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Abstract
We obtain the first polynomial-time algorithm for exact tensor completion that improves over the
bound implied by reduction to matrix completion. The algorithm recovers an unknown 3-tensor
with r incoherent, orthogonal components in �n from r · Õ(n1.5) randomly observed entries of the
tensor. This bound improves over the previous best one of r · Õ(n2) by reduction to exact matrix
completion. Our bound also matches the best known results for the easier problem of approximate
tensor completion (Barak & Moitra, 2015).

Our algorithm and analysis extends seminal results for exact matrix completion (Candes &
Recht, 2009) to the tensor setting via the sum-of-squares method. The main technical challenge is
to show that a small number of randomly chosen monomials are enough to construct a degree-3
polynomial with precisely planted orthogonal global optima over the sphere and that this fact can be
certified within the sum-of-squares proof system.
Keywords: tensor completion, sum-of-squares method, semidefinite programming, exact recovery,
matrix polynomials, matrix norm bounds

1. Introduction

A basic task in machine learning and signal processing is to infer missing data from a small number
of observations about the data. An important example is matrix completiton which asks to recover
an unknown low-rank matrix from a small number of observed entries. This problem has many
interesting applications—one of the prominent original motivations was the Netflix Prize that sought
improved algorithms for predicting user ratings for movies from a small number of user-provided
ratings. After an extensive research effort (Candès and Recht, 2009; Candès and Tao, 2010; Keshavan
et al., 2009; Srebro and Shraibman, 2005), efficient algorithms with almost optimal, provable recovery
guarantees have been obtained: In order to efficiently recover an unknown incoherent n-by-n matrix
of rank r it is enough to observe r · Õ(n) random entries of the matrix (Gross, 2011; Recht, 2011).
One of the remaining challenges is to obtain algorithm for the more general and much less understood
tensor completion problem where the observations do not just consist of pairwise correlations but
also higher-order ones.

Algorithms and analyses for matrix and tensor completion come in three flavors:
1. algorithms analyzed by statistical learning tools like Rademacher complexity (Srebro and

Shraibman, 2005; Barak and Moitra, 2016).
2. iterative algorithms like alternating minimization (Jain et al., 2013; Hardt, 2014; Hardt and

Wootters, 2014).
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3. algorithms analyzed by constructing dual certificates for convex programming relaxations
(Candès and Recht, 2009; Gross, 2011; Recht, 2011).

While each of these flavors have different benefits, typically only algorithms of the third flavor
achieve exact recovery. (The only exceptions to this rule we are aware of are a recent fast algorithm
for matrix completion (Jain and Netrapalli, 2015) and a recent analysis (Ge et al., 2016) showing
that the commonly used non-convex objective function for positive semidefinite matrix completion
has no spurious local minima and thus stochastic gradient descent and other popular optimization
programs can solve positive semidefinite matrix completion with arbitrary initialization.) For all other
algorithms, the analysis exhibits a trade-off between reconstruction error and the required number of
observations (even when there is no noise in the input).1

In this work, we obtain the first algorithm for exact tensor completion that improves over the
bounds implied by reduction to exact matrix completion. The algorithm recovers an unknown 3-tensor
with r incoherent, orthogonal components in �n from r · Õ(n1.5) randomly observed entries of the
tensor. The previous best bound for exact recovery is r · Õ(n2), which is implied by reduction to
exact matrix completion. (The reduction views 3-tensor on �n as an n-by-n2 matrix. We can recover
rank-r matrices of this shape from r · Õ(n2) samples, which is best possible.) Our bound also matches
the best known results for the easier problem of approximate tensor completion (Jain and Oh, 2014;
Bhojanapalli and Sanghavi, 2015; Barak and Moitra, 2016) (the results of the last work also applies
to a wider range of tensors and does not require orthogonality).

A problem similar to matrix and tensor completion is matrix and tensor sensing. The goal is to
recover an unknown low rank matrix or tensor from a small number of linear measurements. An
interesting phenomenon is that for carefully designed measurements (which actually happen to be rank
1) it is possible to efficiently recover a 3-tensor of rank r with just O(r2 · n) measurements (Forbes
and Shpilka, 2012), which is better than the best bounds for tensor completion when r � n0.5. We
conjecture that for tensor completion from random entries the bound we obtain is up to logarithmic
factors best possible among polynomial-time algorithms.

Sum-of-squares method. Our algorithm is based on sum-of-squares (Shor, 1987; Parrilo, 2000;
Lasserre, 2000/01), a very general and powerful meta-algorithm studied extensively in many scientific
communities (see for example the survey (Barak and Steurer, 2014)). In theoretical computer science,
the main research focus has been on the capabilities of sum-of-squares for approximation problems
(Barak et al., 2012), especially in the context of Khot’s Unique Games Conjecture (Khot, 2002). More
recently, sum-of-squares emerged as a general approach to inference problems that arise in machine
learning and have defied other algorithmic techniques. This approach has lead to improved algorithms
for tensor decomposition (Barak et al., 2015; Ge and Ma, 2015; Hopkins et al., 2016; Ma et al., 2016),
dictionary learning (Barak et al., 2015; Hazan and Ma, 2016), tensor principal component analysis
(Hopkins et al., 2015; Raghavendra et al., 2016; Bhattiprolu et al., 2016), planted sparse vectors
(Barak et al., 2014; Hopkins et al., 2016). An exciting direction is also to understand limitations of
sum-of-squares for inference problems on concrete input distributions (Ma and Wigderson, 2015;
Hopkins et al., 2015; Barak et al., 2016).

1. We remark that this trade-off is a property of the analysis and not necessarily the algorithm. For example, some
algorithms of the first flavor are based on the same convex programming relaxations as exact recovery algorithms. Also
for iterative algorithm, the trade-off between reconstruction error and number of sample comes from the requirement of
the analysis that each iteration uses fresh samples. For these iterative algorithms, the number of samples depends only
logarithmically on the desired accuracy, which means that these analyses imply exact recovery if the bit complexity of
the entries is small.
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An appealing feature of the sum-of-squares method is that its capabilities and limitations can
be understood through the lens of a simple but surprisingly powerful and intuitive restricted proof
system called sum-of-squares or Positivstellensatz system (Grigoriev and Vorobjov, 2001; Grigoriev,
2001a,b). A conceptual contribution of this work is to show that seminal results for inference problem
like compressed sensing and matrix completion have natural interpretations as identifiability proofs
in this system. Furthermore, we show that this interpretation is helpful in order to analyze more
challenging inference problems like tensor completion. A promising future direction is to find more
examples of inference problems where this lens on inference algorithms and identifiability proofs
yields stronger provable guarantees.

A technical contribution of our work is that we develop techniques in order to show that sum-
of-squares achieves exact recovery. Most previous works only showed that sum-of-squares gives
approximate solutions, which in some cases can be turned to exact solutions by invoking algorithms
with local convergence guarantees (Ge and Ma, 2015; Barak et al., 2014) or solving successive
sum-of-squares relaxations (Ma et al., 2016).

1.1. Results

We say that a vector v ∈ �n is µ-incoherent with respect to the coordinate basis e1, . . . , en if for every
index i ∈ [n],

〈ei, v〉2 6 µ
n · ‖v ‖

2 . (1.1)

We say that a 3-tensor X ∈ �n ⊗ �n ⊗ �n is orthogonal of rank r if there are orthogonal vectors
{ui}i∈[r] ⊆ �n, {vi}i∈[r] ⊆ �n, {wi}i∈[r] ⊆ �n such that X =

∑r
i=1 ui ⊗ vi ⊗ wi . We say that such a

3-tensor X is µ-incoherent if all of the vectors ui, vi, wi are µ-incoherent.

Theorem 1 (main) There exists a polynomial-time algorithm that given at least r · µO(1) · Õ(n)1.5
random entries of an unknown orthogonal µ-incoherent 3-tensor X ∈ �n ⊗ �n ⊗ �n of rank r,
outputs all entries of X with probability at least 1 − n−ω(1).

We note that the analysis also shows that the algorithm is robust to inverse polynomial amount of
noise in the input (resulting in inverse polynomial amount of error in the output).

We remark that the running time of the algorithm depends polynomially on the bit complexity on
X .

2. Techniques

Let {ui}i∈[r], {vi}i∈[r], {wi}i∈[r] be three orthonormal sets in �n. Consider a 3-tensor X ∈ �n ⊗

�n ⊗�n of the form X =
∑r

i=1 λi · ui ⊗ vi ⊗ wi with λ1, . . . , λn > 0. Let Ω ⊆ [n]3 be a subset of the
entries of X .

Our goal is to efficiently reconstruct the unknown tensor X from its restriction XΩ to the entries
in Ω. Ignoring computational efficiency, we first ask if this task is information-theoretically possible.
More concretely, for a given set of observations XΩ, how can we rule out that there exists another
rank-r orthogonal 3-tensor X ′ , X that would give rise to the same observations X ′

Ω
= XΩ?2

2. We emphasize that we ask here about the uniqueness of X for a fixed set of entries Ω. This questions differs from
asking about the uniqueness for a random set of entries, which could be answered by suitably counting the number of
low-rank 3-tensors.
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A priori it is not clear how an answer to this information-theoretic question could be related to
the goal of obtaining an efficient algorithm. However, it turns out that the sum-of-squares framework
allows us to systematically translate a uniqueness proof to an algorithm that efficiently finds the
solution. (In addition, this solution also comes with a short certificate for uniqueness.3)

Uniqueness proof. Let Ω ⊆ [n]3 be a set of entries and let X =
∑r

i=1 λi · ui ⊗ vi ⊗ wi be a 3-tensor
with λ1, . . . , λr > 0.

It turns out that the following two conditions are enough to imply that XΩ uniquely determines
X : The first condition is that the vectors {(ui ⊗ vi ⊗ wi)Ω} are linearly independent. The second
condition is that exists a 3-linear form T on �n with the following properties:

1. in the monomial basis T is supported on Ω so that T(x, y, z) = ∑
(i, j,k)∈Ω Ti jk · xi yj xk ,

2. evaluated over unit vectors, the 3-form T is exactly maximized at the points (ui, vi, wi) so
that T(u1, v1, w1) = · · · = T(ur, vr, wr ) = 1 and T(x, y, z) < 1 for all unit vectors (x, y, z) <
{(ui, vi, wi) | i ∈ [r]}.

We show that the two deterministic conditions above are satisfied with high probability if the
vectors {ui}, {vi}, {wi} are incoherent and Ω is a random set of entries of size at least r · Õ(n1.5).

Let us sketch the proof that such a 3-linear form T indeed implies uniqueness. Concretely, we
claim that if we let X ′ be a 3-tensor of the form

∑r′

i=1 λ
′
i · u

′
i ⊗ v

′
i ⊗ w

′
i for λ

′
1, . . . , λ

′
r′ > 0 and unit

vectors {u′i}, {v ′i }, {w ′i } with X ′
Ω
= XΩ that minimizes

∑r′

i=1 |λ
′
i | then X ′ = X must hold. We identify

T with an element of �n ⊗ �n ⊗ �n (the coefficient tensor of T in the monomial basis). Let X ′ be as
before. We are to show that X = X ′. On the one hand, using that T(x, y, z) 6 1 for all unit vectors
x, y, z,

〈T, X ′〉 =
r′∑
i=1

λ ′i · T(u′i, v ′i , w ′i ) 6
r′∑
i=1

λ ′i .

At the same time, using that T is supported on Ω and the fact that XΩ = X ′
Ω
,

〈T, X ′〉 = 〈T, X〉 =
r∑
i=1

λi · T(ui, vi, wi) =
r∑
i=1

λi .

Since X ′ minimizes
∑r′

i=1 λ
′
i, equality has to hold in the previous inequality. It follows that every

point (u′i, v ′i , w ′i ) is equal to one of the points (u j, vj, w j), because T is uniquely maximized at the
points {(ui, vi, wi) | i ∈ [r]}. Since we assumed that {(ui ⊗ vi ⊗ wi)Ω} is linearly independent, we
can conclude that X = X ′.

When we show that such a 3-linear form T exists, we will actually show something stronger,
namely that the second property is not only true but also has a short certificate in form of a “degree-4
sum-of-squares proof”, which we describe next. This certificate also enables us to efficiently recover
the missing tensor entries.

3. This certificate is closely related to certificates in the form of dual solutions for convex programming relaxations that
are used in the compressed sensing and matrix completion literature.
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Uniqueness proof in the sum-of-squares system. A degree-4 sos certificate for the second
property of T is an (n + n2)-by-(n + n2) positive-semidefinite matrix M (acting as a linear operator
on �n ⊕ (�n ⊗ �n)) that represents the polynomial ‖x‖2 + ‖ y ‖2 · ‖z‖2 − 2T(x, y, z), i.e.,

〈(x, y ⊗ z), M(x, y ⊗ z)〉 = ‖x‖2 + ‖ y ‖2 · ‖z‖2 − 2T(x, y, z) . (2.1)

Furthermore, we require that the kernel of M is precisely the span of the vectors {(ui, vi ⊗wi) | i ∈ [r]}.
Let’s see that this matrix M certifies that T has the property that over unit vectors it is exactly
maximized at the desired points (ui, vi, wi). Let u, v, w be unit vectors such that (u, v, w) is not a
multiple of one of the vectors (ui, vi, wi). Then by orthogonality, both (u, v ⊗ w) and (−u, v ⊗ w)
have non-zero projection on the orthogonal complement of the kernel of M . Therefore, the bounds
0 < 〈(u, v ⊗ w), M(u, v ⊗ w)〉 = 2− 2p(u, v, w) and 0 < 〈(−u, v ⊗ w), M(−u, v ⊗ w)〉 = 2+ 2p(u, v, w)
together give the desired conclusion that |T(u, v, w)| < 1.

Reconstruction algorithm based on the sum-of-squares system. The existence of a positive
semidefinite matrix M as above not only means that reconstruction of X from XΩ is possible
information-theoretically but also efficiently. The sum-of-squares algorithm allows us to efficiently
search over low-degree moments of objects called pseudo-distributions that generalize probability
distributions over real vector spaces. Every pseudo-distribution µ defines pseudo-expectation values
�̃µ f for all low-degree polynomial functions f (x, y, z), which behave in many ways like expectation
values under an actual probability distribution. In order to reconstruct X from the observations XΩ,
we use the sum-of-squares algorithm to efficiently find a pseudo-distribution µ that satisfies4

�̃
µ(x, y,z)

‖x‖2 + ‖ y ‖2 · ‖z‖2 6 1 (2.2)(
�̃

µ(x, y,z)
x ⊗ y ⊗ z

)
Ω

= XΩ (2.3)

Note that the distribution over the vectors (ui, vi, wi)with probabilities λi satisfies the above conditions.
Our previous discussion about uniqueness shows that the existence of a positive semidefinite matrix
M as above implies no other distribution satisfies the above conditions. It turns out that the matrix M
implies that this uniqueness holds even among pseudo-distributions in the sense that any pseudo-
distribution that satisfies Eqs. (2.2) and (2.3) must satisfy �̃µ(x, y,z) x ⊗ y ⊗ z = X , which means that
the reconstruction is successful.5

When do such uniqueness certificates exist? The above discussion shows that in order to achieve
reconstruction it is enough to show that uniqueness certificates of the form above exist. We show that
these certificates exists with high probability if we choose Ω to be a large enough random subset of
entries (under suitable assumptions on X). Our existence proof is based on a randomized procedure
to construct such a certificate heavily inspired by similar constructions for matrix completion (Gross,
2011; Recht, 2011). (We note that this construction uses the unknown tensor X and is therefore not
“constructive” in the context of the recovery problem.)

4. The viewpoint in terms of pseudo-distributions is useful to see how the previous uniqueness proof relates to the
algorithm. We can also describe the solutions to the constraints Eqs. (2.2) and (2.3) in terms of linearly constrained
positive semidefinite matrices. See alternative description of Algorithm 2

5. The matrix M can also be viewed as a solution to the dual of the convex optimization problem of finding a
pseudo-distribution that satisfies conditions Eqs. (2.2) and (2.3).
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Before describing the construction, we make the requirements on the 3-linear form T more
concrete. We identifyT with the linear operator from�n⊗�n to�n such thatT(x, y, z) = 〈x,T(y⊗ z)〉.
Furthermore, let Ta be linear operators on �n such that T(x, y, z) = ∑n

a=1 xa · 〈y,Taz〉. Then, the
following conditions on T imply the existence of a uniqueness certificate M (which also means that
recover succeeds),

1. every unknown entry (i, j, k) < Ω satisfies 〈ei,T(e j ⊗ ek)〉 = 0,

2. every index i ∈ [r] satisfies ui = T(vi ⊗ wi),
3. the matrix

∑n
a=1 Ta ⊗ Ta

ᵀ −
∑r

i=1(vi ⊗ wi)(vi ⊗ wi )T has spectral norm at most 0.01.

We note that the uniqueness certificates for matrix completion (Gross, 2011; Recht, 2011) have
similar requirements. The key difference is that we need to control the spectral norm of an operator
that depends quadratically on the constructed object T (as opposed to a linear dependence in the
matrix completion case). Combined with the fact that the construction of T is iterative (about log n
steps), the spectral norm bound unfortunately requires significant technical work. In particular, we
cannot apply general matrix concentration inequalities and instead apply the trace moment method.
(See Section 5.)

We also note that the fact that the above requirements allow us to construct the certifcate M is not
immediate and requires some new ideas about matrix representations of polynomials, which might be
useful elsewhere. (See Appendix A.)

Finally, we note that the transformation applied to T in order to obtain the matrix for the third
condition above appears in many works about 3-tensors (Hopkins et al., 2015; Barak and Moitra,
2016) with the earliest appearance in a work on refutation algorithms for random 3-SAT instances
(see (Feige and Ofek, 2007)).

The iterative construction of the linear operator T exactly follows the recipe from matrix
completion (Gross, 2011; Recht, 2011). Let RΩ be the projection operator into the linear space of
operators T that satify the first requirement. Let PT be the (affine) projection operator into the affine
linear space of operators T that satisfy the second reqirement. We start with T (0) = X . At this point
we satisfy the second condition. (Also the matrix in the third condition is 0.) In order to enforce the
first condition we apply the operator RΩ. After this projection, the second condition is most likely no
longer satisfied. To enforce the second condition, we apply the affine linear operator PT and obtain
T (1) = PT (RΩX). The idea is to iterate this construction and show that after a logarithmic number of
iterations both the first and second condition are satisfied up to an inverse polynomially small error
(which we can correct in a direct way). The main challenge is to show that the iterates obtained in this
way satisfy the desired spectral norm bound. (We note that for technical reasons the construction uses
fresh randomness Ω for each iteration like in the matrix completion case (Recht, 2011; Gross, 2011).
Since the number of iterations is logarithmic, the total number of required observations remains the
same up to a logarithmic factor.)

3. Preliminaries

Unless explicitly stated otherwise, O(·)-notation hides absolute multiplicative constants. Concretely,
every occurrence of O(x) is a placeholder for some function f (x) that satisfies ∀x ∈ �. | f (x)| 6 C |x |
for some absolute constant C > 0. Similarly, Ω(x) is a placeholder for a function g(x) that satisfies
∀x ∈ �. |g(x)| > |x |/C for some absolute constant C > 0.

6



Exact tensor completion with sum-of-squares

Our algorithm is based on a generalization of probability distributions over �n. To define this
generalization the following notation for the formal expectation of a function f on �n with respect to
a finitely-supported function µ : �n → �,

�̃
µ

f =
∑

x∈support(µ)
µ(x) · f (x) .

A degree-d pseudo-distribution over �n is a finitely-supported function µ : �n → � such that
�̃µ 1 = 1 and �̃µ f 2 > 0 for every polynomial f of degree at most d/2.

A key algorithmic property of pseudo-distributions is that their low-degree moments have an
efficient separation oracle. Concretely, the set of degree-d moments �̃µ(1, x)⊗d such that µ is a
degree-d pseudo-distributions over �n has an nO(d)-time separation oracle. Therefore, standard
convex optimization methods allow us to efficiently optimize linear functions over low-degree
moments of pseudo-distributions (even subject to additional convex constraints that have efficient
separation oracles) up to arbitrary numerical accuracy.

4. Tensor completion algorithm

In this section, we show that the following algorithm for tensor completion succeeds in recovering
the unknown tensor from partial observations assuming the existence of a particular linear operator
T . We will state conditions on the unknown tensor that imply that such a linear operator exists with
high probability if the observed entries are chosen at random. We use essentially the same convex
relaxation as in (Barak and Moitra, 2016) but our analysis differs significantly.

Algorithm 2 (Exact tensor completion based on degree-4 sum-of-squares)
Input: locationsΩ ⊆ [n]3 and partial observations XΩ of an unknown 3-tensor X ∈ �n⊗�n⊗�n.
Operation: Find a degree-4 pseudo-distribution µ on �n ⊕�n ⊕�n such that the third moment
matches the observations

�
�̃µ(x, y,z) x ⊗ y ⊗ z

�
Ω
= XΩ so as to minimize

�̃
µ(x, y,z)

‖x‖2 + ‖ y ‖2 · ‖z‖2 .

Output the 3-tensor �̃µ(x, y,z) x ⊗ y ⊗ z ∈ �n ⊗ �n ⊗ �n.
Alternative description: Output a minimum trace, positive semidefinite matrix Y acting on
�n ⊕ (�n ⊗ �n) with blocks Y1,1, Y1,2 and Y2,2 such that (Y1,2)Ω = XΩ matches the observations,
and Y2,2 satisfies the additional symmetry constraints that each entry 〈e j ⊗ ek,Y2,2(e j′ ⊗ ek′)〉
only depends on the index sets { j, j ′}, {k, k ′}.

Let {ui}, {vi}, {wi} be three orthonormal sets in �n, each of cardinality r .
We reason about the recovery guarantees of the algorithm in terms of the following notion of

certifcate.

Definition 3 We say that a linear operator T from �n ⊗�n to �n is a degree-4 certificate for Ω and
orthonormal sets {ui}, {vi}, {wi} ⊆ �n if the following conditions are satisfies

1. the vectors {(ui ⊗ vj ⊗ wk)Ω | (i, j, k) ∈ S} are linearly independent, where S ⊆ [n]3 is the set
of triples with at least two identical indices from [r],
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2. every entry (a, b, c) < Ω satisfies 〈ea,T(eb ⊗ ec)〉 = 0,

3. If we view T as a 3-tensor in (�n)⊗3 whose (a, b, c) entry is 〈ea,T(eb ⊗ ec)〉, every index i ∈ [r]
satisfies (uᵀi ⊗ vᵀi ⊗ Id)T = wi, (uᵀi ⊗ Id ⊗wᵀi )T = vi, and (Id ⊗vᵀi ⊗ wᵀi )T = ui.

4. the following matrix has spectral norm at most 0.01,
n∑

a=1
Ta ⊗ Ta

ᵀ −

r∑
i=1

(vi ⊗ wi)(vi ⊗ wi)ᵀ ,

where {Ta} are matrices such that 〈x,T(y ⊗ x)〉 = ∑n
a=1 xa · 〈y,Taz〉.

In Section 4.4, we prove that existence of such certifcates implies that the above algorithm
successfully recovers the unknown tensor, as formalized by the following theorem.

Theorem 4 Let X ∈ �n ⊗ �n ⊗ �n be any 3-tensor of the form
∑r

i=1 λi · ui ⊗ vi ⊗ wi for
λ1, . . . , λr ∈ �+. Let Ω ⊆ [n]3 be a subset of indices. Suppose there exists degree-4 certificate in the
sense of Definition 3. Then, given the observations XΩ the above algorithm recovers the unknown
tensor X exactly.

In Section 4.5, we show that degree-4 certificates are likely to exist when Ω is a random set of
appropriate size.

Theorem 5 Let {ui}, {vi}, {wi} be three orthonormal sets of µ-incoherent vectors in �n, each of
cardinality r . Let Ω ⊆ [n]3 be a random set of tensor entries of cardinality m = r · n1.5(µ log n)C for
an absolute constant C > 1. Then, with probability 1 − n−ω(1), there exists a linear operator T that
satisfies the requirements of Definition 3.

Taken together the two theorems above imply our main result Theorem 1.

4.1. Simpler proofs via higher-degree sum-of-squares

Unfortunately the proof of Theorem 5 requires extremely technical spectral norm bounds for random
matrices.

It turns out that less technical norm bounds suffice if we use degree 6 sum-of-squares relaxations.
For this more powerful algorithm, weaker certificates are enough to ensure exact recovery and the
proof that these weaker certificates exist with high probability is considerably easier than the proof
that degree-4 certificates exist with high probability.

In the following we describe this weaker notion of certificates and state their properties. In the
subsequent sections we prove properties of these certificates are enough to imply our main result
Theorem 1.

Algorithm 6 (Exact tensor completion based on higher-degree sum-of-squares)
Input: locationsΩ ⊆ [n]3 and partial observations XΩ of an unknown 3-tensor X ∈ �n⊗�n⊗�n.
Operation: Find a degree-6 pseudo-distribution µ on �n ⊕ �n ⊕ �n so as to minimize
�̃µ(x, y,z)‖x‖2 + ‖z‖2 subject to the following constraints(

�̃
µ(x, y,z)

x ⊗ y ⊗ z
)
Ω

= XΩ , (4.1)
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�̃
µ(x, y,z)

(‖ y ‖2 − 1) · p(x, y, z) = 0 for all p(x, y, z) ∈ �[x, y, z]64 . (4.2)

Output the 3-tensor �̃µ(x, y,z) x ⊗ y ⊗ z ∈ �n ⊗ �n ⊗ �n.

Let {ui}, {vi}, {wi} be three orthonormal sets in �n, each of cardinality r . We reason about the
recovery guarantees of the above algorithm in terms of the following notion of certificate. The main
difference to degree-4 certificate (Definition 3) is that the spectral norm condition is replaced by a
condition in terms of sum-of-squares representations.

Definition 7 We say that a 3-tensor T ∈ (�n)⊗3 is a higher-degree certificate forΩ and orthonormal
sets {ui}, {vi}, {wi} ⊆ �n if the following conditions are satisfies

1. the vectors {(ui ⊗ vi ⊗ wi)Ω}i∈[r] are linearly independent,
2. every entry (a, b, c) < Ω satisfies 〈T, (ea ⊗ eb ⊗ ec)〉 = 0,

3. every index i ∈ [r] satisfies (uᵀi ⊗ vᵀi ⊗ Id)T = wi , (uᵀi ⊗ Id ⊗wᵀi )T = vi , and (Id ⊗vᵀi ⊗wᵀi )T = ui ,

4. the following degree-4 polynomials in �[x, y, z] are sum of squares

‖x‖2 + ‖ y ‖2 · ‖z‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 , (4.3)
‖ y ‖2 + ‖x‖2 · ‖z‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 , (4.4)
‖z‖2 + ‖x‖2 · ‖ y ‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 . (4.5)

where T ′ = T −
∑r

i=1 ui ⊗ vi ⊗ wi and ε > 0 is an absolute constant (say ε = 10−6).

In the following sections we prove that higher-degree certificates imply that Algorithm 6
successfully recovers the desired tensor and that they exist with high probability for random Ω of
appropriate size.

4.2. Higher-degree certificates imply exact recovery

Let {ui}, {vi}, {wi} be orthonormal bases in�n. We say that a degree-` pseudo-distribution µ(x, y, z)
satisfies the constraint ‖ y ‖2 = 1, denoted µ |= {‖ y ‖2 = 1}, if �̃µ(x, y,z) p(x, y, z) · (1 − ‖ y ‖2) = 0
for all polynomials p ∈ �[x, y, z]6`−2

We are to show that a higher-degree certificate in the sense of Definition 7 implies that Algorithm 6
reconstructs the partially observed tensor exactly. A key step of this proof is the following lemma
about expectation values of higher degree pseudo-distributions.

Lemma 8 Let T ∈ (�n)⊗3 be a higher-degree certificate as in Definition 7 for the set Ω ⊆ [n]3 and
the vectors {ui}i∈[r], {vi}i∈[r], {wi}i∈[r]. Then, every degree-6 pseudo-distribution µ(x, y, z) with
µ |= {‖ y ‖2 = 1} satisfies

�̃
µ(x, y,z)

T(x, y, z) 6 �̃
µ(x, y,z)

‖x‖2 + ‖z‖2

2
− 1

100 ·

n∑
i=r+1

(〈ui, x〉2 + 〈wi, z〉2)

− 1
100 ·

n∑
i=1

∑
j∈[n]\{i}

〈vi, y〉2 ·
(〈u j, x〉2 + 〈w j, z〉2

)
(4.6)

9
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To prove this lemma it will be useful to introduce the sum-of-squares proof system. Before doing
that let us observe that the lemma indeed allows us to prove that Algorithm 6 works.

Theorem 9 (Higher-degree certificates imply exact recovery) Suppose there exists a higher-
degree certificate T in the sense of Definition 7 for the set Ω ⊆ [n]3 and the vectors
{ui}i∈[r], {vi}i∈[r], {wi}i∈[r]. Then, Algorithm 6 recovers the partially observed tensor exactly.
In other words, if X =

∑r
i=1 λi · ui ⊗ vi ⊗ wi with λ1, . . . , λr > 0 and µ(x, y, z) is a degree-

6 pseudo-distribution with µ |= {‖ y ‖2 = 1} that minimizes �̃µ(x, y,z) 1
2 (‖x‖2 + ‖z‖2) subject to(�̃µ(x, y,z) x ⊗ y ⊗ z)Ω = XΩ, then �̃µ(x, y,z) x ⊗ y ⊗ z = X .

Proof Consider the distribution µ∗ over vectors (x, y, z) such that (√λin · ui, vi,√λin · wi) has
probability 1/n. By construction, �µ∗(x, y,z) x ⊗ y ⊗ z = X . We have

�̃
µ(x, y,z)

T(x, y, z) = �
µ∗(x, y,z)

T(x, y, z) =
r∑
i=1

λi = �
µ∗(x, y,z)

1
2 (‖x‖2 + ‖z‖2) .

By Lemma 8 and the optimality of µ, it follows that

�̃
µ(x, y,z)

1
100 ·

n∑
i=r+1

(〈ui, x〉2 + 〈wi, z〉2) + 1
100 ·

n∑
i=1

∑
j∈[n]\{i}

〈vi, y〉2 ·
(〈u j, x〉2 + 〈w j, z〉2

)
= 0

Since the summands on the left-hand side are squares it follows that each summand has
pseudo-expectation 0. It follows that �̃µ〈ui, x〉2 = �̃µ〈vi, y〉2 = �̃µ〈wi, z〉2 = 0 for all i > r and
�̃µ〈vi, y〉2〈u j, x〉2 = �̃µ〈vi, y〉2〈w j, z〉2 = 0 for all i , j. By the Cauchy–Schwarz inequality for
pseudo-expectations, it follows that �̃µ(x, y,z)〈x ⊗ y ⊗ z, ui ⊗ vj ⊗ wk〉 = 0 unless i = j = k ∈ [r]. Con-
sequently, �̃µ(x, y,z) x ⊗ y ⊗ z is a linear combination of the vectors {ui ⊗ vi ⊗wi | i ∈ [r]}. Finally, the
linear independence of the vectors {(ui⊗vi⊗wi)Ω | i ∈ [r]} implies that �̃µ x⊗ y⊗z = X as desired.

It remains to prove Lemma 8. Here it is convenient to use formal notation for sum-of-squares
proofs. We will work with polynomials �[x, y, z] and the polynomial equation A = {‖ y ‖2 = 1}.
For p ∈ �[x, y, z], we say that there exists a degree-` SOS proof that A implies p > 0, denoted
A `` p > 0, if there exists a polynomial q ∈ �[x, y, z] of degree at most `−2 such that p+q ·(1−‖ y ‖2)
is a sum of squares of polynomials. This notion proof allows us to reason about pseudo-distributions.
In particular, ifA `` p > 0 then every degree-` pseudo-distribution µwith µ |= A satisfies �̃µ p > 0.

We will change coordinates such that ui = vi = wi = ei is the i-th coordinate vector for every
i ∈ [n]. Then, the conditions on T in Definition 7 imply that

〈T, (x ⊗ y ⊗ z)〉 =
r∑
i=1

xi yi zi + T ′(x, y, z) , (4.7)

where T ′ is a 3-linear form with the property that T ′(x, x, x) does not contain squares (i.e. is
multilinear). Furthermore, the conditions imply the following SOS proofs for T ′:

1. ∅ `4 T ′(x, y, z) 6 ε · �‖x‖ + ‖ y ‖2 · ‖z‖2�
,

2. ∅ `4 T ′(x, y, z) 6 ε · �‖ y ‖ + ‖x‖2 · ‖z‖2�
,

3. ∅ `4 T ′(x, y, z) 6 ε · �‖z‖ + ‖x‖2 · ‖ y ‖2�
.

The following lemma gives an upper bound on one of the parts in Eq. (4.7).
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Lemma 10 For A = {‖ y ‖2 = 1}, the following inequality has a degree-6 sum-of-squares proof,

A `6

r∑
i=1

xi yi zi 6 1
2 ‖x‖

2 + 1
2 ‖z‖

2 − 1
4

n∑
i=r+1

(x2
i + z2

i )

− 1
8

∑
i,j

y2
i ·

(
x2
j + z2

j + y
2
j · (‖x‖2 + ‖z‖2)

)
. (4.8)

Proof We bound the left-hand side in the lemma as follows,

A `6

r∑
i=1

xi yi zi 6
r∑
i=1

(1
2 x2

i +
1
2 y

2
i z2

i ) (4.9)

6 1
2 ||x ||2 − 1

2

∑
i>r

x2
i +

1
2

n∑
i=1

y2
i z2

i . (4.10)

We can further bound
∑

i y
2
i z2

i as follows,

A `6

n∑
i=1

y2
i z2

i =
*
,

n∑
i=1

y2
i

+
-
· *

,

n∑
i=1

z2
i

+
-
−

∑
i,j

y2
i · z

2
j (4.11)

= *
,

n∑
i=1

z2
i

+
-
−

∑
i,j

y2
i · z

2
j . (4.12)

We can prove a different bound on
∑

i y
2
i z2

i as follows,

A `6

n∑
i=1

y2
i z2

i 6
1
2 ‖z‖

2 + 1
2

n∑
i=1

y4
i z2

i (4.13)

6 1
2 ‖z‖

2 + 1
2

n∑
i=1

y4
i ‖z‖

2 (4.14)

= 1
2 ‖z‖

2 + 1
2

*
,

n∑
i=1

y2
i

+
-
· *

,

n∑
i=1

y2
i ‖z‖

2+
-
− 1

2

∑
i,j

y2
i · y

2
j ‖z‖

2 (4.15)

= ‖z‖2 − 1
2

∑
i,j

y2
i · y

2
j ‖z‖

2 . (4.16)

By combining these three inequalities, we obtain the inequality

A `6

r∑
i=1

xi yi zi 6 1
2 ‖x‖

2 + 1
2 ‖z‖

2 − 1
2

∑
i>r

x2
i −

1
2

∑
i,j

y2
i · z

2
j −

1
4

∑
i,j

y2
i · y

2
j ‖z‖

2 .

By symmetry between z and x, the same inequality holds with x and z exchanged. Combining these
symmetric inequalities, we obtain the desired inequality

A `6

r∑
i=1

xi yi zi 6 1
2 ‖x‖

2 + 1
2 ‖z‖

2 − 1
4

∑
i>r

(x2
i + z2

i )

11
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− 1
4

∑
i,j

y2
i · (x2

j + z2
j ) − 1

8

∑
i,j

y2
i · y

2
j (‖x‖2 + ‖z‖2) . (4.17)

It remains to bound the second part in Eq. (4.7), which the following lemma achieves.

Lemma 11 A `6 T ′(x, y, z) 6 3ε
2

∑
i

∑
j,i y

2
i

(
x2
j + z2

j +
1
2 y

2
j (||x ||2 + ||z ||2))

Proof It is enough to show the following inequality for all i ∈ [n],

A `6 y
2
i T ′(x, y, z) 6 ε

∑
j,i

(
3
2
y2
i (x2

j + z2
j ) +

1
2
y2
i y

2
j (||x ||2 + ||z ||2)

)
By symmetry it suffices to consider the case i = 1. Let x ′ = x − x1 · e1, y ′ = y − y1 · e1, and
z′ = z − z1 · e1. We observe that

A `4 T ′(x, y, z) = T ′(x1e1 + x ′, y1e1 + y
′, z1e1 + z′)

= T ′(x1e1, y
′, z′) + T ′(x ′, y1e1, z′)

+ T ′(x ′, y ′, z1e1) + T ′(x ′, y ′, z′)
We now apply the following inequalities

1. A `4 T ′(x1e1, y
′, z′) 6 ε

2
�
x2

1 ||y ′||2 + ||z′||2�
6 ε

2
∑

j,1(y2
j ||x ||2 + z2

j )
2. A `4 T ′(x ′, y1e1, z′) 6 ε

2
�||x ′||2 y2

1 + ||z′||2�
6 ε

2
∑

j,1(x2
j + z2

j )
3. A `4 T ′(x ′, y ′, z1e1) 6 ε

2
�
z2

1 ||y ′||2 + ||x ′||2�
6 ε

2
∑

j,1(y2
j ||z ||2 + x2

j )
4. A `4 T ′(x ′, y ′, z′) 6 ε

2
�||x ′||2 ||y ′||2 + ||z′||2�

6 ε
2
∑

j,1(x2
j + z2

j )

We can now prove Lemma 8.
Proof [Proof of Lemma 8] Taken together, Lemmas 10 and 11 imply

A `6 〈T, x ⊗ y ⊗ z〉 6 1
2 ‖x‖

2 + 1
2 ‖z‖

2 − (1
4 −O(ε))

n∑
i=r+1

(x2
i + z2

i )

− (1
8 −O(ε))

∑
i,j

y2
i ·

(
x2
j + z2

j + y
2
j · (‖x‖2 + ‖z‖2)

)
, (4.18)

where the absolute constant hidden by O(·) notation is at most 10. Therefore for ε < 1/100, as we
assumed in Definition 7, we get a SOS proof of the inequality,

A `6 〈T, x ⊗ y ⊗ z〉 6 1
2 ‖x‖

2 + 1
2 ‖z‖

2 − 1
8

n∑
i=r+1

(x2
i + z2

i )

12
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− 1
16

∑
i,j

y2
i ·

(
x2
j + z2

j + y
2
j · (‖x‖2 + ‖z‖2)

)
, (4.19)

This SOS proof implies that that every degree-6 pseudo-distribution µ(x, y, z) with µ |= A satisfies
the desired inequality,

�̃
µ(x, y,z)

〈T, x ⊗ y ⊗ z〉 6 �̃
µ(x, y,z)

1
2 ‖x‖

2 + 1
2 ‖z‖

2 − 1
8

n∑
i=r+1

(x2
i + z2

i )

− 1
16

∑
i,j

y2
i ·

(
x2
j + z2

j + y
2
j · (‖x‖2 + ‖z‖2)

)
, (4.20)

4.3. Constructing the certificate T

In this section we give a procedure for constructing the certificate T . This construction is directly
inspired by the construction of the dual certificate in (Gross, 2011; Recht, 2011) (sometimes called
quantum golfing). We will then prove that T satisfies all of the conditions for a higher-degree
certificate of Ω. In Section 4.5 we will show that T also satisfies the conditions for a degree-4
certificate for Ω.

Let {ui}, {vi}, {wi} ⊆ �n be three orthonormal bases, with all vectors µ-incoherent. Let
X =

∑r
i=1 ui ⊗ vi ⊗ wi. Let Ω ⊆ [n]3 chosen at random such that each element is included

independently with probability m/n1.5 (so that |Ω| is tightly concentrated around m).
Let P be the projector on the span of the vectors ui ⊗ vj ⊗ wk such that an index in [r] appears

at least twice in (i, j, k) (i.e., at least one of the conditions i = j ∈ [r], i = k ∈ [r], j = k ∈ [r] is
satisfied). Let RΩ be the linear operator on �n ⊗ �n ⊗ �n that sets all entries outside of Ω to 0 (so
that (RΩ[T])Ω = RΩ[T]) and is scaled such that �Ω RΩ = Id. Let R̄Ω be Id−RΩ.

Our goal is to construct T ∈ �n ⊗ �n ⊗ �n such that P[T] = X , (T)Ω = T , and the spectral norm
condition in Definition 3 is satisfied. The idea for constructing T is to start with T = X . Then, move
to closest point T ′ that satisfies RΩ[T ′] = T ′ Then, move to closest point T ′′ that satisfies P[T ′′] = X
and repeat. To implement this strategy, we define

T (k) =
k−1∑
j=0

(−1)jRΩ j+1(PR̄Ω j ) · · · (PR̄Ω1)[X] , (4.21)

where Ω1, . . . ,Ωk are iid samples from the same distribution as Ω.
By induction, we can show the following lemma about linear constraints that the constructed

stensors T (k) satisfy.

Lemma 12 For every k > 1, the tensor T (k) satisfies (T)Ω = T and

P[T (k)] + (−1)kP(PR̄Ωk
) · · · (PR̄Ω1)[X] = X .

Here, P(PR̄Ωk
) · · · (PR̄Ω1)[X] is an error term that decreases geometrically. In the parameter

regime of Theorem 5, the norm of this term is n−ω(1) for some k = (log n)O(1).

13
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The following lemma shows that it is possible to correct such small errors. This lemma also
implies that the linear independence condition in Definition 3 is satisfied with high probability.
(Therefore, we can ignore this condition in the following.)

Lemma 13 Suppose m > rnµ · (log n)O(1). Then, with probability 1 − n−ω(1) over the choice of Ω,
the following holds: For every E ∈ �n ⊗ �n ⊗ �n with P[E] = E, there exists Y with (Y )Ω = Y such
that P[Y ] = E and ‖Y ‖F 6 O(1) · ‖E‖F .

Proof Let S ⊆ [n]3 be such that P is the projector to the vectors ui ⊗ vj ⊗ wk with (i, j, k) ∈ S. By
construction of P we have |S | 6 3rn. In order to show the conclusion of the lemma it is enough
to show that the vectors (ui ⊗ vj ⊗ wk)Ω with (i, j, k) ∈ S are well-conditioned in the sense that
the ratio of the largest and smallest singular value is O(1). This fact follows from standard matrix
concentration inequalities. See Lemma 15.

The main technical challenge is to show that the construction satisfies the condition that the
following degree 4 polynomials are sums of squares (where T ′ = T − X).

‖x‖2 + ‖ y ‖2 · ‖z‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 , (4.22)
‖ y ‖2 + ‖x‖2 · ‖z‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 , (4.23)
‖z‖2 + ‖x‖2 · ‖ y ‖2 − 1/ε · 〈T ′, x ⊗ y ⊗ z〉 . (4.24)

We show how to prove the first statement, the other statements can be proved with symmetrical argu-
ments. To prove the first statement, we decomposeT ′ into pieces of the form (R̄Ωl

P) · · · (R̄Ω1 P)(R̄Ω0 X),
P′(R̄Ωl

P) · · · (R̄Ω1 P)(R̄Ω0 X) (where P′ is a part of P), or E. For each piece A, we prove a norm
bound ‖

∑
a Aa ⊗ AT

a ‖ 6 B. Since
∑

a Aa ⊗ AT
a represents the same polynomial as AT A, this

proves that B‖ y ‖2‖z‖2 − (y ⊗ z)T AT A(y ⊗ z) is a degree 4 sum of squares. Now note that
(y ⊗ z)T AT A(y ⊗ z)−√BxT A(y ⊗ z)−√B(y ⊗ z)T AT x+ B‖x‖2 is also a sum of squares. Combining
these equations and scaling we have that ‖x‖2 + ‖ y ‖2‖z‖2 − 2√

B
xT A(y ⊗ z) is a degree 4 sum of

squares.
Thus, it is sufficient to prove norm bounds on ‖

∑
a Aa ⊗ AT

a ‖. We have an appropriate bound
in the case when A = E because E has very small Frobenius norm. For the cases when A =
(R̄Ωl

P) · · · (R̄Ω1 P)(R̄Ω0 X) or A = P(R̄Ωl
P) · · · (R̄Ω1 P)(R̄Ω0 X), we use the following theorem

Theorem 14 Let A = (R̄Ωl
P) · · · (R̄Ω1 P)(R̄Ω0 X) or P′(R̄Ωl

P) · · · (R̄Ω1 P)(R̄Ω0 X) where P′ is a part
of P. There is an absolute constant C such that for any α > 1 and β > 0,

�











∑
a

Aa ⊗ AT
a








> α−(l+1)


< n−β

as long as m > Cαβµ
3
2 rn1.5 · log(n) and m > Cαβµ2rn log(n).

Proof This theorem follows directly from combining Proposition 29, Theorem 33, Theorem 42, and
Theorem 57.

14



Exact tensor completion with sum-of-squares

4.3.1. Final correction of error terms

In this section, we prove a spectral norm bound that allows us to correct error terms that are left at
the end of the construction. The proof uses the by now standard Matrix Bernstein concentration
inequality. Similar proofs appear in the matrix completion literature (Gross, 2011; Recht, 2011).

Let {ui}, {vi}, {wi} ⊆ �n be three orthonormal bases, with all vectors µ-incoherent. LetΩ ⊆ [n]3
be m entires sampled uniformly at random with replacement. (This sampling model is different from
what is used in the rest of the proof. However, it is well known that the models are equivalent in
terms of the final recovery problem.)

Lemma 15 Let S ⊆ [n]3. Suppose m = µ|S |(log n)C for an absolute constant C > 1. Then
with probability 1 − nω(1) over the choice of Ω, the vectors (ui ⊗ vj ⊗ wk)Ω for (i, j, k) ∈ S are
well-conditioned in the sense that the ratio between the largest and smallest singular value is at most
1.1.

Proof For s = (i, j, k) ∈ S, let ys = ui ⊗ vj ⊗ wk . Let Ω = {ω1, . . . , ωm}, where ω1, . . . , ω ∈ [n]3
are sampled uniformly at random with replacement. Let A be the S-by-S Gram matrix of the vectors
(ys)Ω. Then, A is the sum of m identically distributed rank-1 matrices Ai,

A =
m∑
i=1

Ai with (Ai)s,s′ = (ys)ωi · (ys′)ωi .

Each Ai has expectation � Ai = n−1.5 Id and spectral norm at most |S | · µ/n1.5. Standard matrix
concentration inequalities (Tropp, 2012) show that m > O(|S |µ2 log n) is enough to ensure that
the sum is spectral close to its expectation (m/n1.5) Id in the sense that 0.99A � (m/n1.5) Id � 1.1A.

4.4. Degree-4 certificates imply exact recovery

In this section we prove Theorem 4. We need the following technical lemma, which we prove in
Appendix A.

Lemma 16
Let R be self-adjoint linear operator R on �n ⊗ �n. Suppose 〈(vj ⊗ wk), R(vi ⊗ wi)〉 = 0 for

all indices i, j, k ∈ [r] such that i ∈ { j, k}. Then, there exists a self-adjoint linear operator R′ on
�n ⊗ �n such that R′(vi ⊗ wi) = 0 for all i ∈ [r], the spectral norm of R′ satisfies ‖R′‖ 6 10‖R‖,
and R′ represents the same polynomial in �[y, z],

〈(y ⊗ z), R′(y ⊗ z)〉 = 〈(y ⊗ z), R(y ⊗ z)〉 .
We can now prove that certificates in the sense of Definition 3 imply that our algorithm successfully

recoves the unknown tensor.
Proof [Proof of Theorem 4] Let T be a certificate in the sense of Definition 3.

Our goal is to construct a positive semidefinite matrix M on �n ⊕ �n ⊗ �n that represents the
following polynomial

〈(x, y ⊗ z), M(x, y ⊗ z)〉 = ‖x‖2 + ‖ y ‖2 · ‖z‖2 − 2〈x,T(y ⊗ z)〉 .
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Let Ta be matrices such that 〈x,T(x ⊗ y)〉 = ∑
a xa · Ta(y, z). Since ‖x‖2 +

∑n
a=1 Ta(y, z)2 −

2〈x,T(y ⊗ z)〉 = ‖x − T(y ⊗ z)‖ is a sum of squares of polynomials, it will be enough to find a
positive semidefinite matrix that represents the polynomial ‖ y ‖2 · ‖z‖2 −

∑n
a=1 Ta(y, z)2. (This step

is a polynomial version of the Schur complement condition for positive semidefiniteness.) Let R be
the following linear operator

R =
n∑

a=1
Ta ⊗ Ta

ᵀ −

r∑
i=1

(vi ⊗ wi)(vi ⊗ wi)ᵀ ,

Lemma 17
R satisfies the requirement of Lemma 16.

Proof Consider 〈(vj ⊗ wk), R(vj ⊗ w j)〉. Since vj is repeated, the value of this expression will be the
same if we replace R by an R2 which represents the same polynomial. Thus, we can replace R by
R2 =

∑n
a=1 Ta

ᵀTa −
∑r

i=1(vi ⊗ wi)(vi ⊗ wi )T = TᵀT −
∑r

i=1(vi ⊗ wi)(vi ⊗ wi )T
We now observe that 〈(vj ⊗ wk), R2(vj ⊗ w j)〉 = 〈(vj ⊗ wk),Tᵀ(u j) − (vj ⊗ w j)〉 = 0. By a

symmetrical proof, 〈(vj ⊗ wk), R(vk ⊗ wk)〉 = 0 as well.

By LemmaLemma 16, there exists a self-adjoint linear operator R′ that represents the same polynomial
as R, has spectral norm ‖R′‖ 6 10‖R‖ 6 0.1, and sends all vectors vi ⊗ wi to 0. Since R′ sends all
vectors vi ⊗ wi to 0 and ‖R′‖ 6 0.1, the following matrix

R′′ =
r∑
i=1

(vi ⊗ wi)(vi ⊗ wi)ᵀ + R′

has r eigenvalues of value 1 (corresponding to the space spanned by vi ⊗ wi) and all other eigenvalues
are at most 0.1 (because the non-zero eigenvalues of R′ have eigenvectors orthogonal to all vi ⊗ wi).
At the same time, R′′ represents the following polynomial,

〈(y ⊗ z), R′′(y ⊗ z)〉 =
n∑

a=1
Ta(y, z)2 .

Let P be a positive semidefinite matrix that represents the polynomial ‖x‖2 +
∑n

a=1 Ta(y, z)2 −
2〈x,T(y ⊗ z)〉 (such a matrix exists because the polynomial is a sum of squares). We choose M as
follows

M =
(

Id −T
(T )T (T )T T

)
+

(
0 0
0 Id−R′′

)
Since R′′ � Id, this matrix is positive semidefinite. Also, M represents ‖x‖2 + ‖ y ‖2 · ‖z‖2 −
2〈x,T(y ⊗ z)〉. Since ui = T(vi ⊗ wi) for all i ∈ [r] and the kernel of Id−R′′ only contains span of
vi ⊗ wi, the kernel of M is exactly the span of the vectors (ui, vi ⊗ wi).

Next, we show that the above matrix M implies that Algorithm 2 recovers the unknown tensor
X . Recall that the algorithm on input XΩ finds a pseudo-distribution µ(x, y, z) so as to minimize
�̃µ‖x‖2 + ‖ y ‖2 · ‖z‖2 such that (�̃µ x ⊗ y ⊗ z)Ω = XΩ. Since everything is scale invariant, we may
assume that X =

∑r
i=1 λi · ui ⊗ vi ⊗ wi for λ1, . . . , λr > 0 and

∑
i λi = 1. Then, a valid pseudo-

distribution would be the probability distribution over (u1, v1, w1), . . . , (ur, vr, wr ) with probabilities
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λ1, . . . , λr . Let µ be the pseudo-distribution computed by the algorithm. By optimality of µ, we
know that the objective value satisfies �̃µ‖x‖2 + ‖ y ‖2 · ‖z‖2 6 �i∼λ‖ui ‖2 + ‖vi ‖2 · ‖wi ‖

2 = 2. Then,
if we let Y = �µ(x, y ⊗ z)(x, y ⊗ z)T ,

0 6 〈M,Y 〉 = �̃
µ(x, y,z)

‖x‖2 + ‖ y ‖2 · ‖z‖2 − 2〈x,T(y ⊗ z)〉
6 2 − 2 �̃

µ(x, y,z)
〈x,T(y ⊗ z)〉

= 2 − 2 �
i∼λ

〈ui,T(vi ⊗ wi)〉
= 0

The first step uses that M and Y are psd. The second step uses that M represents the polynomial
‖x‖2 + ‖ y ‖2 · ‖z‖2 − 2〈x,T(y ⊗ z)〉. The third step uses that µ minimizes the objective function.
The fourth step uses that the entries of T are 0 outside of Ω and that µ matches the observations
(�̃µ x ⊗ y ⊗ z)Ω = XΩ. The last step uses that ui = T(vi ⊗ wi) for all i ∈ [r].

We conclude that 〈M,Y 〉 = 0, which means that the range of Y is contained in the kernel of M.
Therefore, Y =

∑r
i, j=1 γi, j · (ui, vi ⊗ wi)(u j, vj ⊗ w j )T for scalars {γi, j}. We claim that the multipliers

must satisfy γi,i = λi and γi, j = 0 for all i , j ∈ [r]. Indeed since µ matches the observations in Ω,

0 =
n∑

i, j=1
(λi − γi, jδi j) · (ui ⊗ vj ⊗ w j)Ω .

Since the vectors (ui ⊗ vj ⊗ w j)Ω are linearly independent, we conclude that γi, j = λi · δi j as desired.
(This linear independence was one of the requirements of the certificate in Definition 3.)

4.5. Degree-4 certificates exist with high probability

In this section we show that our certificate T in fact satisfies the conditions for a degree-4 certificate,
proving Theorem 5.

We use the same construction as in Section 4.3. The main, remaining technical challenge for
Theorem 5 is to show that the construction satisfies the spectral norm condition of Definition 3.
This spectral norm bound follows from the following theorem which we give a proof sketch for in
Appendix B.

Theorem 18 Let A = (R̄Ωl
P) · · · (R̄Ω1 P)(R̄Ω0 X) or P(R̄Ωl

P) · · · (R̄Ω1 P)(R̄Ω0 X) and let B =
(R̄Ωl′

P) · · · (R̄Ω1 P)(R̄Ω0 X) or P(R̄Ωl′
P) · · · (R̄Ω1 P)(R̄Ω0 X). There is an absolute constant C such that

for any α > 1 and β > 0,

�











∑
a

Aa ⊗ BT
a








> α−(l+l′+2)


< n−β

as long as m > Cαβµ
3
2 rn1.5 · log(n) and m > Cαβµ2rn log(n).

Remark 19 If it were true in general that ||∑a Aa ⊗ BT
a || 6

√
||∑a Aa ⊗ AT

a ||
√
||∑a Ba ⊗ BT

a || then
it would be sufficient to use Theorem 14 and we would not need to prove Theorem 18. Unfortunately,
this is not true in general.

17
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That said, it may be possible to show that even if we do not know directly that ||∑a Aa ⊗ BT
a ||

is small, since ||∑a Aa ⊗ AT
a || and ||∑a Ba ⊗ BT

a || are both small there must be some alternative
matrix representation of

∑
a Aa ⊗ BT

a which has small norm, and this is sufficient. We leave it as an
open problem whether this can be done.

We have now all ingredients to prove Theorem 5.
Proof [Proof of Theorem 5] Let k = (log n)C for some absolute constant C > 1. Let E =
(−1)kP(PR̄Ωk

) · · · (PR̄Ω1)[X]. By Lemma 13 there exists Y with (Y )Ω = Y and P[Y ] = E such that
‖Y ‖F 6 O(1)‖E‖. We let T = T (k) + Y . This tensor satisfies the desired linear constraints (T)Ω = T
and P[T] = X . Since E has the form of the matrices in Theorem 18, the bound in Theorem 18 implies
‖E‖F 6 2−k · n10 6 n−C+10. (Here, we use that the norm in the conclusion of Theorem 18 is within
a factor of n10 of the Frobenius norm.)

We are to prove that the following matrix has spectral norm bounded by 0.01,

n∑
a=1

(T)a ⊗ (T)Ta −
n∑

a=1
Xa ⊗ XT

a .

We expand the sum according to the definition of T (`) in Eq. (4.21). Then, most terms that appear
in the expansion have the form as in Theorem 18. Since those terms decrease geometrically, we
can bound their contribution by 0.001 with probability 1 − n−ω(1). The terms that involve the
error correction Y is smaller than 0.001 because Y has polynomially small norm ‖Y ‖F 6 n−C+10.
The only remaining terms are cross terms between X and a tensor of the form as in Theorem 18.
We can bound the total contribution of these terms also bounded by at most 0.001 using Theorem 84.

5. Matrix norm bound techniques

In this section, we describe the techniques that we will use to prove probabilistic norm bounds on
matrices of the form Y =

∑
a (R̄ΩA)a ⊗ (R̄ΩA)Ta . We will prove these norm bounds using the trace

moment method, which obtains probabilistic bounds on the norm of a matrix Y from bounds on
the expected value of tr((YYT )q) for sufficiently large q. This will require analyzing tr((YYT )q),
which will take the form of a sum of products, where the terms in the product are either entries of
A or terms of the form R̄Ω(a, b, c) where R̄Ω(a, b, c) = n3

m − 1 if (a, b, c) ∈ Ω and −1 otherwise. To
analyze tr((YYT )q), we will group products together which have the same expected behavior on the
R̄Ω(a, b, c) terms, forming smaller sums of products. For each of these sums, we can then use the
same bound on the expected behavior of the R̄Ω(a, b, c) terms for each product in the sum. This allows
us to move this bound outside of the sum, leaving us with a sum of products of entries of A. We will
then bound the value of these sums by carefully choosing the order in which we sum over the indices.

In the reainder of this section and in the next two sections, we allow for our tensors to have
asymmetric dimensions. We account for this with the following definitions.

Definition 20 We define n1 to the dimension of the u vectors, n2 to be the dimension of the v vectors,
and n3 to be the dimension of the w vectors. We define nmax = max {n1, n2, n3}

18
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5.1. The trace moment method

We use the trace moment method through the following proposition and corollary.

Proposition 21 For any random matrix Y , for any integer q > 1 and any ε > 0,

Pr

||Y || > 2q

√
E

�
tr((YYT )q)�

ε


< ε

Proof By Markov’s inequality, for all integers q > 1 and all ε > 0

Pr

tr((YYT )q) > E

�
tr((YYT )q)�

ε


< ε

The result now follows from the observation that if ||Y || > 2q
√

E[tr((YYT )q )]
ε then tr((YYT )q) >

E[tr((YYT )q )]
ε .

Corollary 22 For a given p > 1, r > 0, n > 0, and B > 0, for a randommatrixY , if E
�
tr

�(YYT )q��
6

(qpB)2qnr for all integers q > 1 then for all β > 0,

Pr
[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p]

< n−β

Proof We take ε = n−β and we choose q to minimize 2q
√

(qpB)2qnr
ε = Bqpn

r+β
2q . Setting the derivative

of this expression to 0 we obtain that ( pq − r+β

2q2 ln n)Bqpn
r+β
2q = 0, so we want q = r+β

2p ln n. However,
q must be an integer, so we instead take q = d r+β2p ln ne. With this q, we have that

Bqpn
r+β
2q 6 B

(
r + β

2p
ln n + 1

)p
n

p
ln n = Bep

( (r + β)
2p

ln n + 1
)p

Applying Proposition 21 with q, we obtain that

Pr

||Y || > 2q

√
E

�
tr((YYT )q)�

ε


6 Pr

[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p]

< n−β

5.2. Partitioning by intersection pattern

As discussed at the beginning of the section, E
�
tr((YYT )q)� will be a sum of products, where part

of these products will be of the form
∏2q′

i=1 R̄Ω(ai, bi, ci). Here, q′ may or may not be equal to q, in
fact we will often have q′ = 2q because each Y will contribute two terms of the form R̄Ω(a, b, c)
to the product. To handle this part of the product, we partition the terms of our sum based on the
intersection pattern of which triples (ai, bi, ci) are equal to each other. Fixing an intersection pattern
determines the expected value of

∏2q′
i=1 R̄Ω(ai, bi, ci).
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Definition 23 We define an intersection pattern to be a set of equalities and inequalities satisfying
the following conditions

1. All of the equalities and inequalities are of the form (ai1, bi1, ci1) = (ai2, bi2, ci2) or (ai1, bi1, ci1) ,
(ai2, bi2, ci2), respectively.

2. For every i1, i2, either (ai1, bi1, ci1) = (ai2, bi2, ci2) is in the intersection pattern or (ai1, bi1, ci1) ,
(ai2, bi2, ci2) is in the intersection pattern

3. All of the equalities and inequalities are consistent with each other, i.e. there exist values of
(a1, b1, c1), · · · , (a2q, b2q, c2q) satisfying all of the equalities and inequalities in the intersection
pattern.

Proposition 24 For a given (a, b, c),
1. E

�
R̄Ω(a, b, c)� = 0

2. For all k > 1, E
[�

R̄Ω(a, b, c)�k
]
6

�n1n2n3
m

�k−1

Corollary 25 For a given intersection pattern, if there is any triple (a, b, c) which appears ex-
actly once, E

[∏2q′
i=1 R̄Ω(ai, bi, ci)

]
= 0. Otherwise, letting z be the number of distinct triples,

E
[∏2q′

i=1 R̄Ω(ai, bi, ci)
]
6

�n1n2n3
m

�2q′−z

Proof for a given intersection pattern, let (ai1, bi1, ci1), · · · , (aiz , biz , ciz ) be the distinct triples and let
cj be the number of times the triple (ai j , bi j , ci j ) appears. We have that

E


2q′∏
i=1

R̄Ω(ai, bi, ci)

=

z∏
j=1

E
��

R̄Ω(ai j , bi j , ci j )
�c j �

If cj = 1 for any j then this expression is 0. Otherwise,

z∏
j=1

E
��

R̄Ω(ai j , bi j , ci j )
�c j �
6

z∏
j=1

(n1n2n3
m

)c j−1
=

(n1n2n3
m

) (∑z
j=1 c j

)
−z

=

(n1n2n3
m

)2q′−z

5.3. Bounding sums of products of tensor entries

In this subsection, we describe how to bound the sum of products of tensor entries we obtain for
a given intersection pattern after moving our bound on the expected value of the R̄Ω(a, b, c) terms
outside the sum. We represent such a product with a hypergraph as follows.

Definition 26 Given a set of distinct indices and a set of tensor entries on those indices, let H be the
hypergraph with one vertex for each distinct index and one hyperedge for each tensor entry, where
the hyperedge consists of all indices contained in the tensor entry. If the tenor entry appears to the
pth power, we take this hyperedge with multiplicity p.
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With this definition in mind, we will first preprocess our products.

1. We will preprocess the tensor entries so that every entry appears to an even power using the
inequality |ab| 6 1

2 (a2 + b2). This has the effect of taking two hyperedges of our choice in
H and replacing them with one doubled hyperedge or the other (we have to consider both
possibilities). Note that this step makes all of our terms positive and can only increase their
magnitude, so the result will be an upper bound on our actual sum.

2. We will add the missing terms to our sum so that for we sum over every possibility for the
distinct indices (even the possibilities which make several of these indices equal and would put
us in a different intersection pattern). Note that this can only increase our sum.

Remark 27 It is important that we first bound the expected value of the R̄Ω(a, b, c) terms and move
this bound outside of our sum before adding the missing terms to the sum.

After preprocessing our products, our strategy will be as follows. We will sum over the indices,
removing the corresponding vertices from H. As we do this, we will apply appropriate bounds on
squared tensor entries, removing the corresponding doubled hyperedge from H. To obtain these
bounds, we observe that we can bound the average square of our tensor entries in terms of the number
of indices we are averaging over.

Definition 28 We say that an order 3 tensor A of dimensions n1 × n2 × n3 is (B, r, µ)-bounded if the
following bounds are true

1. maxa,b,c {A2
abc

} 6 Br

2. max {maxb,c { 1
n1

∑
a A2

abc
},maxa,c { 1

n2

∑
b A2

abc
},maxa,b { 1

n3

∑
c A2

abc
}} 6 B

µ

3. max {maxc { 1
n1n2

∑
a,b A2

abc
},maxb { 1

n1n3

∑
a,c A2

abc
},maxa { 1

n2n3

∑
b,c A2

abc
}} 6 B

µ2

4. 1
n1n2n3

∑
a,b,c A2

abc
6 B

µ3

More generally, we say that a tensor A is (B, r, µ)-bounded if the following is true
1. The maximum value of an entry of A squared is at most Br

2. Every index which we average over decreases our upper bound by a factor of µ

3. If we are averaging over at least one index then we can delete the factor of r in our bound.

Since r and µ will always be the same, we write B-bounded rather than (B, r, µ)-bounded

To give a sense of why these are the correct type of bounds to use, we now show that X is
(

rµ3

n1n2n3

)
-

bounded. In Section 7, we will use an iterative argument to show that with high probability, similar
bounds hold for all of the tensors A we will be considering.

Proposition 29 X is
(

rµ3

n1n2n3

)
-bounded
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Proof Recall that X =
∑r

i=1 ui ⊗ vi ⊗ wi where the vectors {ui} are orthonormal, the vectors {vi}
are orthonormal, and the vectors {wi} are orthonormal. Also recall that for all i, a, b, c, u2

ia 6
µ
n1
,

v2
ib
6 µ

n2
, and w2

ic 6
µ
n3
. We now have the following bounds:

1.

max
a,b,c

{X2
abc} = max

a,b,c




r∑
i=1

r∑
i′=1

uiavibwicui′avi′bwi′c



6

r2µ3

n1n2n3

2.

max
b,c




1
n1

∑
a

X2
abc



=

1
n1

max
b,c




∑
a

r∑
i=1

r∑
i′=1

uiavibwicui′avi′bwi′c




=
1
n1

max
b,c




r∑
i=1

r∑
i′=1

*
,

∑
a

uiaui′a+
-
vibwicvi′bwi′c




=
1
n1

max
b,c




r∑
i=1

v2
ibw

2
ic




6
rµ2

n1n2n3

The other bounds where we sum over one index follow by symmetrical arguments.

3.

max
c




1
n1n2

∑
a,b

X2
abc



=

1
n1n2

max
c




∑
a,b

r∑
i=1

r∑
i′=1

uiavibwicui′avi′bwi′c




=
1

n1n2
max
c




r∑
i=1

r∑
i′=1

*
,

∑
a

uiaui′a+
-

*
,

∑
b

vibvi′b+
-
wicwi′c




=
1

n1n2
max
c




r∑
i=1

w2
ic




6
rµ

n1n2n3

The other bounds where we sum over two indices follow by symmetrical arguments.

4.

1
n1n2n3

∑
a,b,c

X2
abc =

1
n1n2n3

∑
a,b,c

r∑
i=1

r∑
i′=1

uiavibwicui′avi′bwi′c

=
1

n1n2n3

r∑
i=1

r∑
i′=1

*
,

∑
a

uiaui′a+
-

*
,

∑
b

vibvi′b+
-

*
,

∑
c

wicwi′c
+
-

=
1

n1n2n3

r∑
i=1

1

=
r

n1n2n3
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With these kinds of bounds in mind, we bound sums of products of tensor entries as follows. We note
that we can always apply the entrywise bound for a squared tensor entry. However, to apply any of
the other bounds, we must be able to sum over an index or indices where the only term in our product
which depends on this index or indices is the squared tensor entry. This can be described in terms of
the hypergraph H as follows.

Definition 30 Given a hyperedge e in H , define b(e) to the the minimal B such that the tensor entry
corresponding to e is B-bounded.

Definition 31 We say that a vertex is free in H if it contained in only one hyperedge and this
hyperedge appears with multiplicity two.

We can apply our bounds in the following ways.

1. We can always choose a hyperedge e of H , use the entrywise bound of rb(e) on the corresponding
squared tensor entry (note the extra factor of r), and reduce the multiplicity of e by two.

2. If there is a free vertex incident with a doubled hyperedge e in H, we can sum over all free
vertices which are incident with e using the corresponding bound then delete these vertices
and the doubled hyperedge e from H . When we do this, we obtain a factor of

b(e)
(

n1
µ

)# of deleted a vertices (
n2
µ

)# of deleted b vertices (
n3
µ

)# of deleted c vertices
The factors of n1, n2, n3 appear because we are summing over these indices and the factors of 1

µ

appear because each index we sum over reduces the bound on the average value by a factor of
µ.

If we apply these bounds repeatedly until there are no tensor entries/hyperedges left to bound, our
final bound on a single sum of products of tensor entries will be

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a indices (
n2
µ

)# of b indices (
n3
µ

)# of c indices
r# of entrywise bounds used

To prove our final upper bound, we will argue that we can always apply these bounds in such a way
that the number of times we need to use an entrywise bound is sufficiently small.

5.4. Counting intersection patterns

There will be one more factor in our final bound. This factor will come from the number of possible
intersection patterns with a given number z of distinct triples (a, b, c).
Lemma 32 The total number of intersection patterns on 2q′ triples with z distinct triples (a, b, c)
such that every triple (a, b, c) has multiplicity at least two is at most �2q′

z

�
z2q′−z 6 22q′q′2q

′−z

Proof To determine which triples (a, b, c) are equal to each other, it is sufficient to decide which
triples are distinct from all previous triples (there are

�2q′
z

�
choices for this) and for the remaining

2q′ − z triples, which of the z distinct triples they are equal to (there are z2q′−z choices for this).
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6. Trace Power Calculation for R̄ΩA ⊗ (R̄ΩA)T
In this section, we implement the techniques described in Section 5 to probabilistically bound
||R̄ΩA ⊗ (R̄ΩA)T ||. In particular, we prove the following theorem.

Theorem 33 If A is B-bounded, C > 1, and

1. m > 10000C(2 + β)2nmaxrµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 + β)2r

√
n1n2n3µ

3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then defining Y = R̄ΩA ⊗ (R̄ΩA)T ,

Pr
[
||Y || > Bn1n2n3

Crµ3

]
< 4n−(β+1)

Corollary 34 If C > 1 and

1. m > 10000C(2 + β)2nmaxrµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 + β)2r

√
n1n2n3µ

3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
||R̄ΩX ⊗ (R̄ΩX)T || > 1

C

]
< 4n−(β+1)

Proof This follows immediately from Theorem 33 and the fact that X is
(

rµ3

n1n2n3

)
-bounded.

To prove Theorem 33, we break up Y into four parts and then prove probabilistic norm bounds for
each part.

Definition 35

1. Define (Y1)bcb′c′ = Ybcb′c′ if b = b′, c = c′ and 0 otherwise.

2. Define (Y2)bcb′c′ = Ybcb′c′ if b = b′, c , c′ and 0 otherwise.

3. Define (Y3)bcb′c′ = Ybcb′c′ if b , b′, c = c′ and 0 otherwise.

4. Define (Y4)bcb′c′ = Ybcb′c′ if b , b′, c , c′ and 0 otherwise.
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6.1. Structure of tr((YjYT
j )q)

We have that Ybcb′c′ =
∑

a R̄Ω(a, b, c′)R̄Ω(a, b′, c)Aabc′Aab′c. To see the structure of (YjYT
j )q, we

now compute YjYT
j .

(YjYT
j )b1c1b2c2 =∑

a1,a2,b′,c′

R̄Ω(a1, b1, c′)R̄Ω(a1, b′, c1)R̄Ω(a2, b2, c′)R̄Ω(a2, b′, c2)Aa1b1c′Aa1b′c1 Aa2b2c′Aa2b′c2

where the sum is taken over b′, c′ which satisfy the appropriate constraints. The R̄Ω terms will not be
part of our hypergraph H (as their expected behavior is determined by the intersection pattern). We
can view the first two terms Aa1b1c′ and Aa1b′c1 as an hourglass with upper triangle (b1, a1, c′) and
lower triangle (c1, a1, b′) (where the vertices in each triangle are listed from left to right). Similarly,
we can view the last two terms Aa2b2c′ and Aa2b′c2 as an hourglass with upper triangle (c′, a2, b2)
and lower triangle (b′, a2, c2). Thus, the hypergraph H corresponding to tr((YjYT

j )q) will be 2q
hourglasses glued together where the top vertices of the hourglass alternate between b and c′ indices,
the bottom vertices of the hourglass alternate between c and b′ indices, and the middle vertices of the
hourglass are the a indices.

Remark 36 While there is no real difference between the b and b′ indices and between the c and c′

indices, we will keep track of this to make it easier to see the structure of H .

As described in Section 5, we split up E
[
tr((YjYT

j )q)
]
based on the intersection pattern of which

of the 4q triples of the form (a, b, c′) or (a, b′, c) are equal to each other. We only need to consider
patterns where each triple and thus each hyperedge appears at least twice, as otherwise the terms
in the sum will have expected value 0. In all cases, letting z be the number of distinct triples in a
given intersection pattern, by Corollary 25 our bound on the expected value of the R̄Ω terms will be�n1n2n3

m

�4q−z

6.2. Bounds on ||Y1 ||
Consider E

�
tr((Y1YT

1 )q)�. The constraints that b′ = b and c′ = c in every Y force all of the b and
b′ indices to be equal and all of the c and c′ indices to be equal, so our hypergraph H consists of a
single vertex b, a single vertex c, and two copies of the hyperedge (ai, b, c) for each i ∈ [1, 2q]. For
all intersection patterns, the number of distinct triples z is equal to the number of distinct a indices,
which can be anywhere from 1 to 2q.

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two hyperedges e1 and e2 which appear with odd
multiplicity, we double one of these hyperedges or the other. Thus, we can assume that all
hyperedges appear with even multiplicity.

2. We will apply an entrywise bound 2q − z times on hyperedges of multiplicity > 4, reducing
the multiplicity by 2 each time.

3. After applying these entrywise bounds, all of the distinct a vertices will be free and we can
sum up over these indices one by one.
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Recall that the bound from the RΩ terms is
�n1n2n3

m

�4q−z and our bound for the other terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b entries (
n3
µ

)# of c entries
r# of entrywise bounds used

where b(e) = B for all our hyperedges. Summing over all z ∈ [1, 2q] and all intersection patterns
using Lemma 32, our final bound is

2q · 24q max
z∈[1,2q]

{
(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
n1
µ

)z (
n2
µ

) (
n3
µ

)
r2q−z

}
The inner expression will either be maximized at z = 2q or z = 1 and we will always take q to be
between ln nmax

2 and nmax

2 , so our final bound on E
�
tr((Y1YT

1 )q)� is at most

(4q)4q max



nmax
*
,

n2
1n2n3B

mµ ln nmax

+
-

2q (
n2
µ

) (
n3
µ

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m

rµ3




Since m > 10000C(2+ β)2nmaxrµ2 ln nmax and m > 10000C(2+ β)2r
√

n1n2n3µ
3
2 ln nmax , we have

that

E
�
tr((Y1YT

1 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q
n3
max

(note that m < n3
max as otherwise the tensor completion problem is trivial). We now recall Corollary

22, which says that for a given p > 1, r > 0, n > 0, and B > 0, for a random matrix Y , if
E

�
tr

�(YYT )q��
6 (qpB)2qnr for all integers q > 1 then for all β > 0,

Pr
[
||Y || > Bep

( (r + β)
2p

ln n + 1
)p]

< n−β

Using Corollary 22 with the appropriate parameters, we can show that for all β > 0,

P
[
||Y1 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

6.3. Bounds on ||Y2 || and ||Y3 ||
Consider E

�
tr((Y2YT

2 )q)�. The constraint that b′ = b in every Y forces all of the b and b′ indices to be
equal, so our hypergraph H consists of a single vertex b and 4q total hyperedges of the form (a, b, c)
or (a, b, c′). Ignoring the b vertex (which is part of all the hyperedges), the (a, c) and (a, c′) edges
form a single connected component. We only need to consider intersection patterns where each triple
(a, b, c) or (a, b, c′) (and thus each edge (a, c) or (a, c′)) appears with multiplicity at least two. For a
given intersection pattern, let z be the number of distinct edges.

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two edges e1 and e2 which appear with oddmultiplicity,
we double one of these edges or the other. Thus, we can assume that all edges appear with
even multiplicity.
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2. We will apply an entrywise bound 2q − z times on edges of multiplicity > 4, reducing the
multiplicity by 2 each time.

3. After applying these entrywise bounds, all of our edges will have multiplicity 2. We now sum
over a free a, c, or c′ vertex in H whenever such a vertex exists. Otherwise, there must be a
cycle, in which case we use the entrywise bound on one edge of the cycle and delete it.

Definition 37 Let x be the number of times we delete an edge in a cycle using the entrywise bound.

Lemma 38 The total number of vertices in H (excluding b) is z + 1 − x

Proof Observe that neither deleting a free vertex nor deleting an edge in a cycle can disconnect H .
Also, except for the final edge where both of its vertices will be free, every edge which has a free
vertex has exactly one free vertex. Thus, we delete an edge in a cycle x times, removing 0 vertices
each time, we delete an edge with one free vertex z− x −1 times, removing 1 vertex each time, and we
delete the final edge once, removing the final two vertices. This adds up to z + 1 − x vertices in H .

Recall that the bound from the RΩ terms is
�n1n2n3

m

�4q−z and our bound for the other terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b entries (
n3
µ

)# of c or c′ entries
r# of entrywise bounds used

where b(e) = B for all our hyperedges. Summing over all z ∈ [1, 2q] and all intersection patterns
using Lemma 32, our final bound is

2q · 24q max
z∈[1,2q],x∈[0,z−1]



(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
nmax

µ

)z−1−x (
n1n2n3

µ3

)
r2q−z+x




Since µr 6 nmax , the inner expression will either be maximized when z = 2q and x = 0 or when
z = 1 and x = 0. Again, we will always take q to be between ln nmax

2 and nmax

2 , so our final bound on
E

�
tr((Y2YT

2 )q)� is at most

(4q)(4q) max



(
n1n2n3nmaxB

mµ ln nmax

)2q (
n1n2n3

µ2

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m

rµ3




Since m > 10000C(2+ β)2nmaxrµ2 ln nmax and m > 10000C(2+ β)2r
√

n1n2n3µ
3
2 ln nmax , we have

that

E
�
tr((Y2YT

2 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q
n3
max

Using Corollary 22 with the appropriate parameters (in fact the same ones as before), we can show
that for all β > 0,

P
[
||Y2 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

By a symmetrical argument, we can obtain the same probabilistic bound on ||Y3 ||.
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6.4. Bounds on ||Y4 ||
Consider E

�
tr((Y4YT

4 )q)�. Our hypergraph H consists of 2q hyperedges of the form (b, a, c′) or
(c′, a, b) from the top triangles of the hourglasses and 2q hyperedges of the form (c, a, b′) or (b′, a, c)
from the bottom triangles of the hourglasses. We only need to consider intersection patterns where
each triple (and thus each hyperedge) appears with multiplicity at least two. For a given intersection
pattern, let z be the number of distinct hyperedges.

Ignoring the a vertices for now, we can think of H as a graph on the b, b′, c, and c′ vertices. Note
that the (b, c′) and (c′, b) edges are part of a single connected component and the (c, b′) and (b′, c)
edges are part of a single connected component (these connected components may or may not be the
same).

We apply our bounds on H as follows.

1. In our preprocessing step, when there are two hyperedges e1 and e2 which appear with odd
multiplicity, we double one of these hyperedges or the other. Thus, we can assume that all
hyperedges appear with even multiplicity.

2. We will apply an entrywise bound 2q − z times on hyperedges of multiplicity > 4, reducing
the multiplicity by 2 each time.

3. After applying these entrywise bounds, all of our hyperedges will have multiplicity 2. We now
sum over a free b,b′,c, or c′ vertex in H whenever such a vertex exists. Otherwise, there must
be a cycle on the (b, c′) and (b′, c) parts of the hyperedges, in which case we use the entrywise
bound on one hyperedge of the cycle and delete it.

Definition 39 Let x be the number of times we delete a hyperedge in a cycle using the entrywise
bound.

Lemma 40 Let k be the number of connected components of H . The total number of b,b′,c, and c′

vertices in H is z + k − x 6 z + 2 − x

Proof The proof is similar to the proof of Lemma 38. Observe that neither deleting a free vertex nor
deleting an edge in a cycle can disconnect a connected component of H. Also, except for the final
edge of a connected component where both of its vertices will be free, every edge which has a free
vertex has exactly one free vertex. Thus, we delete an edge in a cycle x times, removing 0 vertices
each time, we delete an edge with one free vertex z − x − k times, removing 1 vertex each time, and
we delete the final edge of a connected component k times, removing the final 2k vertices. This adds
up to z + k − x vertices in H . For the inequality, recall that H has at most 2 connected components,
one for the (b, c′) edges and one for the (c, b′) edges.
Finally, we bound the number of distinct a indices

Proposition 41 The number of distinct a indices is at most z
2 .

Proof Note that by the definition of Y4, every a index must be part of at least two distinct hyperedges.

Recall that the bound from the RΩ terms is
�n1n2n3

m

�4q−z and our bound for the other terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a entries (
n2
µ

)# of b or b′ entries (
n3
µ

)# of c or c′ entries
r# of entrywise bounds used
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where b(e) = B for all our hyperedges. Summing over all z ∈ [2, 2q] and all intersection patterns
using Lemma 32, our final bound is

2q · 24q max
z∈[1,2q],x∈[0,z−2]



(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
n1
µ

) z
2
(

max {n2, n3}
µ

)z−2−x
*
,

n2
2n2

3
µ4

+
-

r2q−z+x



Since µr 6 min {n1, n2, n3}, the inner expression will either be maximized when z = 2q and x = 0
or when z = 2 and x = 0. Again, we will always take q to be between ln nmax

2 and nmax

2 , so our final
bound on E

�
tr((Y2YT

2 )q)� is at most

(4q)(4q) max



*
,

n1n2n3
√

n1 max {n2, n3}B

mµ
3
2 ln nmax

+
-

2q (
n3
max

µ2

)
, *

,

n2
1n2

2n2
3rB

m2
+
-

2q
m2

r2µ5n1




Since m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax , we have that

E
�
tr((Y4YT

4 )q)� < (16q2)2q
(

n1n2n3B
10000C(2 + β)2rµ3(ln nmax)2

)2q
n6
max

Using Corollary 22 with the appropriate parameters, we can show that for all β > 0,

P
[
||Y4 || > 16e2Bn1n2n3

10000rµ3

]
< n−(β+1)

max

Putting our four bounds together with a union bound, for all β > 0,

P
[
||Y || > Bn1n2n3

rµ3

]
6 P

[
||Y || > 64e2Bn1n2n3

10000rµ3

]
< 4n−(β+1)

max

as needed.

7. Iterative tensor bounds

In this section, we show that with high probability, applying the operator PR̄Ω to an order 3 tensor A
improves our bounds on it, where we are assuming that Ω is chosen independently of A.

Theorem 42 If A is a B-bounded tensor, C > 1, β > 0, and

1. m > 10000C(2 + β)2nmaxrµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 + β)2r

√
n1n2n3µ

3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
PR̄ΩA is not

(
B
C

)
-bounded

]
< 100n−(β+1)

max

Proof We first consider how P acts on a tensor

Definition 43
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1. Define PUV to be the projection onto span{ui ⊗ vi ⊗ w : i ∈ [1, r]}.
2. Define PUW to be the projection onto span{ui ⊗ v ⊗ wi : i ∈ [1, r]}.
3. Define PVW to be the projection onto span{u ⊗ vi ⊗ wi : i ∈ [1, r]}.
4. Define PUVW to be the projection onto span{ui ⊗ vi ⊗ wi : i ∈ [1, r]}.

Proposition 44 P = PUV + PUW + PVW − 2PUVW

With this in mind, we break up the tensor W = PR̄ΩA into four parts and then obtain probabilistic
bounds for each part. Theorem 42 will then follow from the union bound and the inequality
(a + b + c − 2d)2 6 5(a2 + b2 + c2 + 2d2).
Definition 45

1. Define WUV = PUV R̄ΩA.

2. Define WUW = PUW R̄ΩA.

3. Define WVW = PVW R̄ΩA.

4. Define WUVW = PUVW R̄ΩA.

To analyze these parts, we reexpress PUV, PUW, PVW, PUVW in terms of matrices
UV,UW,VW,UVW .

Definition 46

1. Define UVaba′b′ =
∑r

i=1 uiavibuia′vib′

2. Define UWaca′c′ =
∑r

i=1 uiawicuia′wic′

3. Define VWbcb′c′ =
∑r

i=1 vibwicvib′wic′

4. Define UVWabca′b′c′ =
∑r

i=1 uiavibwicuia′vib′wic′

Proposition 47

1. UV is
(
rµ4

n2
1n

2
2

)
-bounded.

2. UW is
(
rµ4

n2
1n

3
2

)
-bounded.

3. VW is
(
rµ4

n2
2n

2
3

)
-bounded.

4. UVW is
(

rµ6

n2
1n

2
2n

2
3

)
-bounded.

Proof These bounds can be proved in the same way as Proposition 29.
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Proposition 48

1. WUV
abc
=

∑
a′,b′ UVaba′b′ R̄Ω(a′, b′, c)Aa′b′c

2. WUW
abc
=

∑
a′,c′ UVaca′c′ R̄Ω(a′, b, c′)Aa′bc′

3. WVW
abc
=

∑
b′,c′ UVbcb′c′ R̄Ω(a, b′, c′)Aab′c′

4. WUVW
abc

=
∑

a′,b′,c′ UVabca′b′c′ R̄Ω(a′, b′, c′)Aa′b′c′

Proposition 49

1.
�
WUV

abc

�2
=

∑
a′1,b

′
1,a
′
2,b
′
2

UVaba′1b
′
1
UVaba′2b

′
2
R̄Ω(a′1, b′1, c)R̄Ω(a′2, b′2, c)Aa′1b

′
1c

Aa′2b
′
2c

2.
�
WUW

abc

�2
=

∑
a′1,c

′
1,a
′
2,c
′
2

UWaca′1c
′
1
UWaca′2c

′
2
R̄Ω(a′1, b, c′1)R̄Ω(a′2, b, c′2)Aa′1bc

′
1
Aa′2bc

′
2

3.
�
WVW

abc

�2
=

∑
b′1,c

′
1,b
′
2,c
′
2

VWbcb′1c
′
1
VWbcb′2c

′
2
R̄Ω(a, b′1, c′1)R̄Ω(a, b′2, c′2)Aab′1c

′
1
Aab′2c

′
2

4.
�
WUVW

abc

�2
=∑

a′1,b
′
1,c
′
1,a
′
2,b
′
2,c
′
2

UVWabca′1b
′
1c
′
1
UVWabca′2b

′
2c
′
2
R̄Ω(a′1, b′1, c′1)R̄Ω(a′2, b′2, c′2)Aa′1b

′
1c
′
1
Aa′2b

′
2c
′
2

We need to probabilistically bound the expressions
∑

subset of {a,b,c} (WUV,UW,VW, orUVW
a,b,c

)2. For each
expression which we need to probabilistically bound, we can obtain this bound by analyzing the
expected value of its qth power using the techniques in Section 5 and then using a result similar to
Corollary 22. We begin by probabilistically bounding

�
WUVW

abc

�2. As the remaining bounds will all
be very similar, rather than giving a full proof of the remaining bounds we will only describe the few
differences and what effect they have.

Lemma 50 For all a, b, c and all β > 0, if m > 10000C(2 + β)2nmaxrµ2 ln nmax then

P
[�

WUVW
abc

�2
>

32e2Brµ
10000Cnmax

]
< n−(β+4)

max

Proof Similar to before, we partition our sum based on the intersection pattern of which (a′i, b′i, c′i ) are
equal. Letting z be the number of distinct triples (a′i, b′i, c′i ), the contribution from the R̄Ω(a′i, b′i, c′i )
terms will be at most a factor of

�n1n2n3
m

�2q−z . Recall that for a given intersection pattern, our bound
on the remaining terms is

*
,

∏
e∈H

√
b(e)+

-

(
n1
µ

)# of a or a′ indices (
n2
µ

)# of b or b′ indices (
n3
µ

)# of c or c′ indices
r# of entrywise bounds used

Remark 51 Here we will only be summing over a′,b′, and c′, indices, but for other expressions we
will be summing over a, b, and c indices as well.
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In our hypergraph H , we will have hyperedges (a′i, b′i, c′i ) corresponding to the tensor entries Aa′i,b
′
i,c
′
i

and we will have hyperedges (a, b, c, a′i, b′i, c′i ) corresponding to the matrix entries UVWa,b,c,a′i,b
′
i,c
′
i
.

We have that ∏
e∈H

√
b(e) = Bq *

,

rµ6

n2
1n2

2n2
3

+
-

q

We apply our techniques to H as follows.

1. Recall that in our preprocessing step, we can take a pair of hyperedges e1, e2 and replace them
with either a doubled copy of e1 or a doubled copy of e2. Using this, we ensure that every
hyperedge appears with even multiplicity.
Here, we start with hyperedges (a′, b′, c′)where every distinct (a′, b′, c′) has multiplicity at least
two and hyperedges (a, b, c, a′, b′, c′) where every distinct (a, b, c, a′, b′, c′) has multiplicity
at least two (a, b, c are the same for all of these hyperedges). Thus, in our preprocessing
step, we can ensure that all of the hyperedges (a′, b′, c′) and (a, b, c, a′, b′, c′) occur with even
multiplicity and every distinct hyperedge has multiplicity at least two.

2. We apply an entrywise bound q times to the (a, b, c, a′, b′, c′) hyperedges.
3. We will apply an entrywise bound q − z times on hyperedges (a′, b′, c′) of multiplicity > 4,

reducing the multiplicity by 2 each time. After doing this, all our hyperedges will have
multiplicity 2. We now ignore the c′ vertices and consider the graph on the a′, b′ vertices. We
then sum over a free a′ or b′ vertex in H whenever such a vertex exists. Otherwise, there must
be a cycle (which could be a duplicated edge if we have hyper-edges (a′, b′, c′1) and (a′, b′, c′2)),
in which case we use the entrywise bound on one edge of the cycle and delete it.

Definition 52 Let x be the number of times we delete an edge in a cycle using the entrywise bound.

Lemma 53 Let k be the number of connected components of H. The total number of a′ and b′

vertices in H is z + k − x 6 2z − 2x

Proof The first part can be proved in exactly the same way as Lemma 40. For the inequality, we
need to show that k 6 z − x. To see this, note that there are at most z distinct edges and every
time we delete an edge in a cycle, this removes one edge without reducing the number of connected
components. After removing all cycles (and no other edges), we must have at least as many edges left
as we have connected components, so z − x > k, as needed.

Summing over all z ∈ [1, 2q] and all intersection patterns using Lemma 32 and noting that there are
at most z a′,b′,c′ indices but we must have two fewer a′ or b′ indices for each time we delete an edge
in a cycle using an entrywise bound, our final bound on E

[(�
WUVW

abc

�2)q]
is

2q · 22q max
z∈[1,2q],x∈[0,z−1]




q2q−z
(n1n2n3

m

)2q−z *
,

Br2µ6

n2
1n2

2n2
3

+
-

q (
n1n2n3

µ3

)z (
µ

min {n1, n2}
)2x

rq−z+x



Since m >> rq and µr 6 min {n1, n2, n3}, the inner expression will be maximized when z = q and
x = 0. Again, we will take q to be between ln nmax

2 and nmax

2 so our final bound on E
[(�

WUVW
abc

�2)q]

is at most

(2q)(2q)
(

2Br2µ3

m ln nmax

)q
nmax
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Since m > 10000C(2 + β)2rnmaxµ
2 ln nmax , we have that for all a, b, c.

E
[(�

WUVW
abc

�2
)q]

< q2q
(

8Brµ
10000C(2 + β)2nmax(ln nmax)2

)q
nmax

To obtain our final probabilistic bound, we adapt Corollary 22 for non-negative scalar expressions.

Corollary 54 For a given p > 1, r > 0, n > 0, and B > 0, for a non-negative scalar expression Z ,
if E[Zq] 6 (qpB)2qnr for all integers q > 1 then for all β > 0,

Pr

|Z | > B2e2p

( (r + β)
2p

ln n + 1
)2p

< n−β

Proof This can be proved in the same way as Corollary 22 except that |Z | takes the place of ||YYT ||
which is why the bound of Corollary 22 is squared.

Using Corollary 54 with the appropriate parameters, for all a, b, c

P
[�

WUVW
abc

�2
>

32e2Brµ
10000Cnmax

]
< n−(β+4)

max

The remaining bounds can be proved in a similar way, though there are a few differences. We now
consider the remaining bounds involving WUVW . When we average over at least one coordinate, our
analysis is as follows:

1. The (a, b, c, a′, b′, c′) hyperedges no longer all have the same (a, b, c). In fact, since the
intersection patterns only specify which (a′i, b′i, c′i ) are equal to each other, we treat all of the
different a, b, c as distinct indices.

2. For each (a, b, c), we begin with two (a, b, c, a′, b′, c′) hyperedges which have this (a, b, c)
(though their (a′, b′, c′) may be different) To handle this, in our preprocessing step we take
each such pair of (a, b, c, a′, b′, c′) hyperedges and double one or the other.

3. Averaging over the a, b, or c indices, we avoid using entrywise bounds for any of the doubled
(a, b, c, a′, b′, c′) hyperedges.

4. The analysis of the (a′, b′, c′) hyperedges is exactly the same

Taking Z to be the appropriate expression (for example, Z = 1
n1

∑
a

�
WUVW

abc

�2 if we are only averaging
over the a index), our bound on E[Zq] is affected as follows:

1. Avoiding using the entrywise bounds on the (a, b, c, a′, b′, c′) hyperedges reduces our bound
on E[Zq] by a factor of rq.

2. If we average over a, this gives us q additional a indices to sum over, increasing our bound on
E[Zq] by a factor of (

n1
µ

)q
, but this also gives us a factor of 1

n
q
1
so the net effect is to reduce our

bound on E[Zq] by a factor of µq. Similar logic applies to b and c, so each index we average
over (including the first) reduces our bound on E[Zq] by a factor of µq.
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This implies that each index we average over (including the first) reduces our final bound by a factor
of µ and averaging over at least one index reduces our final bound by a further factor of r , as needed.

At this point, we just need to consider the bounds involving WUV , as the remaining cases are
symmetric. When we analyze Z =

�
WUV

abc

�2 rather than
�
WUVW

abc

�2, our analysis differs as follows.

Instead of having
(
Br2µ6

n2
1n

2
2n

2
3

)q
in our bound on E[Zq] from the (a, b, c, a′, b′, c′) hyperedges, we will

have
(
Br2µ4

n2
1n

2
2

)q
from (a, b, a′, b′) hyperedges, increasing our bound on E[Zq] by a factor of

(
n2

3
µ2

)q
.

However, this is partially counteracted by the fact that we are either no longer summing over the c′

indices separately from the c indices because we always have that c′i = ci. This removes a factor of
(n3
µ )z from our bound on E[Zq]. Thus, our bound on E[Zq] is now

2q · 22q max
z∈[1,2q],x∈[0,z−1]




q2q−z
(n1n2n3

m

)2q−z *
,

Br2µ4

n2
1n2

2

+
-

q (
n1n2

µ2

)z (
µ

min {n1, n2}
)2x

rq−z+x



We check that it is still optimal to take z = q and x = 0. Since rµ 6 min {n1, n2, n3}, it is always
optimal to take x = 0. Now if we reduce z by 1, this gives us a factor of at most qn1n2n3

m ·
rµ2

n1n2
=

qrµ2n3
m .

We will take q 6 10(1 + β) ln nmax and we have that m > 10000C(2 + β)2nmaxrµ2 ln nmax , so it is
indeed still optimal to take z = q and x = 0. Thus, the net effect of the differences is a factor of

(
n3
µ

)q
in our bound on E[Zq] which gives us a factor of n3

µ in our final bound. This gives us the following
bound.

Lemma 55 For all a, b, c and all β > 0, if m > 10000C(2 + β)2nmaxrµ2 ln nmax then

P
[�

WUV
abc

�2
>

32e2Br
10000C

]
< n−(β+4)

max

Finally, we consider what happens if we average over one or more of the a, b, and c indices. If we
average over the a indices or average over the b indices, then instead of using entrywise bounds on
the (a, b, a′, b′) hyperedges, the index or indices we average over will create free vertices, allowing us
to bound the (a, b, a′, b′) hyperedges without using any entrywise bounds. We can now use the same
reasoning as before. The final case is if we only average over the c indices.

Lemma 56 For all a, b and all β > 0, if m > 10000C(2 + β)2nmaxrµ2 ln nmax and then

P


1
n3

∑
c

�
WUV

abc

�2
>

32e2B
10000Cµ


< n−(β+4)

max

Proof In this case, our preprocessing ensures that all distinct hyperedges appear with multiplicity
which is even and at least two. Now instead of first bounding the (a, b, a′, b′) hyperedges and then
bounding the (a′, b′, c′) hyperedges, we will first bound the (a′, b′, c′) hyperedges using all of the
distinct c indices and bound the (a, b, a′, b′) hyperedges using the distinct a′, b′ indices.

Letting y = z − (# of distinct c′), we have the following bounds on the number of a′, b′, c indices
and the number of times we will use an entrywise bound

1. There are at most z a′ indices and there are at most z b′ indices.

2. There are at most 2z−2x a′ and b′ indices, where x is the number of times we use an entrywise
bound on (a, b, a′, b′) hyperedges because of an (a′, b′) edge in a cycle.
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3. There are (z − y) c indices.

4. The total number of times that we will use an entrywise bound is 2q − 2z + x + y

Taking Z = 1
n3

∑
c

�
WUV

abc

�2, this gives us a bound of

2q · 22q max
z∈[1,2q],

x, y∈[0,z−1]




q2q−z
(n1n2n3

m

)2q−z *
,

Brµ4

n2
1n2

2n3
+
-

q (
n1n2n3

µ3

)z (
µ

min {n1, n2}
)2x (

µ

n3

) y
r2q−2z+x+y




on E[Zq]. We check that it is optimal to take z = q, x = 0, and y = 0. Since rµ 6 min {n1, n2, n3},
it is always optimal to take x = y = 0. Now if we reduce z by 1, this gives us a factor of at most
qn1n2n3

m ·
r2µ3

n1n2n3
=

qr2µ3

m . We will take q 6 10(1 + β) ln nmax and we have that rµ 6 min {n1, n2, n3}
and m > 10000C(2 + β)2nmaxrµ2 ln nmax , so it is indeed optimal to take z = q, x = 0, and y = 0.

Comparing the resulting bound to our bound on E
[�

WUV
abc

�2q]
, it is smaller by a factor of (rµ)q ,

so our final bound is smaller by a factor of rµ, as needed.

We now have all of our needed probabilistic bounds. Theorem 42 follows from the inequality
W 2

abc
6 5

�(WUV
abc

)2 + (WUW
abc

)2 + (WVW
abc

)2 + 2(WUVW
abc

)2�
and union bounds.

8. Trace Power Calculation for P′R̄ΩA ⊗ (P′R̄ΩA)T
In this section, we prove the following theorem.

Theorem 57 If A is B-bounded, C > 1, and

1. m > 10000C(2 + β)2nmaxrµ2 ln nmax

2. m > 10000C(2 + β)2r
√

n1 max {n2, n3}µ 3
2 ln nmax > 10000C(2 + β)2r

√
n1n2n3µ

3
2 ln nmax

3. µr 6 min {n1, n2, n3}
then

Pr
[
||Y || > Bn1n2n3

Crµ3

]
< 4n−(β+1)

whenever Y is any of the following:

1. Y = PUV R̄ΩA ⊗ (PUV R̄ΩA)T

2. Y = PUW R̄ΩA ⊗ (PUW R̄ΩA)T

3. Y = PVW R̄ΩA ⊗ (PVW R̄ΩA)T

4. Y = PUVW R̄ΩA ⊗ (PUVW R̄ΩA)T

Proof This can be proved using the techniques of Sections 5 and 6 with one additional trick. We first
consider the PUVW case and then describe the differences for the other cases. In all of these cases,
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we will show that the bound we obtain on E
�
tr((YYT )q)� is much less than the bound we obtained

for E
�
tr((Y4YT

4 )q)� in section 6, which was

2q · 24q max
z∈[1,2q],x∈[0,z−2]



(2q)4q−z

(n1n2n3
m

)4q−z
B2q

(
n1
µ

) z
2
(

max {n2, n3}
µ

)z−2−x
*
,

n2
2n2

3
µ4

+
-

r2q−z+x



Thus, for simplicity, for the remainder of the section, we will absorb constants, functions of only
q, and logarithms into an Õ. Doing this and taking z = 2q, x = 0, the above bound becomes(
Õ

(
n1n2n3

√
n1 max {n2,n3}B
mµ

3
2

))2q
n2
max

When Y = PUVW R̄ΩA ⊗ (PUVW R̄ΩA)T , the structure of tr
�(YYT )q�

is as follows. We have
(a′, b′, c′) hyperedges and we have hyperedges (a, b, c, a′, b′, c′) which we can view as an outer
triangle (a, b, c) and an inner triangle (a′, b′, c′). The outer triangles form hourglasses as before while
the inner triangles sit inside the outer triangles.

The R̄Ω terms only involve the (a′, b′, c′) triples so our intersection patterns only describe these
indices. Thus, we sum over all of the a, b, c indices freely. We now use the following additional trick.
We decompose each UVWabca′b′c′ as

∑r
i=1 uiavibwicuia′vib′wic′. Now observe that every vertex in

the outer triangles appears in two hyperedges. When we sum over that vertex, we get a term such
as

∑
a ui1aui2a. This is 0 unless i1 = i2 and is 1 if i1 = i2. This in fact forces a global choice for i

among the UVW terms, giving a single factor of r for the choices for this global i. This also means
that the vertices in the outer triangles give a factor of exactly 1, so they can be ignored! For the
remaining terms of UVW , we use the bounds u2

ia′ 6
µ
n1
, v2

ib′
6 µ

n2
, and w2

ic′ 6
µ
n3
, obtaining a factor

of
(

µ3

n1n2n3

)2q

We now consider the contribution from summing over the a′, b′, c′ vertices, the contribution from
the R̄Ω terms, and the contribution from the entries of A. Letting z be the number of distinct triples
(a′, b′, c′) in the given intersection pattern, the contribution from the R̄Ω terms will be

�n1n2n3
m

�4q−z .
The contribution from the entries of A from the b(e) is B2q . Letting x be the number of times that we
have to use an entrywise bound on a doubled edge because it is in a cycle, we have the following
bounds on the number of indices and the number of times we use an entrywise bound.

1. The number of distinct a indices, the number of distinct b indices, and the number of distinct c
indices are all at most z

2. The total number of distinct indices is at most 3z − x.

3. The number of times we use an entrywise bound is 2q − z + x

Putting everything together, we obtain a bound of

Õ *
,

max
z∈[1,2q],x∈[0,z−1]




r
(
µ3B

n1n2n3

)2q (n1n2n3
m

)4q−z (
n1n2n3

µ3

)z (
µ

min {n1, n2, n3}
)x

r2q−z+x



+
-

for E
�
tr((YYT )q)�. This is maximized when z = 2q and x = 0, leaving us with a bound of(

Õ(n1n2n3B
m ))2q

r which is much less than the bound of
(
Õ

(
n1n2n3

√
n1 max {n2,n3}B
mµ

3
2

))2q
n2
max which

we had for E
�
tr((Y4YT

4 )q)�, so we get a correspondingly smaller norm bound, as needed.
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The analysis is the same for the PUV , PUW , and PVW cases except for the following differ-
ences which increase the bound on E

�
tr((YYT )q)�, but still makes it much less than we had for

E
�
tr((Y4YT

4 )q)�.
1. In the PVW case there are now two global indices, one for the top of the outer hourglasses and

one for the bottom of the outer hourglasses. This gives us a global factor of r2 rather than r .

2. Since one of the outer indices is now merged with the corresponding inner index, instead of the
UVW terms giving us factors of

(
µ
n1

)2q
,
(
µ
n2

)2q
, and

(
µ
n3

)2q
for the inner indices, we will only

have two of these factors. This increases our bound on E
�
tr((YYT )q)� by a factor of at most(

nmax

µ

)2q

Putting these differences together, our bound will now be
(
Õ(n1n2n3nmaxB

mµ ))2q
r2 which is still much

less than the bound we had for E
�
tr((Y4YT

4 )q)�.
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Appendix A. Controlling the kernel of matrix representations

We prove the following lemma in this section which was an ingredient of the proof of Theorem 4. Let
{ui}, {vi}, {wi} be three orthonormal bases of �n.

Lemma [Restatement Lemma 16]
Let R be self-adjoint linear operator R on �n ⊗ �n. Suppose 〈(vj ⊗ wk), R(vi ⊗ wi)〉 = 0 for

all indices i, j, k ∈ [r] such that i ∈ { j, k}. Then, there exists a self-adjoint linear operator R′ on
�n ⊗ �n such that R′(vi ⊗ wi) = 0 for all i ∈ [r], the spectral norm of R′ satisfies ‖R′‖ 6 10‖R‖,
and R′ represents the same polynomial in �[y, z],

〈(y ⊗ z), R′(y ⊗ z)〉 = 〈(y ⊗ z), R(y ⊗ z)〉 .
Proof. We write

R(vi ⊗ wi) =
∑
jk

cii jkvj ⊗ wk

Then the condition on the bilinear form of R implies that for all i, j, k, ciiik = 0 and cii ji = 0.
We now take Z to be the following matrix

Z =
∑
i, j,k

cii jk
�(vj ⊗ wk)(vi ⊗ wi)T − (vj ⊗ wi)(vi ⊗ wk)T − (vi ⊗ wk)(vj ⊗ wi)T + (vi ⊗ wi)(vj ⊗ wk)T �

+
∑
i j

cii j j
2

�(vj ⊗ w j)(vi ⊗ wi)T − (vj ⊗ wi)(vi ⊗ w j)T − (vi ⊗ w j)(vj ⊗ wi)T + (vi ⊗ wi)(vj ⊗ w j)T �

It can be verified directly that Z represents the 0 polynomial and has the same behavior on each of
the (vi ⊗ wi) as R. The factor of 1

2 in the second sum comes from the fact that cj jii = cii j j and the
fourth term for cj jii matches the first term for cii j j

We choose R′ = R − Z . In order to show the bound ‖R′‖ 6 10‖R‖ it is enough to show that
‖Z ‖ 6 9‖R‖

We analyze the norm of Z as follows. We break Z into parts according to each type of term and
analyze each part separately. Define X to be the subspace spanned by the (vi ⊗ wi), define PX to be
the projection onto X and define P⊥X to be the projection onto the subspace orthogonal to X .

For the part
∑

i jk cii jk(vj ⊗ wk)(vi ⊗ wi)T , note that ∑i jk cii jk(vj ⊗ wk)(vi ⊗ wi)T = P⊥XR′PX so
it has norm at most ||R||.

For the part
∑

i jk cii jk(vj ⊗ wi)(vi ⊗ wk)T , note that under a change of basis this is equivalent
to a block-diagonal matrix with blocks

∑
jk cii jkvjwT

k
. The norm of each such block is at most its

Frobenius norm, which is the norm of
∑

jk cii jk(vj ⊗ wk) = R′(vi ⊗ wi). Thus, this part also has
norm at most ||R||. Using similar arguments, we can bound the norm of the other parts by ||R|| as
well, obtaining that ||Z || 6 8||R||.

Appendix B. Full Trace Power Calculation

In this section, we analyze ||∑a Aa ⊗ BT
a || where A = (R̄Ωl

Pl) · · · (R̄Ω1 P1)(R̄Ω0 X) or
A = Pl+1(R̄Ωl

Pl) · · · (R̄Ω1 P1)(R̄Ω0 X) for some projection operators P1, · · · , Pl, Pl+1 and B =
(R̄Ωl′

Pl′) · · · (R̄Ω1 P′1)(R̄Ω0 X) or B = Pl′+1(R̄Ωl′
Pl′) · · · (R̄Ω1 P′1)(R̄Ω0 X) for some projection opera-

tors P′1, · · · , P
′
l′
, P′

l′+1. In particular, we prove the following theorem using the trace power method.
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Theorem 58 There is an absolute constant C such that for any α > 1 and β > 0,

Pr

||
∑
a

Aa ⊗ BT
a || > α−(l+l′+2)


< n−β

as long as

1. rµ 6 min {n1, n2, n3}
2. m > Cαβµ

3
2 r
√

n1 max {n2, n3}log(max {n1, n2, n3})
3. m > Cαβµ2r max {n1, n2, n3}log(max {n1, n2, n3})

Remark 59 In this draft, we only sketch the case where we do not have projection operators in front.
To handle the cases where there are projection operators in front, we can use the same ideas that are
sketched out in Section 8,

B.1. Term Structure

When we expand out the sums in tr
��(∑a Aa ⊗ BT

a )(∑a Aa ⊗ BT
a )T

�q�
, our terms will have the

following structure. We label the indices so that each R̄Ω j operator has its own indices (ai j, bi j, ci j)
or (a′i j, b′i j, c′i j). Many of these indices will be equal.

1. For all i ∈ [0, l] and all j ∈ [1, 2q] we have indices (ai j, bi j, ci j) and a corresponding term
R̄Ωi (ai j, bi j, ci j) in the product.

2. For all i ∈ [0, l ′] and all j ∈ [1, 2q] we have indices (a′i j, b′i j, c′i j) and a corresponding term
R̄Ωi (a′i j, b′i j, c′i j) in the product.

3. For all j ∈ [1, 2q] we have a term Xa0b0c0 and a term Xa′0b
′
0c
′
0
in the product.

4. For all i ∈ [0, l] and all j ∈ [1, 2q] we have a term Pi(ai j, bi j, ci j, a(i−1)j, b(i−1)j, c(i−1)j) in the
product.

5. For all i ∈ [0, l ′] and all j ∈ [1, 2q] we have a term P′i (a′i j, b′i j, c′i j, a′(i−1)j, b
′
(i−1)j, c

′
(i−1)j) in the

product.

We represent the terms in the product graphically as follows.

Definition 60

1. For all i, we represent the terms R̄Ωi (ai j, bi j, ci j) and R̄Ωi (a′i j, b′i j, c′i j) by triangles. We call
these triangles Ri-triangles and R′i -triangles respectively.

2. For all i and j,

(a) If Pi = PUV then we represent Pi(ai j, bi j, ci j, a(i−1)j, b(i−1)j, b(i−1)j) by a hyperedge
(ai j, bi j, a(i−1)j, b(i−1)j). We call this hyperedge a UV -hyperedge.

(b) If Pi = PUW then we represent Pi(ai j, bi j, ci j, a(i−1)j, b(i−1)j, b(i−1)j) by a hyperedge
(ai j, ci j, a(i−1)j, c(i−1)j). We call this hyperedge a UW -hyperedge.

41



Potechin Steurer

(c) If Pi = PVW then we represent Pi(ai j, bi j, ci j, a(i−1)j, b(i−1)j, b(i−1)j) by a hyperedge
(bi j, ci j, b(i−1)j, c(i−1)j). We call this hyperedge a VW -hyperedge.

(d) If Pi = PUVW then we represent Pi(ai j, bi j, ci j, a(i−1)j, b(i−1)j, b(i−1)j) by a hyperedge
(ai j, bi j, ci j, a(i−1)j, b(i−1)j, c(i−1)j). We call this hyperedge a UVW -hyperedge.

We represent the P′i terms by hyperedges in a similar manner.

3. For all j ∈ [1, 2q], we represent the term Xa0 jb0 j c0 j with a hyperedge (a0j, b0j, c0j) and
we represent the term Xa′0 jb

′
0 j c
′
0 j
with a hyperedge (a′0j, b′0j, c′0j). We call these hyperedges

X-hyperedges.

We have the following equalities among the indices:

1. For all j ∈ [1, 2q], al j = a′
l′ j

2. For all j ∈ [1, 2q], if j is even then bl j = bl(j+1) and c′
l′ j
= c′

l′(j+1)

3. For all j ∈ [1, 2q], if j is odd then cl j = cl(j+1) and b′
l′ j
= b′

l′(j+1)

4. For all i ∈ [1, l] and all j ∈ [1, 2q], if Pi = PUV then ci j = c(i−1)j , if Pi = PUW then
bi j = b(i−1)j , and if Pi = PVW then ai j = a(i−1)j

5. For all i ∈ [1, l] and all j ∈ [1, 2q], if P′i = PUV then c′i j = c′(i−1)j , if P′i = PUW then
b′i j = b′(i−1)j , and if P′i = PVW then a′i j = a′(i−1)j

B.2. Techniques

In this section, we describe how to bound the expected value of

tr *
,

*
,
(
∑
a

Aa ⊗ Ba)(
∑
a

Aa ⊗ Ba)T +
-

q

+
-

We first consider the R̄Ωi terms, which for a given choice of the indices are as follows:

*.
,

l∏
i=0

2q∏
j=1

R̄Ωi (ai j, bi j, ci j)+/
-

*.
,

l′∏
i=0

2q∏
j=1

R̄Ωi (a′i j, b′i j, c′i j)+/
-

For a given choice of the indices, the expected value of this part can be bounded as follows

Definition 61 For all i, let zi be the number of distinct Ri-triangles and let z′i be the number of
distinct R′i-triangles. If a triangle appears as both an Ri-triangle and as an R′i-triangle then it
contributes 1

2 to both zi and z′i (so the total number of distinct triangles at level i is zi + z′i)

Lemma 62 For a given choice of the indices {ai j, bi j, ci j} and {a′i j, b
′
i j, c

′
i j}

1. If any triangle appears exactly once at some level i then

E


*.
,

l∏
i=0

2q∏
j=1

R̄Ωi (ai j, bi j, ci j)+/
-

*.
,

l′∏
i=0

2q∏
j=1

R̄Ωi (a′i j, b′i j, c′i j)+/
-


= 0
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2. If for all i, all of the triangles which appear at level i appear at least twice then

0 < E


*.
,

l∏
i=0

2q∏
j=1

R̄Ωi (ai j, bi j, ci j)+/
-

*.
,

l′∏
i=0

2q∏
j=1

R̄Ωi (a′i j, b′i j, c′i j)+/
-



6
(n1n2n3

m

)∑l
i=0 (2q−zi )+

∑l′

i=0 (2q−z′i )

Proof If there is any triangle (a, b, c) which appears exactly once in level i then R̄Ωi (ai, bi, ci) has
expectation 0 and is independent of every other term in the product so the entire product has value 0.
Otherwise, note that for k > 1, 0 < E

�(RΩi (a, b, c))k
�
6

�n1n2n3
m

�k−1. Further note that RΩi (a, b, c)
terms with either different i or different a, b, c are independent of each other. Thus, using this bound,
each copy of a triangle beyond the first gives us a factor of

�n1n2n3
m

�
. The total number of factors which

we obtain is the total number of triangles minus the number of distinct triangles (where triangles at
different levels are automatically distinct) and the result follows.

We now note that this bound holds for all sets of indices that follow the same intersection pattern of
which Ri-triangles and R′i -triangles are equal to each other. Thus, we can group all terms which have
the same intersection pattern together, using this bound on all of them.

Each such intersection pattern forces additional equalities between the indices. After taking
these equalities into account, we must sum over the remaining distinct indices. We now analyze
what happens with the remaining terms of the product as we sum over these indices. We begin by
considering how well we can bound the sum of entries of X squared if we sum over 0,1,2, or all 3
indices.

Lemma 63

1. maxabc {X2
abc

} 6 r2µ3

n1n2n3

2. maxbc {∑a X2
abc

} 6 rµ2

n2n3

3. maxc {∑a,b X2
abc

} 6 rµ
n3

4.
∑

a,b,c X2
abc
= r

Proof For the first statement,

X2
abc =

∑
i, j

uiavibwicu javjbw jc 6 r2 max
i

{u2
iav

2
ibw

2
ic} 6

r2µ3

n1n2n3

For the second statement,∑
a

X2
abc =

∑
i, j

*
,

∑
a

uiau ja
+
-
vibwicvjbw jc =

∑
i,a

u2
iav

2
ibw

2
ic 6

µ2

n2n3

∑
a,i

u2
ia =

rµ2

n2n3

For the third statement,∑
a,b

X2
abc =

∑
i, j,b

*
,

∑
a

uiau ja
+
-
vibwicvjbw jc =

∑
i,a,b

u2
iav

2
ibw

2
ic 6

µ

n3

∑
i

*
,

∑
a

u2
ia

∑
b

v2
ib

+
-
=

rµ
n3
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The final statement can be proved in a similar way.

Note that every index we sum over reduces the average value by µ. Further note that if we do not sum
over any indices, there is an extra factor of r in our bound. Following similar logic, similar statements
hold for the Pi and P′i terms.

We utilize this as follows. We start with a hypergraph H which represents the current terms in our
product. We first preprocess our product using the inequality |ab| 6 x

2 a2 + b2

2x (carefully choosing
each a, b, and x) to make all of our hyperedges have even multiplicity. Note that when doing this, we
cannot fully control which doubled hyperedges we will have; if we apply this on hyperedges e1 and
e2 we could end up with two copies of e1 or two copies of e2.

Now if we have a hyperedge with multiplicity 4 or more, we use the entrywise bound to reduce
its multiplicity by 2. For example, if our sum was

∑
a X4

abc
then we would use the inequality∑

a

X4
abc 6 max

abc
{X2

abc}
∑
a

X2
abc

to bound this sum.
Once every hyperedge appears with power 2, we choose an ordering for how we will bound the

hyperedges. For each hyperedge, we sum over all indices which are currently only incident with that
hyperedge, take the appropriate bound, and then delete the hyperedge and these indices from our
current hypergraph H . We account for all of this with the following definitions:

Definition 64

1. Define the base value of an X-hyperedge e to be v(e) =
√

rµ3

n1n2n3

2. Define the base value of a UV -hyperedge e to be v(e) =
√

rµ4

n2
1n

2
2

3. Define the base value of a UW -hyperedge e to be v(e) =
√

rµ4

n2
1n

2
3

4. Define the base value of a VW -hyperedge e to be v(e) =
√

rµ4

n2
2n

2
3

5. Define the base value of an UVW -hyperedge e to be v(e) =
√

rµ6

n2
1n

2
2n

2
3

Definition 65 We say that a index in our hypergraph H is free if it is incident with at most one
hyperedge.

For a given intersection pattern, assuming that every vertex is incident with at least one hyperedge
after the preprocessing, our final bound will be(n1n2n3

m

)∑l
i=0 (2q−zi )+

∑l′

i=0 (2q−z′i ) *
,

∏
e

v(e)+
-

(
n1
µ

)# of a indices
(

n2
µ

)# of b indices (
n3
µ

)# of c indices
r# of doubled hyperedges we bound with no free index
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To see this, note that from the discussion above, when an index a,b, or c is free and we sum over it,
we obtain n1, n2, or n3 terms respectively but this also reduces the current bound we are using by a
factor of µ. This will happen precisely one time for every index which is incident to at least one edge.
Thus, for this part the ordering doesn’t really matter. However, there is an extra factor of r whenever
we bound a doubled hyperedge with no free index (including when this hyperedge has multiplicity 4
or higher and we reduce its multiplicity by 2). We want to avoid this extra factor of r as much as
possible. We describe how to do this in subsection B.4.

Remark 66 When summing over an index, we may not acutally sum over all possiblities because
this could create equalities between triangles which should not be equal according to the intersection
pattern. However, adding in these missing terms can only increase the sum, so it is still an upper
bound.

B.3. Bounding the number of indices

In this subsection, we describe bounds on the number of each type of index for a given intersection
pattern. We then define a coefficient ∆ which is the discrepency between the our bounds and the
actual number of indices and reexpress our boun in terms of ∆.

We make the following simplifying assumption about our sums.

1. For all i ∈ [0, l ′], we either have that a′i j = ai j for all j ∈ [1, 2q] or a′i j , ai j for all j ∈ [1, 2q].
2. For all i ∈ [0, l ′], we either have that b′i j = bi j for all j ∈ [1, 2q] or b′i j , bi j for all j ∈ [1, 2q].
3. For all i ∈ [0, l ′], we either have that c′i j = ci j for all j ∈ [1, 2q] or c′i j , ci j for all j ∈ [1, 2q].

Moreover, all of these choices are fixed beforehand. We justify this assumption with a random
partitioning argument in subsection B.5.

With this setup, we first bound the number of each type of index which appears.

Definition 67 For all i,

1. We define xia to be the number of distinct indices ai j which do not appear at a higher level, we
define xib to be the number of distinct indices bi j which do not appear at a higher level, and
we define xic to be the number of distinct indices ci j which do not appear at a higher level.

2. We define x ′ia to be the number of distinct indices a′i j which do not appear at a higher level, we
define x ′

ib
to be the number of distinct indices b′i j which do not appear at a higher level, and

we define x ′ic to be the number of distinct indices c′i j which do not appear at a higher level.

In the case where we have an equality a′i j = ai j and this index does not appear at a higher level, we
instead count it as 1

2 for xia and 1
2 for x ′ia (and similarly for b and c).

Recall that we defined zi to be the number of distinct Ri-triangles and we defined z′i to be the nmber
of distinct R′i -triangles. zi and z′i give the following bounds on the coefficients

Proposition 68

1. For all i < l, xia 6 zi, xib 6 zi, and xic 6 zi.
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2. For all i < l ′, x ′ia 6 z′i , x ′
ib
6 z′i , and x ′ic 6 z′i .

3. If l ′ , l, b′
l j
, bl j , or c′

l j
, cl j ,

(a) xla + x ′
l′a
6 min {zl, z′

l′
}

(b) xlb + xlc 6 zl + 1
(c) x ′

l′b
+ x ′

l′c
6 z′

l′
+ 1

4. In the special case that l ′ = l, b′
l j
= bl j , and c′

l j
= cl j ,

(a) xla + x ′
l′a
= zl + z′

l′

(b) xlb + xlc = x ′
l′b
+ x ′

l′c
= 1

Proof The first two statements and 3(a) follow from the observation that distinct vertices must be in
distinct triangles. For 3(b), note that if we take the b, c edges from each Ri-triangle, the resulting
graph is connected. Thus, each distinct such edge (which must come from a distinct triangle) after
the first edge can only add one new vertex and the result follows. 3(c) can be proved analogously.

For the fourth statement, note that in this case all of the bl j and b′
l j
indices are equal to a single

index b and all of the cl j and c′
l j
indices are equal to a single index c. Thus, the number of distinct

al j is equal to the number of distinct Rl and R′
l
triangles.

With these bounds in mind, we define xmax coefficients which represent the maximum number of
distinct indices we can expect (given the structure of A and B and the values zi, z′i) and ∆ coefficients
which describe the discrepency between this maximum and the number of distinct indices which we
actually have.

Definition 69

1. For all i < l,

(a) If Pi+1 = PUV then we define xmax
ia = xmax

ib
= zi. We define ∆ia = xmax

ia − xia,
∆ib = xmax

ib
− xib, and ∆ic = 0.

(b) If Pi+1 = PUW then we define xmax
ia = xmax

ic = zi. We define ∆ia = xmax
ia − xia,

∆ic = xmax
ic − xic, and ∆ib = 0.

(c) If Pi+1 = PVW then we define xmax
ia = xmax

ib
= zi. We define ∆ib = xmax

ib
− xib,

∆ic = xmax
ic − xic, and ∆ia = 0.

(d) If Pi+1 = PUVW then we define xmax
ia = xmax

ib
= xmax

ic = zi . We define ∆ia = xmax
ia − xia,

∆ib = xmax
ib
− xib, and ∆ic = xmax

ic − xic.

2. For all i < l ′,

(a) If P′
i+1 = PUV then we define x ′max

ia = x ′max
ib = z′i . We define ∆′ia = x ′max

ia − x ′ia,
∆′
ib
= x ′max

ib − x ′ib, and ∆′ic = 0.
(b) If P′

i+1 = PUW then we define x ′max
ia = x ′max

ic = z′i . We define ∆′ia = x ′max
ia − x ′ia,

∆′ic = x ′max
ic − x ′ic, and ∆′ib = 0.

(c) If P′
i+1 = PVW then we define x ′max

ia = x ′max
ib = z′i . We define ∆′

ib
= x ′max

ib − x ′ib,
∆′ic = x ′max

ic − x ′ic, and ∆′ia = 0.
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(d) If P′
i+1 = PUVW then we define x ′max

ia = x ′max
ib = x ′max

ic = z′i . We define ∆ia =

x ′max
ia − x ′ia, ∆′ib = x ′max

ib − x ′ib, and ∆′ic = x ′max
ic − x ′ic.

3. If l ′ , l, b′
l′ j
, bl j , or c′

l′ j
, cl j then we define xmax

ll′a
= min {zl, z′

l′
}, we define xmax

lbc
= zl + 1,

and we define x ′max
lbc = z′

l′
+ 1. In the special case where l ′ = l, b′

l′ j
= bl j , and c′

l′ j
= cl j ,

we define xmax
ll′a

= zl + z′
l
and xmax

lbc
= x ′max

l′bc = 1. In both of these cases, we define
∆ll′a = xmax

ll′a
− xla − x ′

l′a
, ∆lbc = xmax

lbc
− xlb − xlc, and ∆′l′bc = x ′max

l′bc − x ′
l′b
− x ′

l′c
.

Definition 70 We define

∆ = ∆ll′a + ∆lbc + ∆
′
l′bc +

l−1∑
i=0

(∆ia + ∆ib + ∆ic) +
l′−1∑
i=0

(∆′ia + ∆′ib + ∆′ic)

We now reexpress our bound in terms of ∆.

Lemma 71 For a given intersection pattern and choices for the equalities or inequalities between
the ai j, bi j, ci j and a′i j, b

′
i j, c

′
i j indices, we can obtain a bound which is a product of

n2n3

µ2

(
µ

min {n1, n2, n3}
)∆

r# of doubled hyperedges we bound with no free index−
(∑l

i=0 (2q−zi )+
∑l′

i=0 (2q−z′i )
)

and terms of the form rµ
3
2
√
n1 max {n2,n3}

m , rµ2 max {n1,n2,n3}
m , or rµ3

m

Proof Recall that our bound was(n1n2n3
m

)∑l
i=0 (2q−zi )+

∑l′

i=0 (2q−z′i ) *
,

∏
e

v(e)+
-

(
n1
µ

)# of a indices
(

n2
µ

)# of b indices (
n3
µ

)# of c indices
r# of doubled hyperedges we bound with no free index

For all i < l, we consider the part of this bound which comes from Pi+1 and the indices ai, bi, ci
which do not appear at a higher level. Similary, for all i < l ′, we consider the part of this bound
which comes from P′

i+1 and the indices a′i, b
′
i, c
′
i which do not appear at a higher level. Finally, we

consider the part of this bound that comes from the X hyperedges, the Rl-triangles, the R′
l′
-triangles,

and their indices.

1. If Pi+1 = PUV then we can decompose the corresponding terms into the following parts:

(a) ( rµ4

n2
1n

2
2
)q from the hyperedges.

(b)
(
n1n2
µ2

)q
from the q potential new a, b, and c indices.

(c)
�n1n2n3

m

�q from the q potential distinct triangles.

(d)
(
r · µ2

n1n2
·
n1n2n3

m

)q−zi
=

(
rµ2n3
m

)q−zi
from the actual number of distinct triangles, the

corresponding reduced maximum number of potential new indices, and the factors of r
which we take from r# of doubled hyperedges we bound with no free index
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(e)
(
µ
n1

)∆ia
(
µ
n2

)∆ib
(
µ
n3

)∆ic
6

(
µ

min {n1,n2,n3}
)∆ia+∆ib+∆ic from the actual number of new

indices which we have

Putting everything together we obtain(
rµ2n3

m

)2q−zi (
µ

min {n1, n2, n3}
)∆ia+∆ib+∆ic

Similar arguments apply if Pi+1 = PVW or PVW

2. If Pi+1 = PUVW then we can decompose the corresponding terms into the following parts:

(a) ( rµ6

n2
1n

2
2n

2
3
)q from the hyperedges.

(b)
(
n1n2n3
µ2

)q
from the q potential new a, b, and c indices.

(c)
�n1n2n3

m

�q from the q potential distinct triangles.

(d)
(
r · µ3

n1n2n3
·
n1n2n3

m

)q−zi
=

(
rµ3

m

)q−zi
from the actual number of distinct triangles, the

corresponding reduced maximum number of potential new indices, and the factors of r
which we take from r# of doubled hyperedges we bound with no free index

(e)
(
µ
n1

)∆ia
(
µ
n2

)∆ib
(
µ
n3

)∆ic
6

(
µ

min {n1,n2,n3}
)∆ia+∆ib+∆ic from the actual number of new

indices which we have

Putting everything together we obtain(
rµ3

m

)2q−zi (
µ

min {n1, n2, n3}
)∆ia+∆ib+∆ic

Similar arguements holds for the P′ terms.

3. If l ′ , l, b′
l j
, bl j , or c′

l j
, cl j then our remaining terms are as follows

(a) ( rµ3

n1n2n3
)2q from the hyperedges.

(b) n2n3
µ2

(
n1(max {n2,n3})2

µ3

)q
from the q potential a indices and 2q + 2 potential b or c indices

(which must have at least one b index and at least one c index).
(c)

�n1n2n3
m

�2q from the 2q potential distinct triangles.

(d)
(
r · µ

3
2

√
n1 max {n2,n3} ·

n1n2n3
m

)2q−zl−z′l
6

(
rµ3/2√n1 max {n2,n3}

m

)2q−zl−z′l from the actual num-

ber of distinct triangles, the corresponding reduced maximum number of potential new
indices, and the factors of r which we take from r# of doubled hyperedges we bound with no free index

(e)
(
µ
n1

)∆ll′a
(

µ
max {n2,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1,n2,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual number
of new indices which we have

Putting everything together we obtain

n2n3

µ2
*
,

rµ3/2√n1 max {n2, n3}
m

+
-

4q−zl−z′l (
µ

min {n1, n2, n3}
)∆ll′a+∆lbc+∆

′

l′bc
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4. In the special case that l ′ = l, b′
l j
= bl j , and c′

l j
= cl j , we have the same terms except that now

there is only one b and c index and there are 2q potential a indices. Following similar logic we
obtain a bound of

n2n3

µ2

(
rµ2n1

m

)4q−zl−z′l (
µ

min {n1, n2, n3}
)∆ll′a+∆lbc+∆

′

l′bc

With this lemma in hand, to show our bound it is sufficient to show that we can choose an ordering on
the hyperedges such that the number of times we bound a doubled hyperedge without a free index is
at most ∆ +

∑l
i=0 (2q − zi) +∑l′

i=0 (2q − z′i)

B.4. Choosing an ordering

In this section, we describe how to choose a good ordering for bounding the hyperedges.

Lemma 72 For any structure for A and B (including equalities or inequalities between ai j, bi j, ci j
and a′i j, b

′
i j, c

′
i j) and any intersection pattern, there is a way to double the hyperedges using the

inequality |ab| 6 x
2 a2 + 1

2x b2 and then bound the doubled hyperedges one by one so that

1. After doubling the hyperedges, every index is part of at least one hyperedge.

2. The number of times that we bound a doubled hyperedge without a free index is at most
∆ +

∑l
i=0 (2q − zi) +∑l′

i=0 (2q − z′i)
Proof To double the X-hyperedges, we choose pairs of X-hyperedges corresponding to the same
triangle. This guarantees us at least one doubled hyperedge for every triangle at level 0. We double
any remaining X-hyperedges arbitrarily.

We show by induction on i that we cover all indices with these hyperedges. The base case i = 0
is already done. If we have already covered all indices at level i − 1 then consider the hyperedges
corresponding to the projection operators Pi and P′i . All of these hyperedges go between a triangle at
level i − 1 and a triangle at level i. We double pairs of these hyperedges which correspond to the
same triangle at level i. This guarantees that for every triangle at level i, there is at least one doubled
hyperedge corresponding to it. This hyperedge may not cover all three of the vertices of the triangle,
but if it misses one, this one must be equal to a vertex at the level below which was already covered
by assumption. We double the remaining hyperedges corresponding to the projection operators Pi

and P′i arbitrarily.
When performing this doubling, whenever the two hyperedges e1 and e2 have the same base

value, we use the inequality |e1e2 | 6 e2
1+e

2
2

2 . In the rare case when they have different base values, we
use the inequality |e1e2 | 6 v(e2)

2v(e1)e
2
1 +

v(e1)
2v(e2)e

2
2 to preserve the product of the base values.

Note that by this construction, for every triangle at level i > 1, there is a doubled hyperedge
corresponding to some Pi or P′i which goes between this triangle and a lower triangle, but we don’t
know which one.

We now describe our ordering on the hyperedges. To find this ordering, we consider the following
multi-graph.
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Definition 73 We define the multi-graph G to have vertex set V (G) = ∪i j{ai j, bi j, ci j, a′i j, b
′
i j, c

′
i j}

(with all equalities implied by the intersection pattern, the structure of the matrices A and B, and the
choices for equalities or inequalities between the primed indices and unprimed indices.). We take the
edges of G as follows. For all i < l and for each distinct triangle (ai j, bi j, ci j) or (a′i j, b′i j, c′i j), we take
the elements which do not appear in a higher level. If this is true for two of the three elements (which
will be the case most of the time) we take the corresponding edge. If this is true for all three elements,
we choose two of them to take as an edge, making this choice so that we take the same type of edge
for all triangles at that level. If this is only true for one element, we take a loop on that element.

There are two cases for what happens with i = l

1. If l ′ , l, b′
l j
, bl j , or c′

l j
, cl j then for every triangle (al j, bl j, cl j) we take the edge (bl j, cl j).

If l ′ = l then for every triangle (a′
l j
, b′

l j
, c′

l j
) we take the edge (b′

l j
, c′

l j
)

2. If l ′ = l, b′
l j
= bl j , and c′

l j
= cl j then we take loops on every distinct element al j .

We analyze ∆ in terms of this G. If we have a fixed budget of edges and want to maximize the
number of vertices which we have, we want to have as many connected components as possible and
we want each connected component to have the minimal number of edges. We define weights on the
connected components of G measuring how far they are from satisfying these ideals.

Definition 74 Given a connected componentC ofG, we define wedge(C) to be the number of non-loop
edges it contains plus 1 minus the number of vertices it contains.

Definition 75 Given a connected component C of G, we define wtriangle(C) as follows
1. If C does not contain any bl j , cl j , b′

l′ j
, or c′

l′ j
then we define wtriangle(C) to be the number of

distinct triangles whose corresponding edge in G is in C minus 1.

2. If C is the connected component containing bl j and cl j for all j then we set wtriangle(C) = 0

3. If C is the connected component containing b′
l′ j

and c′
l′ j

for all j then we set wtriangle(C) to be
the number of distinct Rl′ triangles (al′ j, bl′ j, cl′ j) whose corresponding edge in G is in C.

4. If C is a connected component containing some c′
l′ j

but no b′
l′ j

(because all of the b′
l′ j

appeared
at a higher level) or vice versa, then we define wtriangle(C) to be the number of distinct triangles
whose corresponding edge in G is in C minus 1.

Definition 76 We say that a vertex ai j is bad if

1. The projector Pi+1 involves the vertex ai j (i.e. we do not have the constraint a(i+1)j = ai j
directly)

2. ai j appears at a higher level.

We define badness similarly for the a′, b, b′, c, c′ indices. Note that we could have ai be bad while a′i
is not bad even if a′i = ai (in fact this equality must be true in this case).

Lemma 77

∆ >
∑
C

(wedge(C) + wtriangle(C)) +
∑

i<l:ai j,bi j, or ci j is bad
zi +

∑
i<l:a′i j,b

′
i j, or c

′
i j is bad

z′i
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Proof As discussed above, every time a connected component contains an extra edge above what
it needs to be connected, this reduces the number of indices we can have by 1. Similarly, in the
optimal case we have one connected component per triangle (with the exception of the Rl-triangles
and perhaps the R′

l′
-triangles), so every time a connected component contains an extra triangle (or

rather the edge corresponding to that triangle), this reduces the number of connected components by
1. For the remaining terms, note that if there are bad vertices, our previous bounds assumed that
we would have new indices of that type but we do not. The resulting difference in the bounds is the
corresponding zi or z′i . Note that this also works out in the special case that a′i = ai , b′i = bi , c′i = ci .
Here we can view each a index as being half ai and half a′i and similarly for the b and c indices.

With this lemma in hand, our strategy is as follows. We choose an ordering on the hyperedges so that
each time we fail to have a free index, we can attribute it to one of the terms described above. We
first preprocess our doubled hyperedges so that each hyperedge appears with multiplicity exactly 2.
This requires bounding

∑l
i=0 (2q − zi) +∑l′

i=0 (2q − z′i) doubled hyperedges with no free index. At
this point, there is a one to one correspondence between our doubled hyperedges and edges of G.
Note that this correspondence is somewhat strange, we only know that each edge in G is part of the
upper level triangle for its corresponding hyperedge.

We now describe our procedures for ordering the hyperedges

Definition 78 We say that a vertex v is an anchor for an edge e of G if either

1. v, e ⊆ {ai j, bi j, ci j} for some i and j and v appears at a higher level.

2. v, e ⊆ {a′i j, b
′
i j, c

′
i j} for some i and j and v appears at a higher level.

Definition 79 For an anchor vertex vanchor , define Ei(vanchor ) to be the set of all edges at level i
which have vanchor as an anchor vertex.

Definition 80 We say that a vertex v or edge e is uncovered if it is not incident with any hyperedges
between its level and the level above and covered otherwise. For a vertex v which is not part of G at
level i, we say that v is uncovered at level i if there is no j > 0 such that v incident with a hyperedge
between level i + j and i + j + 1.

Definition 81 We say that a vertex v is released at level i if there are no hyperedges remaining
between level i and i − 1 whose upper and lower triangles both contain v .

Our main recursive procedure is as follows. We are considering a collection of connected component
of the graph at level i where everything is uncovered except possibly for one edge er . If an edge er is
covered and has anchor vertex vanchor then we assume that this collection contains all of Ei(vanchor )
and that vanchor is uncovered at level i.

We first consider the case when there are no bad vertices (we will consider the cases where we
have bad vertices afterwards). If G contains a cycle, we can delete an edge and its corresponding
hyperedge to break the cycle, accounting for this by decreasing wedge(C). Otherwise, unless C is just
the single edge er , there must be a vertex v and edge e in C such that e , er and e is the only edge
incident with v .

We now consider the hyperedge corresponding to e. If v is part of this hyperedge then we
can delete e and this hyperedge and continue. Otherwise, v must be an anchor vertex for many
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edges at the level below. Moreover, v is uncovered at level i − 1. We now consider Ei−1(v). If
Ei−1(v) and everything connected to it is uncovered except for the edge e′r which is the bottom edge
of the hyperedge corresponding to e, then we can apply our procedure recursively on Ei−1(v) and
everything connected to it. Otherwise, Ei−1(v) must be connected to Ei−1(v ′anchor ) for some other
anchor vertex v ′

anchor
which has not yet been released at level i. Note that since there are no bad

vertices, Ei−1(v) ∩ Ei−1(v ′anchor ) = ∅. Thus, there is a contribution of at least 1 to wtriangle of one
of these connected components from the connection between Ei−1(v) and Ei−1(v ′anchor ). Using this
contribution, we can delete e and continue. After doing this, v is released at level i.

Remark 82 Whenever we have a connection between Ei−1 for two anchor vertices, we relase one of
them at level i immediately after taking this connection into account. This ensures that we do not
double count contributions to wtriangle.

If we are left with the single edge er then there are several cases. Letting v be the anchor vertex
for er , if v goes down to the level below then consider the hyperedge corresponding to er and let e′r
be its bottom edge. Since we have deleted all edges in Ei(v) except for er , either all of Ei−1(v) except
for e′r is uncovered or Ei−1(v) is connected to Ei−1(v ′anchor ) for a different anchor vertex v ′anchor
which has not yet been released at level i. In the first case, we can apply our recursive procedure on
Ei−1(v) and all edges connected to it. In the second case, we instead delete er as before and go back
to the level above. Again, after doing this, v is now released at level i.

If v does not go down to the level below (or we are already at the bottom) then the hyperedge
coresponding to er contains v . Moreover, by our assumption v is uncovered at level i. Thus, v is a
free index for er so we can delete er and go back to the level above.

This procedure will succeed in the case that there are no bad vertices. We now handle bad vertices
by reducing to the case where there are no bad vertices.

We consider the case where are below level l ′ and we do not haave that a′i j = ai j , b′i j = bi j , and
c′i j = ci j . We will handle these cases separately.

If the a′i j are bad vertices, this must be because of equalities a′i j = ai j . We handle this by replacing
each a′i j with a new vertex and running our procudure on this altered graph. This will cause failures
when we try to use a′i j or ai j as a free index. That said, once we’ve tried to use all but one of a set of
equal vertices, the final one will succeed, so the number of additional failures is at most z′i . We can
account for this using the term

∑
i<l:a′i j,b

′
i j, or c

′
i j is bad z′i . We handle bad ai j, bi j, b′i j, ci j, c

′
i j vertices in

a similar manner.
In the case that a′i j = ai j , b′i j = bi j , and c′i j = ci j , if the a′i j and bi j are bad vertices, this must be

because of the equalities a′i j = ai j and b′i j = bi j . We handle this by creating a new vertex for each
a′i j , having the hyperedges between levels i and i + 1 use the old vertices, and having the hyperedges
at lower levels use the new vertices. We modify G so that instead of loops at level i, the edges involve
these new vertices. This makes it so that the only anchor vertices for edges at level i are the vertices
b′(i+1)j . Since all edges of G now have a unique anchor, the recursive procedure succeeds. We can
accomplish this with the terms

∑
i<l:ai j,bi j, or ci j is bad zi +

∑
i<l:a′i j,b

′
i j, or c

′
i j is bad z′i .

We consider level l ′ separately. If the bottom of level l ′ contains bad vertices, we cannot make
these vertices distinct. However, if this happens then we have loops in G for the bottom triangles at
level l ′. These triangles are distinct from the triangles on top at level l ′.

We handle this by using wtriangle to delete edges from G at this level so that each component
contains at most one loop. When we run the procedure, we can use wtriangle when Ei−1(v) is con-
nected to a loop as well as when it is connected to Ei−1(v ′anchor ) for some other anchor vertex v ′

anchor
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which has not been released at level i. This allows us to process each component of G at level i until
we are left with either a covered edge or a single loop, both of which can be handled by our procedure.

B.5. Counting intersection patterns and random partitioning

There are two pieces left to add. First, all of our analysis so far was for a given intersection pattern.
We must sum over all intersection patterns.

Lemma 83 For all i, there are at most
�2q
zi

�(zi)2q−zi 6 22q(2q)2q−zi choices for which Ri-triangles
are equal to each other.

Proof To specify a partition of the 2q Ri-triangles into zi parts, we specify which triangles are
distinct from all previous triangles. There are

�2q
zi

�
choices for which triangles these are. For the

remaining triangles, we specify which previous triangle they are equal to. There are at most (zi)2q−zi
choices for this.

In our bound, we can group this with the other factors corresponding to the Ri-triangles. Since we
take q to be O(logn), this is fine as m has a log(n) factor.

Second, we justify our assumption that

1. For all i ∈ [0, l ′], we either have that a′i j = ai j for all j ∈ [1, 2q] or a′i j , ai j for all j ∈ [1, 2q].
2. For all i ∈ [0, l ′], we either have that b′i j = bi j for all j ∈ [1, 2q] or b′i j , bi j for all j ∈ [1, 2q].
3. For all i ∈ [0, l ′], we either have that c′i j = ci j for all j ∈ [1, 2q] or c′i j , ci j for all j ∈ [1, 2q].

To achieve this, instead of looking at the entire matrix
∑

a Aa ⊗ BT
a , we split it into parts based on

the equalities/inequalities we’re looking at. To obtain the case where indices a and a′ are always
equal,we just restrict ourselves in

∑
a Aa ⊗ BT

a to the terms where this is the case. To obtain the case
where indices a and a′ are never equal, we choose a random partition V,V c of the indices and restrict
ourselves in

∑
a Aa ⊗ BT

a to the terms where a ∈ V and a′ ∈ V c . If there are multiple indices that we
wish to fork over, we apply this argument to each one (choosing the vertex partitions independently).

This construction has the property that if we take the expectation over all the possible vertex
partitions, we obtain a constant times the part of

∑
a Aa ⊗ BT

a we are interested in. Using this, it
can be shown that probabilistic nrom bounds on these restricted matrices imply probabilistic norm
bounds on the original matrix. For details, see Lemma 27 of “Bounds on the Norms of Uniform Low
Degree Graph Matrices”. From the above subsections, we have probabilistic norm bounds on the
restricted matrices and the result follows.

B.6. Other Cross Terms

In this subsection, we sketch how the argument differs when B = X rather than B = R̄Ω0 X or
B = P′0 R̄Ω0 X .

Theorem 84 There is an absolute constant C such that for any α > 1 and β > 0,

Pr

||
∑
a

Aa ⊗ XT || > α−(l+1)

< n−β

as long as
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1. rµ 6 min {n1, n2, n3}
2. m > Cαβµ

3
2 r
√

n1 max {n2, n3}log(max {n1, n2, n3})
3. m > Cαβµ2r max {n1, n2, n3}log(max {n1, n2, n3})

Proof [Proof sketch:] The terms from X directly are

2q∏
j=1

Xa′0 jb
′
0 j c
′
0 j
=

2q∏
j=1

*.
,

∑
i j

ui ja′0 j vi jb′0 jwi j c
′
0 j

+/
-

Note that the RΩ factors are completely independent of the b′0j and c′0j indices. Thus, we can
sum over the b′0j and c′0j indices first. When we do, this zeros out all terms except the ones where all
of the i j are equal. Moreover, all of the v and w terms sum to 1. The ui j terms can be bounded by(
µ
n1

)q
. We now compare the bound we had before with the bound we have here.

For R̄Ω0 X we had factors

1. ( rµ3

n1n2n3
)2q from the X-hyperedges.

2. n2n3
µ2

(
n1(max {n2,n3})2

µ3

)q
from the q potential a indices and 2q + 2 potential b or c indices.

3.
�n1n2n3

m

�2q from the 2q potential distinct triangles.

4.
(
r · µ

3
2

√
n1 max {n2,n3} ·

n1n2n3
m

)2q−zl−z′l
6

(
rµ3/2√n1 max {n2,n3}

m

)2q−zl−z′l from the actual number of

distinct triangles, the corresponding reduced maximum number of potential new indices, and
the factors of r which we take from r# of doubled hyperedges we bound with no free index

5.
(
µ
n1

)∆ll′a
(

µ
max {n2,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1,n2,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual number of
new indices which we have

We now have the following factors instead:

1. ( rµ3

n1n2n3
)qr( µn1

)q from the X-hyperedges.

2. max {n2,n3}
µ

(
n1 max {n2,n3}

µ2

)q
from the q potential a indices and q + 1 potential b or c indices.

3.
�n1n2n3

m

�q from the q potential distinct triangles.

4.
(
r · µ2

n1 max {n2,n3} ·
n1n2n3

m

)q−zl
6

(
rµ2 max {n2,n3}

m

)q−zl
from the actual number of distinct trian-

gles, the corresponding reduced maximum number of potential new indices, and the factors of
r which we take from r# of doubled hyperedges we bound with no free index

5.
(
µ
n1

)∆ll′a
(

µ
max {n2,n3}

)∆lbc+∆
′

l′bc 6
(

µ
min {n1,n2,n3}

)∆ll′a+∆lbc+∆
′

l′bc from the actual number of
new indices which we have
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The difference is in the first three terms, grouping these terms together gives

r max {n2, n3}
µ

(
rµ2 max {n2, n3}

m

)q
By our assumption, m > Crµ2 max {n2n3}log(n)2 so we are fine.

55


	Introduction
	Results

	Techniques
	Preliminaries
	Tensor completion algorithm
	Simpler proofs via higher-degree sum-of-squares
	Higher-degree certificates imply exact recovery
	Constructing the certificate T
	Final correction of error terms

	Degree-4 certificates imply exact recovery
	Degree-4 certificates exist with high probability

	Matrix norm bound techniques
	The trace moment method
	Partitioning by intersection pattern
	Bounding sums of products of tensor entries
	Counting intersection patterns

	Trace Power Calculation for A (A)T
	Structure of tr((YjYjT)q)
	Bounds on ||Y1||
	Bounds on ||Y2|| and ||Y3||
	Bounds on ||Y4||

	Iterative tensor bounds
	Trace Power Calculation for P'A (P'A)T
	Controlling the kernel of matrix representations
	Full Trace Power Calculation
	Term Structure
	Techniques
	Bounding the number of indices
	Choosing an ordering
	Counting intersection patterns and random partitioning
	Other Cross Terms


