
Proceedings of Machine Learning Research vol 65:1–14, 2017

On Learning versus Refutation

Salil P. Vadhan∗ salil@seas.harvard.edu

School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, USA,

webpage: http: // seas. harvard. edu/ ~ salil

Abstract

Building on the work of Daniely et al. (STOC 2014, COLT 2016), we study the connection
between computationally efficient PAC learning and refutation of constraint satisfaction
problems. Specifically, we prove that for every concept class P, PAC-learning P is poly-
nomially equivalent to “random-right-hand-side-refuting” (“RRHS-refuting”) a dual class
P∗, where RRHS-refutation of a class Q refers to refuting systems of equations where
the constraints are (worst-case) functions from the class Q but the right-hand-sides of the
equations are uniform and independent random bits. The reduction from refutation to
PAC learning can be viewed as an abstraction of (part of) the work of Daniely, Linial,
and Shalev-Schwartz (STOC 2014). The converse, however, is new, and is based on a
combination of techniques from pseudorandomness (Yao ‘82) with boosting (Schapire ‘90).

In addition, we show that PAC-learning the class of DNF formulas is polynomially
equivalent to PAC-learning its dual class DNF ∗, and thus PAC-learning DNF is equivalent
to RRHS-refutation of DNF , suggesting an avenue to obtain stronger lower bounds for
PAC-learning DNF than the quasipolynomial lower bound that was obtained by Daniely
and Shalev-Schwartz (COLT 2016) assuming the hardness of refuting k-SAT.

1. Introduction

Daniely, Linial, and Shalev-Shwartz (2014) recently developed a beautiful new approach
to proving computational hardness results for learning, based on the conjectured hardness
of refuting constraint-satisfaction problems (in contrast to the cryptographic hardness as-
sumptions used in earlier work, starting with the work of Valiant (1984); Kearns and Valiant
(1994)). This was used to give the first evidence of the hardness of PAC learning DNF for-
mulas (Daniely and Shalev-Schwartz, 2016) and of agnostically learning halfspaces (Daniely,
2016), both long-standing open problems in computational learning theory. The hardness
result for learning DNF formulas by Daniely and Shalev-Schwartz (2016) is based on a k-
SAT generalization of Feige’s conjecture about hardness of refuting random 3-SAT (Feige,
2002). Specifically, the conjecture is that for every constant c, there is a constant k such
that no polynomial-time algorithm can prove that a random k-SAT formula with nc clauses
is unsatisfiable (with high probability).

In this paper, we illuminate the connection between PAC learning and refutation. Specif-
ically, we prove that for every concept class P, PAC-learning P is polynomially equivalent
to RRHS-refuting a dual class P∗, where RRHS-refutation of a class Q refers to refuting

∗ Written in part while visiting the Shing-Tung Yau Center and the Department of Applied Mathematics at
National Chiao-Tung University in Hsinchu, Taiwan. Supported by NSF grant NSF grant CCF-1420938
and a Simons Investigator Award.

c© 2017 S.P. Vadhan.

http://seas.harvard.edu/~salil


Vadhan

systems of equations where the constraints are (worst-case) functions from the class Q but
the right-hand-sides of the equations are uniform and independent random bits. (“RRHS”
stands for “random right-hand sides”.) The reduction from refutation to PAC learning can
be viewed as an abstraction of (part of) the work of Daniely et al. The converse, however,
is new, and is based on a combination of techniques from pseudorandomness (Yao, 1982)
with boosting (Schapire, 1990).

In addition, we show that PAC-learning the class of DNF formulas is polynomially
equivalent to PAC-learning its dual class DNF ∗, and thus PAC-learning DNF is equivalent
to RRHS-refutation of DNF . Thus, the result of Daniely and Shalev-Schwartz (2016) can
be obtained by reducing the refutation of random k-SAT formula to RRHS-refuting DNF .
An elegant such reduction is implicit in the work of Daniely, Linial, and Shalev-Shwartz
(2014); Daniely and Shalev-Schwartz (2016) and we present it explicitly here.

One limitation of the hardness result of Daniely and Shalev-Schwartz (2016) is that,
even under the strongest plausible conjecture about refuting random k-SAT (namely that
nΩ(k) clauses are needed for efficient refutation), at best it provides a quasipolynomial lower
bound on the complexity of learning DNF , which is quite far from the best known algorithm,
which is due to Klivans and Servedio (2004) and runs in time exp(Õ(n1/3)). Our connection
between PAC-learning DNF and RRHS-refuting DNF suffers no such limitation; if RRHS-
refuting DNF requires exponential time, then so does PAC-learning DNF . Thus, a natural
direction for future work is to relate the hardness of RRHS-refuting DNF to other, more
well-studied refutation problems. In addition, our general connection between learning and
refutation can be applied to other classes, and translating ideas and techniques between the
two areas can potentially yield additional insights into both learning and refutation.

We also compare hardness of RRHS-refutability and different types of cryptographic
hardness assumptions that were shown to imply hardness of PAC learning in the past, to
help illuminate the source of the power of the approach of Daniely et al. (2014).

2. Learning vs. Refutation

An evaluation function Eval : {0, 1}s × {0, 1}t → {0, 1} gives rise to two dual families of
predicates: P = {px : {0, 1}t → {0, 1}}x∈{0,1}s where px(y) = Eval(x, y), and Q = {qy :
{0, 1}s → {0, 1}}y∈{0,1}t where qy(x) = Eval(x, y). We indicate the duality between P and
Q by writing Q = P∗ and P = Q∗.

For example, we will consider P = DNF s,t be the class of size s DNF formulas on t
variables, where size is measured under some fixed encoding of DNF formulas as binary
strings. We are typically interested in infinite families of predicates, obtained by varying
the parameters s and t, and providing these as input to all of the algorithms. For example,
DNF = {DNF s,t}s,t∈N denotes the class of all DNF formulas.

It will be convenient work with the following formulation of PAC learnability.

Definition 1 P is PAC learnable with sample complexity m = m(s, t) if there is a
polynomial-time algorithm A such that for every s, t ∈ N, x ∈ {0, 1}s (specifying px ∈ P)
and every distribution D on {0, 1}t, if we sample y1, . . . , ym+1 ← D (for m = m(s, t)), we
have

Pr[A(1s, 1t, (y1, px(y1)), . . . , (ym, px(ym)), ym+1) = px(ym+1) ≥ 2/3,

2



Learning vs. Refutation

where the probability is over the choice of the yi’s and the coins of A. We say that P is
PAC learnable if m(s, t) ≤ poly(s, t).

The inputs 1s and 1t are unary inputs to inform the algorithm A of the size parameters and
allow it running time polynomial in these parameters. Note that we can also apply the defi-
nition when the sample complexity m is super-polynomial, in which case we allow A running
time poly(s, t,m). (One could separate the running time and sample complexity into two
separate parameters, but we avoid doing so for notational simplicity.) In the more standard
formulation of PAC learning, the learning algorithm A is not asked to simply predict the
value of the concept px on a single example ym+1, but rather to produce a hypothesis h that
approximately agrees with px under the distribution D. In that formulation, there are two
confidence parameters: an error parameter ε that bounds the disagreement between h and
px, and a confidence parameter δ that bounds the probability that A outputs a hypothesis
with error larger than ε. Definition 1 implicitly incorporates both ε and δ into the constant
2/3. In particular, a learner satisfying Definition 1 directly yields a standard PAC learner
with error parameter ε = 1/3 + 1/12 = 5/12 and δ = 1 − 1/12 (i.e. with probability at
least 1/12, we obtain a hypothesis h(·) = A(1s, 1t, (y1, px(y1)), . . . , (ym, px(ym)), ·) that has
agreement at least 7/12 with px). Such a learner implies a standard PAC learner (with run
time depending polynomially on 1/ε and log(1/δ)) by boosting (Schapire, 1990). (See also
Kearns and Valiant (1994, Ch. 4).) Similarly, boosting implies that PAC learnability is
equivalent to the following formulation of weak learnability:

Definition 2 P is weakly PAC learnable with advantage α = α(s, t) and sample com-
plexity m = m(s, t) if there is a polynomial-time algorithm A such that for every s, t ∈
N, x ∈ {0, 1}s (specifying px ∈ P) and every distribution D on {0, 1}t, if we sample
y1, . . . , ym+1 ← D (for m = m(s, t)), we have

Pr[A(1s, 1t, (y1, px(y1)), . . . , (ym, px(ym)), ym+1) = px(ym+1) ≥ (1 + α)/2,

for α = α(s, t), where the probability is over the choice of the yi’s and the coins of A. We
say that P is weakly PAC learnable if α(s, t) ≥ 1/poly(s, t) and m(s, t) ≤ poly(s, t).

Theorem 3 (Schapire (1990)) If P is weakly PAC learnable with advantage α and sam-
ple complexity m, then P is PAC learnable with sample complexity m · poly(1/α).

Now we turn to defining refutation problems for the dual class Q. Informally, Q is
RRHS-refutable (where RRHS stands for “random right-hand side”) if we can efficiently
refute the satisfiability of systems of equations of the form qy1(x) = b1, . . . , qyn(x) = bn
when the right-hand side values bi are chosen uniformly at random.

Definition 4 Q is RRHS-refutable using n = n(s, t) equations if there is a polynomial-time
algorithm B such that:

1. (Soundness) for every y1, . . . , yn ∈ {0, 1}t, b1, . . . , bn ∈ {0, 1}, if the system of equa-
tions py1(x) = b1, . . . , pyn(x) = bn is satisfiable, then

Pr[B(1s, 1t, (y1, b1), . . . , (yn, bn)) = 1] ≤ 1/3.

3



Vadhan

2. (Completeness) for every y1, . . . , yn ∈ {0, 1}t, if we randomly choose b1, . . . , bn ←
{0, 1}, then

Pr[B(1s, 1t, (y1, b1), . . . , (yn, bn)) = 1] ≥ 2/3,

where the probability is taken over b1, . . . , bn and the coins of B.

We say that Q is Q is RRHS-refutable if n(s, t) ≤ poly(s, t).

Theorem 5 Let P = Q∗ be a family of predicates given by evaluation function Eval :
{0, 1}s × {0, 1}t → {0, 1}. Then:

1. If P is PAC learnable (with sample complexity m), then Q is RRHS-refutable (using
n = O(m) equations).

2. If Q is RRHS-refutable (using n equations), then P is PAC learnable (with sample
complexity m = poly(n)).

Proof

1. Let A be the PAC learner with sample complexity m, set n = 10m, and define
B(1s, 1t, (y1, b1), . . . , (yn, bn)) as follows:

(a) Randomly choose i1, . . . , im+1 ← [n] (with replacement).

(b) Output 1 iff A(1s, 1t, (yi1 , bi1), . . . , (yim , bim), yim+1) 6= bim+1 .

For soundness, observe that if the system of equations qy1(x) = b1, . . . , qyn(x) = bn
is satisfiable by assignment x, then the samples given to A are iid draws from a dis-
tribution of examples (namely the uniform distribution on the multiset {y1, . . . , yn})
labelled by px (since bi = qyi(x) = px(yi)), and hence A will output px(yim+1) = bim+1

with probability at least 2/3 (and B will output 1 with probability at most 1/3, as
desired).

For completeness, observe that if the bits b1, . . . , bn are chosen uniformly and indepen-
dently at random, then A has no information about bim+1 unless im+1 ∈ {i1, . . . , im},
which happens with probability at most m/n = 1/10. So the probability that A out-
puts bim+1 is at most 1/10 + 1/2 = .6, and hence B outputs 1 with probability at least
.4. The gap between 1/3 and .4 for B can be amplified to 1/3 and 2/3 by a constant
number of repetitions (increasing n by the same constant factor).

2. Let B be the RRHS-refuter using n equations. We will construct a weak PAC learner
A with sample complexity m = n − 1 from B and then apply boosting to obtain
a full-fledged PAC learner. Intuitively, the definition of RRHS-refuter means that
B can distinguish the sequence qyi(x) = px(yi) for i = 1, . . . , n from a sequence of n
independent random bits. Thus, by Yao’s equivalence between pseudorandomness and
next-bit unpredictability (Yao, 1982), B can be used to predict px(yi) for a random
i← [n] from (px(y1), . . . , px(yi−1)) with probability noticeably more than 1/2, yielding
a weak learner.

Specifically, we use the following formulation of Yao’s result (which shows that next-
bit unpredictability implies pseudorandomness):

4



Learning vs. Refutation

Lemma 6 (implicit in Yao (1982)) For every probabilistic algorithm T : {0, 1}`×
{0, 1}n → {0, 1} (which we think of as a “statistical test” or “distinguisher”), there
is a probabilistic algorithm T ′ : {0, 1}` × {0, 1}≤n−1 → {0, 1} (which we think of a
“next-bit predictor”) whose running time is at most an additive O(n) larger than that
of T and has the following property.

Suppose that (Y,B) is a random variable distributed arbitrarily on {0, 1}`×{0, 1}n that
T distinguishes from (Y,C), where C is distributed uniformly on {0, 1}n independent
of Y , with advantage at least α > 0. That is,

Pr[T (Y,B) = 1]− Pr[T (Y,C) = 1] ≥ α,
where the probabilities are taken over Y , B, C, and the coin tosses of T . Then T ′ is
a next-bit predictor for B with advantage at least α/n. That is,

Pr[T ′(Y,B1, B2, . . . , BI−1) = BI ] ≥ (1 + α/n)/2,

where the probability is taken over Y , B, I ← [n], and the coins of T ′.
Specifically, T ′ operates as follows: on input (y, b1, . . . , bi−1), randomly choose ci, ci+1, . . . , cn ←
{0, 1}, run T (y, b1, . . . , bi−1, ci, . . . , cn). If T outputs 1, then output ci, else output ¬ci.

To apply Yao’s lemma, we take:

• ` = n · t, so {0, 1}` = ({0, 1}n)t,

• T ((y1, . . . , yn), b1, . . . , bn) = B(1s, 1t, (y1, b1), . . . , (yn, bn)),

• Y = (Y1, . . . , Yn) for n iid samples Yi from the unknown distribution D on ex-
amples being fed to our learner,

• B = (px(Y1), . . . , px(Yn)), i.e. the labels of the examples under concept px, and

• α = 2/3− 1/3 = 1/3.

The fact that B is a RRHS refuter for Q implies that the hypothesis of Lemma ??
is satisfied. Note that the construction of the next-bit predictor T ′ does not depend
on the random variable B, which is important for us since the concept px is un-
known to our learner. By the lemma, the following is a weak PAC learner (satisfying
Definition 2) for P with advantage at least α/n = 1/3n:

(a) Choose i← [n]. Request i−1 labelled examples (y1, b1), . . . , (yi−1, bi−1), and n−i
unlabelled examples yi+1, . . . , yn. Let yi be the challenge example (which A is
supposed to label). (Clearly all this can be simulated by a learner that is simply
given n − 1 labelled examples and the challenge example, but this presentation
matches the notation above.)

(b) Choose ci, . . . , cn+1 uniformly at random.

(c) If B(1s, 1t, (y1, b1), . . . , (yi−1, bi−1), (yi, ci), . . . , (yn, cn)) 6= 1, then output ci, oth-
erwise output ¬ci.

By boosting (Theorem 3), we obtain a PAC learner with sample complexity n ·
poly(3n) = poly(n).

5



Vadhan

3. Reductions

For our additional results, regarding the relationship between PAC learnability of DNF and
refutation, we will use the standard notion of reductions introduced by Pitt and Warmuth
(1990) (dubbed “PAC-reducibility” by Kearns and Valiant (1994)).

Definition 7 Let P = Q∗ and P ′ = (Q′)∗ be two classes of predicates given by evaluation
functions Eval : {0, 1}s×{0, 1}t → {0, 1} and Eval′ : {0, 1}s′×{0, 1}t′ → {0, 1}, respectively.
We say that P PAC-reduces to P ′, written P ≤pac P ′ if there are polynomials s′ = s′(s, t)
and t′ = t′(s, t), a poly(s, t)-time computable function g = gs,t : {0, 1}t → {0, 1}t′ and
a (possibly inefficient) function f = fs,t : {0, 1}s → {0, 1}s′ such that for all s, t ∈ N,1

x ∈ {0, 1}s, y ∈ {0, 1}t, we have

Eval′(f(x), g(y)) = Eval(x, y).

Equivalently p′f(x)(g(y)) = px(y), or q′g(y)(f(x)) = qy(f(x)).

Although we allow the function f to be inefficient, we will not take advantage of it in any
results. That is, all of the functions f we obtain will be computable in time poly(s, t). In
such a case, the definition of relabelling reduction becomes symmetric between the classes
P, P ′ and their duals Q, Q′, so we automatically also obtaining a relabelling reduction
Q ≤pac Q′.

Pitt and Warmuth (1990) showed that PAC-reducibility preserves PAC-learnability; we
note that it also preserves RRHS-refutability of the dual class (without paying the loss in
sample complexity of Theorem 5):

Proposition 8 (Pitt and Warmuth (1990)) Suppose Q∗ = P ≤pac P ′ = (Q′)∗. Then:

1. If P ′ is PAC-learnable with sample complexity m′ = m′(s′, t′), then P is PAC-learnable
with sample complexity m′.

2. If Q′ is RRHS-refutable using n′ = n′(s′, t′) equations, then Q′ is RRHS-refutable with
n′ equations.

Proof

1. Let A′ be the PAC learner for P ′. Then we can obtain a PAC learner A for P by:

A(1s, 1t, (y1, b1), . . . , (ym′ , bm′), ym′+1) = A′(1s′ , 1t′ , (g(y1), b1), . . . , (g(ym′), bm′), g(ym′+1)).

Indeed, if the examples (yi, bi) are correctly labelled according to concept px ∈ P,
so that bi = px(yi), then we have bi = p′f(x)(g(yi)), so the examples (g(yi), bi) are

correctly labelled according to concept p′f(x) ∈ P
′.

2. Let B′ be the RRHS refuter for Q′. Then we can obtain a RRHS refuter B for Q by:

B(1s, 1t, (y1, b1), . . . , (yn′ , bn′)) = B′(1s′ , 1t′ , (g(y1), b1), . . . , (g(yn), bn)).

1. The algorithm computing g should get the parameter s in unary, but we omit that from the notation for
readability.

6



Learning vs. Refutation

Thus we are transforming the system of equations qy1(x) = b1, . . . , qyn′ (x) = bn′ into
the system of equations q′g(y1)(x

′) = b1, . . . , q
′
g(yn′ )

(x′) = bn′ . If there is a satisfying

assignment x to the former system, then x′ = f(x) is a satisfying assignment to the
latter system. And if the right-hand sides of the former system are uniformly random
and independent, then the same is true for the latter system.

A simple and standard PAC-reduction is the one from DNF to monotone DNF:

Lemma 9 (Kearns et al. (1987)) DNF ≤pac MONDNF and DNF ∗ ≤pac MONDNF ∗.

Proof We simply introduce a new variable for each negative literal. Specifically, set t′ = 2t,
define g(y) to be y concatenated with its bitwise complement y, and define f(ϕ(y1, . . . , yt))
to be the monotone DNF formula ϕ′(y1, . . . , y2t) where each occurrence of ¬yi in ϕ is re-
placed with the new variable yt+i. The fact that the function f is polynomial time (and
not just g) means that this also gives a reduction from DNF ∗ to MONDNF ∗.

Less obvious (and crucial for Theorem 11 below) is that DNF is PAC-equivalent to its
dual:

Proposition 10 DNF ≤pac DNF ∗ ≤pac DNF .

Proof We will give a relabelling reduction from MONDNF s,t to DNF ∗s′,t′ with s′, t′ =
poly(s, t), with functions f and g that are both polynomial time computable. By Lemma 9,
this suffices to prove the proposition.

Assume WLOG that our encoding of monotone DNF formulas is such that a size s
formula has at most s terms. Then our function f will map a monotone DNF formula ϕ on
t variables of size at most s to a bitstring x′ of length s′ = s · t, and the function g will map
a t-bit assignment y to a monotone DNF formula ψ of size t′ = poly(s, t) on s′ variables.

x′ = f(ϕ) ∈ {0, 1}s·t will be the concatenation of the indicator vectors for the s terms
of ϕ. Specifically x′i,j = 1 iff the i’th term of ϕ contains variable yj . g(y) will be the DNF
formula ψ given by:

ψ(z1,1,, . . . , zs,t) =
s∨

i=1

∧
j:yj=0

(¬zi,j).

We verify the correctness of this reduction, namely that ψ(x′) = 1 iff ϕ(y) = 1:

ψ(x′) = 1 ⇔
s∨

i=1

∧
j:yj=0

(¬x′i,j)

⇔
s∨

i=1

t∧
j=1

(¬x′i,j ∨ yj)

⇔
s∨

i=1

∧
j:x′i,j=1

yj

⇔ ϕ(y) = 1

7



Vadhan

Combining Proposition 10 and Theorem 5, we get the following equivalence:

Theorem 11 DNF is PAC-learnable iff DNF is RRHS-refutable.

4. Reductions among Refutation Problems

RRHS-refutation of DNF differs from more commonly studied refutation of constraint sat-
isfaction problems in several ways:

• In RRHS refutation, the left-hand sides of the constraint equations are worst-case,
whereas in typical CSP refutation, they are random.

• In RRHS refutation, the right-hand sides of the constraint equations are random,
whereas in typical CSP refutation, they are fixed to be 1 (all the randomness is in the
left-hand side).

• In RRHS refutation of DNF, each constraint is described by a polynomial-length for-
mula that can potentially depend on all variables, whereas in typical CSP refutation,
they are given by constant-arity constraints (e.g. conjunctions on 3 literals).

For example, the commonly studied problem of refuting k-SAT is defined as follows:

Definition 12 For functions k : N → N and n : N → N, we say that random k-SAT is
refutable using n equations if there is a polynomial-time algorithm B such that for every
s ∈ N, if we set k = k(s) and n = n(s), we have:

1. (Soundness) for every set of k-way disjunctions ϕ1, . . . , ϕn on s variables and their
negations, if the system of equations ϕ1(x) = 1, . . . , ϕn(x) = 1 is satisfiable, then

Pr[B(1s, ϕ1, . . . , ϕn) = 1] ≤ 1/3.

2. (Completeness) If we choose ϕ1, . . . , ϕn independently and randomly from the set of
all k-way disjunctions on s variables and their negations, then

Pr[B(1s, ϕ1, . . . , ϕn) = 1] ≥ 2/3,

where the probability is taken over ϕ1, . . . , ϕn and the coins of B.

Feige (2002) put forth the hypothesis that random 3-SAT is not refutable with n(s) =
O(s) clauses. A natural generalization is the following:

Assumption 13 (Daniely and Shalev-Schwartz (2016)) For every polynomial n(s),
there is a k such that random k-SAT on s variables is not refutable with n(s) clauses.

We can relate the hardness of refuting random k-SAT to RRHS-refutability of DNF as
follows, using the techniques of Daniely and Shalev-Schwartz (2016).

8



Learning vs. Refutation

Proposition 14 If k-DNF formulas on s variables with m = d2k · ln(4n)e terms are RRHS
refutable with n equations, then random k-SAT on s variables is refutable using n′ = O(n·m)
equations.

Proof By DeMorgan’s Law, a RRHS-refuter for k-DNF formulas is equivalent to an RRHS-
refuter for k-CNF formulas, so we will assume that we have the latter. Given k-way dis-
junctions ϕ1, . . . , ϕn·m on s variables, we will generate a sequence (ψ1, b1), . . . , (ψn, bn) of
k-CNF formulas ψi and bits bi to feed to our k-CNF refuter. For each i = 1, . . . , n, we will
construct ψi and bi as follows:

• With probability 1/2, set bi = 1 and let ψi be the conjunction of the first m disjunc-
tions from ϕ1, . . . , ϕn·m that have not been used yet in constructing ψ1, . . . , ψi−1.

• With probability 1/2, set bi = 0 and let ψi be the conjunction of m uniformly random
and independent k-way disjunctions.

Notice that if ϕ1, . . . , ϕn·m are random k-way disjunctions (as in the completeness con-
dition for a k-SAT refuter), then the distribution of ψi is the same in case bi = 1 as in
the case bi = 0. Thus, the bi’s are uniformly random and independent of the ψi’s, and by
completeness, our k-CNF RRHS-refuter will accept with probability at least 2/3.

For soundness, we argue that if the system of equations ϕ1(x) = 1, . . . , ϕn·m(x) = 1 is
satisfiable by assignment α, then the system ψ1(x) = b1, . . . , ψn(x) = bn is also satisfiable
(by the same assignment α) with high probability. Clearly for the i’s where we set bi = 1
and ψi to be a conjunction of ϕj ’s, the satisfying assignment α for the ϕj ’s will also satisfy
ψi(x) = 1 = bi. For each i where we set bi = 0, we argue that ψi(α) = 0 = bi with
high probability. Indeed, the probability that α satisfies a random k-CNF formula ψi with
m = O(2k log n) clauses is at most (1−2−k)m ≤ 1/4n. So by a union bound, the probability
α violates any of the equations is at most 1, and thus our refuter will accept with probability
at most 1/4 + 1/3 = 7/12 < 2/3.

Again, the gap between the completeness probability of 2/3 and the soundness probabil-
ity of 7/12 can be amplified to the 2/3 vs. 1/3 gap required by Definition 12 by a constant
number of repetitions (increasing n′ by the same constant factor).

Corollary 15 (Daniely and Shalev-Schwartz (2016)) If DNF formulas are PAC learn-
able, then there is a fixed polynomial n = n(s) such that for every constant k, k-SAT is
refutable using O(n(s)) equations. That is, Assumption 13 is false.

Proof By Theorem 11, if DNF formulas are PAC learnable, then they are RRHS-refutable.
That means there is a fixed polynomial n0(s,m) such that DNF formulas on s variables
with m terms can be refuted using n0(s,m) equations. Setting n1(s) = n0(s, log2 s), we
see that for every constant k, k-DNF formulas with m = O(2k log n1(s)) = o(log2 s)
are RRHS-refutable with n1(s) equations, and hence random k-SAT is refutable with
n1(s) ·m = o(log2 s) · n1(s) equations. Setting n(s) = n1(s) · log2 s completes the proof.

9



Vadhan

This gives evidence that there is no polynomial-time algorithm for PAC-learning DNF.
The fastest known algorithms for learning DNF formulas of size s take time roughly exp(s1/3)
and use exp(s1/3) examples (Klivans and Servedio, 2004). Can we give evidence that no
subexponential-time algorithm exists under a stronger version of Feige’s assumption? A
stronger version of Assumption 13 might say that for larger values of k (e.g. k = sΩ(1)),
refuting random k-SAT on s variables takes time 2Ω(s) even using sΩ(k) equations. Our
reductions can preserve the time lower bound of 2Ω(s) and the equation/sample-complexity
lower bound of sΩ(k), but notice that the size t of the DNF instance produced by Proposi-
tion 14 is larger than 2k, so our equation/sample-complexity lower bound of sΩ(k) will not
be any better than tlog s, which is quasipolynomial in the size of the DNF instance. This
is enough to show that PAC learning DNF with a polynomial sample complexity requires
exponential time (under the suggested assumption). But it remains open whether we can
give evidence that PAC-learning DNF requires exponential time even given a exponential
number of samples. Theorem 5 and Proposition 10 show that this is equivalent to giving
evidence that RRHS-refuting DNF requires exponential time even given an exponential
number of equations.

5. Relation to Cryptographic Hardness

Earlier results on hardness of PAC learning were typically based on cryptographic assump-
tions. Here we elucidate the relation between RRHS refutability and cryptographic hard-
ness. As already noted in the proof of Theorem 5, RRHS refutability has some connection
to pseudorandomness. The most related cryptographic object seems to be that of a weak
pseudorandom function (weak PRF):

Definition 16 Consider a family of functions P =
⋃

s Ps where Ps = {px : {0, 1}t →
{0, 1}}x∈{0,1}s is given by a polynomial-time evaluation function Eval : {0, 1}s × {0, 1}t →
{0, 1}, with t = t(s) ≤ poly(s). We say that P is a weak PRF family if for every probabilistic
polynomial-time algorithm B, every n = poly(s), and all sufficiently large s, we have either:

Pr[B(1s, (y1, px(y1)), . . . , (yn, px(yn))) = 1] > 1/3,

OR
Pr[B(1s, (y1, b1), . . . , (yn, bn)) = 1] < 2/3,

where the probabilities are taken over x← {0, 1}s, y1, . . . , yt ← {0, 1}t, b1, . . . , bn ← {0, 1},
and the coins of B.

The usual definition of pseudorandom functions by Goldreich, Goldwasser, and Micali
(1986) was used to give the first hardness result for PAC learning in Valiant’s original
paper (Valiant, 1984). The above definition of weak PRFs is weaker than the usual defini-
tion of PRFs in two respects:

• The inputs yi to the PRF are chosen uniformly at random rather than adversarially
and adaptively chosen by B. (This relaxation was studied by Naor and Reingold
(1998) as “indistinguishability under a random sample and random challenge.”)

10



Learning vs. Refutation

• To violate pseudorandomness, B needs to achieve a distinguishing advantage greater
than 2/3 − 1/3 = 1/3 (rather than just 1/poly(s)), and must do so with specified
thresholds of 1/3 and 2/3.

Nevertheless, it can be shown that the existence of weak PRFs is equivalent to the existence
of one-way functions and hence ordinary PRFs (but these equivalences involve modifying
the family of functions).

By definition, if P is a weak PRF family, then Q = P∗ cannot be RRHS-refutable. Let’s
examine the way in which the definition of weak PRF is stronger than the negation of RRHS-
refutability (which we will call RRHS-unrefutability). If P∗ is RRHS-unrefutable, then for
every probabilistic polynomial-time algorithm B, for infinitely many s, either soundness
or completeness must fail, analogous to the two possibilities in Definition 16. (In this
discussion, we restrict to the case that t is polynomially related to s, as in Definition 16, so
that we have only one parameter.) Specifically, if soundness fails, there exist y1, . . . , yn ∈
{0, 1}t and x ∈ {0, 1}s such that:

Pr[B(1s, (y1, px(y1)), . . . , (yn, px(yn))) = 1] > 1/3,

where the probability is taken over the coins of B. If completeness fails, there exist
y1, . . . , yn ∈ {0, 1}t such that:

Pr[B(1s, (y1, b1), . . . , (yn, bn)) = 1] < 2/3,

where the probability is taken over the coins of B and b1, . . . , bn ← {0, 1}. In both cases, the
failure of B is for a worst-case choice of the inputs y1, . . . , yn, and in the case of completeness,
it is for a worst-case choice of the PRF key x. Moreover these worst-case choices can
depend on the algorithm B (as can the choice of the infinitely many s on which soundness
or completeness fails). In contrast, a weak PRF ensures that B fails even when these strings
are chosen uniformly at random (and this holds for all sufficiently large s).

In the literature on zero-knowledge proofs (Ostrovsky, 1991; Ostrovsky and Wigderson,
1993; Vadhan, 2006; Ong and Vadhan, 2008; Applebaum, Barak, and Xiao, 2008), other
weakenings of the definition of pseudorandom functions have been studied, where the func-
tions are also indexed by a string w ∈ {0, 1}r that is worst-case, but is given to the adversary
B. One variant is as follows:

Definition 17 Consider a family of functions P =
⋃

s Ps where Ps = {pw,x : {0, 1}t →
{0, 1}}w∈{0,1}r,x∈{0,1}s for t, r ≤ poly(s) given by a polynomial-time evaluation function
Eval : {0, 1}r × {0, 1}s × {0, 1}t → {0, 1}. We say that P is a auxiliary-input weak PRF
family if for every probabilistic polynomial-time algorithm B and every n = poly(s), there
exist infinitely many s ∈ N and w ∈ {0, 1}r such that either:

Pr[B(1s, w, (y1, pw,x(y1)), . . . , (yn, pw,x(yn))) = 1] > 1/3,

OR
Pr[B(1s, w, (y1, b1), . . . , (yn, bn)) = 1] < 2/3,

where the probabilities are taken over x← {0, 1}s, y1, . . . , yt ← {0, 1}t, b1, . . . , bn ← {0, 1},
and the coins of B.

11



Vadhan

Ostrovsky (1991) introduced a similar notion of auxiliary-input one-way functions. In the
works of Ostrovsky (1991); Ostrovsky and Wigderson (1993); Ong and Vadhan (2008), it
was shown that the existence of zero-knowledge proofs (or even zero-knowledge arguments)
for a language outside BPP implies the existence of auxiliary-input one-way functions.
Applebaum, Barak, and Xiao (2008) observed that the existence of auxiliary-input one-way
functions implies the existence of a auxiliary-input (strong) pseudorandom function family
P, and that the latter implies hardness of PAC-learning P. Here, we can directly see that if
P is an auxiliary-input weak PRF family, then P∗ is RRHS-unrefutable (which is equivalent
to P not being PAC-learnable, by Theorem 5). (Here the pair (x,w) should be treated as a
single index for function p(x,w). Unlike an auxiliary-input weak PRF adversary, a refuter is
not given w, which only makes the task of refutation harder.) Still, the notion of auxiliary-
input weak PRFs appears to be substantially stronger than RRHS-unrefutability, due to
the worst-case choices of the key x and inputs y1, . . . , yn in the latter. This may explain
why Daniely et al. (2014); Daniely and Shalev-Schwartz (2016); Daniely (2016) were able
to obtain hardness of PAC-learning results that eluded past work.

In the work of Vadhan (2006), a notion of “instance-dependent one-way functions” was
introduced, which is stronger than the auxiliary-input notion above in that the infinite set
of hard indices w does not depend on the adversary B. This notion captures the difference
between computational zero knowledge and statistical zero knowledge (Vadhan, 2006; Ong
and Vadhan, 2008).

It is informative to compare which values are random or worst case in the different
notions examined:

function index function inputs
(in completeness)

RRHS-unrefutability of P∗ worst case and secret worst case

Ordinary refutability of P∗ worst case and secret random

(Weak) PRF family P random and secret random

Auxiliary-input weak PRF family P worst-case public part random
random secret part random

Acknowledgments

I thank Boaz Barak, Amit Daniely, Ryan O’Donnell, Rocco Servedio, and Jon Ullman
for illuminating conversations, and the anonymous reviewers for helpful corrections and
suggestions.

References

Benny Applebaum, Boaz Barak, and David Xiao. On basing lower-bounds for learning on
worst-case assumptions. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 211–220. IEEE
Computer Society, 2008. ISBN 978-0-7695-3436-7. doi: 10.1109/FOCS.2008.35. URL
http://dx.doi.org/10.1109/FOCS.2008.35.

12

http://dx.doi.org/10.1109/FOCS.2008.35


Learning vs. Refutation

Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Daniel Wichs
and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
105–117. ACM, 2016. ISBN 978-1-4503-4132-5. doi: 10.1145/2897518.2897520. URL
http://doi.acm.org/10.1145/2897518.2897520.

Amit Daniely and Shai Shalev-Schwartz. Complexity theoretic limitations on learning dnf’s.
In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, editors, Proceedings of the
29th Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016,
volume 49 of JMLR Workshop and Conference Proceedings, pages 815–830. JMLR.org,
2016. URL http://jmlr.org/proceedings/papers/v49/daniely16.html.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to
improper learning complexity. In David B. Shmoys, editor, Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 441–
448. ACM, 2014. ISBN 978-1-4503-2710-7. doi: 10.1145/2591796.2591820. URL http:

//doi.acm.org/10.1145/2591796.2591820.

Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing,
pages 534–543. ACM, New York, 2002. doi: 10.1145/509907.509985. URL http://dx.

doi.org/10.1145/509907.509985.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the Association for Computing Machinery, 33(4):792–807, 1986. ISSN 0004-
5411. doi: 10.1145/6490.6503. URL http://dx.doi.org/10.1145/6490.6503.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning Boolean formulae
and finite automata. Journal of the Association for Computing Machinery, 41(1):67–95,
1994. ISSN 0004-5411. doi: 10.1145/174644.174647. URL http://dx.doi.org/10.1145/

174644.174647.

Michael J. Kearns, Ming Li, Leonard Pitt, and Leslie G. Valiant. On the learnability
of boolean formulae. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA, pages 285–295.
ACM, 1987. ISBN 0-89791-221-7. doi: 10.1145/28395.28426. URL http://doi.acm.

org/10.1145/28395.28426.

Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2Õ(n1/3). Journal of
Computer and System Sciences, 68(2):303–318, 2004. ISSN 0022-0000. doi: 10.1016/j.
jcss.2003.07.007. URL http://dx.doi.org/10.1016/j.jcss.2003.07.007.

Moni Naor and Omer Reingold. From unpredictability to indistinguishability: A sim-
ple construction of pseudo-random functions from MACs (extended abstract). In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceed-
ings, volume 1462 of Lecture Notes in Computer Science, pages 267–282. Springer, 1998.

13

http://doi.acm.org/10.1145/2897518.2897520
http://jmlr.org/proceedings/papers/v49/daniely16.html
http://doi.acm.org/10.1145/2591796.2591820
http://doi.acm.org/10.1145/2591796.2591820
http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1145/6490.6503
http://dx.doi.org/10.1145/174644.174647
http://dx.doi.org/10.1145/174644.174647
http://doi.acm.org/10.1145/28395.28426
http://doi.acm.org/10.1145/28395.28426
http://dx.doi.org/10.1016/j.jcss.2003.07.007


Vadhan

ISBN 3-540-64892-5. doi: 10.1007/BFb0055734. URL http://dx.doi.org/10.1007/

BFb0055734.

Shien Jin Ong and Salil Vadhan. An equivalence between zero knowledge and commitments.
In Theory of cryptography, volume 4948 of Lecture Notes in Computer Sciences, pages
482–500. Springer, Berlin, 2008. doi: 10.1007/978-3-540-78524-8 27. URL http://dx.

doi.org/10.1007/978-3-540-78524-8_27.

Rafail Ostrovsky. One-way functions, hard on average problems, and statistical zero-
knowledge proofs. In Proceedings of the Sixth Annual Structure in Complexity The-
ory Conference, Chicago, Illinois, USA, June 30 - July 3, 1991, pages 133–138. IEEE
Computer Society, 1991. ISBN 0-8186-2255-5. doi: 10.1109/SCT.1991.160253. URL
https://doi.org/10.1109/SCT.1991.160253.

Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS
1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17. IEEE Computer So-
ciety, 1993. ISBN 0-8186-3630-0. doi: 10.1109/ISTCS.1993.253489. URL https:

//doi.org/10.1109/ISTCS.1993.253489.

Leonard Pitt and Manfred K. Warmuth. Prediction-preserving reducibility. Journal of
Computer and System Sciences, 41(3):430–467, 1990. ISSN 0022-0000. doi: 10.1016/
0022-0000(90)90028-J. URL http://dx.doi.org/10.1016/0022-0000(90)90028-J.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.
doi: 10.1007/BF00116037. URL http://dx.doi.org/10.1007/BF00116037.

Salil P. Vadhan. An unconditional study of computational zero knowledge. SIAM Journal on
Computing, 36(4):1160–1214, 2006. ISSN 0097-5397. doi: 10.1137/S0097539705447207.
URL http://dx.doi.org/10.1137/S0097539705447207.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984. doi: 10.1145/1968.1972. URL http://doi.acm.org/10.1145/1968.1972.

Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA,
3-5 November 1982, pages 80–91. IEEE Computer Society, 1982. doi: 10.1109/SFCS.1982.
45. URL https://doi.org/10.1109/SFCS.1982.45.

14

http://dx.doi.org/10.1007/BFb0055734
http://dx.doi.org/10.1007/BFb0055734
http://dx.doi.org/10.1007/978-3-540-78524-8_27
http://dx.doi.org/10.1007/978-3-540-78524-8_27
https://doi.org/10.1109/SCT.1991.160253
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1109/ISTCS.1993.253489
http://dx.doi.org/10.1016/0022-0000(90)90028-J
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1137/S0097539705447207
http://doi.acm.org/10.1145/1968.1972
https://doi.org/10.1109/SFCS.1982.45

	Introduction
	Learning vs. Refutation
	Reductions
	Reductions among Refutation Problems
	Relation to Cryptographic Hardness

