picked. We
further define the average certainty over all memories or hypotheses. We will consider memories
or hypotheses that are “certain above average” as bad. An algorithm that successfully learns H will
transform from having low average certainty at the initial stage to having high average certainty by
its termination. Our argument will show that this increase in average certainty must take a long
time.

First, we define the certainty of memories.

Definition 17 (certainty) The certainty of a memory m at time t is defined as
Z qr(hlm)?.
h

The average certainty of the set of memories M at time t is defined as

cer'(M) := Z qt(m)th(h\m)Q.
h

meM

If, for example, all the hypotheses could have caused the algorithm to reach m with the same
1

probability, then its certainty is >_; g:(h|m)? = (e this holds for the initial memory). If,
on the other hand, given a memory m there is only one hypothesis h* that caused the algorithm to
reach this memory m then its certainty is Y, ¢:(h|m)? = 1.

To simplify the notation we write cer!(m) when we mean cert({m}) = g(m) >, ¢ (hlm)?,
i.e., the average certainty with the set {m} of memories.

At each time ¢ we will focus only on memories that are not too certain, i.e., whose certainty is
not much more then the average certainty. Using Markov’s inequality we will prove that with high
probability the algorithm only reaches these not-too-certain memories. Let us define this set more

formally,
c 2 t
Bad§; = {m eEM ‘th (h|m) > ¢ - cer (Mt)} ,
h

for some ¢ > 0, that is of the order |#|, for some small constant e. Oftentimes, we will omit ¢
when it is clear from the context. For all ¢ > 1 we will make sure that M/; will not include Bad,
(and additional memories, as will be defined in later sections). The next claim proves that removing
bad memories does not reduce too much the weight.

Claim 11 For any ¢ > 0 and time t, ¢;(Bad$;) < 1/c

16
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Proof We can define a probability distribution over M using ¢; in the following way. For each

m € M its probability is defined by Zz((]\n})) . The assumption in the claim states that

Epen(Y a(hlm’)?] = Qt th (h|m")?
h

mteM

= cer'(M )/qt )

Using Markov’s inequality we know that the probability of

Bad$; = {mt € M‘ Zq,f(mm’f)2 > (e q(M)) - ———=
h
isatmost 1/(c- q(M)), i.e.,

0D = a0De = a(D) ~ a(@De

> a(m) L @(Bady) 1 = q(Bady) < 1/c.

mt GBCLd]\/j

There is an equivalent definition of certainty in terms of the certainty of the hypothesis, rather
than the memory.

Claim 12 For each memory m, hypothesis h and time t

q:(m)gi(hlm)? = q¢(h)qe(hlm)q;(m|h)

Proof
a(m)q(hlm)® = q(m)q(hlm)g(hlm)
(by Bayes’ theorem) = gq;(m)q:(h|m) W

= ar(h)gi(hlm)gi(m[h)

In particular we can prove

Claim 13 The average certainty is also equal to

cer' (M) =" qi(h) Y qu(hlm)ge(m|h).

heH meM

17
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Proof

cer! (M) = Z q¢(m) (Z Qt(h’m)2>

meM heH

= > a(m)g(hlm)q(hm)
meM,heH

(by Bayes’ theorem) = Z qt(m)qt(h|m)w

meM,heH 1(m)

= Y alhlm)a(m|h)a(h)
meM,heH

= ZQt(h) Z qt(h|m)qi(m|h)
heH meM

|
We can therefore define the certainty of an hypothesis h, when focusing on a set of memories M as
> a(hlm)qi(m|h)
meM
Given the last claim in mind we define
Badfy ={heH ‘ Z q:(m|h)qi(hlm) > c - cer'(M;)}.
me My

Oftentimes, we will omit ¢ when it is clear from the context.
Define H; = H and for t > 1, H;41 = H; \ Bady. We will define the distribution over the

hypotheses at time ¢ by ¢;(h) = ﬁ if h € Hy, else g;(h) = 0. Next claim proves that H; is large.

Claim 14 For any c > 0,

Hip1| = (1= 1/c)|Hyl.
Proof From Claim 13 and from Markov’s inequality, we know that

hPr (h € Badp) <1/c
~qt

Since Pryq, (h € Bady) = |B|'?I‘if| we get that

|Badg| < |Hy|/c.
Thus,
|Heea| > [Hy| — |Bady| > (1 — 1/¢)| Hyl.
[ |

In the rest of the paper we will prove that the average certainty of M;, even for a large ¢t ~
|H|2(M), will be at most %
In the next claim we will show that small certainty, small fraction of edges removed and

qt(My) ~ 1 imply that learning fails after ¢ steps.

18
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Claim 15 Suppose that the learning algorithm ends after t steps, |Hy| > 3 and at most ~y fraction
of the edges were removed from the knowledge graph. Then, there is an hypothesis h such that the
probability to correctly return it is at most

3v/c - cert(My) + 3(1 — q (M) +

Proof By definition, for any m € M, it holds that >_,, g:(h|m)? < ¢ - cer®(My). This implies that

for any h, g;(h|m) < \/c - cert(M).
Each memory m is associated with some hypothesis h(m) that the algorithm returns as its an-

swer when reaching m. The probability that the algorithm returns the correct hypothesis, assuming
the true hypothesis is h, is at most

S almln) + .

m|h(m)=h

Let us explore the first term

> almlh) = oo awlmh)+ > a(mb).

m|h(m)=h meM¢|h(m)=h meM¢|h(m)=h
Let us focus on the first term, by Bayes’ theorem, it is equal to

y o almam oy @)

meM¢|h(m)=h g(h) - meM¢|h(m)=h

We will use Markov’s inequality to bound this term. Let us first calculate the following expectation

S Y am|<1=2Fm | X am) guf[t

heH: | meM¢|h(m)=h meM¢|h(m)=h
Thus, for at most 1/3 fraction of the hypotheses h,
3
Z qt(m) > —.
_ | H|
meMy|h(m)=h

In other words, for at least 2/3 fraction of the hypotheses the first term is bounded by 3+ /¢ - cert(My).
As for the second term, it is bounded by

Z qt(m]h).

me My
Averaging over all h € H; we get
1
A DY amlh)y = D" > amh)g(h) = D a(m) =1-q(M).
U h meM, méM; h me M,
Thus, by Markov inequality, for at most 1/3 fraction of the hypotheses >_, 5/, g¢:(m[h) = 3(1 —

qt(My)). To sum up, there is an hypothesis for which the sum of the first and the second term is at

19



MOSHKOVITZ MOSHKOVITZ

most 3y/c - cert(My) + 3(1 — qi(My)). [ |

We also define a weighted certainty using a weight vector w of length | M| and each coordinate
in w is some value in [0, 1] by

cert (M) = Z qe(m)wp, - g7 (h|m).
meM

Note that if w is the all 1 vector then cer! (M) = cert(M).

w

7. Representative Labeled Examples

In this section we define the set of non-representative labeled examples. We then prove that this set
is small and thus can be removed.

For each memory m at time ¢, a representative labeled example x is one with ¢ (x|m) equal
roughly to ﬁ In particular, given m and the unlabeled example, the probability to guess the label
is roughly 1/2.

Definition 18 Let m be a memory state at time t. We say that a labeled example x is representative

atm if

1 < ( ‘ )< 1.1
o S @1\ TMm) S 75
1.11X] |X]

We denote the set of labeled examples that are not representative at m by N Rep(m), i.e.,

1 1.1
N = X X — 5.
Rep(m) {me rqt+1<x|m><1.1‘x,}u{we rqt+1<x|m>>,x,}

The next claim will imply an equivalent definition for this set.

Claim 16 For any set of labeled examples S C X and a memory m it holds that
au(S|m) = Y Pr(S|h)ai(hjm).
h
Proof Using Claim 2 we know that
gi(SIm) = > qi(S|m, h)qi(hlm)
h

= 3" Pe(SIh)a(hlm)
h

Using Claim 16, we know that the not-representative set is also equal to

1 1.1
NRep(m) = {:U € X Z Pr(z|h)q(h|m) < 11X }U{w € X Z Pr(z|h)a(hlm) > |X]} '

heH heH

We would like to prove that N Rep(m) is small for any memory with small certainty.
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Note that
qt(hlm, z) o< g (h|m) (4 pyeps

where I, »)ecp means that 2 and h are connected in the hypotheses graph (this follows from Claim
3with A = {h},B = {2},C = {m} and q(a|h,m) = q(z|h) = ZIzner). This prob-
ability distribution can be imagined as if it were constructed by taking the hypotheses graph and
adding weight g;(h|m) to every hypothesis h. Keeping this observation in mind we need some new
notation.

Suppose there is a weight w; for each hypothesis in the hypotheses graph (%, X', F'). Then,
define the weights between sets S C H and T' C X by w(S,T) = 3 g er W(8) (s1)er and
w(S) == > ,cqw(s). We would like to prove that even if there are weights on the hypotheses the
hypotheses graph is still pseudo-random. More formally, we will use the following definition.

Definition 19 We say that a left regular bipartite graph (A, B, E) is (8, €) — weighted-expander
with weights wi, ..., w4, Yo wi = 1, Vi,w; > 0, and left degree da if for every S C A and
T C B,|T| > B|B| it holds that

w(S)

WS 1) = 1g17a,

T|| < €[T]
The next claim proves that any H-expander is a also a weighted-expander assuming low 3 weights.

Claim 17 If the hypotheses graph (H, X, E) is an (o, 3, €) — H-expander and Z‘:jl w? < 7 then
the hypotheses graph is a (3, 2¢ + 2+/a|H|r) — weighted-expander with weights w1, . . ., Wyy).

Proof Fix S C H,T C X,|T| > p|X|. Denote by Bad(T') C H all the hypotheses that do not
sample T correctly, i.e., Bad(T) = {h € H|Y,cr Iuner > |T| (5 +¢€)}. Then |Bad(T)| <
a|H| (because |E(T, Bad(T))| > 2294DUTL | ¢\ Bad(T)||T| and if | Bad(T)| > a|H| then this is
a contradiction to the H-expander property).

Let us start with upper bounding w (S, T).

U)(S, T) = Z w(s) Z I(s,t)EE + Z 'UJ(S) Z I(s,t)GE

s€S\Bad(T) teT s€SNBad(T) teT
T

< Y we(Fedar)s ¥ wem

s€S\Bad(T) s€SNBad(T)

T
< <‘2’+6|T|>Zw(s)+|T| > w(s)

seS s€Bad(T)
S)|T
(Claim 1) < “’(2)‘|+(e+ alH|r)|T),
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We can lower bound w (.S, T') similarly. Define the set Badz(T) = {h € H| Y ,cr Iuner <
IT| (3 — €)} and deduce that | Bads(T')| < |H| and that

w(S,T) = S ws)d Tspert+ Y, w(9)Y Isper

s€S\Badz(T) teT s€SNBada(T') teT
T
> Z w(s) (’2‘ - e|T|> +0
s€S\Badz(T)
. T
(Claim1) > (w(S) - \/oz]H|r) 5 Tl

- w<s>'§' ~ ValHIr(1/2 ~ )|T| ~ cw(S)|T

T

> w()Ll  amT) - d)
T

= | | (ValH|r +¢€)|T

Next we will prove our main claim in this section.

Claim 18 Let m be a memory in the knowledge graph at time t with certainty bounded by r, i.e.,
>4 qt(h|m)? < r, assuming the hypotheses graph is an («, 3, €) — H-expander, and /o|H|r +¢ <
1/44 then |N Rep(m)| < 2p.

Proof Denote €* = 4y/a|H|r + 4e. Define T1 = {x| >,y Pr(z|h)q:(hjm) < 1‘}6‘*} and define
weights to hypotheses w(h) = ¢:(h|m). From the definition of 77 we know that

Th|(1 — €
S Pr(aliatim) <
heH,xeT
The left term is equal to
Z if(:c,meeq(hlm) = w(ﬁl"[yTl)i
netmer, 1t X

Assume by a way of contradiction that |T}| > 5| X, then Claim 17 implies that

2 w(H) 2
w(H, 1) > (\Tﬂ —2(\/a|H|r + e)]Tl’) e
|X] ||
T 2|1y | 2|11 |
= — —2\/a|H|r — 2e¢ ,
X | ||
where the equality follows from the fact that w(H) = 1.
e ni0 - ¢) _ i) o, A
(I —e 1 1 1
—— > = — 2V o|H]r —2¢ ,
|| | X ||
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= 4/ a|H|r + 4e > €".
But the latter contradicts the definition of €*. Hence we can deduce that |77 | < §|X|.
Similarly, define T = {x| ), cq Pr(z|h)q:(hlm) > 1+€ } Assume by a way of contradiction
that |75| > B|X| then

(1 + 6*)|T2 Q‘TQ Q‘TQ‘
e Pr(T3[h)q:(hlm) < o a|Hr ,
EIE > VAl 2

where the left inequality follows from the definition of 7% and the right inequality follows from
Claim 17. So again we conclude that |T5| < B|X]. [ |

8. Knowledge Graph Remains K-expander

Let us prove that a K-expander remains a K-expander even in the face of a new example, provided
that the certainty is low and the hypotheses graph is mixing.
1
Denote by gmtm™h C X the examples that cause the memory to change from m! to m!*!.

Claim 19 [fthe hypotheses graph is an («, 3, €) — H-expander and the graph G} is an (o, B, €') —
K-expander, then the graph G, is an (o, B', 16e+16+/a|H|c - cert (My)+ 2,8—@ +€")—K-expander.

Proof Define €* := 2¢+2y/a|H|c - cert(My). Notice that we can assume without loss of generality
that €* < 1/4 (i.e., € + \/a|H|c - cert(My;) < 1/8), otherwise the statement in the claim is trivial.

The distribution g;11 over memories m at time ¢ + 1 also defines a distribution over (m?, S)
where m! is a memory at time ¢ and S C X is a set labeled examples, in the following way

gr1(m', S) = g(m") Pr(S|m’)

For ease of notation, if S = {x} (i.e., S includes only one labeled example), we simply write

Ge+1(mt, x).
Fix a 3’-enlarging distribution p (with respect to g;1) over memories at time ¢ + 1 and denote
its support by M. For each m € M, denote p(m) = qt%,(m), for some 3], > (’. This induces

a distribution over (m’, S), where m!

t _ qi(m®) Pr(S|m?)
p(m*,S) = [ .

Fix a set of hypotheses H C H with |H| > a|H]|.

We will start by proving that for any m!, memory at time ¢, and for any S C X, |S| > 3|X|, the
probability g1 (H|m?’, S) is not much more than ¢;(H|m?"). Fix m!, a memory at time .

is a memory at time ¢ and S is a set of labeled examples
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g (Him', ) = " qrra(hlm, 9)

heH
) Qt+1(S|h7mt)
(Claim 3) = hlmf) ===
) };{Qt( |m”) et (S[m?)
) Qt+1(5|h7mt)
Claim 2) = q h|m'
( ) i;J o )Zh/ @+1(S|W, m)q (W' |m?)

_ mt Pr(S[h)
= 2 ) oS ()
s Prielh)

= qt(h|m")
2 ) e T

g (hlm") 3 e %I(z,h)EE

heH ZhIEH qt(h,’mt) ZCEES %I(zvhl)eE .

(see below) =

The last equality is true since if (z, h) € E then Pr(z|h) = ITQ\’ else Pr(z|h) = 0.
To further simplify this expression we define the weights w(h) = g;(h|m?) for each hypothesis

h € H. Using the weight notation from Section 7 we have that

> z Qt(h|mt)1x,h E w(H, S
it 5) = Setaes WO ence _ uliLS)
Ywenpes W M) pyer  w(H,S)

Since >°,cq w(h)? < ¢ cer'(My), we know from Claim 17 with €* (recall that ¥ = 2¢ +
2\/a|H|c - cert(M;) that

wlHm) 5| 4 eS|

Qt+1(H|mtvS) <
‘Mﬁiyﬂt”ﬂ—e*]ﬂ
M|S|+e*|5\
usin Hlm') =1) < :
(using qu(H|m') = 1) < —rgr g
H|m!) 4 2¢*
(divide and multiply by |S]/2) = W
_ a(Hm) 2¢”
1 —2¢ 1 — 2e
(fore* <1/4) < q(H|m")(1+ 4¢*) + 4€*
< q(Hm') + 8¢

For each memory m! at time ¢, denote by

Err(m') = {z € X|q1(H|m', 2) > q.(H|m") + 8¢*}.
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Using Claim 4, we have that

Qt+1(H\mt,Err(mt)) = Z Qt+1(H|mt,$) th(mt,x)
: qi+1(mt, Err(mt))
zeErr(m?)
t
> (q(Hlm") +8¢") ) g1 (m’, )

t t
z€Err(m?) Qt—i-l(m ,Err(m ))

= q(H|m'") + 8*

Then for all m* € M, since for each S > B|X'| we know that g; 1 (H|m?, S) < q;(H|m')+8¢*
and from what we have just proved, | Err(m')| < 8]X|. We will show that this implies a bound on
gr1(Err(m')|m").

Using Claim 2, we know that for any labeled example z,

@+1(x|lm) = Z Gr+1(x|h, m)qi(hjm)

h
= 3" Pr(elh)a(hlm)
h

2 2
< —_— h = —
= Zh \X|Qt( [m) x|

Hence, )
1 (Err(m')m') = Z gr+1(w|m) < 5|X!m =25
x€Err(m)
Let us rewrite the desired expression
t
Y an(Hm)p(m) = Y qeer(H| Vi (m', 8™"))p(m)
meM meM
t
(Claim 4) = Z qe+1(H|m' Smtvm)qtﬂ(mt’ S™M) qiya(m)
meM,mt Qt+1<m) 5;n
= > an(#m! 5™ )pmt, S
meM,mt
t
= Z Qt+1(H‘mt7\/xeSmt,mw)p<mtasm 7WL)
meM,mt
t
(Claim4) = Z Qt-q—l(H‘mt z) Qt+1(mt7x) QtJrl(mt, Sy
meM,mt 7 Gt+1 (mt’ Smt,m) 61/71
= > @ (Hm, 2)p(m', z)
meM,mt
xesmt,m
= Z @1 (H|m', z)p(m!, x)
mtxex
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To bound this desired expression we divide all the pairs of (m!, ) depending on whether x €
Err(m') or not. Hence, it is equal to

Z Qt+1(H‘mt7x)p(mtv$) + Z qt—i-l(H’mt:x)p(mtvx)

t t

:1:§2Err&mt) xEErrEmt)
< ) (@(Hm') 48 )p(m',x) + Y p(m',x)
mt, mt,
x¢ Err(mt) x€Err(mt)
. mt, Err(m!
<SS aHmpta) | +ser 1 30 2 5 o
E t t t
= | Y aHm)p(m!, ) | +8+> @1 rr(mﬁ,ﬂm Jaul)
mt.x mt
' . . 28g:(m")
< | Do wHmpim! ) | 8¢+ 3 =20
mt,x mt
t t * 26
< th(H\m )p(m*,x) | + 8¢ +ﬁ
mt,x
H] |, o, 28
< e +8 + —,
] e

where the last inequality follows from the assumption in the claim that the knowledge graph at time
tisan («a, 3, €) — K-expander. [ |

9. Heavy Sourced Memories

We start by examining one possible step of the algorithm: when there is an abundance of examples
S C X that lead from a memory m/! at time ¢ to a memory m‘*! at time ¢ + 1. The algorithm can
apply such a step, for example, to examine consistency with a specific hypothesis h. All the labeled
examples that are consistent with A (there are | X'| /2 such labeled examples) will lead the algorithm
to change the memory state from m! to m**1.

Definition 20 The set of heavy-sourced memories at time t + 1 is defined as

Mt}ffvy>b = {m!TY3Im! € M, with at least b| X | labeled examples that lead to m'*1}.

We will assume, without loss of generality, that m!*! cannot be reached through other memories

(otherwise, make a few copies of m!*!; we will make this argument formal in Section 11). Under
this assumption it makes sense to identify — as we will do later —a memory m!*! with a pair (m!, S)
that lead to it.

We would like to show that the certainty does not increase much as a result of heavy steps. The
intuition is that if there is low certainty at m!, then the mixing of the hypotheses graph ensures that
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S reveals very little information on which of the possible hypotheses is the underlying one. The
bound on the certainty at time ¢ + 1 as a function of the certainty at time ¢ is shown in Claim 20 and
in Claim 21. Claim 20 gives an expression for certt!(M}" f‘f”y>b). To understand this expression,
notice that a small variant of Claim 13 is the following equality

cery,(M) =Y ai(h)g(hlm)g(m|h)w(m).
meM heH

Claim 20 If |Hyy1| > |H¢|(1 — 1/c), and ¢ > 2 then for any set M of memories at time t + 1 and

any weighted vector w (i.e., Vi, w; € [0, 1]) it holds that cer’;}! (Mthf?vy% N M) is at most
Pr(S|h)

2o (W [m*) Pr(S[h')

(1 - % > g (R)ae(hlm")ge (m' |h)w(me ) Pr(S|h)

(mt7S)EMtthvy>bﬂM

heH

Proof Let us start with rewriting g¢1(h|m!™1), for some m!*! € Mt}f?vwb that corresponds to
the pair (m?, S)

(x) Gr+1(hm™Y) = geyr(h]S,m")
. . . t q(h|m?")
(using Claim 3) = ¢/(S|h,m )7Pr(5|mt)

Pr(S|h)qe(h|m’)
2w Pr(S|m?, h')g:(h'|m?)

(using Pr(S|h, m") = Pr(S|h),
and Claim 2)

Pr(S|h)g:(h|m')
2w Pr(SIh) gy (h'|m?)

Note that
() qer1(m"H ) = gi(m'|h) Pr(S|h).

Use Claim 13 and equations (), (%, %) to rewrite cert; ™ (M} f‘lwy>b NnM)

> a1 (h) > Wnt+1 1 (Am ) ger (mR)

het mtHle MY M

= S an(h) S Wit Zjﬁ gl‘)}zt)(il(z \lf) gi(m'|h) Pr(S|h)

heH (mt,S)eM'E 1> M

IN

2 Pr(S|h)qg;(h|m! :
(1 + c) > a) > sy P5r<’sy);f/ )(qt\(h,‘;t)qgm (k) Pr(S|h)

heH (mt,8)e M e

_ 2 t t Pr(S]h)2
_ (1 n c) > qe(h)ae(hm") g (m” [R) w5 > Pr(S|h) g (R [mt)’
(m*,S)EMT VP M
heH
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to understand why the inequality is true, notice that we have a sum of the form ), ;, g:+1(h)ay,
for some value a;, > 0, which is equal (by the definition of g.(h)) to

1 1
T 2 W S T g 2
|[Hes] heH; 11 1| (1 = 1/c) heH; 11
2 1
(forc>2) < (1+> 7 > ay
¢/ | t|hth+1
2 1
(Hi4+1 € Hy) < <1+> —_— ap,
)l
2
p— 1 -
( + C) > a(h)ay
her

The next claim shows that certainty does not increase much in the case of heavy sourced mem-
ories.

Claim 21 If the hypotheses graph is an (e, €')-sampler, ¢ > 4, |Hy| > |H|/3, |Hps1| > |He|(1 —

1/c), cert(My) < % and for each m € My, h € Hy, it holds that ¢(h|lm) < a - cer'(My), and

b > max(5ec + 2¢V3e'c, 12a* c + ¢),

then for any set of memories M at time t + 1 and any weight w it holds that

4 S 2
cerfjl(MZf?vy>bﬂM) < <1 + c> Z cert(mt)Mw(mt,s) + [c : Ce?”t(Mt)]

(mt,8)eM,' 1> nM
Proof For each subset of labeled examples S C X define Err(S) C H as the set of all hypotheses

Pr(S|h) — N%H > €. From the sampler

property of the hypotheses graph (see Definition 7) we know that for every S C X, |Err(S)| <
¢ |H].
According to Claim 20, cert™ (M]'©*¥=" 0 M) is at most (x)

that do not sample S correctly, i.e., if h € Err(S), then

Pr(S|h)
2w qe(h'|m?) Pr(S|h’)

2
<1 n C) ) qe(h)qe(hlm") g (m' |R)w (e 5) Pr(S|h)
(m,S)eM L =b M
heH
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The denominator can be lower bounded using the sampler property of the hypotheses graph as
follows

S aqWm)Pr(SIK) = Y (W jm') Pr(S|)
h! W ¢Err(S)
sl ot
> (m ) S q|m)

h ¢ Err(S)

(see below) > <||i" - 6) (1—€"),

where in the last inequality we used Claim 1 with €’ := \/€/|H|c - cert(M;) and the distribution
q(-|m?) we also used the fact that since m! ¢ Badyy; we know that Y, g(h|m?)? < ¢ cert(Mp).
From the assumption in the claim we know that cert(Mt) < %, this implies that €’ < v/3¢’c.
Consider two cases:
Case 1: If hh ¢ Err(S), then Pr(S|h) < L 4 ¢. Thus,

X
S
Pr(S|h) . e
Tt NS
Eh’ qe(h'|m?) Pr(S[h') (%—6) (1—¢")
"
< 14 5 2¢e+€
(m - e) (1—€")
2¢ + €’

(using |S|/|X| > b) < 1+m

Case 2: If h € Err(S), then we use Pr(S|h) < 1 to bound

Pr(S|h) § 1
2w ar(W|m") Pr(S|h) = (b—€) (1 —¢€")

We will show that
Z qt(h)qt(h|mt)qt(mt\h)w(mt,5) Pr(S|h) < 6a%¢ - cert (M)

(mt,S)eM Y= M
heErr(S)
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The left hand side is at most

2 a(War(hlm! ) (m! )25

heavy>b |X|
(m*,8)eM 1"~ NM

heErr(S)NH;

IN

(see below)

S
> a2
(mt,8)eM/{T > M
heErr(S)NH;

(Claim 12)

IN

S
> a4 215,
(mt,8)eM/ T M
heErr(S)NH;

(assumption in the claim)

IN

t 3 1 307 t 5]
(cer*(My) < ﬁ) Z qt(m )w -cer'(My) - 2m

IN

(mt7S)EMt}ffvy>bﬂM
heErr(S)

(1Err(S)| < €1H])

IN

1] ]

(m',S)eME 1> M

6a2€ - cert (M) - Z q:(m?)
mteM,

< 6a’e - cert(My)

IN

The first inequality is true from the following reasons:

1. w; <1, for each ¢
2. foreach x € X, Pr(z|h) is either 0 or 2/|X|
3. if h ¢ Hy; then ¢:(h) = 0.

To sum up the two cases, Equation (%) is at most

(] = (W) (Rl ) (m ) )

(m?,S)eM{ 1> M
|S] 2¢ + ¢’
(m“ oo

heH
+  6a%¢ - cer'(M, );
V=6 (1—e

2
Z qt(mt)ga -cert(My) - QE .

¢'[#]

Using Claim 13, (i.e., cer'(m") = 37, 4, ¢¢:(h)q:(h|m®)g:(m'|Rh)), Equation (x) is at most

)l = cer Oy g (14 ) (1 Gt —en

(mt,8)eM/ {1 M

a’é - cert t;
]
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The rest of the proof uses simple algebraic manipulations.

(1+2) () (=50 =a9)
(see Ttems (1), (2) below) < (1+ 2) <1+ 51> <1+ 1)

(see Item (3) below) < 14 —
c

|
7N
[—
+
QN
~_
N
—
+
e
N———
N
—
+
—
S2)
lw
a |
S~—
—
=+
(e
| N
m\
\_>
"

1. b5ec<b=; < é

2. We would like to bound % by % Recall €’ < v/3€'c. We have bec + 2¢v/3€c <
b<1=¢€ <+V3ec <05 = ﬁ < 2. Thus, we would like to show the bound
dec + 2€”c < b — ¢, s0 it is enough that Sec + 2¢v/3€’c < b, which is true by the assumption
in the claim.

3. The expression (1+ 2) (14 &) (1+ 1) is equal to

c

1+ 2424 2 (14
5¢ ¢ 5c? c
_|_

R
- 5 ¢ 5z ¢ 5cz2 2 5e3

~ o1y 16 n 13 n 2
B 5¢ = 5c?  5c3
6 4 1 2
= 14+ —4+.— (1342
* oS¢ * 20c < * c>

(c=4)

AN

—

+
\

Let us move on to the second expression we would like to bound

2\ 1
(see Item 1 below) < <1 + > z
c) e
2
(see Item 2 below) < -

c

1. It suffices to show that %2:/ <l/ce 12a%€'c+e<b

2. (1+2/e)l/e=1/c+2/c?and also 2/c* < 1/cfor2 < c.
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10. Many Sourced Memories

We would like to show that the certainty remains low in the case that a new memory m/*! is reached

by sufficiently large ¢;-weight memories 1 (m!*1) = {m! m}, ...} at time ¢ and each such mem-
ory m! is reached using exactly one representative labeled example z;. Recall that representative
examples were defined in Section 7.

We will assume, without loss of generality, that m!*! cannot be reached from m! using more
than one example (otherwise, make a few copies of m!™!; we will make this argument formal in
Section 11). Under this assumption it makes sense to identify — as we will do later — a memory
mt+! with set of memory-(labeled-)example pairs {(m!, z;)} that lead to it.

1
1

t

Definition 21 The set of many-sourced memories at time t + 1 is defined as

Mﬁﬁnwﬂ = {m'"Y 3 memories mt € M; with Z q(mh) >

7

and labeled examples x; ¢ N Rep(m!) that lead to m'™'}.

We will prove that the certainty remains low for many-sourced memories for 3 that will be chosen
later. Here is an outline of the proof (the exact values of the constants are not important):

1. Recall from the K-expander property (that its preservation we proved in Claim 19) that for
any large enough A C H it holds that

G (Hb(m 1)) < :i' e

(also recall that ¢)(m!*1) are the memories at time ¢ that lead to m!*1.)
2. We will prove that for any h € H,
qe1 (RIm™1) < 2.2¢4(hlyp(m" 1))

The intuition is that one labeled example gives about one bit of information on h and this
changes the probability by about a factor of 2.

3. Putting together the first two steps we have that except for a small size set T' C H, for any

other h € H,
23

h tJrl <
gt+1(hm'™) < ]

Importantly, the bound does not not depend on ¢.

4. Then we will show that certainty remains low.

In step 2 we want to upper bound g;1(h|m!*1). Let us start with investigating this term and
writing it as a function of memories from time .

Claim 22 For any hypothesis h and a memory m'™ that can be reached by the pairs {(m!, S;)}

it holds that
_ 22 Pr(Silh) g (hlmg) qe (m)
Zi Qt(5i|m§)%(m§)

i1 (hlm!™1)
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Proof

g1 (Rlm ™) = qu(h| Vi (mi, Sy))

qt(h A (Vl(mf,Sz)))
qt(Vi(mf, S;))

g (Vi (h A (mk, S)))
a(Vi(mj, Si))

> at(h A (mi, Si))
>iat(my, Si)

Zi qt(h|m§asi) Pr(mgvsi)
> a(Silmi) Pr(mj)

5 Pr(Si) ) (5, ! )

> at(Silmf) Pr(m})

> Pr(Si|h)ge(hmf) g (m})

Zi Qt(si‘mf)%(mg)

(Conditional probability dfn.) =

(De Morgan’s law) =

(Disjoint events) =

(Conditional probability dfn.) =

(Claim 3 & g;(Silh,m!) = Pr(Si|h)) =

Now we are ready to prove step 2.
Claim 23 Ifm!*t! ¢ Mfﬁmpﬁ then for any h € H it holds that
qer1(hlm ™) < 2.2 g (b (m")).

Proof We will use the fact that if m!™! ¢ Mt’fﬁny%/ﬁ , then it can be reached exactly by the

memory-(labeled-)example pairs {(m!,z;)} where all memories m! are different and for all i,

zi € NRep(m;).
From Claim 22 with S; = {z;} for all i we know that
tHy o > Pr(wilh)ge(hlmf) g (m])
221 g (@ilmg) qe (my)
5, Zrae(hlmtyar(m)
221 ¢ (@ilmi) e (my)
5, 2au(hlmt)g(m?)
> 1.11|;F| Qt(m;f)
i qu(hfmi)qi(my)
> at(my)
@ (my)
= 22 th h\m ((m t+1))

(by Claim 4) = 2.2-qt(hlw(mm))

ge+1(hlm

(see below) <

(definition of N Rep(m!)) <

= 2.2
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the first inequality is true since if 2; and & are consistent then Pr(z;|h) = 2, else Pr(z;|h) = 0.

|xp
|

Let us move to step 3.

Claim 24 [f the graph G is an (¢, ', €') — K-expander, and 22¢' < o, then for every memory
mitl e Mﬁinwﬂ there is a set T C H,|T| < o|H|, such that for any h ¢ T it holds that

2.3
himtth) < ==,
Qt+1( |m )_ |7—[|

Proof Define T' = {hl% < g1 (h|mtt1)}, then

7| t+1
2.3 < @ (TIm"™),
]

From Claim 23 we know that for every h € H it holds that
q+1(hm! ) < 2.2 gy(h|yp(m'Th)).

The last two inequalities imply that

2.3@ < 2.2 q(T|Y(m'Th)).

Assume by contradiction that |T'| > o/|H
q(T|p(mtth)) < % + €. Putting the last two inequalities together we have

, then from the K-expander property we know that

T T /
23— < 22—+ 2.2€,
] ]
or in other words
1,
22 | H| ’
which is a contradiction since by the assumption in the claim we know that 22¢’ < . |

Let us move on and prove the 4 step in the outline. To this end, we first prove that vertex con-
traction can only reduce certainty, where contracting a few memories my, . .., m; in the knowledge
graph into one means that all these [ vertices are replaced by one vertex m and all the edges of
the form (m;, h) are now of the form (m, k). Notice that the number of edges remains the same.
The reason we care about vertex contraction is that from the point of view of the memory m!*! the
vertices 1)(m!*1) were contracted.

Claim 25 [f memories my, ..., m; have been contracted to a vertex m, then

q:(m)gqe(h|m)? < Z qt(m;) g (h|m;)*

7
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Proof
a(m)gi(hlm)? = q(m)g(hlmy Vv ...V my)?
2
. . gt (m;)
using Claim4) = q;(m qe(hlm;
( ) i )(Z: t(hlmi) 20(m)
(by Jensen’s inequality) < g;(m) Z (qt(hmi)2 qt(mi)>
; q:(m)
= > a(mi)ae(hms)?
i
|
Using Claim 12, the last claim imply the following
Corollary 22 [f memories mq, ..., m; have been contracted to a vertex m, then

qr(h)qi(hlm)qi(m|h) < Z gt (h)qt(hlm;)gt(m;lh)

Claim 26 [f the hypotheses graph is an («, 3, €) — H-expander, the graph G} is an (o, 3',€') —
K-expander, 22¢' < o/, ¢ > 45, cer'(M;) < %‘, Hia| > (1 —1/¢)|Hy|, 3|He| > |H|, and for
each m € My, h € Hy, it holds that q;(h|m) < a - cer'(My), then for any set of memories M at
time t + 1 and any weighted vector w (i.e., Vi, w; € [0, 1]) it holds that

/ 2.3
cerf METTOM) < (g X aa(myun + 1350laeer! (M)

me M=

Proof Using Claim 24 for every memory m!*! ¢ Mﬁﬁ"wﬁ ' there is a set T, mt+1 C Hy | Tper1] <
o/|H|, such that for any h ¢ T,,:+1 it holds that

2.3
G (Rt < 25
[H|
Using Claim 13,
cerl M (M A M) = > g1 (M) g1 (Am"™ ) grgr (! A)w e
mt“eMﬁ‘{"”ﬂ/mM
hEH
= Z Qt+1(h)QtJrl(h\th)QtH(mt+1|h)wmt+1 +
mHlEMﬁ‘iny>ﬁ/ﬁM
h¢T, 141
> G+1(R) g1 (h[m ) g (M R)wyess
mHlEMZﬁ”y>ﬂ/ﬁM
hETmt+1
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The sum over h ¢ T,,,:+1 is at most

2.3
> qe1(h) - ] g1 (M R)wpyen
mt'HGMtTT{MDBIOM
hgT, 141

2.3
: > W1 > Ger1(P)gera (m' 1 |h)

H|
!
mttle M P AM heH

2.3
= G X e
mt+1eMtT§"y>5/mM

IN

Let us focus on the sum over h € T},,++1. From Claim 23 we know that
Gr+1(hIm"™Y) < 2.2qy(h(m"™1)) (%)
We can also upper bound the term
e (m™HR) = g (Va(m, 2)|h)
= Z G (mi, | h)
i
= > a(mi|h) Pr(zi|h)
i

2
(see below) < ZQt(mﬂh)m

2

m@t(d)(mt“)\h) (%)
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where the inequality is true since if I(, ,)c g then Pr(z|h) = 2/|X], else Pr(z|h) = 0. Thus, from
Equation (x), (%) (and using V;w; € [0, 1])

Z 1 () g1 (AIm™ ) ger (m 1 h)
mt“eMtTi"y”lmM
heT 141
4.4 t+1 t+1
< x| Z qe+1 () qe ([ (m™ 7)) g (¥ (m™ ) h)
mt“eMt’Tl"”ﬁ/mM
hGTmtJrl
4.5
(see below) < Ed Z gt (h)ae(hl[(m"™ 1)) ge (¥ (m" ) )
mt+1€MZﬁ"y>B/ﬁM
heT, ++1NH;
i . 4.5
(using Claim 22) < Ed Z qi(h)q:(h|m") gy (m'|h)
thGM{ﬂ"y>ﬁlﬁM
hETmz+1ﬁHt
mtew(mt+1)
) . 4.5
(using Claim 12) < | Z @ (m")qi(h|m?)?
mt+1€MZﬁ"y>6/ﬁM
heT, 1+1
mt€1/1(mt+1)
.. . 4.5 t t 2
(assumption in the claim) < ] Z qe(m")(a - cer'(My))
mt+1eszriny>ﬁ’mM
hGTmt+1
mtew(mt+1)
4.5
(|Tperr| < [H|) < ] > g (m?)(a - cer(My))? - |1
mt“eM[ﬂ"Wﬂ/mM
mtew(mt-&-l)
3 1
(cer'(My) < ﬁ) < 13.5o/azcert(Mt)-m Z q(m')

/
mtHle M M
mt ew(mt+1)

(see below) < 13.5a/a’cer! (M)

to understand why the second inequality is true, notice that we have a sum of the form

4.4) " qra(h)ay,

heT
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for some value a;, > 0, which is equal (by the definition of ¢;) to

4.4 4.4
PO —
[Hy ] 2. < [H|(1—1/c) 2 an

heH 10T heH;1NT
4.5
forc > 45) < — ap
fore 2990 < gy, 2
t+1NT
4.5
(Hiy1 C Hy) < T, Z ap
t he HiNT
= 4.5th(h)ah
heT

The last inequality is true since every m € M is in ¢»(m!*1!) for at most | X'| memories m!™!. W

11. Combining Many Sourced and Heavy Sourced Memories

In this section we sum up all the claims proven so far and show that for an hypotheses graph that is

d-mixing, if the memory is bounded, then the number of labeled examples used till learning must

be large. To do so, we will notice that cer!(M;) = O <ﬁ) , and then prove that

cer'™ (My11) < cer'(My)(1+ [H|™),

for some small constant v > 0. This will imply that even after many steps (about Q(|#|")) the
certainty will be at most O(1/|H|) at each step.

To bound the certainty at each step, we show how to decompose the edges of the knowledge
graph, so that each edge leads either to a heavy-sourced memory or to a many-sourced memory
(recall Definitions 20, 21), or is part of a small error set. To achieve this we duplicate some of the
memories.

Claim 27 (Decomposition lemma) Suppose that the hypotheses graph is an («, 3, €)—H-expander,
the number of memory states is at most A, \/ a|H|c - cert(My) + € < 1/44, and fraction of edges

removed from the knowledge graph Gy, i.e., v = 1 — %, is at most 0.5, then for any time t and
Y172 S (07 1) by

e removing at most

2
=+ 48+ denm
fraction of the edges from Gy (recall that ¢ > 1 was used to define Bad )

e creating for each memory m in Gyy1 copies (m, i) so each edge (m, h) now corresponds to
an edge ((m, 1), h) for some single i

o . h
we can make sure that memories in the new graph Gy | are only in Mz_ﬁnw UM, fiwy> 2,
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Recall the connection between ¢; and G} mentioned in Section 5 — the probability g;(m) is the
fraction of edges connected to m in Gj.

Notice that in order for this claim to be meaningful, the term 4c¢7y;v2 A must be smaller than 1.
Proof For each hypothesis there are exactly @ labeled examples that are consistent with it. Thus

¥

t
there are (T) sequences of length ¢ that are consistent with each hypothesis. Thus, there are

X t
L= (151

edges in the knowledge graph at time ¢. Put it in other words, at each time step the number of edges
is multiplied by 12 ie.,
X
Loy =X,

2
This implies that there are at least (1 — v) L1 = (1 — 7)@

We start by removing a small number of edges:

- L; edges in G ;.

e Remove edges in G4 connected to memories m at time ¢ with ), qi(hlm)? > ¢ cert(My)

— As was discussed in Section 6, thus are Badjy; and Markov’s inequality implies that at
most 1/c of the weight over memories are of this type. Le., we remove at most 1/c¢
fraction of the edges.

e Remove edges in G4 that the £ 4 1 labeled example is a non-representative labeled example

(see Section 7) in G; (i.e., labeled examples x such that g;+1(z|m) < %IX\ or gi+1(x|m) >
1.1

i)

— Using Claim 18 for any memory m at time ¢, |N Rep(m)| < 2/3|X|. Thus, the fraction
of edges in G441 of this type is at most 43 (because for each memory m at least ‘Qﬂ of
the possible X labeled examples will make a new edge in G;y1 and at most 43 ‘2&' of
these edges are non-representative labeled examples).

e Remove edges in Gy1 connected to memories m!*! at time ¢ + 1 with less than (1 —
v)L¢11/(cA) edges (i.e., much less than the average number of edges to a memory)

— A simple calculation proves that we removed at most 1/c¢ of the edges.
1

¢ Using the remaining edges, for each other memory m!*
way (note that we will not add new edges in the process):

create a few copies in the following

many-source Do until impossible: if m!*! is connected to memories {m!} with total ¢;-weight more
than 7 using labeled examples {.S;}, then create a copy (m!*!, j) and connect all mem-
ories m} to (m!*1, j) with one labeled example x; € S;. Retain all other labeled exam-
ples S; \ {x;}.

heavy-source Do until impossible: if m‘*! is connected to a memory m! with more than 2| X'| labeled
examples S, then create a copy (m*!, j) and connect memory m?’ to (m'*1, j) with all
labeled examples S.
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— If some edges are still connected to m**! after the last two steps are over, then remove
those remaining edges.

— Let us explore how many edges were removed in this step. For that, first recall what
71 and 2 represent (see Definitions 20, 21). If there are more than ~;|X|y2L; edges
connected to a memory m*! in graph G} 11> then we know that the there is 7 such hat
memory (m!T!, i) is heavy-sourced or many-sourced.

What is the fraction of edges we might remove out of all edges entering a memory at
time ¢+ 1? (recall that memories left have at least than (1 —+)L;41/(cA) edges entering
them)

11X |v2 Ly V1| X|y2 Ly 1
= = 2cy172\ - —— < AdeyiyeA,
(1 —=~)Lig1/(cA) (1 =)L X|/(2cA) 1—7

where in the last inequality we used ﬁ < 2, which is true since v < 0.5.

Thus, the total fraction of edges removed in the entire process is at most

1 1
- + 456 + - + 4cy1y2 A

Recall that we defined M7 in Definition 16 and before that we defined ¢;. For all ¢ > 1, we
will construct My formally in the proof of Claim 28. Recall also that H; 1 and c were defined in
Section 6.

It might be helpful to think of d in the following claim as roughly \/W ,c=|H
small constant s > 0, and |H| ~ | X|.

5, for a very

Claim 28 [f the hypotheses graph is d-mixing, § = |C71-LO\(\)§(2|’ A is the number of memory states with

A < (eB)7125, and ¢ > 108, then for any time step t < 1078 - ¢, the following hold

o |Hy| > (1-1/c)" H]
e the graph G} is an (c%v 283c16, tc%l) — K-expander

e for any weight vector w (i.e., Yi,w; € [0, 1]) on the memories at time t and for any subset of
memories at time t, M C M;
6\ 11
c

t—1
cery, (M) < [;j < Z Qt(m)wm> + % : Z cer! (My)

meM t'=1

o (M) >1— %
e foreach h € Hy,m € My it holds that q;(h|m) < 2c? - cert(My)

® we remove at most % fraction of the edges of the knowledge graph at time t
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Before we prove the claim let us prove (in Claim 29) that the last item in the claim’s list implies that
cert(My) < %

Claim 29 [f cer! (M )g# and foranyt <1078 - ¢,

cert (M) <

-y

Proof First recall a well known inequality, for any z, 1 + = < e* = Vn > 0,(1 + 2)" < €*

6 6 . 6\t 24
Thus, (1 4 §)t < €%/¢. Since ¢t < 0.001 - ¢ < (In(2.4/2.3)/6) - c, we have that (1 + ¢)" < 24,
Thus,

]7—[\ Z cer! Mt/

t'=1

t 3
then cer(My;) < THI

t—1
24 85 /
cert (M) < ] + el Z cert (My).
t'=1
Let us focus on the following recursively defined series: a; = % and

Then a; > cer!(M;). Since this series is monotonically increasing, we have the following upper
bound

8.5t

a1 < CL1+Tat
1
t<107® < —
( ¢) < a1+ q55ae
< o+ g 01+ o)
a1+ —(a1 + —a
= 1000 100
3
(geometric series) < ...<1.02a; < H

Proof (of Claim 28) From Proposition 9 we know that the hypotheses graph is an (€sam; €sgm =

ﬁ)—sampler for any €44y, > 0. From Proposition 11, it is also («, 3, €1) — H-expander with

2d
€1 =
Vol H|B|X]

for any .. We pick a = 1/c3*. By the choice of a, 3 and for ¢ > 2 we have that

2d 2 1
2 :\/ 100 ST?
|-\X\ ac c

100
NCETE T

Those values of «, 3 will be our choice for a;; and 3; that appear before Definition 16.
We prove the claim by induction on ¢.

€1 =
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Induction Basis. At the beginning H; = . From Claim 10, we know that G is an («, 3, € =
8¢1 + ) — K-expander. Note that ¢ < 1/¢%0 for ¢ > 10.

Denote by F is the set of edges in the hypotheses graph.

Take memory m in M7, and denote its degree by d,,,, then m’s certainty is equal to

> ai(hm)* = <I(h7m)€E>2 =dp <1>2 - L
dm dn dm’
h h
where the second equality follows from the fact that for each (h,m) ¢ E the value in the sum is
equal to 0 and for each (h,m) € E, the value in the sum is equal to 1/d?,, and there are exactly d,y,
hypotheses h with (h, m) € E. From the definition of M (see Definition 16), using ¢; < 0.04 we
know that
dm > [HI(1/2 = e1) 2 [H]/2:2,
hence 9.9
1 < ZZ
cer (My) < A
We remove all edges touching a memory not in M;. From Claim 7 there are at most 23| X | memories
not in M. The number of edges connected to each memory is at most |H|. L.e., we remove at most
23| X||H| edges out of the | X'||H|/2. In other words, we remove at most 43 fraction of the edges.
Induction Step. We use the known inequality 1 — z > e ?*forz € (0,1/2) = Vn >
0,(1 —z)" > e 2" 1 € (0,1/2), and Claim 14 to deduce that (recall ¢ > 2)

[H > (1) ] > e 2] = gy =
where the third inequality holds sincet — 1 < 0.5 - ¢ < %
We will use Claim 19 to prove the K-expander property of G}, ;. Note that for ¢ > 48,

283 1
166+16v3ac+m S ﬁ

Thus, using Claim 19 and the inductive hypothesis, the graph G} ; isa (c%’ 28c16, %?)—K—expander.
From the the inductive hypothesis we have that at most a fraction of % < 0.5 edges were
removed from (. Note also that for ¢ > 2 it holds that V3ac+e< 1 /44.
We use Claim 27 with

e Let v define the many-source set M,}9"”™ (see Definition 21). To later apply Claim 26,

we choose v, = 2[¢16.

e Let 7 define the heavy-source set Mt}flwyy” (see Definition 20). To later apply Claim 21
we choose
8d?
IR

sam

Y2 = D€gamC + 50¢°

We choose €4, Such that o will be minimized. To do so, we equate the two terms that
comprise 2 by choosing €2,,, = 10c* ¢ %, which means that 2 < 100¢3 {/ %.
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For later use, notice that

200
m72 < 2005019\4/ |H!|X = 2008c" \4/ ~100 51 #

From Claim 27 we know that by removing at most

2 800 1.25
~H4B+ 3 — BN < = +45+ﬁc

fraction of the edges, the graph only has heavy-sourced or many-sourced memories

Fix M a set of memories in G} ; and a weight vector w (i.e., for each memory at time ¢ + 1, w
assigns a weight in [0, 1])

Heavy-sourced memories. We can use Claim 21 to prove that

e (MU0 0 M)
is smaller than

IN

<1+4) > 5]

cert(mt)mw(mt’s) +
(mt,S)eM,' Y72 M

[i - cert(Mt)]

IN

S 6
Z cert(mt)mw(mgg) + E-cert(Mt)

(mt,S)e ML= g
L heH

(see below) < Z

1
oY ) (1 1) s (S| +
(m!,S)eM, ' 72 M
L hE'H

: cert(Mt)]

oo

IN

> ¢ (m’

(mt S)eM’“”“’y”2 M
heH

7
[ : cert(Mt)] (%)
c
To prove the third inequality we will show that for |S| > ~2|X| it holds that
5] 1 ¢
— < (14 - S|m*).
) = —I—c q+1(S|m")

43
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From the sampler property (see Definition 7) we know that for each subset of examples S C X
there is a set Err(S) C H with |Err(S)| < €.,,,,|H| such that for each h ¢ Err(S),

S|
Pr(S|h) > — €sam

From Claim 16

G (Sim) = 37 Pr(S|h)gu(hjm")
h

> 3 Pr(SIh)g(hlm?)
h¢Err(S)
> ﬂ_ hlmt
= Z |X’ €sam Qt( ’m)
h¢ Err(S)
‘S‘ < €sam ) t
= —(1- qt(h|m®)
2 U 8171 M;(S)
(definition of v9) > 151 <1 _ Coam > Z qi(h|m")
I Desam¢ h¢ Err(S)
(Claim 1 &cer'(M;) < i) > 151 <1 - 1) (1 —+/3c€m)
T HE T X Sc e
This means that .
151 @+1(S|m") .
X7 (1= &) (1= /3c€hym)
So we just need to show that
! <1+ !
(1 - é) (1 - 3celsam) ¢
First let us simplify +/3cel,,,
8d2
/ —
R 7 P =
(= i) = oo
0 Xl ) 8d2
c |H||X| \ 1007 ()4 S
_ g8
\ 10010t %

1 3V8
B<1) = 26,5 \/1\0[

1

4c

IN
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Note that
1 1 —(1—1/(4c) — 1/(5¢c) + 1/(20c?))

(1-5) (1—2) - (1-5)(1—2)
! 2(1/(4¢) +1/(5¢))

VRS
—~
—
\
&=
N—
—~
—_
\
&=
S~—
VAN
[\V]
~_
AN

1
< —
T c
Many-sourced memories. We can use Claim 26 since cl% > 22 - tc%l and we get that
t+1 many>vy1 23 1 t
cer'™ (M) nNM) < - Z Ge+1(Mm)wy, + o cer (M)

meM;} " M

2.3

= @ Z q:(m§)qey1(zilm)wm | +
m:{(m’f,xi)}EMZiinyleﬂM
1
+ f-cert(Mt) (k)
c

Combining heavy-sourced and many-sourced memories. For each m!, memory at time ¢,
we define the weight of m! due to heavy-sourced memories

heavy t
w = > q+1(S|m )Wt 5)-
S|(mt,S)eM, £ 172 M
Similarly, we define the weight of m! due to many-sourced memories
many . __ t
w = Z Ge+1 (2| m" )wp,.
zilm={(mtz;)}eM;} """ M

heav
'mt

many

The total weight of m® is denoted by w,,,s = w, " +w"{". Combining (x), (%) we have that

2.
et 00) < Y alm (zqﬂh\mw-w,’;:;%@-w:f"y)+i-cert<Mt>
mt h

2.3 8
< th(mt) max {Z @2 (hlmb), \7—[!} Wyt + - cer'(My)
mt h

Define M, = {m!| Y, ¢?(h|m!) > 2.3/|H|} and M} = {m!| >, ¢?(h|m!) < 2.3/|H|} and the
last term is equal to

Z q (M)W - thz(h\mt) + Z gt (m")wy,: - ‘27_3 + [8 . cert(Mt)]

c
mteMq h mteMy
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using the induction hypothesis on M, the last expression is at most

2.3 8 < 6\
] Z qe(mHwy,e | + . Z cer’ (My) <1 + c> +
mteM, t'=1

2.3 8
t t
+ ; qt(m*)wy,e - 7|7-[| + [C - cer (Mt)]

_m EMb

which is at most
t t—1
2.3 8 / 6
W E Qt(mt)wmt + —- E Ce’f't (Mt/) (1 + )
mtEMt ¢ t'=1 ¢

and we get the bound we wanted to show using the following equalities

Z G (m)wy, = Z Qt(mt)Qt+1(5|mt)w(mt,S) +
meM (mt’S)GMZflwy>W2 AM
Z Gt (mg)qe+1(xilmi)wn,

m={(m,z;)}eM; 7" M

= > a(m’) > 1 (SIm ) wine gy +
mt

Sl(mt,S)eM,' 172N M

Z%(mt) Z Gr+1(i[m")wn,

>
zilm={(mt,z;)yeM """ M

h
= > almYw™ Y a(m
mtEMt thMt
= Z Gt (M)W
mbte M
Removing edges. Denote by M’ all memories at time ¢ + 1 that are heavy-sourced or many-
sourced. So far we bounded the average certainty cer®™!(M’). Notice that this average certainty is
equal to
cer™ ML (M) = Z Gr+1(m, h)qep1(hlm).
meM’ heH
Applying Markov’s inequality, we have that

1
Pr(gi11(hlm) > ¢ - cert™™ (M")] < —-
h,m C

We will remove all edges with g;1(h|m) > ¢ - cer!™(M"). We will show that this removal does
not increase the certainty by much for most memories.

Denote by Err all pairs (m, h) such that g1 (h|m) > ¢* - cer'™ (M). Putting in different
words the last equation, we have that

1
2’

> a1(m) Y a(hm)| <

h|(m,h)€Err
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Applying Markov’s inequality again, we have that for most memories we do not delete too many
edges:
Pr > qe+1(hlm) > <l
m c| ¢
h|(m,h)EErr

As was promised in Section 6, we maintain a substantial set of memories M;;; C M that we focus
on, and we are ready to define it

1
My :=SmeM Z gi+1(hlm) < - and qu(h!m) <c-certTY (M)},
h|(m,h)€Err ¢ h
recall that M’ contains all the memories that are heavy-sourced or many-sourced. Thus, using also
Claim 11, we have that
2 2(t+1
Gr+1(Me1) > g (M) — —21- (C)

Note that for all m € Mt+1, the removal of edges with g;11(h|m) > ¢ - cer!™(M’) can only

increase by at most a factor of <1+ 171 the probability g;+1(h|m) (because we have removed

- 1/
at most 1/c fraction of the edges from m € M;i1). Thus, for each m € M1y q1(hlm) <

(14 L) Peer™ (M) < 2¢%cer™ (My4q).
Let us now also remove the edges from Claim 27. Thus (using the bound we showed earlier on
Y17y2), in time ¢ + 1 we removed a total fraction of

1.25
(e 2)s (Boass 220)
C C

edges. We will prove that this term is at most %. From the assumption in the claim we know that
A < (¢B)~125, this means that AB1?5 < L < L.
thus, the term (c3)!-2°> must be smaller than 1/|#|. In particular, 163c < 1. Hence, the total fraction
of edges removed at time ¢ + 1 is at most

o tot ot S

1 1 2 1 1 4
16¢ 4c¢  2¢ ~ ¢’

The last removal increases the average certainty cert (M) by at most (1 + 4/c). So, in total,
the removals cause the average certainty cer’ "1 (M) to increase by a factor of at most (1 + 4/c) -

(141.1/c) <1+ 5. To sum up,
6\
(1+5)

certH (M) < [|27-[3| (Z qt(m)wm)

meM

t

Z cer’ (My)

(":\OO
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11.1. Choosing Parameters

For a mixing hypothesis class #, i.e., when d? ~ | X|, we show a lower bound that is roughly | |25
on the number of memory states needed for learning A using less than [#£|©(!) labeled examples.

Theorem 23 For any constant s € (0, 1), if the hypotheses graph is d-mixing, |H| is at least some
constant, and the number of memory states is bounded by

(Hll?fl)l‘25 1
42 ' 6a2\ 12 s
(1+38)

then any learning algorithm that outputs the underlying hypothesis (or an approximation of it) with
probability at least 1/3 must use at least 10~8|H|*/13 examples.
[H]

16d2
[X]

Proof From Claim 9, we know that there is an hypothesis class H' C H with |H'| > such

that every two hypotheses in 4’ has agreement less than 3 /4.
To apply Claim 28 to H’ we will prove that the number of memory states A < (¢3)~1?> with

10042 (1 + 1|6—)§|2> 10042

B = <
[H'[| X [H||X]
Thus,
(Be)t-35 = d? 130 1602\
c (1—|— ] )

Hence, using the assumption in the claim with ¢!3? = |#|*, we have that A < (¢f)~1?°. From
Claim 28 we can deduce that even after 10~8 - ¢ examples given, the certainty is at most 3/| |, the
total number of edges removed is at most %, and 1 — ¢ (M) < %

Using Claim 15 there is an hypothesis h € H’ such that the probability to correctly return it is
at most

3 2t 4t
3 e — +3. 242
Tt T

1.25
we will prove that this expression is at most 1/3. Since the claim is nontrivial (Z;H) > |H]|.

This implies that ' is much bigger than ¢. Hence, the first term that comprise this expression is
much smaller than 1/3. The sum of the last two terms that comprise this expression is much smaller
than 1/3 since they are equal to 7 - 105.

Thus, H' is unlearnable with bounded memory (since all hypotheses in ' are far apart). Note
that the learner is even unable to improper learn 4’ (which means that the learner can return hypoth-
esis not in H') — because the learner does not have any computational limitations, it can compute
an hypothesis in H’ exactly (since all hypotheses in H' are far apart). This implies that also # is
unlearnable with bounded memory. |
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12. Applications
12.1. Random Hypothesis Class

One immediate consequence of Theorem 23, that uses the fact that random graphs are mixing (see
e.g..Krivelevich and Sudakov (2006)), is that almost all hypothesis classes are unlearnable with
bounded memory. Note that unlike for circuits, such a result does not follow from counting argu-

. . [x1/2
ments because the number of possible hypotheses classes is (2| ) < 21¥IM] whereas the number

H|
of learners with A memory states and 7" labeled examples is about AAT %!, For parameters of inter-
est, like A = |H|®M and T = |#|®W, the number of learners is much larger than the number of

hypotheses classes.

Theorem 24 A random hypothesis class with n hypotheses and n labeled examples (for sufficiently
large n) almost surely cannot be learned with bounded memory, i.e., for any constant 0 < s < 1if
the number of memory states is bounded by

nl.25—s

then any learning algorithm that outputs the underlying hypothesis (or an approximation of it) with
probability at least 1/3 must use at least | H|*/2" examples.

Proof A random class can be viewed as a random bipartite graph in the following way: the vertices
are examples and hypotheses and there is an edge (h, =) between hypothesis h and example x if and
only if h(x) = 1. We know that this graph with || = |X| = n is almost surely O(y/n)-mixing
and has degree (1 + o(1))n/2 (see Krivelevich and Sudakov (2006)). From Claim 5 we also know
that the hypotheses graph is also O(/n)-mixing. Now we can apply Theorem 23 to deduce the
unlearnability of a random hypothesis class. |

12.2. Error Correcting Codes

The next claim is helpful in proving that an hypothesis class is mixing:

Theorem 25 (see Thomason (1989)) Let (A, B, E) be a bipartite graph with |A| = |B| = n. Let
each vertex in A have degree at least pn, where 1/2 < p < 1, and let n > 0 be such that no two
vertices of A have more than p*n + i common neighbors. Then, (A, B, E) is \/(p + i) - n-mixing.

We consider one use of this theorem, by proving that any hypothesis class that is also an error
correcting code (will be defined formally) cannot be learned with bounded memory.

Definition 26 (Code) A binary code is a subset C C {0,1}". The elements of C are called the
codewords in C.

Definition 27 (Distance) An error correcting code C C {0, 1}" has (relative) distance ¢ if for any
c1 # ca € C, the fraction of coordinates that c1 and ca differ is at least ).
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A code C' C {0, 1}" can be viewed as an hypothesis class H¢: the hypotheses correspond to the
codewords, the examples correspond to the n coordinates, and an hypothesis h. € H¢ is defined by
hc(7) which is equal to the i-th coordinate of c¢. So the number of labeled examples X, is |X'| = 2n.

If a code C has distance at least 6 > % — ¢, then the number of common neighbors of any two
hypotheses is at most

Xl _ (1 LIy |X]
1—-0n=01-96)—< | = — == |X —
(=om=(1-0)T < (5+e) TH=(5) 1X1+e5
Denote p = e‘Qﬂ. To use Theorem 25 we need to make sure that [C| > 2n (and take only 2n
codewords from C' as hypotheses) and then we can bound the mixing parameter by

1 x| R
Z = J1x )= 2
<2+“) 2 Myat

Summing up the discussion so far, using Theorem 23 with the mixing parameter d? = % (1+€|X))

and |H| = |X| = 2n, we have the following theorem.

Theorem 28 For any code C C {0,1}" with |C| = 2n and relative distance at least 5 — € and any
constant s € (0, 1), if the number of memory states is bounded by

( 4|C )1-25 1
14 2en (5+8en)"* [C|*’

then any learning algorithm for Hc that outputs the underlying hypothesis (or an approximation of
it) with probability at least 1/3 must use at least |C|*/13" examples.

Note that the theorem is useful for codes that have very small rate but very high distance (for

reference, see, e.g., MacWilliams and Sloane (1977)).
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