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Abstract
We propose a novel technique for analyzing adaptive sampling called the Simulator. Our approach
differs from the existing methods by considering not how much information could be gathered by
any fixed sampling strategy, but how difficult it is to distinguish a good sampling strategy from a
bad one given the limited amount of data collected up to any given time. This change of perspective
allows us to match the strength of both Fano and change-of-measure techniques, without succumb-
ing to the limitations of either method. For concreteness, we apply our techniques to a structured
multi-arm bandit problem in the fixed-confidence pure exploration setting, where we show that the
constraints on the means imply a substantial gap between the moderate-confidence sample com-
plexity, and the asymptotic sample complexity as δ → 0 found in the literature. We also prove
the first instance-based lower bounds for the top-k problem which incorporate the appropriate log-
factors. Moreover, our lower bounds zero-in on the number of times each individual arm needs to
be pulled, uncovering new phenomena which are drowned out in the aggregate sample complexity.
Our new analysis inspires a simple and near-optimal algorithm for the best-arm and top-k identifi-
cation, the first practical algorithm of its kind for the latter problem which removes extraneous log
factors, and outperforms the state-of-the-art in experiments.

1. Introduction

The goal of adaptive sampling is to estimate some unknown property S∗ about the world, using as
few measurements from a set of possible measurement actions [n] = {1, . . . , n}1. At each time
step t = 1, 2, . . . , a learner chooses a measurement action at ∈ [n] based on past observations,
and receives an observation Xat,t ∈ R. We assume that the observations are drawn i.i.d from a
distribution νa over R, which is unknown to the learner. In particular, the vector of distributions
ν = (ν1, . . . , νn), called the instance, encodes the distribution of all possible measurement actions.
The instance ν can be thought of as describing the state of the world, and that our property of
interest S∗ = S∗(ν) is a function of the instance. We focus on what is called the fixed-confidence
pure-exploration setting, where the algorithm decides to stop at some (possibly random) time T ,
and returns an output Ŝ which is allowed to differ from S∗(ν) with probability at most δ on any
instance ν. Since T is exactly equal to the number of measurements taken, the goal of adaptive

1. We only work with finitely many measurement actions, but this may be generalized as in Arias-Castro et al. Arias-
Castro et al. (2013)
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pure-exploration problems is to design algorithms for which T is as small as possible, either in
expectation or with high probability.

Crucially, we often expect the instance ν to lie in a known constraining set S. This allows
us to encode a broad range of problems of interest as pure-exploration multi-arm bandit (MAB)
problems (Bechhofer, 1958; Even-Dar et al., 2006) with structural constraints. As an example, the
adaptive linear prediction problem of (Soare et al., 2014; Lattimore and Szepesvari, 2016) (known
in the literature as linear bandits), is equivalent to MAB, subject to the constraint that the mean
vector µ = (µ1, . . . , µn) (where µa := EXa∼νa [Xa]) lies in the subspace spanned by the rows
of V =

[
v1 | v2 | . . . | vn

]
, where v1, . . . , vn ∈ Rd are the vector-valued features associated

with arms 1 through n. The noisy combinatorial optimization problems of Yue and Guestrin (2011);
Simchowitz et al. (2016); Gopalan et al. (2014) can be also be cast in this fashion. Moreover, by
considering properties S∗(ν) other than the top mean, one can use the above framework to model
signal recovery and compressed sensing (Arias-Castro et al., 2013; Castro, 2014), subset-selection
(Kalyanakrishnan et al., 2012), and additional variants of combinatorial optimization (Chen et al.,
2014, 2016; Kveton et al., 2014).

The purpose of this paper is to present new machinery to better understand the consequences
of structural constraints S, and types of objectives S∗(ν) on the sample complexity of adaptive
learning problems. This paper presents bounds for some structured adaptive sampling problems
which characterize the sample complexity in the regime where the probability of error δ is a mod-
erately small constant (e.g. δ = .05, or even inverse-polynomial in the number of measurements).
In contrast, prior work has addressed the sample complexity of adaptive samplings problems in
the asymptotic regime that δ → 0, where such problems often admit algorithms whose asymptotic
dependence on δ matches lower bounds for each ground-truth instance, even matching the exact
instance-dependent leading constant (Garivier and Kaufmann, 2016; Russo, 2016; Luedtke et al.,
2016). Analogous asymptotically-sharp and instance-specific results (even for structured problems)
also hold in the regret setting where the time horizon T → ∞ (Lai and Robbins, 1985; Gopalan
et al., 2014; Magureanu et al., 2014; Combes et al., 2015; Talebi and Proutiere, 2016).

The upper and lower bounds in this paper demonstrate that the δ → 0 asymptotics can paint a
highly misleading picture of the true sample complexity when δ is not-too-small. This occurs for
two reasons:

1. Asymptotic characterizations of the sample complexity of adaptive estimation problems occur
on a time horizon where the learner can learn an optimal measurement allocation tailored
to the ground truth instance ν. In the short run, however, learning favorable measurement
allocations is extremely costly, and the learning good allocations requires considerably more
samples to learn than it itself would prescribe.

2. Asymptotic characterizations are governed by the complexity of discriminating the ground
truth ν from any single, alternative hypothesis. This neglects multiple-hypothesis and suprema-
of-empirical-process effects that are ubiquitous in high-dimensional statistics and learning
theory (e.g. those reflected in Fano-style bounds).

To understand these effects, we introduce a new framework for analyzing adaptive sampling called
the “Simulator”. Our approach differs from the existing methods by considering not how much
information could be gathered by any fixed sampling strategy, but how difficult it is to distinguish
a good sampling strategy from a bad one, given any limited amount of data collected up to any
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given time. Our framework allows us to characterize granular, instance dependent properties that
any successful adaptive learning algorithm must have. In particular, these insights inspire a new,
theoretically near-optimal, and practically state-of-the-art algorithm for the top-k subset selection
problem. We emphasize that the Simulator framework is concerned with how an algorithm samples,
rather than its final objective. Thus, we believe that the techniques in this paper can be applied more
broadly to a wide class of problems in the active learning community.

After defining terms and the setting of interest in Section 2, Section 3 reviews the state-of-the-
art lower bounds and their limitations, and then presents our novel lower bounds for the special
case when the means are known up to a permutation. Section 3.1 explores conditions under which
log factors appear in lower bounds and we leverage these observations to prove instance-specific
lower bounds for top-k subset selection in Section 3.2. Inspired by the lower bounds, we introduce
LUCB++, the first practical, minimax-optimal algorithm for top-k subset selection in Section 4
(proofs of sample complexity guarantees are deferred to Appendix E). The Simulator framework
and its application to the lower bound when the means are known up to a permutation is presented
in Sections 5 and 6, with some proofs being deferred to Appendix A. The lower bounds for top-k
subset slection require more careful analysis, and are deferred to the Appendices B, C, and D.
Finally, we make concluding remarks in Section 7.

2. Preliminaries

As alluded to in the introduction, the adaptive estimation problems in this paper can be formalized
as multi-arm bandits problems, where the instances ν = (ν1, . . . , νn) lie in an appropriate constraint
set S, called an instance class (e.g., the mean vectors (µ1, . . . , µn), where µa := EXa∼νa [Xa] lie
in some specified polytope). We use the term arms to refer both to the indices a ∈ [n] and dis-
tributions νa they index. The stochastic multi-arm bandit formulation has been studied extensively
in the pure-exploration setting considered in this work (Bechhofer, 1958; Even-Dar et al., 2006;
Kalyanakrishnan et al., 2012; Karnin et al., 2013; Jamieson et al., 2014; Chen and Li, 2015; Gariv-
ier and Kaufmann, 2016; Russo, 2016). At each time t = 1, 2, . . . , a learner plays an action at ∈ [n],
and observes an observation Xat,t ∈ R drawn i.i.d from νat . At some time T , the learner decides
to end the game and return some output. Formally, let Ft denote the sigma-algebra generated by
{Xas,s}1≤s≤t, and some additional randomness ξAlg independent of all the samples (this represents
randomization internal to the algorithm). A sequential sampling algorithm consists of

1. A sampling rule (at)t∈N, where at ∈ [n] is Ft−1 measurable.

2. A stopping time T , which is {Ft}t∈N-measurable.

3. An output rule Ŝ ⊂ [n], which is FT -measurable.

We let Na(t) =
∑t

s=1 I(as = a) denote the samples collected from arm a ∈ A by time t. In
particular, Na(T ) is the number of times arm a is pulled by the algorithm before terminating, and∑n

a=1Na(T ) = T . A MAB algorithm corresponds to the case where the decision rule is a singleton
Ŝ ∈

(
[n]
1

)
, and, more generally, a TopK algorithm specifies a Ŝ ∈

([n]
k

)
. We will use Alg as a

variable which describes a particular algorithm, and use the notation Pν,Alg[·] and Eν,Alg[·] to denote
probabilities and expectations which are taken with respect to the samples drawn from ν, and the
(possibly randomized) sampling, stopping, and output decisions made by Alg. Finally, we adopt the
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following notion of correctness, which corresponds to the “fixed-confidence” setting in the active
learning literature:

Definition 1 We say that a MAB algorithm is δ-correct for a best-arm mapping a∗ : S → [n]

(resp δ-correct for a TopK mapping S∗ : S →
([n]
k

)
) over an instance class S if for all ν ∈ S ,

Pν,Alg[Ŝ = a∗(ν)] ≥ 1− δ (resp. Pν,Alg[Ŝ = S∗(ν)] ≥ 1− δ).

Typically, the best arm mapping is defined as the arm with the highest mean a∗ = arg maxa∈[n] µa,
and top k mapping as the arms with the k-largest means arg max

S∈([n]k )
∑

a∈S µa, which captures
the notion of the arm/set of arms that yield the highest reward. When the best-arm mapping re-
turns the highest-mean arm, and the observations Xb are sub-Gaussian2, the problem complexity
for MAB is typically parameterized in terms of the “gaps” between the means ∆b := µa∗ − µb
(Mannor and Tsitsiklis, 2004). More generally, sample complexity is parametrized in terms of the
KL(νb, νa∗), the KL divergences between the measures νa∗ and νb. For ease of exposition, we will
present our high-level contributions in terms of gaps, but the body of the work will also present
more general results in terms of KL’s. Finally, our theorem statements will use & and . to denote
inequalities up to constant factors. In the text, we shall occasionally use &,.,≈ more informally,
hiding doubly-logarithmic factors in problem parameters.

3. Statements of Lower Bound Results

Typically, lower bounds in the bandit and adaptive sampling literature are obtained by the change of
measure technique (Mannor and Tsitsiklis, 2004; Castro, 2014; Garivier and Kaufmann, 2016). To
contextualize our findings, we begin by stating the state-of-the-art change-measure-lower bounds, as
it appears in Garivier et al. (2016). For a class of instances S, let Alt(ν) denote the set of instances
ν̃ ∈ S such that, a∗(ν̃) 6= a∗(ν). Then:

Proposition 2 (Theorem 1 (Garivier and Kaufmann, 2016)) If Alg is δ correct for all ν ∈ S ,
then the expected number of samples Alg collects under ν, Eν,Alg[T ], is bounded below by the
solution to the following optimization problem

min
τ∈Rn≥0

n∑
a=1

τa subject to inf
ν̃∈Alt(ν)

n∑
a=1

τaKL(νa, ν̃a) ≥ kl(δ, 1− δ) (1)

where kl(δ, 1− δ) := δ log( δ
1−δ ) + (1− δ) log(1−δ

δ ), which scales like log(1/δ) as δ → 0.

The above proposition says that the expected sample complexity Eν,Alg[T ] is lower bounded
by the following, non-adaptive experiment design problem: minimize the total number of samples∑

a τa subject to the constraint that these samples can distinguish between a null hypothesisH0 = ν,
and any alternative hypothesis H1 = ν̃ for ν̃ ∈ ν, with Type-I and Type-II errors at most δ. We will
call the optimization problem in Equation 1 the Oracle Lower Bound, because it captures the best
sampling complexity that could be attained by a powerful “oracle” who knows how to optimally
sample under ν.

Unlike the oracle, a real learner would never have access to the true instance ν. Indeed, for MAB
instances with sufficient structure, Equation 1 gives a misleading view of the instrinsic difficulty of

2. Formally, Xb is σ2-sub-Gaussian if EXb∼νb [eλ(Xb−µb)] ≤ exp(λ2σ2/2)
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the problem. For example, let S denote the class of instances ν where νa = N (µa, 1), and µ lies in
the simplex, i.e. µa ≥ 0 and

∑
a∈A µa = 1. If the ground truth instance ν∗ has µa∗ = .9 for some

a∗ ∈ [n], then any oracle which uses the knowledge of the ground truth to construct a sampling
allocation can simply put all of its samples on arm a∗. Indeed, the simplex constraint implies that
a∗ is indeed the best arm of ν, and that any instance ν̃ which has a best arm other than a∗ must have
ν̃a∗ < .5. Thus, ∀ ν̃ ∈ Alt(ν), KL(ν∗a∗ , ν̃

∗) ≥ (.9−.5)2

2 = Ω(1). In other words, the sampling vector

τa =

{
(.08)−1kl(δ, 1− δ) a = a∗

0 a 6= a∗
(2)

is feasible for Equation 1 which means that the optimal number of samples predicted by Equation 1
is no more than

∑
a τa = τa∗ = O(log(1/δ)). But this predicted sample complexity doesn’t depend

on the number of arms!
So how how hard is the simplex really? To address this question, we prove the first lower

bound in the literature which, to the author’s knowledge 3, accurately characterizes the complexity
a strictly easier problem: when the means are known up to a permutation. Because the theorem
holds when the measures are known up to a permutation, it also holds in the more general setting
when the measures satisfy any permutation-invariant constraints, including when a) the means lie
on the simplex b) the means lie in an lp ball or c) the vector µ(1) ≥ µ(2) ≥ . . . µ(n) of sorted means
satisfy arbitrary constraints (e.g. weighted lp constraints on the sorted means (Bogdan et al., 2013)).

In what follows, let Sn denote the group of permutations on [n] elements and π(j) denote
the index which j is mapped to under π. For an instance ν = (ν1, . . . , νn), we let π(ν) =
{νπ(1), . . . , νπ(n)}, and define the instance class Sn(ν) := {π(ν), π ∈ Sn}. Moreover, we use
the notation π ∼ Sn to denote that π is drawn uniformly at random. With this notation, Nπ(b) is
the number of times we pull the arm indexed by π(b) ∈ [n], i.e. the samples from νπ(b). And
Eπ∼Sn [Nπ(b)(T )] is the expected number of samples from νb since (π(ν))π(b) is always equal to
νb, and not the distribution νπ(b). The following theorem essentially says that if the instance is ran-
domly permuted before the start of the game, no δ-correct algorithm can avoid taking a substantial
number of samples from νb for any b ∈ [n].

Theorem 3 (Lower bounds on Permutations) Let ν be an MAB instance with unique best arm
a∗, and for b 6= a∗, define τb = 1

KL(νa∗ ,νb)+KL(νb,νa∗ ) . If Alg is δ-correct over Sn(ν) then

Eπ∼SnPπ(ν),Alg[Nπ(b)(T ) > τb log(1/4η)] ≥ η − δ (3)

for any ν ∈ (δ, 1/4), and by Markov’s inequality

Eπ∼SnEπ(ν),Alg[T ] = Eπ∼Sn

∑
b6=a∗

Eπ(ν),Alg[Nπ(b)(T )]

 ≥ sup
η∈[δ,1/4]

(η − δ) log(1/4η)
∑
b 6=a∗

τb. (4)

In particular, if Alg is δ ≤ 1/8-correct, then Eπ∼SnEπ(ν),Alg[T ] &
∑
b6=a∗

1

KL(νa∗ , νb) + KL(νb, νa∗)
.

3. Before publication this work, but after a preprint was available online, this result was obtained independently by Chen
et al. (2017)
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The proof of the above result is found in Section 6.2 and follows from the application of the Sim-
ulator introduced in Section 5, and machinery developed throughout Section 6. When the reward
distributions are νb = N (µb, 1), KL(νa∗ , νb) = KL(νb, νa∗) = 1

2∆2
b (recall ∆b = µa∗ − µb).

Moreover, applying the oracle bound of Proposition 2 to permutations implies a lower bound of
& maxb6=a∗ ∆−2

b log(1/δ). Indeed, for each b ∈ [n] \ {a∗}, one would need to take enough sam-
ples to distinguish ν from the alternative instance where the means µa∗ and µb are swapped, with
probability of error at most 1− δ. Hence, combining this oracle lower bound with Theorem 3 yields

Eπ∼SnEπ(ν),Alg[T ] & max{max
b 6=a∗

∆−2
b log(1/δ),

∑
b6=a∗

∆−2
b } . (5)

For comparison, the bound of Proposition 2 only implies a lower bound of & maxb6=a∗ ∆−2
b log(1/δ),

since an oracle who knows how to sample could place all their samples on a∗. Thus, for constant
log(1/δ), our lower bound differs from the bound in Proposition 2 by up to a factor of n, the number
of arms. In particular, when the gaps are all on the same order, the δ → 0 asymptotics only paint an
accurate picture of the sample complexity once δ is exponentially-small in n.

In fact, our lower bound is essentially unimproveable: Appendix E.1 provides an upper bound
for the setting where the top-two means are known, whose expected sample complexity on any per-
mutation matches the on-average complexity in Equation 5 up to constant and doubly-logarithmic
factors. Together, these upper and lower bounds depict two very different regimes:

1. Treating δ as a fixed constant, the lower bound of the constrained problem essentially matches
known upper bounds for the unconstrained best-arm problem (Chen and Li, 2015; Jamieson
et al., 2014). Thus, in this regime, knowing the instance up to a permutation of the arms does
not affect the sample complexity.

2. As δ → 0, an algorithm which knows the means up to a permutation can learn to opti-
mistically and aggressively focus its samples on the top arm, yielding an asymptotic sample
complexity predicted by Proposition 2, one which is potentially far smaller than that of the
unconstrained problem.4

These two regimes show that the Simulator and oracle lower bounds are complementary, and go
after two different aspects of problem difficulty: In the second regime, the oracle lower bound char-
acterizes . maxb 6=a∗ ∆−2

b log(1/δ) samples sufficient to verify that arm a∗ is the best, whereas in
the first regime, the Simulator characterizes the &

∑
b 6=a∗ ∆−2

b samples needed to learn a favorable
sampling allocation5. We remark that Garivier et al. Garivier et al. (2016) also explores the prob-
lem of learning-to-sample by establishing the implications of Proposition 2 for finite-time regret;
however, there approach does not capture any effects which aren’t reflected in Proposition 2. More-
over, Bubeck and Cesa-Bianchi (Bubeck and Cesa-Bianchi, 2012) establish an minimax, rather than
instance-specific, lower bound for regret by considering permutations of a simple MAB instance
where n − 1 arms have the name mean, and one arm has a slightly elevated mean. Finally, we

4. In fact, using a track-and-stop strategy similar to Garivier and Kaufmann (2016) one could design an algorithm which
matches the constant factor in Proposition 2.

5. The simulator also provides a lower bound on the tail of the number of pulls from a suboptimal arm since, with
probability δ, arm b is pulled τ log(1/8δ) times. This shows that even though you can learn an oracle allocation on
average, there is always a small risk of oversampling. Such affects do not appear from Proposition 2, which only
control the number of samples taken in expectation
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note that proving a lower bound for learning a favorable strategy in our setting must consider some
sort of average or worst-case over the instances. Indeed, one could imagine an algorithm that starts
off by pulling the first arm 1 until it has collected enough samples to test whether µ1 = µa∗ (i.e.
µ > maxb6=a∗ µb ), and then pulling arm 2 to test whether µ2 = µa∗ , and so on. If arm 1 is the best,
this algorithm can successfully identify it without pulling any of the others, thereby matching the
oracle lower bound.

3.1. Sharper Multiple-Hypothesis Lower Bounds

In contrast to change-of-measure type lower bounds like Proposition 2, the active PAC learning
literature (e.g., binary classification) leverages classical tools like Fano’s inequality with packing
arguments (Castro and Nowak, 2008; Raginsky and Rakhlin, 2011) and other measures of class
complexity such as the disagreement coefficient (Hanneke, 2009) or the eluder dimension Russo
and Van Roy (2013). Because these arguments consider multiple hypotheses simultaneously, they
capture effects which worst-case binary-hypothesis oracle lower bounds like Equation 1 can miss.

While the considerable gap between two-way and multiple tests is well-known in the passive
setting (Tsybakov, 2009), existing techniques which capture this multiple-hypothesis complexity
lead to coarse, worst- or average-case lower bounds for adaptive problems because they rely on
constructions which are either artificially symmetric, or are highly pessimistic (Castro and Nowak,
2008; Raginsky and Rakhlin, 2011; Kalyanakrishnan et al., 2012). Moreover, the constructions
rarely shed insights on why active learning algorithms seem to avoid paying the costs for multiple
hypotheses that would occur in the passive setting, e.g. the folk theorem: “active learning removes
log factors” (Castro, 2014).

As a first step towards understanding these effects, we prove the first instance-based lower bound
which sheds light on why active learning is able to effectively reduce the number of hypotheses it
needs to distinguish. To start, we prove a qualitative result for a simplified problem, using a novel
reduction to Fano’s inequality via the simulator. The following theorem is proved in Appendix B:

Theorem 4 Let Alg be 1/8-correct, consider a game with best arm ν1 and n− 1 arms of measure
ν2. Let Sm := {a ∈ [n] : Na(T ) > 1

16(KL(ν1, ν2) + KL(ν2, ν1)) log n
216m
}. Then

Pπ∼SnPπ(ν),Alg [{π(1) ∈ Sm} ∧ {|Sm| ≥ m}] ≥
3

4
(6)

For Gaussian rewards with unit variance, KL(ν1, ν2) + KL(ν2, ν1) = ∆2, where ∆ is the gap
between the means µ1 − µ2, the above proposition states that, for any m ∈ [n], any correct MAB
algorithm must sample some m arms, including the top arm, τ & ∆−2 log(n/m) times. Thus, the
number of samples allocated by the oracle of Proposition 2 are necessarily insufficient to identify the
best arm for moderate δ. This is because, until sufficiently many samples has been taken, one cannot
distinguish between the best arm, and other arm exhibiting large statistical deviations. Looking
at exponential-gap style upper bounds (Chen and Li, 2015; Karnin et al., 2013), which halve the
number of arms in consideration at each round, we see that our lower bound is qualitatively sharp
for some algorithms6. Further, we emphasize that this set of m arms which must be pulled τ times
may be random7, depend on the random fluctuations in the samples collected, and thus cannot be

6. We believe that UCB-style algorithms exhibit this same qualitative behavior
7. In fact, for an algorithm with which only samples m′ = O(m) arms τ & ∆−2 log(n/m), this subset of arms must

be random. This is because for a fixed subset of m′ arms, one could apply Theorem 4 to the remaining n−m′ arms.
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determined using knowledge of the instance alone. Stated otherwise, if one sampled according to
the proporitions as ascribed by Proposition 2, then the total number of samples one would need to
collect would be suboptimal (by a factor of log n). Thus, effective adaptive sampling should adapt
its allocation to the statistical deviations in the collected data, not just the ground truth instance. We
stress that the Simulator is indispensable for establishing this result, because it lets us characterize
the stage-wise sampling allocation of adaptive algorithms.

Guided by this intuition, Appendix C employs a more involved proof strategy to establish the
following guarantee for MAB with Gaussian rewards (a more general result for single-parameter
exponential families is given by Theorem 19 in Appendix C.3):

Proposition 5 (Lower Bound for Gaussian MAB) Suppose ν = (ν1, . . . , νn) has measures νa =
N (µa, 1),with µ1 > µ2 ≥ . . . µn. Then, if Alg is δ ≤ 1/16 correct over Sn(ν),

Eπ∼SnEπ(ν(1)),Alg[Nπ(1)(T )] & max
2≤m≤n

∆−2
m log(m/δ) where ∆m = µ1 − µm (7)

In particular, when all the gaps are on the same order ∆, then the top arm must be pulled Ω(∆−2 log n)
times. When the gaps are different, max2≤m≤n ∆−2

m logm trades off between larger logm factor as
the inverse-gap-squared ∆−2

m shrinks. As we explain in Appendix C.1, this tradeoff is best under-
stood in the sense that the algorithm is conducting an instance-dependent union bound, where the
union bound places more confidence on means closer to the top. The proof itself is quite involved,
and constitutes the main technical contribution of this paper. We devote Section C.1 to explaining
the intuition and proof roadmap. Our argument makes use of “tilted distributions”, which arise in
Herbst Argument in Log-Sobolev Inequalities in the concentration-of-measure literature (Raginsky
and Sason, 2014). Tiltings translate the tendency of some empirical means to deviate far above their
averages (i.e. to anti-concentrate) into a precise information-theoretic statement that they “look
like” draws from the top arm. To the best of our knowledge, this constitutes the first use of tiltings
to establish information-theoretic lower bounds, and we believe this strategy may have broader use.

3.2. Instance-Specific Lower bound for TopK

Proposition 5 readily implies the first instance-specific lower bound for the TopK. The idea is that,
if I can identify an arm j ∈ [k] as one of the top k arms, then, in particular, I can identify arm j as
the best arm among {j} ∪ {k + 1, . . . , n}. Similarly, if I can reject arm ` as not part of the top k,
then I can identify it as the “worst” arm among {1, . . . , k} ∪ {`}. Section D formally proves the
following lower bound using by applying the above eduction to Proposition 5:

Proposition 6 (Lower Bound for Gaussian TopK) Suppose ν = (ν1, . . . , νn) has measures νa =
N (µa, θ), with µ1 ≥ µ2 ≥ . . . µk > µk+1 ≥ . . . µn. Then, if Alg is δ ≤ 1/16 correct over Sn(ν),

Eπ∼SnEπ(ν(1)),Alg[Nπ(j)(T )] &

{
maxm>k(µj − µm)−2 log((m− k + 1)/δ) j ≤ k
maxm≤k(µj − µm)−2 log((k + 2−m)/δ) j > k

(8)

By taking m = k + 1 and m = k in the first and second lines of 8, our result recovers the
gap-dependent bounds of Kalyanakrishnan et al. (2012) and Luedtke et al. (2016) . Moreover, when
the gaps are on the same order ∆, we recover the worst-case lower bound from Kalyanakrishnan
et al. (2012) of k∆−2 log(n− k) + (n− k)∆−2 log k.
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3.2.1. COMPARISON WITH CHEN ET AL. CHEN ET AL. (2017)

After a manuscript of the present work was posted on one of its authors’ websites, Chen et al. (2017)
presented an alternative proof of Proposition 6, also by a reduction to MAB. Instead of tiltings, their
argument handles different gaps by a series of careful reductions to a symmetric MAB problem, to
which they apply Proposition 1. As in this paper, their proof hinges on a “simulation” argument
which compares the behavior of an algorithm on an instance ν to a run of an algorithm where the
reward distributions change mid-game. This seems to suggest that our simulator framework is in
some sense a natural tool for these sorts of lower bounds.

While our works prove many of the same results, our papers differ considerably in emphasis.
The goal for in this work is to explain why algorithms must incur the sample complexities that they
do, rather than just sharpen logarithmic factors. In this vein, we establish Theorem 4, which has
no analogue in Chen et al. (2017). Moreover, we believe that the proof of Proposition 5 based
on tiltings is a step towards novel lower bounds for more sophisticated problems by translating
intuitions about large-deviations into precise, information-theoretic statements. Further still, our
Theorem 3 (and Proposition 16 in the appendix) imply lower bounds on the tail-deviations of the
number of times suboptimal arms need to be sampled in constrained problems (see footnote 5).

4. LUCB++

The previous section showed that for TopK in the worst case, the bottom (n−k) arms must be pulled
in proportion to log(k) times while the top k arms must be pulled in proportion to log(n−k) times.
Inspired by these new insights, the original LUCB algorithm of Kalyanakrishnan et al. (2012), and
the analysis of Jamieson et al. (2014) for the MAB setting, in this section we propose a novel algo-
rithm for TopK: LUCB++. The LUCB++ algorithm proceeds exactly like that of Kalyanakrishnan
et al. (2012), the only difference being the definition of the confidence bounds used in the algorithm.

At each round t = 1, 2, . . . , let µ̂a,Na(t) denote the empirical mean of all the samples from arm a

collected so far. Let U(t, δ) ∝
√

1
t log(log(t)/δ) be an anytime confidence bound based on the law

of the iterated logarithm (see Kaufmann et al. (2015, Theorem 8) for explicit constants). Finally, we
let TOPt denote the set of the k arms with the largest empirical means. The algorithm is outlined
in Figure 1, and satisfies the following guarantee:

Theorem 7 Suppose that Xa ∼ νa is 1−subgaussian. Then, for any δ ∈ (0, 1), the LUCB++
algorithm is δ-correct, and the stopping time T satisfies

T ≤
k∑
i=1

c∆−2
i log(

(n−k) log(∆−2
i )

δ ) +
n∑

j=k+1

c∆−2
j log(

k log(∆−2
j )

δ )

with probability at least 1− δ, where c is a universal constant.

By Propositions 6 we recognize that when the gaps are all the same the sample complexity of the
LUCB++ algorithm is unimprovable up to log log(∆i) factors. This is the first practical algorithm
that removes extraneous log factors on the sub-optimal (n− k) arms Kalyanakrishnan et al. (2012);
Chen et al. (2016). However, it is known that not all instances must incur a multiplicative log(n −
k) on the top k arms Chen et al. (2016, 2017). Indeed, when k = 1 this problem is just the
best-arm identification problem and the sample complexity of the above theorem, ignoring doubly

9
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Algorithm 1: LUCB++

1 Input Set size k, confidence δ, confidence interval U(·, δ)
2 Play Each arm a ∈ [n] once
3 For rounds t = n+ 1, n+ 2, . . .
4 Let TOPt = arg maxS⊂[n]:|S|=k

∑
i∈S µ̂a,Na(t),

5 If the following holds, Then return TOPt:

min
a∈TOPt

µ̂a,Na(t) − U(Na(t),
δ

2(n−k)) > max
a∈[n]−TOPt

µ̂a,Na(t) + U(Na(t),
δ

2k ) (9)

6 Else pull ht and lt, given by:

ht := min
a∈TOPt

µ̂a,Na(t) − U(Na(t),
δ

2(n−k)) lt := max
a∈[n]−TOPt

µ̂a,Na(t) + U(Na(t),
δ

2k ).

n LUCB++ LUCB Oracle Uniform
101 1.0 0.99 1.60 1.67
102 1.0 1.17 2.00 3.4
103 1.0 1.50 2.51 5.32
104 1.0 1.89 2.90 7.12
105 1.0 2.09 3.32 8.49

Table 1: The number of samples taken by the algorithms before reaching their stopping condition,
relative to LUCB++.

logarithimc factors, scales like log(n/δ)∆−2
1 + log(1/δ)

∑n
i=2 ∆−2

i . But there exist algorithms for
this particular best-arm setting whose sample complexity is just log(1/δ)

∑n
i=1 ∆−2

i exposing a
case where Theorem 7 is loose Karnin et al. (2013); Jamieson et al. (2014); Chen and Li (2015);
Chen et al. (2016). In general, this additional log(n − k) factor is unnecessary on the top k arms
when

∑k
i=1 ∆−2

i �
∑n

i=k+1 ∆−2
i , but for large n, this is a case unlikely to be encountered in

practice.
While this manuscript was in preparation, Chen et al. (2017) proposed a TopK algorithm which

satisfies stronger theoretical guarantees, essentially matching the lower bound in Theorem 6. How-
ever, their algorithm (and the matroid-bandit algorithm of Chen et al. (2016)) relies on exponential-
gap elimination, making it unsuitable for practical use8. Furthermore, our improved LUCB++ con-
fidence intervals can be reformulated for different KL-divergences, leading to tighter bounds for
non-Gaussian rewards such as Bernoullis. Moreover, we can “plug in” our LUCB++ confidence
intervals into other LUCB-style algorithms, sharpening their log factors. For example, one could
ammend the confidence intervals in the CLUCB algorithm of Chen et al. (2014) for combinatorial
bandits, which would yield slight improvements for arbitrary decision classes, and near-optimal
bounds for matroid classes considered in (Chen et al., 2016).

8. While exponential-gap elimination algorithms might have the correct dependence on problem parameters, their
constant-factors in the sample complexity are incredibly high, because they rely on the median-elimination as a
subroutine (see Jamieson et al. (2014) for discussion)

10
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Figure 1: The Simulator acts as a man-in-the-middle between the original transcript and the tran-
script the algorithm receives. It leaves the transcript unchanged before some time τ , but modifies
it in arbitrary ways after this time. Red denotes the samples that were changed that reduced the
distance between the instances. Note that all events defined on just the first τ samples are truthful.

To demonstrate the effectiveness of our new algorithm we compare to a number of natural base-
lines: LUCB of Kalyanakrishnan et al. (2012), a TopK version of the oracle strategy of Garivier
and Kaufmann (2016), and uniform sampling; all three use the stopping condition of Kalyanakr-
ishnan et al. (2012) which is when the empirical top k confidence bounds9 do not overlap with the
bottom n − k, employing a union bound over all n arms. Consider a TopK instance for k = 5
constructed with unit-variance Gaussian arms with µi = 0.75 for i ≤ k and µi = 0.25 otherwise.
Table 1 presents the average number of samples taken by the algorithms before reaching the stop-
ping criterion, relative to the the number of samples taken by LUCB++. For these means, the oracle

strategy pulls each arm i a number of times proportional to wi where wi =

√
n/k−1−1

n−2k for i ≤ k

and wi = 1−kwk
n−k for i > k (wi = 1/n for all i when n = 2k). Note that the uniform strategy is

indentical to the oracle strategy, but with wi = 1/n for all i.

5. Lower Bounds via The Simulator

As alluded to in the introduction, our lower bounds treat adaptive sampling decisions made by
the algorithm as hypothesis tests between different instances ν. Using a type of gadget we call a
Simulator, we reduce lower bounds on adaptive sampling strategies to a family of lower bounds on
different, possibly data-dependent and time-specific non-adaptive hypothesis testing problems.

The Simulator acts as an adversarial channel intermediating between the algorithm Alg, and i.i.d
samples from the true instance ν. Given an instance ν, let Tr = {X[a,s]}a∈[n],s∈N ∈ Rn×Z≥0 denote

a random transcript of an infinite sequence of samples drawn i.i.d from ν, where Tra,s = X[a,s]
iid∼

νa. We can think of any sequential sampling algorithm Alg as operating by interacting with the
transcript, where the sample Xat,t is obtained by reading the sample X[at,Nat (t)]

off from Tr (recall
that Na(t) is the number of times arm a has been pulled at the end of round t). With this notation,
we define a simulator as follows:

Definition 8 (Simulator) A simulator Sim is a map which sends Tr to a modified transcript T̂r =
{X̂[a,s]}a∈[n],s∈N, which Alg will interact with instead of Tr (Figure 1). We allow this mapping to
depend on the ground truth ν and some internal randomness ξSim.

9. To avoid any effects due to the particular form of the any-time confidence bound used, we use the same finite-time
law-of-the-iterated logarithm confidence bound used in (Kaufmann et al., 2015, Theorem 8) for all of the algorithms.

11
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Equivalently, Sim(ν) is a measure on a random process T̂r = {X̂[a,s]}a∈[n],s≥1, which, unlike
ν, does not require the samples X̂[a,1], X̂[a,2], . . . to be i.i.d (or even independent). Hence, we use
the shorthand Sim(ν) to refer the measure corresponding to PSim(ν),Alg, and let PSim(ν),Alg denote
the probability taken with respect to Sim’s modified transcript T̂r, and the internal randomness in
Alg and Sim. With this notation, the quantities TV(Sim(ν),Sim(ν ′)) and KL(Sim(ν),Sim(ν ′)) are
well defined as the TV and KL divergences of the random process T̂r under the measures Sim(ν)
and Sim(ν ′).

Note that, in general, TV(ν, ν ′) = KL(ν, ν ′) = ∞ if νa 6= ν ′a for some a, since ν (resp ν ′)
govern an infinite i.i.d sequence {X[s,a]} ∼ νa (resp ∼ ν ′a). However, in this paper we will always
design our simulator so that the quantity KL(Sim(ν), Sim(ν ′)) is finite, and in fact quite small.
The hope is that if the modified transcript T̂r conveys too little information to distinguish between
Sim(ν(1)) and Sim(ν(2)), then Alg will have to behave similarly on both simulated instances. Hence,
we will show that if Alg behaves differently on two instances ν(1) and ν(2), yet Sim limits informa-
tion KL between them, then Alg’s behavior must differ quite a bit under ν(i) versus Sim(ν(i)), for
either i = 1 or i = 2. Formally, we will show that Alg will have to “break” the simulator, in the
following sense:

Definition 9 (Breaking) Given measure ν, algorithm Alg, and simulator Sim, we say thatW ∈ FT
is a truthful event under Sim(ν) if, for all events E ∈ FT ,

PSim(ν),Alg[E ∧W ] = Pν,Alg[E ∧W ] (10)

On the other hand, we will say that Alg breaks onW c under Sim(ν). Recall that Ft is the σ-algebra
generated by ξAlg, and the actions/samples collected by Alg up to time t.

The key insight is that, whenever Sim(ν) doesn’t break (i.e. on a truthful event W ), a run of Alg
on ν can be perfectly simulated by running Alg on Sim(ν). But if Sim(ν) fudges Tr in a way that
drastically limits information about ν, this means that Alg can be simulated using little information
about ν, which will contradict information theoretic lower bounds. This suggests the following
recipe for proving lower bounds:

1) State a claim you wish to falsify over a class of instances ν ∈ S (e.g., the best arm is not
pulled more than τ times, with some probability ). 2) Phrase your claims as candidate truthful events
on each instance (e.g. Wν := {Na∗(ν)(T ) ≤ τ} where a∗(ν) is the best arm of ν) 3) Construct a
simulator Sim such that Wν is truthful on Sim(ν), but KLAlg(Sim(ν), Sim(ν̃)) (or TV) is small for
alternative pairs ν, ν̃. For example, if the truthful event is {Na∗(ν)(T ) ≤ τ}, then simulator should
only modify samplesX[a∗,τ+1], X[a∗,τ+2], . . . . 4) Apply an information-theoretic lower bound (e.g.,
Proposition 10 to come) to show that the simulator breaks (e.g. Pν,Alg[W c

ν ] is large for at least one
ν ∈ S, or for a ν drawn uniformly from S).

6. Applying the Simulator to Permutations

In what follows, we show how to use the simulator to prove Theorem 3. At a high level, our lower
bound follows from considering pairs of instances where the best arm is swapped-out for a sub-
optimal arm, and ultimately averaging over those pairs. On each such pair, we apply a version of Le
Cam’s method to the simulator setup (proof in Section A.1):

12
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Proposition 10 (Simulator Le Cam) Let ν(1) and ν(2) be two measures, Sim be a simulator, and
let Wi be two truthful events under Sim(ν(i)) for i = 1, 2. Then, for any algorithm Alg

2∑
i=1

Pν(i),Alg(W c
i ) ≥ sup

E∈FT
|Pν(1),Alg(E)− Pν(2),Alg(E)| −Q

(
KLAlg

(
Sim(ν(1)), Sim(ν(2))

))
, (11)

whereQ(β) = min
{

1− 1
2e
−β,
√
β/2

}
. The bound also holds withQ

(
KLAlg

(
Sim(ν(1)), Sim(ν(2))

))
replaced by TVAlg

(
Sim(ν(1)),Sim(ν(2))

)
.

Note that Equation 11 decouples the behavior of the algorithm under ν from the information limited
by the simulator. This proposition makes formal the intuition from Section 5 that the algorithm
which behaves differently on two distinct instances must “break” any simulator that severely limits
the information between them.

6.1. Lower Bounds on 1-Arm Swaps

The key step in proving Theorem 3 is to establish a simple lower bound that holds for pairs of
instances obtained by “swapping” the best arm.

Proposition 11 Let ν be an instance with unique best arm a∗. For b ∈ [n] − {a∗}, let ν(b,a∗) be
the instance obtained by swapping a∗ and b, namely ν(b,a∗)

a∗ = νb, ν
(b,a∗)
b = νa∗ , and ν(b,a∗)

a = νa
for a ∈ [n]− {a∗, b}. Then, if Alg is δ-correct, one has that for any η ∈ (0, 1/4)

1

2

{
Pν,Alg [Nb(T ) > τ(η)] + Pν(b,a∗),Alg [Na∗(T ) > τ(η)]

}
≥ η − δ , (12)

where τ(η) = 1
KL(νa∗ ,νb)+KL(νb,νa∗ ) log(1/4η)

This bound implies that, if an instance ν is drawn uniformly from {ν, ν(b,a∗)}, then any δ-correct
algorithm has to pull the suboptimal arm, namely the distribution νb, at least τ(η) times on aver-
age (over the draw of ν), with probability η − δ. Proving this proposition requires choosing an
appropriate simulator. To this end, fix a τ ∈ N, and let Sim map Tr to T̂r such that,

Sim : X̂[s,a] ←[


X[s,a] a 6= a∗, b

X[s,a] a ∈ {a∗, b}, s ≤ τ
iid∼ νa∗ a ∈ {a∗, b}, s > τ

(13)

where for s > τ and a ∈ {a∗, b}, the X̂[s,a]
iid∼ νa∗ means that the samples are taken independently

of everything else (in particular, independent of X[s,a∗] and X[s,b]), using internal randomness ξSim.
We emphasize Sim depends crucially on ν, a∗, and b.

Note that the only entries of T̂r whose distribution differs under Sim(ν) and Sim(ν(b,a∗)) are just
the first τ entries from arms a∗ and b, namely {X̂s,a}1≤s≤τ,a∈{a∗,b}. Hence, by a data-processing
inequality

KLAlg(Sim(ν),Sim(ν(b,a∗)) ≤ τ{KL(νa∗ , νb) + KL(νb, νa∗)} (14)

Using the notation of Proposition 10, let ν(1) = ν, ν(2) = ν(b,a∗), let W1 := {Nb(T ) ≤ τ}
and W2 := {Na∗(T ) ≤ τ} (i.e, under ν(i) and Wi, you sample the suboptimal arm no greater
than τ times). Now, Proposition 11 now follows immediately from Proposition 10, elementary
manipulations, and the following claim:

13
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Claim 1 For ν(i) and Wi defined above, Sim is truthful on Wi under ν(i).

Proof [Proof of Claim 1] The samples X̂[s,a] and X[s,a] have the sample distribution under ν(i) and
Sim(ν(i)) for a /∈ {a∗, b} and s ≤ τ , by construction. Moreover, the samples X̂[s,a∗] and X̂[s,b] for
s > τ are also i.i.d draws from νa∗ , so they have the same distribution as the samples X[s,a∗] and
X[s,b] under ν(1) and ν(2) respectively. Thus, the only samples whose distributions are changed by
the simulator are the samples X̂[s,b] under ν(1) and X̂[s,b] under ν(2), respectively, which Alg never
accesses under under W1 and W2, respectively.

6.2. Proving Theorem 3 from Proposition 11

Theorem 3 can be proven directly using the machinery established thus far. However, we will intro-
duce a reduction to “symmetric algorithms” which will both expedite the proof of the Theorem 3,
and come in handy for additional bounds as well. For a transcript Tr, let π(Tr) denote the transcript
π(Tr)a,s = Trπ(a),s, and PAlg,Tr denote probability taken w.r.t. the randomness of Alg acting on the
fixed (deterministic) transcript Tr. For any subset S ⊂ [n], we take π(S) := {π(a) : a ∈ S}.

Definition 12 (Symmetric Algorithm) We say that an algorithm Alg is symmetric if the distribu-
tion of its sampling sequence and output commutes with permutations. That is, for any permutation
π, transcript Tr, sequence of actions (A1, A2, . . . ), and output Ŝ ⊂ [n],

PAlg,Tr

[
(a1, a2, . . . , aT , Ŝ) = (A1, A2, . . . , AT , S)

]
= PAlg,π(Tr)

[
(a1, a2, . . . , aT , Ŝ) = (π(A1), π(A2), . . . , π(AT ), π(S))

]
(15)

In particular, if Alg is symmetric, then Pν,Alg[Nb(T̃ ) ≥ τ ] = Pπ(ν),Alg[Nπ(b)(T̃ ) ≥ τ ] for all b ∈
[n], π ∈ Sn, and {Ft}-measurable stopping time T̃ . The following lemma reduces lower bounds
on average complexity over permutations to lower bounds on a single instance for a symmetric
algorithm (see Section A.2 for proof and discussion):

Lemma 13 (Algorithm Symmetrization) Let Alg be a δ-correct algorithm over Sn(ν). Then
there exists a symmetric algorithm AlgSn , which is also δ correct over Sn(ν), and such that, for
any {Ft}-measurable stopping time T̃ (in particular, T̃ = T )

Pν,AlgSn [Nb(T̃ ) ≥ τ ] = Pπ∼SnPπ(ν),Alg[Nπ(b)(T̃ ) ≥ τ ] (16)

Now, we are ready to prove Theorem 3
Proof [Proof of Theorem 3] We first establish 3 for δ-correct symmetric algorithms, and use Lemma 13
to extend to all δ-correct algorithms. Again, let ν(b,a∗) be the instance obtained by swapping
a∗ and b, and let πb be the permutation yielding πb(ν) = ν(b,a∗). Adopt the shorthand τb(η) =
τb · log(1/4η). Then assuming Alg is symmetric and noting that πb(a∗) = b, we have

Pπ∼SnPπ(ν),Alg[Nπ(b)(T ) > τb(η)]
(i)
=Pν,Alg[Nb(T ) > τb(η)]

(ii)
=

1

2

{
Pν,Alg[Nb(T ) > τb(η)] + Pπb(ν),Alg[Nπb(b)(T ) > τb(η)]

}
(iii)
=

1

2

{
Pν,Alg[Nb(T ) > τb(η)] + Pν(b,a∗),Alg[Na∗(T ) > τb(η)]

}
14
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where (i) and (ii) follow from the definition of symmetric algorithms, (iii) follows from how we
defined the permutation πb. Applying Proposition 11, the above is at most η − δ. Next, we show
that Equation 3 implies Equation 4. This part of the proof need not invoke that Alg is symmet-
ric. Applying Markov’s inequality Equation 3 implies that Eπ∼SnEπ(ν),Alg ≥ log(1/4η)(η − δ)τb.
Hence,

Eπ∼SnEπ(ν),Alg[T ] = Eπ∼SnEπ(ν),Alg[
∑
b∈[n]

Nb(T )] = Eπ∼SnEπ(ν),Alg[
∑
b∈[n]

Nπ(b)(T )]

≥ Eπ∼SnEπ(ν),Alg[
∑
b 6=a∗

Nπ(b)(T )] ≥ log(1/4η)(η − δ)
∑
b 6=a∗

τb

7. Conclusion

In the pursuit of understanding the fundamental limits of adaptive sampling in the presence of
side knowledge about the problem (e.g. the means of the actions are known to lie in a known
set), we unearthed fundamental limitations of the existing machinery (i.e., change of measure and
Fano’s inequality). In response, we developed a new framework for analyzing adaptive sampling
problems – the Simulator – and applied it to the particular adaptive sampling problem of multi-
armed bandits to obtain state-of-the-art lower bounds. New insights from these lower bounds led
directly to formulating a new algorithm for the TOP-K problem that is state-of-the-art in both theory
and practice. Armed with the tools and demonstration of their use on a simple problem, we are
convinced that this recipe can be used to produce future successes for more structured adaptive
sampling problems, the true goal of this work.
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Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence. In 29th
Annual Conference on Learning Theory, pages 998–1027, 2016.
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Appendix A. Proofs for Section 6

A.1. Proof of Propostion 10

First, by combining Pinkser’s Inequality with the data processing inequality (Tsybakov, 2009), we
arive at an elementary bound that controls TV between runs of an algorithm on simulated instances:

Lemma 14 (Pinkser’s Inequality) Let ν(1) and ν(2) be two measures. Then for any simulator
Sim,

sup
E∈FT

∣∣∣PSim(ν(1)),Alg(E)− PSim(ν(2)),Alg(E)
∣∣∣ ≤ TVAlg

(
Sim(ν(1)), Sim(ν(2))

)
(17)

≤ Q
(

KLAlg

(
Sim(ν(1)),Sim(ν(2))

))
(18)

Where Q(β) = min
{

1− 1
2e
−β,
√
β/2

}
.

Note here that we only consider eventsE ∈ FT , which only depend on the samplesXa1,1, . . . , XaT ,t

collected from the modified T̂r. Now we can prove our result.
Proof [Proof of Proposition 10] By the triangle inequality

|Pν(1),Alg(E)− Pν(2),Alg(E)|

≤ |PSim(ν(1)),Alg(E)− PSim(ν(2)),Alg(E)|+
2∑
i=1

|PSim(ν(i))),Alg(E)− Pν(i)),Alg(E)| (19)

We can expand

PSim(ν(i)),Alg(E)− Pν(i),Alg(E)

=PSim(ν(i)),Alg(E ∧Wi) + PSim(ν(i))),Alg(E ∧W c
i )− (Pν(i),Alg(E ∧Wi) + Pν(i),Alg(E ∧W c

i ))

=PSim(ν(i)),Alg(E ∧W c
i )− Pν(i),Alg(E ∧W c

i )
(20)

where PSim(ν(i)),Alg(E ∧Wi) = Pν(i),Alg(E ∧Wi) as Wi is truthful for ν(i). Thus,

|PSim(ν(i)),Alg(E)− Pν(i),Alg(E)| = |PSim(ν(i)),Alg(E ∧W c
i )− Pν(i),Alg(E ∧W c

i )|
(i)

≤ max{PSim(ν(i)),Alg(E ∧W c
i ),Pν(i),Alg(E ∧W c

i )}
(ii)

≤ max{PSim(ν(i)),Alg(W c
i ),Pν(i),Alg(W c

i )}
(iii)
= Pν(i),Alg(W c

i )

Where (i) uses the identity |a − b| ≤ max{a, b} for a, b ≥ 0, (ii) uses monotonicity of prob-
ability measures, and (iii) uses the fact that PSim(ν(i)),Alg(W c

i ) = 1 − PSim(ν(i)),Alg(Wi) = 1 −
Pν(i),Alg(Wi) = Pν(i),Alg(W c

i ), since Wi is truthful. All in all, we have

|Pν(1),Alg(E)− Pν(2),Alg(E)| ≤ |PSim(ν(1)),Alg(E)− PSim(ν(2)),Alg(E)|+
2∑
i=1

Pν(i)(W
c
i )(21)

The bound now follows from Lemma 14.
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A.2. Proof of Lemma 13

Let Alg be a (possbily non-symmetric) algorithm. We obtain the symmetric algorithm AlgSn by
drawning a σ ∼ Sn, and running Alg on σ(Tr) with decision rule σ−1(Ŝ). Note then that a sample
from arm a on Tr corresponds to a sample from arm σ(a) on σ(Tr). Hence, for any π ∈ S(n),

PAlgSn ,Tr

[
(a1, a2, . . . , aT , Ŝ) = (A1, A2, . . . , AT , S)

]
=

1

n!

∑
σ∈Sn

PAlg,σ(Tr)

[
(a1, a2, . . . , aT , σ

−1(Ŝ)) = (σ(A1), σ(A2), . . . , σ(AT ), S)
]

=
1

n!

∑
σ∈Sn

PAlg,σ(Tr)

[
(a1, a2, . . . , aT , Ŝ) = (σ(A1), σ(A2), . . . , σ(AT ), σ(S))

]
=

1

n!

∑
σ∈Sn

PAlg,σ◦π(Tr)

[
(a1, a2, . . . , aT , Ŝ) = (σ ◦ π(A1), σ ◦ π(A2), . . . , σ ◦ π(AT ), σ ◦ π(S))

]
= PAlgSn ,π(Tr)

[
(a1, a2, . . . , aT , Ŝ) = (π(A1), π(A2), . . . , π(AT ), π(S))

]
(22)

as needed. We remark that this reduction to symmetric algorithms is also adopted in Castro (2014),
but there the reduction is applied to classes of instances which themselves are highly symmetric
(e.g., all the gaps are the same). Previous works on the sampling patterns lower bounds for MAB
explicitly assume that algorithms satisfy weaker conditions Garivier et al. (2016); Carpentier and
Locatelli (2016), whereas our reduction to symmetric algorithms still implies bounds which hold
for possibly non-symmetric algorithms as well.

Appendix B. Proof of Theorem 4

In Theorem 4, we consider the simplified case ν2 = ν3 = · · · = νn, and fix a symmetrized
algorithm Alg, and the best arm has mean ν1. We will actually prove a slightly more technical
version of Theorem 4, from which the theorem follows as an immediate corollary.

Recall that the intuition behind Theorem 4 is to show that, until sufficiently many samples
has been taken, one cannot differentiate between the best arm, and other arms which exhibit large
statistical deviations. To this end, we construct a simulator which is truthful as long as the top arm
is not sampled too often. Fix a τ ∈ N and define the simulator Sim by

Sim : X̂[s,a] ←[

{
X[s,a] s ≤ τ
i.i.d.∼ ν2 s > τ

(23)

Since Sim only depends on the first τ samples from ν, we can use Fano’s inequality to get control
on events under simulated instances:

Lemma 15 For any random, FT -measurable subset A of [n] with |A| = m,

Pπ∼SnPSim(π(ν)),Alg[π(1) /∈ A] ≥ 1− τ∆2 + log 2

log(n/m)
(24)

where ∆2 := KL(ν1, ν2) + KL(ν2, ν1).
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If we take A = Ŝ to be the best estimate for the top arm in the above lemma, we conclude that
unless τ � ∆−2 log n, running Alg on Sim(ν) won’t be able to identify the best arm. Hence, Alg
will need to break the simulator by collecting more than τ samples. More subtly, we can take A to
be the set of the first m arms pulled more than τ = ∆−2 log(n/m) times (where |A| < m if fewer
than m arms are pulled τ times). By Lemma 15, A won’t contain the top arm a good fraction of the
time. But we know from the previous argument that the top arm is sampled at least τ times, which
implies that with constant probability, there will be m arms pulled at least τ times. In summary, we
arrive at the following proposition which restates Theorem 4, as well as proving that the top arm
must be pulled Ω(∆−2 log n) times:

Proposition 16 Let Alg be δ-correct, consider a game with best arm ν1 and n−1 arms of measure
ν2. For any β ≥ 0, define Sm,β :=

{
a : Na(T ) > ∆−2

(
β log n

m − log 2
)}

. Then,

Pπ∼SnPπ(ν),Alg

[
Nπ(1)(T ) ≥ ∆−2(β log n− log 2)

]
≥ 1− (β + δ) and (25)

Pπ∼SnPπ(ν),Alg [{π(1) ∈ Sm,β} ∧ {|Sm,β| ≥ m}] ≥ 1− 2β − δ (26)

Note that Theorem 4 follows from Equation by taking β = 1/16 and δ ≤ 1/8.
Proof [Proof of Proposition 16] Throughout the proof, will use the elementary inequality that for
any eventsA andB, P[A] ≤ P[A∩B]+P[Bc] without comment. Let’s start by proving Equation 25.
Define Wπ = {Nπ(1)(T ) ≤ τ}, and let W to be corresponding events when π is taken to be the
identity. We see Wπ is FT -measurable, and if AlgSn is the symmetrized algorithm obtained from
Alg, then

Pπ∼SnPπ(ν),Alg[Wπ] = Pν,AlgSn [W ] (27)

Hence, it suffices to assume that Alg is symmetric and work with π being the identity. Since the first
τ samples from arm 1 under Sim(ν) are i.i.d from ν1, and since all samples from all other arms are
i.i.d from ν2, we see that

Claim 2 W is a truthful event for Sim(ν).

This implies that

Pν,Alg[W ] ≤ Pν,Alg[W ∧ {â = 1}] + Pν,Alg[{â 6= 1}]
≤ Pν,Alg[W ∧ â = 1] + δ

(i)
= PSim(ν),Alg[W ∧ â = 1] + δ

≤ PSim(ν),Alg[â = 1] + δ ,

where (i) follows from the following Claim 2. Hence, Lemma 15 implies

PSim(ν),Alg[{â = 1}] ≤ ∆2τ + log 2

log n
. (28)

For the next part, we may also assume without loss of generality that Alg is symmetric. Define the
set At = {i : Ni((t + 1) ∧ T ) > τ} (these are the set of arms that have been pulled more than τ
times), and let Sm = T ∧ sup{t : |At| ≤ m} (Sm is the last time that At is no larger than m). Note
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that Sm is indeed a stopping time wrt to {Ft}, since the t + 1-th arm to be sampled is determined
by all the samples seen up to time t, and internal randomness in Alg. Hence, we have that

Pν,Alg [{|{a : Na(T ) > τ}| ≤ m}] ≤ Pν,Alg [W c ∩ {|{a : Na(T ) > τ}| ≤ m}] + Pν,Alg[W ]

(i)

≤ Pν,Alg[1 ∈ ASm ] + Pν,Alg[W ] ,

where (i) follows because, under the event {|{a : Na(T ) > τ}| ≤ m}, then Sm = T , and thus
ASm = {a : Na(T ) > τ}. But on W c, N1(T ) > τ , and thus 1 ∈ ASm . Pν,Alg[W ] is already
bounded by part 1; for part 2 we need the following claim to invoke a reduction:

Claim 3 PSim(ν),Alg[1 ∈ ASm ] = Pν,Alg[1 ∈ ASm ]. Moreover, if Alg is symmetrized, then
Pπ∼SnPSim(π(ν)),Alg[π(1) ∈ ASm ] = PSim(ν),Alg[1 ∈ ASm ].

The first part of this claim holds because then event {1 ∈ ASm} depends only on the first τ samples
drawn from arm 1, and the first τ samples from arm 1 are i.i.d from ν1 under both the simulator and
the true measure. The second part of the claim follows directly from the definition of symmetry,
since the even 1 ∈ ASm does not depend on how the arms are labeled. Thus, invoking Lemma 15,

Pπ∼SnPSim(π(ν)),Alg[π(1) ∈ ASm ] ≤ ∆2τ + log 2

log n/m
. (29)

Putting pieces together, we conclude that

Pν,Alg [{|{i : Ni(T ) > τ}| ≤ m}] ≤ δ + (∆2τ + log 2)

(
1

log n
+

1

log(n/m)

)
≤ δ + 2

∆2τ + log 2

log(n/m)
.

Setting τ = ∆−2(β log(n/m)− log 2) concludes.

B.1. Proof of Lemma 15

For i ∈ {1, . . . , n}, let ν(i) denote the instance where νi = ν1, and νj = ν2 for j 6= i. Let Pi
denote the law of the transcipt Sim(ν(i)). We beging by applying a slight generalization of Fanos
Inequality:

Lemma 17 (Inexact Fano) Let X be a random variable, and let E be a binary random variable,
and suppose that Y is a random variables such that X and E are conditionally independent given
Y (i.e. X → Y → E form a Markov Chain). Then,

P (E = 1) ≥ 1− I(X;Y ) + log(2)

H(X)−H(X|E = 0, X̂)
(30)

where I(X;Y ) denotes the mutual information between X and Y , H(X) denotes the entropy of
X , and H(X|E = 0) denotes the conditional entropy of X given E = 0 (for details, seeCover and
Thomas (2012))
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To apply the bound, let π ∼ Sn, let X = π(1), let Y denote the transcript T̂r under the distribution
Sim(ν(π(1)), and let E = I({π(1) ∈ A}) = I({X ∈ A}). Then X → Y → E forms a markov
chain. Since |A| = m, on the event E = 0, X can take at most m values, namely those in A.
Hence, using a standard entropy bound Cover and Thomas (2012), H(X|E) ≤ logm. On the other
hand, since X is uniform, H(X) = logn, and thus H(X)−H(X|E = 0, X̂) ≥ log n/m.

Thus, to conclude, it suffices to show that I(X;Y ) ≤ τ∆2. Let P̄ denote the marginal of Y , that

is, PX , where X
unif∼ {1, . . . , n}. Then, a standard application of Jensen’s inequality (see Cover

and Thomas (2012) for details) gives

I(X;Y ) :=

n∑
i=1

P(X = i)KL(Pi, P̄) ≤
M∑
j,i=1

P(X = j)P(X = i)KL(Pi,Pj) (31)

For i = j, KL(Pi,Pi) = 0. For i 6= j, we use the independence of the entries of the transcript to
compute

KL(Pi,Pj) =
n∑
a=1

∞∑
s=1

KL(X̂[a,s]

∣∣Sim(ν(i)), X̂[a,s]

∣∣Sim(ν(j))

(i)
=

τ∑
s=1

KL(X̂[i,s]

∣∣Sim(ν(i)), X̂[i,s]

∣∣Sim(ν(j)) + KL(X̂[j,s]

∣∣Sim(ν(i)), X̂[j,s]

∣∣Sim(ν(j))

(ii)
=

τ∑
s=1

KL(ν1, ν2) + KL(ν2, ν1) = τ∆2 ,

where (i) follows since the law of X̂[a,s] differs between Sim(ν(i)) and Sim(ν(j)) for a ∈ {i, j} and
s ∈ {1, . . . , τ}, and (ii) follows from the construction of our simulator. Hence,

I(X;Y ) ≤
M∑
j,i=1

P(X = j)P(X = i)KL(Pi,Pj) =
M∑
j,i=1

τ∆2

n2
I(i 6= j) ≤ τ∆2 (32)

Appendix C. Lower Bounds for Distinct Measures

C.1. High Level-Intuition For Proposition 5

As in the other results in this paper, the key step boils down to designing an effective simulator
Sim. Unlike the prior bounds, we need to take a lot of care to quantify how Sim limits information
between instances.

To make things concrete, suppose that the base instance is ν with best arm index 1, and where
the measures νi are Gaussians with means µi and variance 1. For clarity, suppose that the gaps
are on the same order, say ∆ ≤ µ1 − µb ≤ 2∆ for all b ≥ 2. Since our goal is to show that
the best arm must be pulled & ∆−2 log n times on average, a natural choice of a truthful event is
W = {N1(T ) ≤ τ} for some τ & ∆−2 log n. This suggests that our simulator should always return
the true samples X[a,s] from Tr for all arms a 6= 1, and the first τ samples from arm 1.

Once τ samples are taken from arm 1, our Sim will look at the first τ samples from each arm
j 6= 1, and pick an index ĵ such that the first τ samples X[̂j,1], . . . , X[̂j,τ ] “look like” they were
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drawn from the distribution ν1. We do this by defining events Ej which depend on the first τ -
samples from arm j, as well as some internal random bits ξj , and choosing ĵ uniformly from the
arms j for which Ej holds. In other word, our simulator is given by

Sim(ν) : X̂[a,s] ←[


X[a,s] a 6= 1

X[1,s] a = 1, s ≤ τ
i.i.d∼ νĵ a = 1, s > τ

where (33)

ĵ =

{
unif∼ {j 6= 1 : Ej holds} if at least one Ej holds
1 otherwise

(34)

Our construction will ensure that at least one Ej will hold with constant probability. Hence, the
only information which can distinguish between the arms 1 and ĵ 6= 1 are the first τ samples from
each arm. But if the first τ samples from arm ĵ “look” as if they were drawn from ν1, then this
information will be insufficient to tell the arms apart. In other words, we can think of Sim as forcing
the learner to conduct an adversarially-chosen, data-dependent two-hypothesis test: is the best arm
1 or arm ĵ ?

What’s left is to understand why we should even expect to find an arm ĵ whose first τ =
O(∆−2 log n) samples resemble those from arm 1. The intuition for this is perhaps best understood
in terms of Gaussian large-deviations. Indeed, consider the empirical means of each arm µ̂j,τ =
1
τ

∑τ
s=1X[j,s]. Then for any fixed j ∈ [n], we have that |µj − µ̂j | .

√
1/τ . However, Gaussian

large deviations imply that for some arm ĵ ∈ {2, . . . , n}, the empirical mean will overestimate its
true mean by a factor of ≈

√
log(n)/τ (that is µ̂ĵ,τ ≥ µĵ + Ω(

√
log(n/δ)/τ)). By the assumption

that ∆ ≤ µ1 − µĵ ≤ 2∆, the large deviation combined with a confidence interval around arm

1 implies that unless τ & ∆−2 log n, there will be an arm ĵ whose empirical mean is larger the
empirical mean of arm 1; thereby “looking” like the best arm.

Unfortunately, this intuition is not quite enough for a proof. Indeed, if τ � ∆−2 log n, then
with good probability the the arm with the greatest empirical mean will not be best arm. This leads
to a paradox: suppose τ � ∆−2 log n, and the learner is given a choice between two arms - one
of which has the highest empirical mean, and one of which is assured to be the best arm. Then the
learner should guess that the best arm is the one with the lesser of the two empirical means!

C.2. Tiltings

To get around this issue, we pick ĵ using a technique called “tilting”, which is the key technical
innovation behind this result. Given τ samples from arm j, and access to some random bits ξj , the
goal is to construct an event Ej (depending on the τ samples from arm j, as well as ξj) such that
conditioning onEj “tilts” the distribution of the first τ samples from an arm j to “look like” samples
from arm 1. Since the sample mean is a sufficient statistic for Gaussians, it is sufficient to ensure
that the distribution of the sample means µ̂j,τ are close in distribution. The basic idea is captured in
the following proposition:

Proposition 18 (Informal) Let ξj ∼ Uniform[0, 1] and independent of everything else, and let
p ∈ (0, 1). If τ � ∆−2 log(1/p), then there exists a deterministic function Kj : R → [0, 1] such
that the following holds: Define the eventEj = {Kj(µ̂j,τ ) ≤ ξj}. Then, the conditional distribution
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(a)

Figure 2: Before Tilting

(a)

Figure 3: After Tilting

Figure 4: The event Ej depends on the samples from arm j. Thus, conditioning on Ej “tilts” the
distribution of the those samples.

of µ̂j,τ on Ej “looks like” the distribution of µ̂1,τ , in the sense that the TV(µ̂1,τ ; µ̂j,τ
∣∣Ej) = o(1).

Moreover, Ej holds with probability at least p.

Since ξj is uniform, Kj(µ̂j,τ ) = Pξj (Ej
∣∣µ̂j,τ ). Thus, up to normalization, conditioning on the

event Ej reweights the density of µ̂j,τ by the value of Kj(µ̂j,τ ), thereby tilting its shape to resemble
the distribution of µ̂1,τ . This is depicted in Figure 4. The random numbers ξj are essential to this
construction, since they let us reweight the distribution of µ̂j,τ by fractional values. Since Kj is
bounded above by one, reweighting doesn’t come for free, and our major technical challenge is to
choose Kj so as to ensure that P(Ej) = E[Kj(µ̂j,τ )] is at least p. This sort of construction is known
in the probability literature as “tilting”, and is used in the Herbst argument in the concentration-of-
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measure literature (Chapter 3 of Raginsky and Sason (2014))10. To the best our knowledge, this
constitutes the first use of tiltings for proving information theoretic lower bounds.

To conclude our simulator argument, we apply Proposition 18 with p = (10/n) and τ ≈
∆−2 log n−1

10 ≈ ∆−2 log n. Then for any fixed arm j, Ej will hold with probability at least say
10/(n − 1) (say n � 10), on which the first τ samples from arm j will “look-like” samples from
ν1, in TV distance. Hence, with probability 1− (1−10/(n−1))n−1 ≥ 1−e−10 ≥ .999, there will
exists an arm ĵ such that Eĵ holds, and thus the first τ samples from ĵ “look-like” samples from

ν1, in TV. In particular, if our simulator chooses ĵ uniformly from the arms j such that Ej holds
(and takes ĵ = 1 otherwise), then with probability .999, our simulator can confuse the learner by
showing her two arms the distribution of whose samples look like ν1, as needed.

C.2.1. DATA-DEPENDENT TWO-HYPOTHESIS TESTING

Recall above that Sim forces the learner to perform a data-dependent two hypothesis test - “is the
best arm 1 or ĵ ” - chosen adversarially from the set of two-hypothesis tests “is the best arm 1 or j”
for j ∈ {2, . . . , n}. We emphasize that the argument from Proposition 18 is very different than the
familiar reductions to n-way or composite hypothesis testing problems. Observe that

1. By giving the learner the choice between only arms 1 and ĵ, the adversarial two-hypothesis
test reduces the learner’s number of possible hypotheses for the best arm from n down to 2.
Thus, this problem is potentially easier than the n-way hypothesis test corresponding to best-
arm identification. In particular, Proposition 18 is not implied by Fano’s Equality or other
n-way testing lower bounds

2. By the same token, the adversarial two-hypothesis test is also potentially easier than the com-
posite hypothesis test: is 1 the best arm, or is another arm j ∈ {2, . . . , n} the best arm?
Hence, Proposition 18 is not implied by lower bounds on composite hypothesis tests.

3. On the other hand, since ĵ depends on the observed data in this adversarial way, the adversarial
two-way hypothesis is strictly harder than the standard oblivious two-hypothesis test which
fixes j in advance and asks: is the best arm 1 and some j? Indeed, fixing the two-hypothesis
test in advance does not force the learner to incur a log-factor in the sample complexity.

C.3. Statement of the Main Technical Theorem

Our main theorem is stated for single parameter exponential families(Nielsen and Garcia, 2009),
which we define for the sake of completeness in Section C.4.

Theorem 19 Let ν be a measure with best arm such that each νj comes from an exponential family
{pθ}θ∈Θ with corresponding parameter by θj ∈ Θ, and that [θj , 2θ1 − θj ] ⊂ Θ. Suppose that Alg
is δ-correct, in the sense that for any π ∈ Sn, Alg can identify the unique arm of π(ν) with density
ν1 = pθ1 among with probability of error at most δ. Then, for all α > 0

Eπ∼SnPπ(ν),Alg[{Nπ(1)(T ) > ∆−2
eff log(n/α)}] ≥ sup

κ∈[0,1]

1

2

(
1− e−ακ(1−κ)

)
(1− 2κ)− δ

where ∆2
eff = max

j>1
kl(θ1, θj) + kl(2θ1 − θj , θj)

(35)

10. Unlike our construction, the Herbst argument tilting reweights by an unbounded function Kj (rather than a function
bounded in [0, 1]), and thus those tiltings cannot be interpreted as a conditioning on an event
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Furthermore, observe that for Gaussian rewards with unit variance, ∆2
eff corresponds exactly with

the largest squared gap (θ1− θj)2. By considering best-arm subproblems with the top m ≤ n arms,
we arrive at the following corollary, which immediate specializes to Proposition 5 with Gaussian
rewards:

Corollary 20 In setting of Theorem 19, we have the following lower bound for every m ≤ n and
α > 0,

Eπ∼SnPπ(ν),Alg[{Nπ(1)(T ) > ∆eff(m)−2 log(m/α)}] ≥ sup
κ∈[0,1]

1

2

(
1− e−ακ(1−κ)

)
(1− 2κ)− δ

where ∆eff(m)2 is the (m− 1)-th smallest value of {kl(θ1, θj) + kl(2θ1 − θj , θj)}j
(36)

C.4. Censored Tilting

In this section, we are going to formally construct the eventsEj . We will first illustrate the idea for a
a generic collection of random variables, and then show how to specialize for bandits. For each j ∈
[n], we consider a Markov Chain Zj → Ej = 1, where Zj is a real valued random variable, and Ej
is an event depending only on Zj . Under suitable technical conditions, the distribution (Zj , I(Ej))
is then defined by a Markov Kernel Kj : R → [0, 1], where P(Ej |Zj = z) = Kj(z). Conversely,
any such Markov Kernel induces a joint distribution on (Zj , I(Ej)). To replicate the malicious
adversary from Proposition 18, we can represent Ej explictly by letting ξj ∼ Uniform[0, 1] and
independent of everything else, and setting Ej = {ξj ≤ Kj(z)}.

We will say that Kj is nondegenerate if P(Ej = 1) ≡ E[Kj(Zj)] > 0. When Zj has a density
to a measure η(x), and Kj is nongenerate, then Baye’s rule implies

dPZj
dη

(x|Ej) =
Kj(x)

E[Kj(Zj)]
·
dPZj
dη

(x) (37)

In other words, conditioning on the eventEj “tilts” the density ofZj by a functionKj(x)/E[Kj(Zj)].
We will call tiltings that arise in this fashion a censored tilting. Indeed, imagine an observer who
tries to measure Zj . On Ej , she gets a proper measurement of Zj , but on Ecj she is censored. Then
the censored tilting P(Zj |Ej) describes the distribution of the observers non-censored measure-
ments. Keeping with this metaphor, we will call Ej the measuring event induced by Kj .

Remark 21 Tiltings appear as a step in the Herbst Argument for proving concentration of measure
bounds from Log-Sobolev inequalitys. In that setting, one tilts by potentially unbounded functions
gj ≥ 0 that need only satisfy the integrability condition E[gj(Zj)] < ∞. In our setting, this tilting
to arise from a function Kj ∈ [0, 1], since Kj corresponds to a conditional probability operator.

To apply this idea to MAB, fix a measure ν with decreasing means µ1 > µ2 ≥ . . . µn. Given
a transcript Tr and τ ∈ N, let Xj,τ = 1

τ

∑τ
s=1X[j,s]. We will simply write Xj when τ is clear

from context. To simplify things, we shall assume that all the measures νj come from a cannonical
exponential family of densities pθ(x) = exp(θx−A(θ))dη(x) with respect to a measure η(x) where
θ lie in a convex subset Θ of R. It is well known that this implies that

Lemma 22 (Nielsen and Garcia (2009)) Suppose that νj has density pθj (x) = exp(θjx−A(θj))
with respect to a measure η. Then,
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1. Xj,τ is a sufficient statistic for X[j,1], . . . , X[j,τ ]

2. There exists a measure ητ (x) on R, such that Xj,τ has density qτθj (x) := exp(τθjx −
τA(θj))dητ (x) with respect ητ (x).

In particular, the densities qτθ(x) for θ ∈ Θ form an exponential family.

Now, for each j, consider tiltings of the form Kj(x) = eτ(θ1−θj)x

cj
I(eτ(θ1−θj)x ≤ cj). Then,

dPZj
dη

(x|Ej) ∝ eτθjx · eτ(θ1−θj)x) · I(eτ(θ1−θj)x ≤ cj) = eτθ1xI(eτ(θ1−θj)x ≤ cj) (38)

Since
dPZj
dη (x|Ej) is a density, the uniquess of normalization implies the following facts:

Lemma 23 Let Kj(x) = eτ(θ1−θj)x

cj
I(eτθjx ≤ cj), and let Ej be the corresponding measuring

event. Then,

1. The censored tilting of Xj |Ej has the distribution of X1

∣∣{eτ(θ1−θj)Xj ≤ c}

2. TV(PX1
,PXj

[·
∣∣Ej ]) = P(eτ(θ1−θj)X1 > c)

3. P(Ej) = 1
c (1−Qj(Ej)) · e

τ{A(θ1)−A(θj)}

Proof The first point follows from Equation 38. The second point follows directly from Lemma 24,
and the last point follows from the following computation:

P(Ej) =
1

c
· E
[
exp(τ(θ1 − θj)Xj) · I(eτ(θ1−θj)Xj ≤ c)

]
=

1

c
·
∫

exp(τ(θ1 − θj)x) exp(τθjx− τA(θj))I(eτ(θ1−θj)x ≤ c)dητ (x)

=
1

c
·
∫

exp(τθ1x− τA(θj)))I(eτ(θ1−θj)x ≤ c)dητ (x)

=
1

c
·
∫

exp(τθ1x− τA(θ1) + τ{A(θ1)−A(θj)}))I(eτ(θ1−θj)x ≤ c)dητ (x)

=
eτ(A(θ1)−A(θj)

c
·
∫

exp(τθ1x− τA(θ1))I(eτ(θ1−θj)x ≤ c)dητ (x)

=
eτ{A(θ1)−A(θj)}

c
P[eτ(θ1−θj)X1 ≤ c]

The last point follows from the following lemma, proved in Section C.8.3:

Lemma 24 (TV under conditioning) Let P be a probability measure on a space (Ω,F), and let
B ∈ F have P(B) > 0. Then,

TV(P[·],P[·|B]) = P[Bc] (39)

.
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C.5. Building the Simulator

C.5.1. DEFINING THE SIMULATOR ON ν

Again, let ν be an instance with best arm ν1, and fix a τ ∈ N. Our simulator will always return
the true samples X[a,s] from Tr for all arms a 6= 1, and for the first τ samples from arm 1. After
τ samples are taken from arm 1, the samples will be drawn independently from the measure νĵ ,
where ĵ ∈ [n] is a maliciously chosen index which we will define shortly, using the events Ej in the
previous section. To summarize,

Sim(ν) : X̂[a,s] ←[


X[a,s] a 6= 1

X[1,s] a = 1, s ≤ τ
i.i.d∼ νĵ a = 1, s > τ

(40)

Fact 1 If W = {N1(T ) ≤ τ}, then Alg is truthful on W under Sim(ν).

Proof The only samples which are altered by Sim(ν) are those taken from arm 1 after arm 1 has
been sampled > τ times.

Next, let’s define ĵ. LetXj = 1
τ

∑τ
s=1X[j,s], fix constants c2, . . . , cn ∈ R>0 to be chosen later, and

let Kj be the corresponding Markov Kernel from Lemma 23. For each j ∈ {2, . . . , n}, Sim draws

a i.i.d random number ξj
unif∼ [0, 1]. The following fact is just a restatement of this definition in the

language of Section C.4:

Fact 2 Let Ej = {ξj ≤ Kj(Xj)}. Then Ej is the measuring event corresponding to the Markov
Kernel Kj , and are mutually independent.

We now define the index ĵ and corresponding “malicious events” Mj by

Mj := {ĵ = j} where ĵ =

{
unif∼ {j : Ej occurs} on

⋃
j Ej

1 otherwise
(41)

C.5.2. DEFINING Sim ON ALTERNATE MEASURES

The next step is to construct our alternative hypotheses. Let π(`) denote the permutation which
swaps arms 1 and `, and define the measures ν(2), . . . , ν(n), where ν(`) = π(`)(ν) (note that π(`) =

π−1
(`) ). To define the simulator on these instances, we still let ξj

unif∼ [0, 1], and now define, for
j ∈ {2, . . . , n}

E
(`)
j := {ξj ≤ Kj(Xπ(`)(j))} (42)

ĵ`
unif∼ {j : E

(`)
j holds} (43)

M
(`)
j := {ĵ` = j} (44)

and set

Sim(ν(`)) : X[a,s] 7→


X[a,s] a 6= `

X[a,s] a = `, s ≤ τ
i.i.d∼ νĵ` a = `, s > τ

(45)
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Note that this esnsure that if T̂r is a transcript from Sim(ν(`)), and T̂r
(`)

, then π−1
(`) (T̂r

(`)
) (that is,

the transcript obtained by swapping indices 1 and ` in T̂r
(`)

) has the same distribution as T̂r.
Our construction is symmetric in the following sense:

Fact 3 Alg is truthful on Wj := {Nj)(T ) ≤ τ} under Sim(ν(j)). Moreover, for each j ∈
{2, . . . , n}, PSim(ν)[W |Mj ] = PSim(ν(j))[Wj |M (j)

j ] and PSim(ν)[{ŷ 6= 1}|Mj ] = PSim(ν(j))[{ŷ 6=
j}|M (j)

j ]

Proof The first point just follows since Sim(ν(j)) only changes samples once arm j has been
pulled more than τ times. The second point follows since, the event M (j)

j (resp {ŷ 6= j}) and Wj

correspond to the events Mj (resp {ŷ 6= 1}) and W if the labels of arms 1 and j are swapped. But

if we swap the labels of 1 and j, distribution of T̂r
(j)

under Sim(ν(j)) is identical to the distribution
of T̂r under Sim(ν).

Using this symmetry, the total variation between the transcripts returned by Sim(ν) given Ej and
Sim(ν(j)) given Ej can be bounded as follows

Fact 4 Let X` denote a sample with the distribution of
∑τ

s=1X`,s, where each X`,s ∼ ν`. For

j ∈ {2, . . . , n}, TV
[
Sim(ν)

∣∣Mj ;Sim(ν(j))
∣∣M (j)

j

]
≤ 2TV(Xj

∣∣Ej , X1).

This fact takes a bit of care to verify, and so we defer its proof to Section C.8.1.

C.6. Coupling together ν and {ν(j)}

Facts 1 and 3, we can couple together the measures using a conditional analogue of the the Simulator
Le Cam (Proposition 10), proved in Section C.8.2.

Lemma 25 (Conditional Le Cam’s) Suppose that any events W , {Wj} and Mj satisfy the con-
clusions of Facts 1 and 3. Then, if Alg is symmetric, then for all j ∈ {2, . . . , n}

2Pν,Alg [W c|Mj ] ≥ 1− 2Pν,Alg
[
{ŷ 6= 1}

∣∣Mj

]
− TV

[
Sim(ν

∣∣Mj)− Sim(ν(j)
∣∣Mj)

]
(46)

Effectively, the above lemma paritions the space into malicious events Mj , and applies Proposi-
tion 10 on each part of the partition.

Since the events Mj are disjoint, multipling the left and right hand side of Equation 46 by
Pν,Alg [Mj ], setting M :=

⋃M
j=2 and summing yields

2Pν,Alg
[
W c ∧M

]
≥ Pν,Alg

[
M
]
− 2Pν,Alg

[
{ŷ 6= 1} ∧M

]
−

∑
j

Pν,Alg [W c ∧Mj ] TV
[
Sim(ν

∣∣Mj)− Sim(ν(j)
∣∣Mj)

]

30



THE SIMULATOR: UNDERSTANDING ADAPTIVE SAMPLING IN THE MODERATE-CONFIDENCE REGIME

We can bound Pν,Alg
[
W c ∧M

]
≤ Pν,Alg [W c] and, if Alg is δ-correct, then Pν,Alg

[
{ŷ 6= 1} ∧M

]
≤

Pν,Alg [{ŷ 6= 1}] ≤ δ. Finally, Holder’s Inequality, the disjointness of Mj and Fact 4 imply∑
j

Pν,Alg [W c ∧Mh] TV
[
Sim(ν

∣∣Mj)− Sim(ν(j)
∣∣Mj)

]

≤

∑
j

Pν,Alg[Mj ]

 ·max
j

TV
[
Sim(ν

∣∣Mj)− Sim(ν(j)
∣∣Mj)

]
= Pν,Alg[M ] ·max

j
TV

[
Sim(ν

∣∣Mj)− Sim(ν(j)
∣∣Mj)

]
≤ Pν,Alg[M ] · 2 max

j
TV(Xj

∣∣Ej , X1)

where the last step is a consequence of Fact 4. Combining these bounds, and noting that M =⋃n
j=2Mj ≡

⋃n
j=2Ej and W = {N1(T ) > τ} implies the following proposition:

Proposition 26 Suppose that Alg is δ-correct and symmetric. Then

2Pν,Alg[{N1(T ) > τ}] ≥ Pν [

n⋃
j=2

Ej ](1− 2 max
j

TV(Xj

∣∣Ej , X1))− 2δ (47)

where we note that the probability of
⋃n
j=2Ej does not depend on Alg.

Our goal is now clear: choose the Kernel’s Kj so as to balance the terms Prν [
⋃n
j=2Ej ] and

maxj Qj(Ej) in Equation 26.

C.7. Proving Theorem 19

To conclude Theorem 19, we first introduce the following technical lemma.

Lemma 27 Suppose that νj comes from an exponential family {pθ}θ∈Θ with corresponding pa-
rameter by θj ∈ Θ. If [θj , 2θ1 − θj ] ⊂ Θ, then for any κ > 0, there exists a choice of cj for which
the corresponding kernel Kj has

TV(Xj

∣∣Ej , X1) ≤ κ and P(Ej) ≥ κ(1− κ)e−τ{kl(θ1,θj)+kl(2θ1−θj ,θj)} (48)

where kl(θ, θ̃) denotes the KL divergence between the laws Pθ and P
θ̃
.

With this Lemma in hand, we see that taking κ > 0, and τ = log(n/α)(maxj kl(θ1, θj) + kl(2θ1−
θj , θj))

−1 implies that

2Pν,Alg[{N1(T ) > τ}] ≥ (1− (1− κ(1− κ)α/n)n (1− 2κ)− 2δ

≥ (1−
(

1− ακ(1− κ)

n

)n
)(1− 2κ)− 2δ

≥ (1− e−ακ(1−κ))(1− 2κ)− 2δ

Moving from symmetrized algorithms to expecations over π ∼ Sn (Lemma 13) concludes the proof
of Theorem 19.
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Proof [Proof of Lemma 27] By Markov’s inequality and an elementary identity for the MGF of a
natural exponential family,

Qj(Ej) = P[eτ(θ1−θj)X1 > c] ≤ 1

c
E[eτ(θ1−θj)X1 ] =

1

c
exp(τ(A(2θ1 − θj)−A(θ1)) (49)

In particular, if we set cj = 1
κ exp(τ(A(2θ1 − θj) − A(θ1)) then the above expression is no more

than κ. With this choice of c,

P(Ej) =
1

c
eτ{A(θ1)−A(θj)}(1−Qj(Ej))

= κeτ{2A(θ1)−A(θj)−A(2θ1−θj)}(1−Qj(Ej))
≥ κ(1− κ)eτ{2A(θ1)−A(θj)−A(2θ1−θj)}

We now invoke a well known property of exponential families

Fact 5 (Nielsen and Garcia (2009)) Let {pθ}θ∈Θ be an exponential family. Then for θ, θ̃ ∈ Θ,
then kl(θ, θ̃) = (θ − θ̃)A′(θ)−A(θ) +A(θ̃), where A′(θ) =

∫
xpθ(x)dν(x) provided the integral

exists.

For ease of notation, set dj = θ1 − θj . Then,

2A(θ1)−A(θj)−A(2θ1 − θj)
= A(θ1)−A(θ1 − dj) +A(θ1)−A(θ1 + dj)

= A(θ1)−A(θ1 − dj)−A′(θ1)dj +A(θ1)−A(θ1 + dj) +A′(θ1)dj

= −kl(θ1, θ1 − dj)− kl(θ1, θ1 + dj)

C.8. Deferred Proofs for Theorem 19

C.8.1. PROOF OF FACT 4

Let T̂r with samples X̂[a,s] and denote the transcript from Sim(ν) and let T̂r
(j)

with samples X̂(j)
[a,s]

denote the transcript from Sim(ν(j)).
First, note that under Mj and M (j)

j , all samples X̂[a,s] and X̂(j)
[a,s] for a ∈ {1, j} and s > τ are

i.i.d from νj . Moreover, by symmetry of the construction under swapping the labels of 1 and j, its
easy to see that the samples X̂[a,s] and X̂(j)

[a,s] for a /∈ {1, j} have the same distribution under Mj

and M (j)
j respectively as well (even though these samples are not necessarily going to be i.i.d from

νa because of the conditioning). Hence,

TV
[
Sim(ν)

∣∣Mj ;Sim(ν(j))
∣∣M (j)

j

]
= TV

(
{X̂[1,s], X̂[j,s]}1≤s≤τ

∣∣Mj ; {X̂(j)
[1,s], X̂

(j)
[j,s]}1≤s≤τ )|M (j)

j

)
(50)
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Since Sim doesn’t actually change the first τ samples, we can actually drop this X[a,s] notation

and just use X[a,s]. Next note that, Mj is independent of {X[1,s]}1≤s≤τ and M (j)
j is independent of

{X[j,s]}1≤s≤τ . Hence, the first τ samples from arm 1 (resp arm j) are i.i.d from ν1, and independent
from the samples {X[j,s]}1≤s≤τ (resp. {X[1,s]}1≤s≤τ ). Using the TV bound TV(P1 ⊗ Q1;P2 ⊗
Q2) ≤ TV(P1;P2) + TV(Q1;Q2), for product measures Pi ⊗Qi, we find that

TV
[
Sim(ν)

∣∣Mj ;Sim(ν(j))
∣∣M (j)

j

]
≤ TV

(
{X[1,s]}1≤s≤τ ; {X(j)

[1,s]}1≤s≤τ |M
(j)
j

)
+ TV

(
{X[j,s]}1≤s≤τ |Mj ; {X(j)

[j,s]}1≤s≤τ
)

(51)

By symmetry of construction, and symmetry of TV distance, its easy to check that

TV
(
{X[1,s]}1≤s≤τ ; {X(j)

[1,s]}1≤s≤τ |M
(j)
j

)
= TV

(
{X(j)

[1,s]}1≤s≤τ |M
(j)
j ; {X[1,s]}1≤s≤τ

)
= TV

(
{X[j,s]}1≤s≤τ |Mj ; {X(j)

[j,s]}1≤s≤τ
)

= TV
(
{X[1,s]}1≤s≤τ ; {X[j,s]}1≤s≤τ |Mj

)
Hence, it suffices to check

TV
(
{X[1,s]}1≤s≤τ ; {X(j)

[1,s]}1≤s≤τ |Mj

)
= TV(X1;Xj |Ej) (52)

We first use a sufficient statistic argument to reduce the total variation from samples to a TV between
empirical means:

Claim 4

TV
(
{X[1,s]}1≤s≤τ ; {X(j)

[1,s]}1≤s≤τ |Mj

)
= TV(X1;Xj |Mj) (53)

The proof is somewhat pedantic, and so we prove in just a moment. To conclude, we finally is to
note that Xj |Mj has the same distribution as Xj |Ej , since

P(Xj ∈ A|Mj) = P(Xj ∈ A ∩Mj)/P(Mj)
i
= P(Xj ∈ A ∩ Ej ,Mj)/P(Mj)

= P(Ej)P(Xj ∈ A,Mj |Ej)(P(Ej)/P(Mj)
ii
= P(Xj ∈ A|Ej)P(Mj |Ej)P(Ej)(P(Ej ∩M))/P(Mj)

= P(Xj ∈ A|Ej)/P(Mj)

= P(Xj ∈ A|Ej)

Where i follows since Mj =⇒ Ej , and ii follows since Mj and Xj are conditionally independent
given Ej .
Proof [Proof of Claim 4] Define the laws P1, Pj over the (X1, . . . , Xτ ) ∈ Rτ where under P1,
(X1, . . . , Xτ ) have the law ofX[1,1], . . . , X[1,τ ], and underPj , they have the law ofX[j,1], . . . , X[j,τ ].
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We use Pj(|Mj) to denote the law of X[j,1], . . . , X[j,τ ] under Mj . Since X[j,1], . . . , X[j,τ ] are inde-
pendent of Mj given Xj (recall that Mj depends only on some internal randomness and Ej , which
depends only on Xj). Hence, letting X =

∑τ
s=1Xs

Pj((X1, . . . , Xτ ) = (x1, . . . , xτ )|Mj)

= Pj((X1, . . . , Xτ ) = (x1, . . . , xτ )|X = x̄)Pj(X = x̄|Mj) (54)

Moreover, since that since ν1, νj come from a one-parameter exponential family,

P1(·|X = x̄) = Pj(·|X = x̄) (55)

Thus, we conclude that

TV(P1;Pj |Mj) =

∫
x∈Rτ

|dP1(x)− dPj(x|Mj)|

=

∫
x̄

∫
x:
∑
s xs=τx̄

|dP1(x̄)dP1(x|x̄)− dPj(x̄,Mj)dPj(x|x̄,Mj)|

i
=

∫
x̄

∫
x:
∑
s xs=τx̄

|dP1(x̄)dP1(x|x̄)− dPj(x̄,Mj)dPj(x|x̄)|

ii
=

∫
x̄

∫
x:
∑
s xs=τx̄

|dP1(x̄)dP1(x|x̄)− dPj(x̄,Mj)dP1(x|x̄)|

=

∫
x̄

∫
x:
∑
s xs=τx̄

dP1(x|x̄)|dP1(x̄)− dPj(x̄,Mj)|

iii
=

∫
x̄
|dP1(x̄)− dPj(x̄,Mj)|(

∫
x:
∑
s xs=τx̄

dP1(x|x̄))

=

∫
x̄
|dP1(x̄)− dPj(x̄,Mj)|

= TV(X1;Xj |Mj)

where i follows from Equation 54, ii follows from Equation 55, iii is Fubini’s theorem.

C.8.2. PROOF OF CONDITIONAL SIMULATED LE CAM(LEMMA 25)

Proof [Proof of Lemma 25]

Pν,AlgP[W c|Mj ]
(i)
=

1

2
(Pν,AlgP[W c|Mj ] + Pν(j),AlgP[W c

j |M
(j)
j ])

(ii)

≥ sup
A∈FT

∣∣∣Pν,AlgP[A|Mj ]− Pν(j),AlgP[A|M (j)
j ]
∣∣∣− TV[Sim(ν|Mj), Sim(ν(j)|M (j)

j )]

(iii)

≥ 1− 2Pν,AlgP[{ŷ 6= 1}|Ej ]− TV[Sim(ν|Mj), Sim(ν(j)|M (j)
j )] (56)
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where (i) follows from symmetry, (ii) follows from applying Proposition 10 using the measures
ν|Mj and ν(j)

∣∣M (j)
j , (this time, with TV instead of KL), and (iii) follows since

sup
A∈FT

∣∣∣Pν,AlgP[A|Mj ]− Pν̃j ,AlgP[A|M (j)
j ]
∣∣∣

≥ Pν,AlgP[{ŷ = 1}|Mj ]− Pν(j),AlgP[{ŷ 6= 1}|M (j)
j ]

≥ Pν,AlgP[{ŷ = 1}|Mj ]− Pν(j),AlgP[{ŷ 6= j}|M (j)
j ]

= 1− Pν,AlgP[{ŷ 6= 1}|Mj ]− Pν(j),AlgP[{ŷ 6= j}|M (j)
j ]

= 1− 2Pν,AlgP[{ŷ 6= 1}|Mj ]

where the last line is a consequence of Fact 3.

C.8.3. PROOF OF LEMMA 24

Proof [Proof of Lemma 24] Let call F denote the σ algebra generated by X . For any measures P
and Q over F , note that P[A]−Q[A] = Q[Ac]− P[Ac]. Hence,

TV(P,Q) = sup
A∈F
|P[A]−Q[A]|

= sup
A∈F

max{P[A]−Q[A],P[Ac]−Q[Ac]}

= sup
A∈F

P[A]−Q[A]

Now Q = P[·|B]. Since any A ∈ F can be written as A = AB tABc here AB ⊂ B and ABc ⊂ B

TV(P,Q) = sup
A∈F

P[A]−Q[A]

= sup
AB∪ABc∈F

P[AB ∪ABc ]−Q[A ∪ABc ]

= sup
AB∪ABc∈F

{P[AB]−Q[AB] + P[ABc ]−Q[ABc ]}

= sup
AB⊂B∈F

{P[AB]−Q[AB]}+ sup
ABc⊂Bc∈F

{P[ABc ]−Q[ABc ]}

For any AB ⊂ B, we see Q[AB] = P[AB ∩ B]/P[B] = P[AB]/P[B], so P[AB] − Q[AB] =
(1− P[B]−1)P(AB) ≤ 0, and thus supAB⊂B∈F{P[AB]−Q[AB]} = 0, by taking AB = ∅. On the
other hand, for ABc ⊂ Bc, Q[ABc ] = P[ABc ∩B]/P[B] = 0, and thus,

sup
ABc⊂Bc∈F

{P[ABc ]−Q[ABc ]} = sup
ABc⊂Bc∈F

P[ABc ] = P[Bc] (57)
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Appendix D. Proof of Proposition 6

We prove Proposition 6 by arguing via “algorithmic restrictions”. The basic idea is that, if a lower
bound holds for one MAB or TopK problem, then it should also hold for the “simpler” MAB or
TopK problem which arises by “removing” some of the arms.

Formally, let ν = (νa)a∈A is an instance with arms indexed by a ∈ A (where A is finite).
For B ⊂ A, we define the restriction of ν to B, denoted ν|B , as the instance (νb)b∈B , indexed by
arms b ∈ B. We let SA and SB denote the groups of permutations on the elements of A and B,
respectively. Finally, given a subset S ⊂ A of “good arms”, recall that we say an algorithm Alg
with decision rule Ŝ ⊂ A is δ correct in identifying S over SA(ν) if Pπ(ν),Alg[Ŝ = π(S)] ≥ 1 − δ
for all π ∈ SA.

Lemma 28 (Lower Bounds from Restrictions) Let ν = (νa)a∈A be an instance, B ⊂ A, and fix
δ > 0 and b ∈ B. Suppose that any algorithm Alg|B which is δ-correct in identifying S ∩ B over
SB(ν|B) satisfies the lower bound

Eσ∼SBPσ(ν|B),Alg|B
[Nσ(b)(T )] ≥ τ ] ≥ 1− η (58)

for some τ, η > 0 (which may depend on ν, S, B, δ and b). Then any algorithm Alg which is
δ-correct in identifying S over SA(ν) satisfies the analogous lower bound

Eπ∼SAPπ(ν),Alg[Nπ(b)(T )] ≥ τ ] ≥ 1− η (59)

for the same τ and η.

To see how this lemma implies the bound for TopK, letA = [n], and for j ∈ [k] and ` ∈ [n]\[k],
define the sets Bj = {j} ∪ ([n] \ [k]) and B` = {`} ∪ ([n] \ [k]). Finally, let S = [k] denotes the
top k arms, and S̃ = [n] \ [k] denote the bottom [n− k]. Then, any δ-correct algorithm over Sn(ν)
equivalently identifies S and S̃ with probability of error at most δ. Moreover, Bj ∩ S = {j}, and
B` ∩ S̃ = {`}. Now apply Lemma 28 using the MAB lower bounds from Proposition 5 for a) the
problem of identifying νj from permutations of ν|Bj and b) the problem ν` from permutations of
ν|B` .

D.1. Proof of Lemma 28

Proof Let Alg be be δ-correct in identifying S over SA(ν). Without loss of generality, we may
assume that Alg is symmetric over SA (Lemma 13). We will now construct an algorithm Alg|B
which “inherits” the correctness and complexity of Alg.

Claim 5 There exists a symmetric (over SB) algorithm Alg|B with decision rule Ŝ|B ⊂ B which
satisfies, for all b ∈ B

Pν|B ,Alg|B [Nb(T )] ≥ τ ] = Pν,Alg[Nb(T )] ≥ τ ] and (60)

Pν|B ,Alg|B [Ŝ|B = S ∩B] ≥ Pν,Alg[Ŝ = S] (61)

Assume the above claim. Since Alg|B is symmetric and Alg is δ-correct, Equation 61 implies that
Alg|B is δ-correct over SB(ν|B), since all σ ∈ SB ,

Pσ(ν|B),Alg|B
[Ŝ|B = σ(S ∩B)] ≥ τ ] = Pν|B ,Alg|B [ŷ ∩B = S ∩B]] ≥ Pν,Alg[Ŝ = S] ≥ 1− δ

36



THE SIMULATOR: UNDERSTANDING ADAPTIVE SAMPLING IN THE MODERATE-CONFIDENCE REGIME

Thus, by symmety of Alg|B and the assumption of the lemma, we find for the choice of b ∈ B and
δ > 0,

Pν|B ,Alg|B [Nb(T )] ≥ τ ] = Eσ∼SBPσ(ν|B),Alg|B
[Nσ(b)(T )] ≥ τ ] ≥ 1− η (62)

And hence, by Equation 60 and symmetry of Alg,

Eπ∼SAPπ(ν),Alg[Nπ(b)(T )] ≥ τ ] = Pν,Alg[Nb(T )] ≥ τ ] = Pν|B ,Alg|B [Nb(T )] ≥ τ ] ≥ 1− η (63)

which concludes the proof.

To conclude, we just need to verify that we can construct Alg|B as in Claim 5. To do this, let
Tr|B be a transcript samples (X[b,s])b∈B,s∈N. For a ∈ A\B, simulate a transcript TrA\B of samples

(X̃[a,s]) where X̃[a,s]
iid∼ νb. Finally, let Tr be the transcript obtained by concatening Tr|B with the

simulated transcript TrA\B , i.e. X [b,s] = X[b,s] for b ∈ B, and X [a,s] = X̃[a,s]. Finally, let Alg|B be
algorithm obtained by running Alg on the transcript Tr|B , with decision rule Ŝ|B = Ŝ ∩ B (where
Ŝ is the decision rule of A).

Since Tr has the same distribution as a transcript from ν when Tr|B is drawn from ν|B , we
immediate see that

Pν|B ,Alg|B [Nb(T )] ≥ τ ] = Pν,Alg[Nb(T )] ≥ τ ] and (64)

Pν|B ,Alg|B [ŷ ∩B = S ∩B] = Pν,Alg[Ŝ ∩B = S ∩B] ≥ Pν,Alg[Ŝ = S] (65)

which verifies Equations 60 and 61. It’s also easy to check that Alg|B is symmetric, since permuting
Tr|B under a permutation σ ∈ SB amounts to permuting Tr by a permutation π ∈ SB which fixes
elements of B \A. Hence, symmetryof Alg|B follows from symmetry of Alg.

Appendix E. Upper Bound Proof

Proof [Proof of Theorem 7] Observe that if TOPt 6= [k] then there is at least one arm from [k] in
TOPct . Since we play the arm lt ∈ TOP ct with the largest upper-confidence-bound, the arms in
[k] ∩ TOPct will eventually rise to the top. A mirror image of this process is also happening in the
top empirical arms: if TOPt 6= [k] then there is at least one arm from [k]c in TOPt and the arms in
[k]c∩TOPt will eventually fall to the bottom since the arm ht ∈ TOPt with the lowest-confidence-
bound is played. Thus, for some sufficently large t, the arms in [k]∩TOPct and [k]c∩TOPt start to
concentrate around the gap between the kth and (k + 1)th arm. Because we play an arm from each
side of the gap at each time, ht and lt, the empirical means eventually converge to their true means
revealing the true ordering.
Preliminaries
We will use the following quantities throughout the proof. Let U(t, δ) ∝

√
1
t log(log(t)/δ) such

that max{P(
⋃∞
t=1 {µ̂i,t − µi ≥ U(t, δ)}),P(

⋃∞
t=1 {µ̂i,t − µi ≤ −U(t, δ)})} ≤ δ (see Jamieson

et al. (2014, Lemma 1) or Kaufmann et al. (2015, Theorem 8) for an explicit expression). For any
i ∈ [n] define

Ei =

{
{µ̂i,t − µi ≥ −U(t, δ2k )} if i ∈ {1, . . . , k}
{µ̂i,t − µi ≤ U(t, δ

2(n−k))} if i ∈ {k + 1, . . . , n}.

37



SIMCHOWITZ JAMIESON RECHT

In what follows assume that Ei hold for all i ∈ [n] since, by the definition of U(t, δ),

P

(
n⋃
i=1

Eci

)
≤

k∑
i=1

δ

2k
+

n∑
i=k+1

δ

2(n− k)
≤ δ. (66)

For any j ∈ [k]c define the random variable

ρj = sup{ρ > 0 : µ̂j,t − µj < U(t, ρδ2k ) ∀t} (67)

and the quantity τj = min{t : U(t,
ρjδ
2k ) < ∆j/2}. Note that on the event Ej we have ρj ≥ k

n−k
which guarantees that τj is finite, but we will show that ρj is typically actually Ω(1). For any i ∈ [k]
define τi = min{t : U(t, δ

2(n−k)) < ∆i/2}, and note that on Ei, we have µ̂i,t − µi ≥ −U(t, δ2k ) ≥
−U(t, δ

2(n−k)). From these definitions, we conclude that

µ̂j,t − µj ≤ ∆j/2 ∀t ≥ τj , j ∈ [k]c and µ̂i,t − µi
Ei
≥ −∆i/2 ∀t ≥ τi, i ∈ [k]. (68)

We leave the τi random variables unspecified for now but will later upper bound their sum.
Step 0: Correctness
Suppose TOPτ 6= [k]. Then there exists an i ∈ TOPτ ∩ [k]c and j ∈ TOPcτ ∩ [k] such that

µi
(i)

≥ µ̂i,Ni(t) − U(Ni(t),
δ

2(n−k))
(ii)
> µ̂j,Nj(t) + U(Nj(t),

δ
2k )

(iii)

≥ µj

where (i) and (iii) employ Equation 66, and (ii) holds by assumption because of the stopping time
τ . This display implies µj < µi, a contradiction, since the means in [k] are strictly greater than
those in [k]c.
Step 1: [k] rise to the top
Note that

[k] 6= TOPt, lt /∈ [k] =⇒ ∃i ∈ [k], j ∈ [k]c : µ̂j,Nj(t) + U(Nj(t),
δ

2k ) ≥ µ̂i,Ni(t) + U(Ni(t),
δ

2k ).

By the definition of ρj in Equation 67 and the above implication,

µj + 2U(Nj(t),
δρj
2k ) ≥ µ̂j,Nj(t) + U(Nj(t),

δ
2k ) ≥ µ̂i,Ni(t) + U(Ni(t),

δ
2k )

Ei
≥ µi

where the last inequality holds on event Ei. By Equation 68, if Nj(t) ≥ τj then U(Nj(t),
δρj
2k ) <

∆j/2, but this would imply µi ≤ µj + 2U(Nj(t),
δρj
2k ) < µj + ∆j = µk ≤ µi in the above display,

a contradiction. That is, for any j ∈ [k]c, the number of times that lt = j is bounded by τj . Since
j could be any arm in [k]c, we account for this by considering the sum of all possible upper bounds
to conclude that

{[k] 6= TOPt} ∩ {t ≥
n∑

j=k+1

τj} =⇒ {lt ∈ [k]}.

Step 2: Concentration at the Top
The previous step showed that for all t ≥

∑n
j=k+1 τj we either have TOPt = [k], or TOPt 6= [k]
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and lt ∈ [k]. By Equation 68, for all i ∈ [k], on the event Ei, we have that U(Ni(t),
2k
δ ) < ∆i/2

when Ni(t) ≥ τi. Thus, once t ≥
∑n

i=1 τi we conclude that if [k] 6= TOPt then at least one arm
i ∈ [k] satisfies U(Ni(t),

2k
δ ) < ∆i/2. That is

{[k] 6= TOPt} ∩ {t ≥
n∑
i=1

τi} =⇒ {lt ∈ [k]} ∩ {∃i ∈ [k] ∩ TOPct : µ̂i,Ni(t) > µi −∆i/2}.

(69)

Step 3: [k]c fall to the bottom
We first claim that if t ≥

∑k
i=1 τi + 2

∑
i=k+1 τi and TOPt 6= [k] then ht ∈ [k]. To see this, we

will show that the number of times any j ∈ [k]c is equal to ht is bounded by τj . Suppose not, so
that t ≥

∑n
i=1 τi, j ∈ [k]c, Nj(t) ≥ τj , j = ht, and i ∈ [k] is the i in Equation 69, then

µ̂j,Nj(t)
(68)
< µj + ∆j/2 =

µk + µj
2

≤ µi + µk+1

2
≤ µi −∆i/2

(69)
< µ̂i,Ni(t)

but µ̂j,Nj(t) > µ̂i,Ni(t) contradicts the fact that j ∈ TOPt and i /∈ TOPt. As above, to account for
all possible values of j ∈ [k]c we assume that they all saturate their bounds. Thus,

{[k] 6= TOPt} ∩ {t ≥
k∑
i=1

τi + 2
∑
i=k+1

τi} =⇒ {ht ∈ [k]}. (70)

Now we will show that the number of times any i ∈ [k] is equal to ht is bounded by τi. Note
that

[k] 6= TOPt, ht ∈ [k] =⇒ ∃i ∈ [k], j ∈ [k]c : µ̂j,Nj(t) − U(Nj(t),
δ

2(n−k)) ≥ µ̂i,Ni(t) − U(Ni(t),
δ

2(n−k)).

On events Ej and Ei we have that

µj
Ej
≥ µ̂j,Nj(t) − U(Nj(t),

δ
2(n−k)) ≥ µ̂i,Ni(t) − U(Ni(t),

δ
2(n−k))

Ei
≥ µi − U(Ni(t),

δ
2k )− U(Ni(t),

δ
2(n−k))

≥ µi − 2U(Ni(t),
δ

2(n−k)).

By Equation 68, if Ni(t) ≥ τi then after simplifying the above display we have

µj ≥ µi − 2U(Ni(t),
δ

2(n−k)) > µi −∆i/2 =
µi + µk+1

2

which is a contradiction. Accounting for all values of i ∈ [k], we conclude that

{[k] 6= TOPt} ∩ {t ≥ 2
n∑
i=1

τi} =⇒ {ht /∈ [k]}. (71)

Combining Equations 70 and 71 we conclude that TOPt = [k] whenever t ≥ 2
∑n

i=1 τi.
Step 4: The stopping condition is met
While TOPt = [k] whenever t ≥ 2

∑n
i=1 τi, we still must wait until the stopping condition is met.

For any i ∈ [k], if Ni(t) ≥ τi then

µ̂i,Ni(t) − U(Ni(t),
2(n−k)

δ ) > µi −∆i/2 ≥
µk + µk+1

2
∀i ∈ [k].
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And for any j ∈ [k]c, if Nj(t) ≥ τj then

µ̂j,Nj(t) + U(Nj(t),
2k
δ ) < µj + ∆j/2 ≤

µk + µk+1

2
∀j /∈ [k].

All arms satisfy these conditions after at most an additional
∑n

i=1 τi pulls. Thus, the stopping
condition of (9) is met after at most 3

∑n
i=1 τi total pulls.

Step 5: Counting the number of measurements
Recall that 3

∑n
i=1 τi is a random variable because ρj for j ∈ [k]c are random variables. Recalling

the definitions of τj preceding Equation 68, we note that

min{t : U(t, s) < ∆/2} ≤ c∆−2 log(log(∆−2)/s)

for some universal constant c. For i ∈ [k] this means τi = min{t : U(t, δ
2(n−k)) < ∆i/2} ≤

c∆−2
i log(2(n− k) log(∆−2

i )/δ). For j ∈ [k]c we have

τj = min{t : U(t,
ρjδ
2k ) < ∆j/2} ≤ c∆−2

j log(2k log(∆−2
j )/δ) + c∆−2

j log(1/ρj).

By the definition of U(·, ·) and ρj we have that P(ρj ≤ ρ) ≤ ρδ
2k < ρ, so reparameterizing with

ρ = exp(−s∆2
j )

P(∆−2
j log(1/ρj) ≥ s) ≤ exp(−s∆2

j/2)

which implies ∆−2
j log(1/ρj) is an independent sub-exponential random variable. Using standard

techniques for sums of independent random variables (see (Jamieson et al., 2014, Lemma 4) for an
identical calculation) we observe that with probability at least 1− δ

n∑
j=k+1

∆−2
j log( 1

ρj
) ≤

n∑
j=k+1

c′∆−2
j log(1/δ)

for some universal constant c′. Combining the contributions of the deterministic components of τi
and τj obtains the result.

E.1. Upper Bounds for Permutations

In this section, we present a nearly-matching upper bound for permutations (Theorem 29). For
simplicity, we consider the setting where each measure νa is 1-subGaussian, and has mean µa. We
let µ(1) > µ(2) ≥ · · · ≥ µ(n), denote the sorted means, and set ∆i = µ(1) − µ(i).

Theorem 29 In the setting given above, there exists a δ- algorithm Alg which, given knowledge of
the means µ(1) and µ(2), returns the top arm with expected sample complexity

Eν,Alg[T ] .
log(1/δ)

∆2
2

+
n∑
i=1

log log(min{n,∆−1
i })

∆2
i

(72)
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We remark that this upper bound matches our lower bound up to the doubly-logarithmic factor
log log(min{n,∆−1

i }). We believe that one could remove this factor when the means are known
up to a permutation, though closing this small gap is beyond the scope of this work. To prove the
above theorem, we combine the following Lemma with the best-arm algorithm from Chen and Li
(2015):

Proposition 30 Suppose that for each δ, there exists an (unconstrained) MAB algorithm Algδ which
is δ-correct for 1-subGaussian distributions with unconstrained means, and satisfies Eν,Algδ [T ] ≤
H1(ν) + H2(ν) log(1/δ). Then, there exists an an MAB algorithm which, give knowledge of the
the best mean µ1 and the second best mean µ2, satisfies

Eν,Alg[T ] .
log(1/δ)

∆2
2

+H1(ν) +H2(ν) (73)

Proof Fix constants c1 and c2 to be chosen later The algorithm proceeds in stages: at round k, set
δk = 10−k, and run Algδk to get an estimate âk of the best arm. Then, sample âk c1

∆2
2

log(c2k
2/δ)

times to get an estimate µ̂k, and return â = âk if µ̂k > µ1 −∆2/2. By a standard Chernoff bound,
we can choose c1 so that µ̂k satisfies the following

P(µ̂k > µ1 −∆2/2
∣∣âk = a∗) ≥ 1− 2δ/c2k

2 and P(µ̂k > µ1 −∆2/2
∣∣âk 6= a∗) ≤ 2δ/c2k

2

Hence,

P(â 6= a∗) ≤
∞∑
k=1

P({µ̂k 6= a∗} ∧ {µ̂k > µ1 −∆2/2}) (74)

≤
∞∑
k=1

P({µ̂k > µ1 −∆2/2}
∣∣{µ̂k 6= a∗}) ≤ 2δ

c2

∞∑
k=1

k−2 =
π2

3c2
(75)

Hence, choosing c2 = 3/π2 ensures that Alg is δ-correct. Moreover, we can bound

Eν,Alg[T ] ≤
∞∑
k=1

P(Ek−1) ∗ { c1

∆2
2

log(c2k
2/δ) + Eν,Algδk [T ]} (76)

where Ek−1 is the event that the algorithm has not terminated by stage k − 1. Note that if the
algorithm has not terminated at a stage j, then it is not the case that âj = a∗ and {µ̂j > µ1−∆2/2}).
By a union bound, the probability that these two events don’t occur is at most 1 − δk − 2δ

c2k2
≤

1 − (δk + 2δ/c2) ≤ 1/2. Hence, bounding Eν,Alg
10−k

[T ] ≤ H1(ν) + kH2(ν) log 10, and using
independence of the rounds have

Eν,Alg[T ] ≤
∞∑
k=1

21−k ∗ { c1

∆2
2

log(c2k
2/δ) +H1(ν) + kH2(ν) log 10)} (77)

.
log(1/δ)

∆2
2

+H1(ν) +H2(ν) (78)
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